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ABSTRACT

Several re-ranking algorithms have been proposed recently. Some effective approaches are based on
complex graph-based diffusion processes, which usually are time consuming and therefore inappro-
priate for real-world large scale shape collections. In this paper, we introduce a novel graph-based
approach for iterative distance learning in shape retrieval tasks. The proposed method is based on the
combination of graphs defined in terms of multiple ranked lists. The efficiency of the method is guar-
anteed by the use of only top positions of ranked lists in the definition of graphs that encode reciprocal
references. Effectiveness analysis performed in three widely used shape datasets demonstrate that the
proposed graph-based ranked-list model yields significant gains (up to +55.52%) when compared with
the use of shape descriptors in isolation. Furthermore, the proposed method also yields comparable or
superior effectiveness scores when compared with several state-of-the-art approaches.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Shape matching plays a central role in computer vision and
content-based image retrieval systems, as it is one of the most
important visual properties in human perception [1, 2, 3]. In
many recognition applications, for example, the object classes
are more easily distinguished using shape features – in opposi-
tion to other common properties such as color or texture [4].

Therefore, accurately measuring the similarity between two
given shapes represents a fundamental task in many computer
vision systems and often depends on an effective shape descrip-
tor, usually defined in terms of a feature extraction function and
a similarity measure [5]. During the past decades, several fea-
tures have been proposed, employing distinct approaches [6].

The contour is a common exploited property, since the ob-
ject’s closed boundary curve contains rich information about
the shape complexity [7]. In fact, the contour complexity has
been analyzed from different perspectives by different descrip-
tors. The contour saliences, for example, characterizes the in-
fluence areas of higher curvature points along a contour [8].
Another strategy relies on the computation of the angle between
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lines connecting a point with the rest of the points on the bound-
ary [9]. Contour points are also used to compute geometric rep-
resentations (e.g., triangles) [10].

In addition to contour, another common representation is
based on skeletons, which aim at capturing a structural rep-
resentation of shape by modeling it in terms of a set of axial
curves [11]. Based on the observation that contour-based repre-
sentations are often effective at representing detailed shape in-
formation, and skeleton-based description approaches can cope
well with non-rigid deformations, combined approaches also
have been proposed [12].

Despite the significant advances achieved by shape descrip-
tors, designing an effective similarity measure has proven to be
a challenging task, still considered as a largely unsolved prob-
lem [5]. Among the difficulties, we can point out non-linear
transformations [13] and the inherent subjectivity associated
with the definition of the similarity itself [5].

An innovative perspective to the problem is based on the
analysis of the similarity measures in a graph structure [14].
Different from previous advances, which have been mostly
driven by designing better shape features, this family of meth-
ods learns a new metric through graph transduction by prop-
agation. The Locally Constrained Diffusion Process [1], for
example, proposes that shapes do influence the similarity mea-
sure of other pairs of shapes, where the influence is propagated
as a diffusion process on a graph. Other graph-based initiatives
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include the Shortest Path Propagation [15], the Tensor Product
Graph [16], and the Self-Smoothing Operator [17].

These graph-based methods present similar objectives: post-
processing the distance/similarity measures for improving the
effectiveness of retrieval tasks. In general, such methods com-
pute “global” measures capable of taking into account the re-
lationships among images and the structure of the dataset man-
ifold. Some of these methods are represented as specific in-
stances of a generic framework [18] for diffusion processes on
an affinity graph. Other variations consider the use of various
similarity measures [19, 20].

Although indispensable for improving the retrieval effective-
ness, the wide use of post-processing methods on large-scale
real-world applications also depends on efficiency and scala-
bility aspects [21]. More recently, due to the high computa-
tional costs associated with diffusion-based approaches, other
efficient post-processing methods have emerged [21, 22, 23],
mainly based on ranking analysis [24, 25, 26].

In these methods, the similarity among ranked lists [24] and
the ranking consistency [25] are considered. The reciprocal
references also have been attracted a lot of attention [23, 26],
including fusion tasks [27]. One important advantage of rank-
based methods consists in the possibility of processing only a
sub-set of ranked lists, reducing the computational costs.

In this paper, we present a novel rank-based algorithm for
improving the effectiveness of shape retrieval tasks. The algo-
rithm models each ranked list as a graph, establishing similarity
connections among all top-k images. Next, a graph fusion ap-
proach is employed for obtaining a single graph representing
the whole collection and exploiting the relationships encoded
in the dataset manifold. Based on the fused graph, a new dis-
tance is learned and a new set of ranked lists is computed.

In summary, the main contribution consists in the proposal
of a graph-based model for representing ranked lists. The pro-
posed Ranked List Graph considers only the k-neighborhood
information, exploiting a recent rank correlation measure [28].
In this way, computational costs are restricted only to the top-
k positions, providing, at the same time, an effective and effi-
cient representation for search tasks. Additionally, the method
requires a very small number of iterations to obtain the best ef-
fectiveness results.

Extensive experiments were conducted on a three public
datasets and considering different descriptors. Experimental
results demonstrate that the proposed method can obtain sig-
nificant effectiveness gains (up to +55.52% in terms of rela-
tive gains). Our approach was also evaluated in comparison
with other state-of-the-art approaches, yielding effectiveness re-
sults superior and comparable to various post-processing algo-
rithms recently proposed in the literature. For example, we have
achieved 100% accuracy (P@20) on the well-known MPEG-7
shape dataset.

