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Abstract

In Content-based Image Retrieval (CBIR) systems, ranking accurately collection
images is of great relevance. Users are interested in the returned images placed
at the first positions, which usually are the most relevant ones. Collection images
are ranked in redincreasing order of their distance to the query pattern (e.g.,
query image) defined by users. Therefore, the effectiveness of these systems
is very dependent on the accuracy of the distance function adopted. In this
paper, we present a novel context-based approach for redefining distances and
later re-ranking images aiming to improve the effectiveness of CBIR systems. In
our approach, distances among images are redefined based on the similarity of
their ranked lists. Conducted experiments involving shape, color, and texture
descriptors demonstrate the effectiveness of our method.
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1. Introduction

The huge growth of image collections and multimedia resources available
and accessible through various technologies is remarkable [22]. Technological
improvements in image acquisition and the decreasing cost of storage devices
have enabled the dissemination of large image collections. redTraditional im-
age retrieval approaches based on keywords and textual metadata face serious
challenges, since describing the image content with textual descriptions is in-
trinsically very difficult [8], mainly due to the huge growth of image collections.
Many applications, especially those dealing with large general datasets face ob-
stacles to obtain textual descriptors, since manual annotation is prohibitively
expensive. It is laborious and time-consuming. This task has not been made
easier by the diversification of image collections.

One of the most common approaches to overcome these limitations relies
on the use of Content-Based Image Retrieval (CBIR) systems. The objective
of CBIR systems is to return the most similar images given an image query,
considering visual features, such as shape, color, and texture.

In this scenario, ranking accurately collection images is of great relevance.
Collection images are ranked in increasing order of their distance to the query
pattern (e.g., query image) defined by users. Therefore, choosing a good dis-
tance measure is often critical to building an effective CBIR system. In general,
CBIR systems consider only pairwise image analysis, that is, compute simi-
larity measures considering only pairs of images, ignoring the rich information
encoded in the relations among several images. On the other hand, the user
perception usually considers the query specification and responses in a given
context. Therefore, the distance between two images can be correctly described
only if it is considered in the context of other images that are similar to them.
This requires having a model to capture the essence of a similarity among images
instead of viewing each image as a set of points or a feature vector [42].

red Context can be broadly defined as all information about the whole situ-
ation relevant to an application and its set of users. In the image retrieval sce-
nario, ranked lists represent a relevant source of contextual information, since
given a query image, users do not analyze only pairs of images, but the ranked
list as a whole. It is expected, for example, that images ranked at the top posi-
tions of ranked lists are similar to each other. It is also expected that, if we take
one of these images as a query image, the computed ranked list contains many
images in common. In this scenario, we use the term context for denoting any
analysis that, instead of considering only pairwise image comparisons, takes into
account other information encoded in both ranked lists and distances among all
images. More specifically, the notion of context can refer to updating image
similarity measures by taking into account information encoded in the ranked
lists defined by a CBIR system.

In the past few years, there has been considerable research on improving the
distance measures in CBIR systems [42, 43, 13, 12, 38, 44, 3, 19, 26, 29, 22, 20,
24]. Promising results have been obtained considering several approaches and
techniques. Several unsupervised approaches have been proposed aiming to im-
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prove the effectiveness of retrieval tasks, replacing pairwise similarities by more
global affinities measures that also consider the relation among the database
images. The objective of these methods is somehow mimic the human behavior
on judging the similarity among objects by considering specific contexts.

In this paper, we present the RL-Sim (redRanked Lists Similarities) Re-
Ranking Algorithm , a new post-processing method that considers the similarity
among ranked lists for characterizing contextual information in CBIR systems.
The main motivation of our re-ranking algorithm relies on the conjecture that
contextual information encoded in the similarity between ranked lists can provide
resources for improving the effectiveness of CBIR descriptors. red In general,
only two images are considered for distance computation and, if the distance
measure adopted is not accurate, the two images will be wrongly placed in the
ranked lists of each other. On the other hand, for obtaining a ranked list, many
distances have to be computed. These incorrect scores are often mixed with
correct values, specially in the beginning of the ranked lists. In this way, the
contextual information provided by the ranked lists can be used for correcting
the wrong scores. Beyond that, if two images are similar, their ranked lists
should be similar as well [21]. It is somehow close to the the cluster hypothe-
sis [27], which states that “closely associated documents tend to be relevant to
the same requests”. redThe main contributions of this paper are:

(i) the modelling of contextual information considering only the similarity
between ranked lists, independent of distance (or similarity) scores between
images. Distance scores computed by different image descriptor usually are in
different scales and requires normalization procedures. These variations can
affect the effectiveness of re-ranking approaches. Since the proposed re-ranking
method does not depend on distances or similarity scores, it can be easily used
for different CBIR tasks and can be adapted for other information retrieval tasks
(e.g., text or multimodal retrieval);

(ii) the proposed contextual distance measure does not depend on specific
approaches for comparing the ranked lists. In this way, our re-ranking algo-
rithm can use different similarity/distance measures among ranked lists, a well-
established research area [7, 39, 41]. Therefore, the re-ranking algorithm can
be easily extended for using and combining different approaches for comparing
ranked lists. The proposition of a generic iterative approach based on ranked
lists represents an important contribution, since other re-ranking methods can
be proposed just by creating new metrics to compare ranked lists.