The paper is organized as follows: in Section 2, a formal defi-
nition of the addressed problem is discussed. Section 3 presents
the proposed graph-based distance learning approach. Section 4
discusses the experimental evaluation and, finally, Section 5
draws our conclusions and presents future work.

2. Problem Formulation

A formal definition of the image retrieval model considered
is presented in this section. Let C={img1, img2, . . . , imgn} be an
image collection. Let n = |C| be the size of the collection C.
Let D be an image descriptor, which can be defined according
to [29] as a tuple (ε, ρ), where

• ε: Î → Rn is a function, which extracts a feature vector vÎ
from an image Î; and

• ρ: Rn × Rn → R is a distance function that computes
the distance between two images according to the distance
between their corresponding feature vectors.

The distance between two images imgi and img j is defined by
the value of ρ(ε(imgi), ε(img j)). However, the notation ρ(i, j) is
used along the paper for readability purposes.

Based on the distance function ρ, a ranked list τq can be
computed in response to a query image imgq. The ranked list
τq=(img1, img2, . . . , imgn) can be defined as a permutation of
the collection C. A permutation τq is a bijection from the set C
onto the set [N] = {1, 2, . . . , n}. The value of τq(i) can be inter-
preted as the position (or rank) of image imgi in the ranked list
τq. In other words, if imgi is ranked before img j in the ranked
list of imgq (that is, τq(i) < τq( j)), then ρ(q, i) ≤ ρ(q, j).

Every image imgq ∈ C can be taken as a query image in order
to compute a ranked list for each image of the collection. In this
way, a set of ranked lists R = {τ1, τ2, . . . , τn} can be obtained.
The unsupervised distance learning aims at exploiting the in-
formation encoded in the set of ranked lists R for computing a
more effective distance function ρc. Subsequently, a new set of
ranked lists Rc can be computed based on distance ρc. More
formally, we can define the unsupervised distance learning al-
gorithm as a function fr:

Rc = fr(R). (1)

Additionally to the objective of improving the effectiveness
of the retrieval results, efficiency aspects are also considered.
In this way, the algorithm processes only sub-sets of the ranked
lists, with fixed sizes denoted by constants k and L. The most
relevant information are expected to be at the top-k positions of
ranked lists, but useful information can be obtained until posi-
tion L, such k ≤ L � n.

3. Ranked-List Graph Model

In this section, we present the Ranked-List Graph Distance
algorithm for distance learning and distance fusion tasks.

3.1. Distance Learning

The main contribution of the proposed algorithm consists in
modeling each ranked list as a graph, considering its top-k po-
sitions. Different from pairwise distances, which consider the
query image and each image in isolation, the proposed ranked
list graph establishes relationships among the query and all its
neighbors.
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Once each collection image and its respective ranked list is
represented by a graph, a fusion approach is employed to com-
bine them into a single graph representing the whole collection.
Finally, the learned distance is computed based on this graph.

The graph-based approach can be roughly divided into four
steps:

1. Rank Normalization: this step is in charge of recomput-
ing the distances among images by considering their mu-
tual reference defined by their respective ranked lists;

2. Ranked-List Graph Computation: this step constructs a
graph for representing top-k positions of ranked lists;

3. Graph Fusion: this step combines all ranked-list graphs
into a single collection graph;

4. Ranked-List Graph Distance Computation: this step
computes the Ranked-List Graph Distance among images
based on the edges of the collection graph.

Figure 1 illustrates in a simplified form the graph-based ap-
proach for modelling the ranked lists. Given two images imgi,
img j, their respective ranked lists τi, τ j are represented as two
graphs.

Observe the ranked list τi, for example: beyond the edges
among the query image (imgi) and the top retrieved results
(imga, imgb, img j, imgc), the graph also connects the top re-
trieved results themselves. In the following, the fusion of
graphs defined by distinct ranked lists reinforces recurring
edges, as occurs for edges among imgi, img j, imga (in colors).

aaτi bb jj cc

τj

ii

jj dd

+

dd ii aa

Fig. 1. Overview of the proposed Ranked-List Graph model.

Next, a formal definition of each step of the algorithm is pre-
sented.

3.1.1. Rank Normalization
While most of similarity/dissimilarity pairwise measures are

symmetric, the same does not occur for rank analysis. In this
way, an image imgi well ranked for a query img j, does not im-
ply that img j is well ranked for query imgi. The benefits from
improving the symmetry of the k-neighborhood relationship are
well known [30] for image retrieval.

In this work, a simple approach, which considers the mutual
reference among ranked lists, is employed. Only the images
at the top-L positions of the ranked lists are considered, aim-
ing at keeping the low computational costs. A rank normalized
distance ρn is computed as:

ρn(i, j) = τi( j) + τ j(i), (2)

where τi( j) ≤ L. In the following, all the ranked lists are up-
dated according to the rank normalized distance ρc, defining a
new set of ranked lists Rn, which is used in the next steps of the
algorithm.

3.1.2. Ranked-List Graph Computation
The Ranked-List Graph is defined in terms of the k-

neighborhood of collection images.
Let N(i, k) be the neighborhood set, which is formally de-

fined as follows:

Nk(i) = {R ⊆ C, |R| = k ∧ ∀x ∈ R, y ∈ C − R : ρn(i, x) 6 ρn(i, y)}
(3)

The Ranked-List Graph computed for an image imgi is de-
fined as a weighted undirected graph Gi = (Vi, Ei,wi), where
the set of vertices Vi is defined by the set Nk(i). Each image
is represented by a node and Vi = Nk(i). The edge set Ei is
defined considering the correlation among images at the top ns
positions of each ranked list, as follows:

Ei = {(img j, imgl) | img j, imgl ∈ Nk(i)}. (4)

The edge weight wi is defined by a recently proposed rank
measure [28], based on a probabilistic user model employed for
performing rank correlation analysis. The Rank-Biased Over-
lap [28] (RBO) compares the overlap of two ranked lists at in-
crementally increasing depths. The measure takes a parameter
p that specifies the probability of considering the overlap at the
next level. The RBO measure is formally defined as follows:

RBO( j, l) = (1 − p)
k∑

d=1

pd−1 ×
|Nk( j) ∩ Nk(l)|

d
, (5)

where p is a constant, which determines the strength of the
weighting to top ranks. The edge weight wi is defined by the
RBO measure, such that wi( j, a) = RBO( j, a).

3.1.3. Graph Fusion
Recently, graph fusion approaches have been proposed for

combining different retrieval methods [27]. In this work, we
employ a fusion method for combining the graphs of dif-
ferent ranked lists into a novel representation named Collec-
tion Graph. The Collection Graph represents the relationships
among all images in a collection, through the fusion of Ranked-
List Graphs.

Despite the use of a graph-based model, the proposed method
differs from [27] in many aspects: the graph defined by [27] has
an edge only if two images are reciprocal neighbors. In the pro-
posed Ranked-List Graph, the edges connect the query image
and all their neighbors, defining a fully connected graph for
each ranked list. Such methods also differ regarding the weight
of the edges: the Jaccard and a decay coefficient related to the
number of hops to the query is used in [27], while our approach
uses the RBO [28] measure. Additionally, while [27] performs
a ranking step using a transition matrix based on PageRank or
a greedy algorithm, the proposed approach do not require any
analogous step.

The proposed Collection Graph Gc is defined as a weighted
undirected graph Gc = (Vc, Ec,wc), where the set of vertices Vc
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is defined by the image collectionC, such that Vc = C. The edge
set Ec is defined as the union of edges defined for all ranked list
graphs. Formally, we have Ec =

⋃
i Ei for each image imgi ∈ C.

The edge weights wc are also defined in terms of the sum of
all weights defined in the ranked-list graphs, as:

wc( j, l) =
∑

imgi∈C
wi( j, l). (6)

Notice that the edge weight, which defines the strength of
connection (and the similarity) between images img j and imgl,
is computed based on information encoded in the weights of all
ranked lists (wi, with each imgi ∈ C).

3.1.4. Ranked-List Graph Distance
Based on the weights of the Collection Graph, a new distance

ρc can be computed. Given two images imgi, img j, the distance
between them ρc(i, j) is defined as follows:

ρc(i, j) =
1

1 + wc(i, j)
, (7)

where wc(i, j) > 0. For images without edges, the ranked
lists remain the same. More formally, for imgi, imgl such
(imgi, imgl) ∩ Ec = {∅}, we have ρc(i, l) = τi(l).

A new set of ranked lists Rc is computed based on the new
distance ρc. Once the input for the ranked list graphs consists
in the set of ranked lists, the process can iteratively be repeated
along iterations. Let (t) denotes the current iteration, an iterative
distance function ρ(t)

c (i, j) can be defined, and consequently, a
set of ranked lists R(t)

c .
The final set of ranked lists R(T )

c is obtained after T iterations
of the algorithm. As discussed in the experimental section, the
number of required iterations is very small. In fact, the most
significant gains are obtained at the first iteration.

3.1.5. Rank-List Graph Algorithm
This section discusses an algorithmic solution for the pro-

posed method. Algorithm 1 presents an approach for comput-
ing the rank normalization step. The distance ρn is updated
(Line 3) according to the top-L positions defined by the set NL
(Line 2).

Algorithm 1 Rank Normalization Algorithm
Require: Set of ranked lists R, parameter L
Ensure: Rank Normalized Set of Ranked Lists Rn

1: for all imgi ∈ C do
2: for all img j ∈ NL(i) do
3: ρn(i, j)← τi( j) + τ j(i)
4: end for
5: end for
6: Rn = sort(R, ρn)

Algorithm 2 outlines the method for updating the set of
ranked lists according to the Ranked-List Graph Distance. For
each image imgi (Line 4) and its neighbors img j and imgl (Lines
5-6), the weights of edges from Ranked-List Graph are added
to the Collection Graph weights wc (Line 7). The new distance
is computed in Lines 11-15, leading to an updated set of ranked
lists (Line 16).

For a given image collection with n images, the most impor-
tant steps of the proposed method are restricted to the top-k or
top-L positions of the n ranked lists. Algorithm 2 (Lines 11-
14) redefines the distance among all images, but it can be easily
adapted to recompute only the distances until the top-L posi-
tions of each ranked list, similarly to Algorithm 1. The same
can be considered for the sorting step. In this way, with all
operations restricted to top-L positions, the overall algorithm
presents a complexity of only O(n).