This paper differs from previous work [25] as it presents a deeper analysis of
RL-Sim Re-Ranking Algorithm, discusses different distance measures used for
computing the similarity of ranked lists and extends the experimental protocol.

A large experimental evaluation was conducted, considering three different
datasets and twelve different image descriptors (shape, color, and texture de-
scriptors). Other aspects of the proposed algorithm were also considered, such as
the analysis of the efficiency of the method and the impact of parameters. Our
experimental evaluation demonstrates that the proposed method can achieve
significant improvements in various CBIR tasks. In addition, we also evalu-
ated the proposed RL-Sim in comparison with several other state-of-the-art
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approaches considering a common shape dataset. Experimental results demon-
strate that the proposed method yields better results in terms of effectiveness
performance than various post-processing algorithms recently proposed in the
literature.

The paper is organized as follows: Section 2 discusses related work; Sec-
tion 3 discusses the definition of the image re-ranking problem; in Section 4,
we present our approach for unsupervised distance learning based on the sim-
ilarity of ranked lists. Section 5 discusses approaches for comparing ranked
lists; Section 6 presents the RL-Sim Re-Ranking Algorithm; in Section 7, we
describe how the proposed algorithm can be used in rank aggregation tasks;
Section 8 presents the experimental evaluation and, finally, Section 9 discusses
the conclusions and presents future work.

2. Related Work

Determining the appropriate distance measures plays a key role in many
multimedia applications, including classification, clustering, and retrieval tasks.
For example, choosing a good distance measure is often critical for building
an effective content-based image retrieval (CBIR) system. In general, aiming
at retrieving the most similar images to a given query image, CBIR systems
compute a predefined distance measure between the query image and each col-
lection image. Traditional distance measures, as Euclidean distance, are often
adopted and consider the pairwise similarity between any two images. In many
situations, these approaches fail to return satisfactory results, mainly due to the
well-known semantic gap challenge [10].

In the past few years, there has been considerable research on improving
the distance measures in CBIR systems [42, 43, 13, 12, 38, 44, 3, 19, 26, 29,
32, 46, 22, 20, 24, 23]. Promising results have been obtained considering several
approaches and techniques. In this paper, we focus on unsupervised approaches.
In unsupervised learning approaches, the “learning” method considers only the
domain of object instances and no training labeled data are provided. Since
labeling often is a laborious and time consuming task, whereas unlabeled data
is far easier to obtain, unsupervised learning represents a very attractive solution
in many situations.

In CBIR applications, the use of context may play an important role. In
general, traditional CBIR systems perform only pairwise image analysis, that
is, they compute similarity (or distance) measures considering only pairs of im-
ages, ignoring the rich information encoded in the relations of several images.
However, in recent years, several CBIR approaches [42, 43, 13, 12, 38, 44, 3, 19,
26, 29, 22, 20, 24, 25] have been proposed aiming to improve the effectiveness
of retrieval tasks replacing pairwise similarities by more global affinity mea-
sures that also consider the relation among the database objects [44]. Although
using a very diverse nomenclature (re-ranking [19, 29, 22, 20, 24, 25], graph
transduction [42, 3], diffusion process [43], affinity learning [44], contextual sim-
ilarity/dissimilarity measures [38, 12, 26]), these post-processing methods have
in common the fact that all approaches propose improving the effectiveness of
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image searches by exploiting the information about the relationships among
collection images in an unsupervised way (with no training data). Another im-
portant common point consists in the use of an iterative strategy adopted to
process contextual information [42, 43, 12, 22, 20, 24, 25].

red A graph-based transductive learning algorithm [42] was proposed for
shape retrieval tasks. It learns a better metric through graph transduction
by propagating the model through existing shapes, in a way similar to comput-
ing geodesics in dataset manifold. The method does not require learning the
shape manifold explicitly and it does not require knowing class labels of existing
shapes. The better metric is learned by collectively propagating the similarity
measures to the query shape and between the existing shapes through graph
transduction. Although inspired by label propagation algorithm [47], which is
semi-supervised, the shape retrieval was treated as an unsupervised problem.

red The locally constrained diffusion process [43] considers that the distance
between two shapes can be correctly described only if it is considered in the
context of other shapes similar to them. The work observes that, since dif-
ferences between shapes in the same class can be very large and differences
between shapes in different classes can be very small, no pairwise shape com-
parison can describe shape dissimilarity correctly. The influence of other shapes
is propagated as a diffusion process on a graph formed by a given set of shapes.
The weights of graph edges are defined by applying a Gaussian to the shape
distance. A reversible Markov chain based on the graph is constructed and used
to propagate the influence of shapes. Another approach based on propagating
the similarity information in a weighted graph is called affinity learning [44].
Instead of propagating the similarity information on the original graph, it uses
a tensor product graph (TPG) obtained by the tensor product of the original
graph with itself.