Algorithm 2 Rank List Graph Distance Algorithm
Require: Rank Normalized Set of Ranked Lists Rn, parameters k,T
Ensure: Updated set of Ranked Lists Rc

1: t ← 0
2: R(0)

c ← Rn

3: while t < T do
4: for all imgi ∈ C do
5: for all img j ∈ Nk(i) do
6: for all imgl ∈ Nk(i) do
7: wc( j, l)← RBO( j, l)
8: end for
9: end for

10: end for
11: for all imgi ∈ C do
12: for all img j ∈ C do
13: ρ(t)

c ← 1/(1 + wc(i, j))
14: end for
15: end for
16: R

(t+1)
c = sort(R(t)

c , ρ
(t)
c )

17: t ← t + 1
18: end while

3.2. Descriptor Combination
Different image descriptors may focus on diverse and com-

plementary aspects of the shape, like contour, curvature, and
skeleton. Therefore, it is intuitive that the combination of the
distances computed according to different features can improve
the retrieval accuracy [31].

In this work, we exploit the Ranked-List Graph Distance in
conjunction with a multiplicative approach inspired on recent
positive results [23, 32] for combining image descriptors. First,
the Ranked-List Graph Distance is computed in isolation for
each feature, considering one iteration. Subsequently, the re-
sults are multiplied and combined into a single distance. Be-
sides being unsupervised, the proposed method does not per-
form any normalization steps as required by other fusion ap-
proaches [31].

Let ρ(1)
cd be the Ranked-List Graph Distance at first iteration

of a given descriptor d and let m be the number of descriptors
considered, the fused distance can be defined as:

ρ(1)
f (i, j) =

m∏
d=1

(1 + ρ(1)
cd

(i, j)). (8)

Once a combined distance is computed, a set of ranked lists
R

(1)
f can be obtained and other iterations of the algorithm can

be processed. After T iterations of the algorithm, the final set
of ranked lists R(T )

f is obtained. As discussed in experimental
section, for distance fusion tasks only one iteration (T = 1) is
needed for the combined distance.
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4. Experimental Evaluation

In this section, we present the results of experimental evalu-
ation conducted for assessing the effectiveness of the proposed
method. A rigorous experimental protocol was employed, in-
volving three different datasets and various descriptors. Our
objective is to evaluate the proposed method in diverse scenar-
ios. We also performed statistical tests to confirm if the use
of the proposed post-processing approach yields significant re-
sults, when compared to the use of the shape descriptors in iso-
lation.

4.1. Datasets and Descriptors
The datasets and descriptors considered in the experimental

evaluation are briefly described in this section.

4.1.1. MPEG-7
The MPEG-7 [35] dataset is a well-known shape dataset,

composed of 1,400 shapes which are grouped into 70 classes,
with 20 objects per class. The dataset is widely used for shape
retrieval and post-processing methods evaluation.

Six different shape descriptors are considered: Segment
Saliences (SS) [3], Beam Angle Statistics (BAS) [9], Inner
Distance Shape Context (IDSC) [13], Contour Features De-
scriptor (CFD) [33], Aspect Shape Context (ASC) [36], and
Articulation-Invariant Representation (AIR) [34].

Two effectiveness measures were considered the for the
MPEG-7 [35] dataset: the MAP and the Bull’s Eye Score, com-
monly used for this dataset. The score counts all matching
shapes within the top-40 ranked images. The retrieved score
is normalized, since each class consists of 20 shapes which de-
fines highest possible number of hits, being equivalent to Re-
call@40. For data fusion, the accuracy score which is a more
strict measure equivalent to the P@20 is also considered.

4.1.2. Animal
The Animal1 [12] dataset is composed of 2,000 animal

shapes from 20 different classes. This dataset is equally di-
vided into two parts labeled A and B, and each part comprises
10 classes of animals. Each class contains 100 shape images
from different animal views.

The descriptors used for encoding shape properties
are: Fourier Descriptor (FD) [37], Curvature Scale Space
(CSS) [38], Tensor Scale Descriptor (TSD) [39], Segment
Saliences (SS) [3], Beam Angle Statistics (BAS) [9], and Trian-
gle Area Representation (TAR) [40]. The effectiveness of each
descriptor was assessed using three metrics: MAP, P@10, and
P@20.

4.1.3. ETH-80
The ETH-802 [41] dataset is composed of 3,280 images,

and each image comprises one single object at its center and
a known background. This dataset consists of 80 objects from

1https://sites.google.com/site/xiangbai/animaldataset
(As of November 2015)

2http://www.mis.informatik.tu-darmstadt.de/Research/
Projects/categorization/eth80-db.html
(As of August 2007)

8 different classes. Each class contains 10 objects with 41 view
per object.

For each object, there is provided a color image and a bi-
nary image of its contour, which we used in our shape experi-
ments. All the images are cropped and rescaled to a size of 128
× 128 pixels. The shape descriptors and effectiveness measures
considered for the ETH-80 dataset were the same used for the
Animal dataset.

4.2. Impact of Parameters
This section aims at assessing the robustness of the method

to different parameter settings, evaluating the impact different
parameter values on the effectiveness results. We conducted
various experiments considering the MPEG-7 collection [35].

The first experiment evaluates the impact of the parameters
k (size of the neighborhood set) and T (number of iterations).
Figures 2 and 3 illustrate the effectiveness scores given by the
Mean Average Precision (MAP) according to variations of k
and T , for descriptors CFD [33] and AIR [34], respectively. A
large and stable red region can be observed for both surfaces,
demonstrating the robustness of the method in achieving high
effectiveness gains for different parameters settings. The best
effectiveness results are obtained by values near to k=20 and
T=2. In most of remaining experiments, we used k = 20 as the
neighborhood size, except for the Animal dataset, in which we
used k = 40 due to the larger number of images within each
class.

The impact of the size of subset of ranked lists (L) is
also evaluated, considering three different shape descriptors:
CFD [33], ASC [36], and AIR [34]. Figure 4 shows the im-
pact of this parameter on the MAP scores. A fast growth of
effectiveness scores can be observed for small values of L. The
effectiveness gains stabilize for the three descriptors for val-
ues between 100 and 200. For most of experiments, we used
L=100.

The last experiment evaluated the parameter p used for the
RBO measure. Figures 5 shows the variation of MAP scores
according to different values of p. The parameter p indicates
the weight given to top positions of ranked lists. The descriptors
CFD [33], ASC [36], and AIR [34] are considered. The results
varied, according to the effectiveness of the descriptors. For
the AIR descriptor, which presents higher effectiveness scores,
greater values of p presented better results. We used p = 0.95
in the remaining experiments.

4.3. Evaluation of the Proposed Method
Various experiments were conducted for evaluating the effec-

tiveness of the proposed method, considering the three datasets
and image descriptors discussed in Section 4.1. A statistical
analysis is also presented, using paired t-tests. The objective
consists in assessing if the difference between the retrieval re-
sults before and after the use of the algorithm is statistically
significant.

4.3.1. MPEG-7 Dataset
The first experiment considered the MPEG-7 dataset and the

Bull’s Eye Score (Recall@40). Table 1 presents the effective-
ness results and the relative gains for six image descriptors. The
full ranked lists (L=1400) were considered and different values

https://sites.google.com/site/xiangbai/animaldataset
http://www.mis.informatik.tu-darmstadt.de/Research/Projects/categorization/eth80-db.html
http://www.mis.informatik.tu-darmstadt.de/Research/Projects/categorization/eth80-db.html
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Fig. 2. Impact of parameters k and T for the CFD [33] descritor. Fig. 3. Impact of parameters k and T for the AIR [34] descritor.
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of iterations (T = 1 and T = 2). Very significant positive gains
can be observed, ranging from +6.81% to +35.24%.

An analogous experiment was conducted aiming at evaluat-
ing the impact of considering only top positions of ranked lists
(L=100). Table 2 presents the results. As we can observe, the
effectiveness results are very similar to full ranked lists, demon-
strating the capability of the method in achieving effectiveness
gains without neglecting efficiency aspects. All remaining ex-
periments considered L=100.

The proposed algorithm is also evaluated on the MPEG-7
dataset considering the MAP scores. Table 3 presents the ob-
tained results. We can observe that the relative gains obtained
for MAP are even greater than for Recall@40. For the SS [3]
descriptor, for example, the Ranked-List Graph distance im-
proved the results from 37.67% to 52.51%, achieving a relative
gain of +39.39%. Notice also that all the results for the MPEG-
7 dataset are statistically significant at a confidence of 99%.

4.3.2. Animal Dataset
The experimental results for the Animal dataset, Parts A and

B, are presented in Tables 4 and 5, respectively. The MAP
measure is considered for this experiment. For the Part A of the
dataset, only positive gains are obtained, ranging from +1.18%
to 45.57%. For the Part B, the algorithm achieved even more
impressive gains, reaching +55.52% for the BAS [9] descriptor.

The only exception is the FD descriptor, where no gains are

observed. It is worth mentioning that the considered descrip-
tors for the Animal dataset (and also for the ETH-80 colelction)
achieved a lower effectiveness scores, if compared with the
MPEG-7 dataset. This scenario is more challenging for unsu-
pervised algorithms, which depends on the existence of relevant
results in the top-ranked positions.

4.3.3. ETH-80 Dataset
Table 6 presents the MAP scores for the ETH-80 dataset. De-

spite the low initial effectiveness scores (which are even smaller
than the Animal dataset), the algorithm achieved significant
gains, except for the FD descriptor. For example, the algorithm
improved the MAP score of the BAS descriptor from 12.65%
to 19.48%, reaching a relative gain of +54.05%.

4.4. Visual Re-Ranked Results
This section aims at illustrating the visual impact of the pro-

posed algorithm on retrieval results. Figure 6 illustrates the re-
turned ranked lists for the CFD [33] descriptor on MPEG-7.
Three query images are illustrated before and after the execu-
tion of the algorithm. The first image of each row represents the
query image (highlighted with a green border). Wrong (non-
relevant) images in the ranked lists are illustrated with red bor-
ders.

The effectiveness of retrieval is greatly improved for all the
queries, from 25% and 20% to 100% for the first and second
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Table 1. Ranked List Graph Distance on the MPEG-7 dataset, considering the Bull’s Eye Score (Recall@40) and L=1400.
Shape Original Ranked List Statistic Ranked List Statistic

Descriptor Bull’s Graph Dist. Gain Signific. Graph Dist. Gain Signific.
Eye Score T=1 99% T=2 99%

SS [3] 43.99% 57.61% +30.94% • 59.55% +35.35% •

BAS [9] 75.20% 86.14% +14.53% • 87.35% +16.15% •

IDSC [13] 85.40% 92.15% +7.75% • 92.90% +8.62% •

CFD [33] 84.43% 94.97% +12.47% • 95.66% +13.29% •

ASC [36] 88.39% 94.42% +6.82% • 95.19% +7.71% •

AIR [34] 93.67% 99.99% +6.88% • 99.59% +6.45% •

Table 2. Ranked List Graph Distance on the MPEG-7 dataset, considering the Bull’s Eye Score (Recall@40) and L=100.
Shape Original Ranked List Statistic Ranked List Statistic

Descriptor Bull’s Graph Dist. Gain Signific. Graph Dist. Gain Signific.
Eye Score T=1 99% T=2 99%

SS [3] 43.99% 57.51% +30.71% • 59.51% +35.24% •

BAS [9] 75.20% 85.83% +14.12% • 87.19% +15.93% •

IDSC [13] 85.40% 92.14% +7.74% • 92.89% +8.61% •

CFD [33] 84.43% 94.96% +12.46% • 95.66% +13.29% •

ASC [36] 88.39% 94.41% +6.81% • 95.19% +7.71% •

AIR [34] 93.67% 99.99% +6.88% • 99.59% +6.45% •

Table 3. Ranked List Graph Distance on the MPEG-7 dataset, considering the MAP scores and L=100.
Shape Original Ranked List Statistic Ranked List Statistic

Descriptor MAP Graph Dist. Gain Signific. Graph Dist. Gain Signific.
Score T=1 99% T=2 99%

SS [3] 37.67% 49.97% +32.65% • 52.51% +39.39% •

BAS [9] 71.52% 81.15% +13.46% • 82.58% +15.46% •

IDSC [13] 81.70% 89.20% +9.18% • 90.17% +10.37% •

CFD [33] 80.71% 92.11% +14.12% • 93.25% +15.54% •

ASC [36] 85.28% 91.68% +7.50% • 92.69% +8.69% •

AIR [34] 89.39% 97.69% +9.29% • 97.36% +8.92% •

Table 4. Ranked List Graph Distance on the Animal-A dataset, considering the MAP scores and L=100.
Shape Original Ranked List Statistic Ranked List Statistic

Descriptor MAP Graph Dist. Gain Signific. Graph Dist. Gain Signific.
Score T=1 99% T=2 99%

FD 13.62% 13.84% +1.59% • 13.78% +1.18% •

CSS 14.57% 15.09% +3.57% • 14.78% +1.44%
TSD 20.66% 21.90% +5.96% • 21.80% +5.50% •

SS 23.75% 30.02% +26.40% • 32.53% +36.93% •

BAS 27.61% 38.22% +38.40% • 40.20% +45.57% •

TAR 34.73% 42.56% +22.56% • 44.38% +27.80% •

Table 5. Ranked List Graph Distance on the Animal-B dataset, considering the MAP scores and L=100.
Shape Original Ranked List Statistic Ranked List Statistic

Descriptor MAP Graph Dist. Gain Signific. Graph Dist. Gain Signific.
Score T=1 99% T=2 99%

FD 15.23% 15.14% -0.63% 15.00% -1.54% •

CSS 14.91% 15.67% +5.08% • 15.32% +2.75%
TSD 17.18% 17.60% +2.42% • 17.60% +2.42% •

SS 22.18% 29.83% +34.52% • 32.92% +48.47% •

BAS 28.87% 43.38% +50.29% • 44.89% +55.52% •

TAR 43.05% 50.55% +17.44% • 51.89% +20.54% •

queries, and from 5% to 95% for the third query. The third
query is a remarkable example of the capacity of the algorithm
in exploiting the information encoded in the whole dataset. De-
spite the absence of correct enough information in the ranked
list, other ranked lists are considered allowing the improvement
of retrieval results. Figure 7 presents ranked lists considering
the ASC [36] descriptor. Again, similar positive results are ob-
served.

4.5. Evaluation of the Descriptor Combination
The experimental results of the Ranked-List Graph on dis-

tance fusion tasks are discussed in this section. For the MPEG-7
dataset, we considered two groups of descriptors, according to
the effectiveness achieved in distance learning tasks: SS, BAS,
and IDSC, as the first group; and CFD, ASC, and AIR as the
second group. All the combinations among descriptors in each
group are evaluated. In addition to the MAP and Bull’s Eye



8

Table 6. Ranked List Graph Distance on the ETH-80 dataset, considering the MAP scores and L=100.
Shape Original Ranked List Statistic Ranked List Statistic

Descriptor MAP Graph Dist. Gain Signific. Graph Dist. Gain Signific.
Score T=1 99% T=2 99%

FD 7.99% 7.81% -2.29% • 7.71% -3.39% •

CSS 5.90% 7.03% +19.26% • 6.72% +13.90% •

SS 10.98% 14.15% +28.78% • 15.04% +36.89% •

BAS 12.65% 19.21% +51.89% • 19.48% +54.05% •

TSD 14.82% 16.51% +11.45% • 16.63% +12.23% •

TAR 19.84% 21.01% +5.83% • 20.88% +5.22% •

Fig. 6. Visual examples of retrieval results before and after the use of the Ranked-List Graph algorithm, considering the CFD descriptor: query image
with green border and wrong images with red borders.

Fig. 7. Visual examples of retrieval results before and after the use of the Ranked-List Graph algorithm, considering the ASC descriptor: query image
with green border and wrong images with red borders.

scores, the Accuracy measure is also reported considering the
precision of retrieval at top-20 positions.

Table 7 presents the results obtained for the MPEG-7 dataset.
For all combinations and effectiveness measures, the combined
result is better than the use of the best descriptor in isolation.
The BAS+IDSC combination, for instance, achieved an accu-
racy score of 93.26%, while the scores of descriptors in isola-
tion are only 67.22% and 77.21%, respectively. The CFD+AIR
combination, in turn, achieved 100% for the three measures,

indicating perfect retrieval results.
The Ranked-List Graph also achieved similar positive results

for other datasets. Tables 8 and 9 present the results for An-
imal dataset, parts A and B, respectively. The MAP and pre-
cision measures are evaluated considering the three descriptors
with the best effectiveness scores on distance learning tasks. We
may highlight, for instance, the improvements obtained for the
SS+BAS combination on part B, from initial MAP scores of
22.18% and 28.87% to a combined score of 46.82%.
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Table 7. Distance Fusion by Ranked-List Graph on the MPEG-7 dataset,
considering different retrieval scores: Bull’s Eye Score (Recall@40), MAP,
and Accuracy (P@20).

Descriptor Bull’s Eye MAP Accuracy
Score (P@20)

SS [3] 43.99% 37.67% 35.75%
BAS [9] 75.20% 71.52% 67.22%

IDSC [13] 85.40% 81.70% 77.21%
CFD [33] 84.43% 80.71% 75.59%
ASC [36] 88.39% 85.28% 80.66%
AIR [34] 93.67% 89.39% 88.17%
SS+BAS 86.41% 81.17% 77.14%
SS+IDSC 96.15% 94.01% 91.98%

BAS+IDSC 96.76% 95.27% 93.26%
CFD+ASC 99.62% 99.06% 98.28%
CFD+AIR 100% 100% 100%
ASC+AIR 99.92% 99.75% 99.47%

Table 8. Distance Fusion by Ranked-List Graph on the Animals-A dataset.
Descriptor P@10 P@20 MAP

SS 47.77% 39.45% 23.75%
BAS 49.57% 48.05% 27.61%
TAR 69.46% 60.43% 34.72%

SS+BAS 66.30% 60.79% 42.80%
SS+TAR 69.73% 64.54% 45.86%

BAS+TAR 71.95% 65.83% 44.81%

Table 9. Distance Fusion by Ranked-List Graph on the Animals-B dataset.
Descriptor P@10 P@20 MAP

SS 43.16% 35.49% 22.18%
BAS 45.20% 47.17% 28.87%
TAR 70.39% 63.28% 43.05%

SS+BAS 70.49% 65.79% 46.82%
SS+TAR 73.52% 69.19% 52.53%

BAS+TAR 72.99% 68.45% 51.64%

The results of ETH-80 dataset are presented in Table 10.
Again, the combined results are better than the best descriptor
in isolation for all combinations. Despite the positive results,
the gains are smaller than that obtained of other datasets, mainly
due to the lower initial effectiveness scores of this dataset.

Table 10. Distance Fusion by Ranked-List Graph on the ETH-80 dataset.
Descriptor P@10 P@20 MAP

BAS 37.62% 29.02% 12.64%
TSD 35.28% 26.20% 14.82%
TAR 41.26% 31.60% 19.85%

BAS+TSD 41.15% 32.13% 21.68%
BAS+TAR 39.97% 31.12% 21.00%
TSD+TAR 42.35% 33.28% 22.64%

4.6. Comparison with other approaches

The Ranked List Graph Distance was also evaluated in com-
parison with various state-of-the-art methods. The MPEG-7
dataset was considered due to its frequent use for evaluation and
comparison among post-processing methods. An experimental
protocol commonly reported in the literature was followed, us-
ing the Bull’s Eye Score as effectiveness measure and all images

as queries. Table 11 presents the best results of the proposed al-
gorithm (in bold) in comparison with several other methods on
distance learning and fusion tasks. Despite the small sub-set of
ranked lists required, the proposed approach achieved high ef-
fectiveness scores, comparable and better than various recently
proposed methods.

Due to the saturation of the Bull’s Eye Score, we also consid-
ered the Accuracy score for evaluation on distance fusion tasks.
Table 12 presents the results of proposed method in compari-
son with state-of-the-art approaches. The Ranked List Graph
distance achieved an Accuracy score of 100% for fusion of
CFD+AIR. The Accuracy score is a stricter measure than the
Bull’s Eye Score, and 100% indicates perfect retrieval results,
achieved only by few methods.

4.7. Extension to Generic Image Retrieval Tasks
In fact, the Ranked-List Graph Distance and the retrieval

model based on ranking information can be used in generic im-
age retrieval tasks. Our technique was designed to be flexible
and robust and, hence, the feature input is not limited to any
one type. Instead, all possible data types can be used. The only
requirement is that the dissimilarity between features must be
numerically represented by an appropriate distance metric.

An experiment was conducted for evaluating the effective-
ness of the proposed method in generic image retrieval tasks.
The Holidays [46] dataset, a popular image retrieval benchmark
was considered. The dataset is composed of 1,491 personal hol-
iday pictures and defines 500 queries. The MAP scores are used
as effectiveness measures.

Five different image features are considered, including two
color descriptors: Auto Color Correlogram (ACC) [47] and
Scalable Color Descriptor (SCD) [48]; one color/texture de-
scriptor: Joint Composite Descriptor (JCD) [49]; and two Con-
volutional Neural Network (CNN) features: Caffe [50] and
OverFeat [51].

Table 13 presents the results for the Ranked List Graph Dis-
tance. Positive gains can be observed for all considered fea-
tures, reaching +10.44%. A comparison with state-of-the-
art approaches is presented in Table 14, considering the best
retrieval results of each approach. The proposed approach
method also achieves very high effectiveness scores, compa-
rable or superior to the state-of-the-art.

5. Conclusions

Re-ranking algorithms have been studied a lot recently with
the objective of improving the effectiveness of content-based
image retrieval tasks. In special for shape retrieval, several re-
search groups have been validating approaches that learn iter-
atively the similarity/distance among shape objects. One im-
portant class of methods relies on the use of graphs and its
combination with diffusion approaches for learning the similar-
ity among shapes. Those methods have been demonstrated to
be very effective, however, at the same time, computationally
costly.

In this paper we addressed this issue, by introducing a novel
graph-based model that combines cross-references among
shapes in different ranked lists. A single collection graph is
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Table 11. Comparison with post-processing methods on the MPEG-7
dataset, considering the Bull’s Eye Score (Recall@40).

Algorithm Descriptor(s) Bull’s eye
score

Shape Descriptors
DDGM [42] - 80.03%

CFD [33] - 84.43%
IDSC [13] - 85.40%

SC [43] - 86.80%
ASC [36] - 88.39%
AIR [34] - 93.67%

Unsupervised Post-Processing Methods: Distance Learning
Graph Transduction [14] IDSC 91.61%

LCDP [1] IDSC 93.32%
Shortest Path Propagation [15] IDSC 93.35%

Mutual kNN Graph [44] IDSC 93.40%
Pairwise Recommendation [32] ASC 94.66%

RL-Sim [24] ASC 94.69%
Ranked List Graph Dist. ASC 95.19%
Ranked List Graph Dist. CFD 95.66%

LCDP [1] ASC 95.96%
Tensor Product Graph [16] ASC 96.47%

RL-Sim [24] AIR 99.94%
Reciprocal kNN Manifold [23] AIR 99.94%

Tensor Product Graph [16] AIR 99.99%
Ranked List Graph Dist. AIR 99.99%

Generic Diffusion Process [18] AIR 100%
Neighbor Set Similarity [22] AIR 100%

Unsupervised Post-Processing Methods: Distance Fusion
Reciprocal Rank Fusion [45] CFD+IDSC 94.98%

Graph Fusion [27] CFD+ASC 96.16%
Reciprocal Rank Fusion [45] CFD+ASC 96.25%

Co-Transduction [20] SC+DDGM 97.45%
Self-Smoothing Operator [17] SC+IDSC 97.64%

Co-Transduction [20]0 SC+IDSC 97.72%
Self-Smoothing Operator [17] SC+IDSC+DDGM 99.20%

Pairwise Recommendation [32] CFD+IDSC 99.52%
Ranked List Graph Dist. CFD+ASC 99.62%

RL-Sim [24] CFD+ASC 99.65%
Ranked List Graph Dist. CFD+AIR 100%

Table 12. Comparison on the MPEG-7 dataset, considering Accuracy score
(P@20).

Unsupervised Post-Processing Methods: Distance Fusion
Algorithm Descriptor(s) Accuracy

Co-Transduction [20] IDSC+DDGM 95.12%
Co-Transduction [20] SC+IDSC+DDGM 95.24%

Cross Diffusion Process [19] IDSC+DDGM 99.69%
Cross Diffusion Process [19] SC+IDSC 99.86%
Cross Diffusion Process [19] SC+IDSC+DDGM 100%

Reciprocal kNN Distance [23] CFD+AIR 100%
Ranked List Graph Dist. CFD+AIR 100%

defined in terms of the combination of the different available
rank-list graphs and then later is used to redefine the distance
among shape objects. This process is repeated along iterations.

The efficiency of the method relies on the use of only top-
ranked shapes in the ranked lists. The effectiveness, in turn, was
demonstrated by the performance of an extensive experimen-
tal protocol considering widely used shape collections. Effec-
tiveness experimental results demonstrated that the ranked-list
graph model is able to yield significant results when compared
with the use of shape descriptors in isolation, being comparable

Table 13. Ranked List Graph Distance on the Holidays dataset.
Descriptor Original Ranked List Relative

MAP Graph Dist. Gain
JCD [49] 52.83% 55.04% +4.18%
SCD [48] 54.26% 56.60% +4.31%
ACC [47] 64.29% 70.37% +9.46%

CNN-Caffe [50] 64.09% 70.78% +10.44%
CNN-OverFeat [51] 82.59% 85.33% +3.32%

ACC + OverFeat - 82.71% +28.65%
ACC + Caffe - 77.84% +21.45%

ACC + Caffe + OverFeat - 84.33% +31.58%

Table 14. Comparison with state-of-the-art on the Holidays dataset.
MAP scores for recent retrieval methods.

Jégou et al. [46] Li et al. [52] Zheng et al. [53] Tolias et al. [54]
75.07% 89.20% 85.80% 82.20%

Qin et al. [55] Zheng et al. [56] Ranked List Graph Dist.
84.40% 85.20% 85.33%

or superior than several state-of-the-art approaches.
Future work will be focused on the application of the pro-

posed method in other searching scenarios involving multi-
modal information (e.g., multimedia geocoding tasks [57]) or
other types of data (e.g., video [58]). We also plan to investigate
the use of the ranked-list graph model integrated with indexing
schemes [59] to speed up the identification of top-k neighbors.
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