Graphs are also used in other approaches. redA modified mutual kNN
graph [13] is proposed as the underlying representation used for shape retrieval.
The structure of the shape manifold is estimated from the shape similarity scores
among all the shapes within a database. redA shortest-path propagation algo-
rithm [38] was also proposed for shape/object retrieval tasks. Given a query
object and a target database object, it explicitly finds the shortest path between
them in the distance manifold of the database objects. Then a new distance
measure is learned based on the shortest path and it is used to replace the
original distance measure.

Beside graph methods, context is a term frequently used for designating
post-processing methods that consider relationships among images. In general
interactive applications, the use of context can play an important role, which
can be broadly defined as all information about the whole situation relevant to
an application and its set of users [1]. In CBIR systems, it is related to the
fact that, when humans have to judge the similarity between two images, they
always do so in a given context, i.e. they do not consider only the two objects
to be compared [26].

redA contextual dissimilarity measure [12] was introduced aiming to improve
the accuracy of bag-of-features-based image search. The proposed measure takes
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into account the local distribution of the vectors and updates distances by mod-
ifying the neighborhood structure. The dissimilarity measure improves the sym-
metry of the k-neighborhood relationship by iteratively regularizing the average
distance of each vector to its neighborhood. The method performs a global
analysis of properties in small overlapping neighborhoods, resembling methods
for non-linear dimensionality reduction, inspired by ISOMAP [34] and LLE [28].

redA family of contextual measures [26] was proposed considering the simi-
larity between two distributions measured in the context of a third distribution.
These contextual measures are then applied to the image retrieval problem. In
such a case, the context is estimated from the neighbors of a query. Using differ-
ent contexts, and especially contexts at multiple scales (i.e., broad and narrow
contexts), provides different views on the same problem, while combining the
different views can improve retrieval accuracy.

Contextual information has also been exploited for re-ranking methods. Re-
ranking can be broadly defined as a process of refining the search results: the
re-ranking methods take an initial ranking and aggregate some information for
improving the effectiveness of the retrieval process. redA re-ranking approach
based on contextual spaces [24] aims at exploiting the relationships among im-
ages to improve the effectiveness of CBIR tasks. Information encoded in both
distances among images and ranked lists computed by CBIR systems are used
for analyzing contextual information.

Clustering approaches are also closely related to re-ranking methods that
exploit contextual information in CBIR domain. redA re-ranking framework for
CBIR systems [29] based on contextual dissimilarity measures uses a clustering
approach. The contexts are modeled using a clustering algorithm to group
similar images given their ranked lists. redA re-ranking algorithm that uses
post-retrieval clustering [19] was proposed for color retrieval tasks. In the first
step, images are retrieved using visual features such as color histogram. Next,
the retrieved images are analyzed using hierarchical agglomerative clustering
methods and the returned ranked lists is adjusted according to the distance
of a cluster to a query. redThe Distance Optimization Algorithm (DOA) [22]
considers an iterative clustering approach based on distances correlation and
on the similarity of ranked lists. The algorithm explores the fact that if two
images are similar, their distances to other images and therefore their ranked
lists should be similar as well.

This paper presents the RL-Sim Re-Ranking Algorithm, a new post-processing
method that considers the similarity between ranked lists for encoding con-
textual information in CBIR systems. We believe that the modeling of con-
textual information considering only the similarity between ranked lists rep-
resents an advantage of our strategy. Since the re-ranking method does not
depend on distances or similarity scores, it can be used for different CBIR
tasks and can be easily adapted for other information retrieval tasks (e.g., text
or multimodal retrieval). Beyond that, the re-ranking method can use differ-
ent similarity/distance measures among ranked lists, a well-established research
area [7, 39, 41].
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3. Image Retrieval Model

Let C={img1, img2, . . . , imgN} be an image collection.
Let D be an image descriptor which can be defined [35] as a tuple (ε, ρ),

where:

• ε: Î → Rn is a function, which extracts a feature vector vÎ from an image

Î.

• ρ: Rn×Rn → R is a distance function that computes the distance between
two images according to the distance between their corresponding feature
vectors.

In order to obtain the distance between two images imgi and imgj , it is
necessary to compute the value of ρ(ε(imgi),ε(imgj)). For simplicity and read-
ability purposes we use the notation ρ(imgi,imgj) along the paper.

The distance ρ(imgi,imgj) among all images imgi,imgj ∈ C can be computed
to obtain an N ×N distance matrix A, such that A[i, j] = ρ(imgi,imgj).

Given an image query imgq, we can compute a ranked list Rq in response to
the query, based on distance matrix A. The ranked list Rq={img1, img2, . . . ,
imgN} can be defined as a permutation of the collection C. A permutation σq
is as a bijection from the collection C onto the set [N ] = {1, 2, . . . , N} where N
is the size | C | of collection C. For a permutation σq, we interpret σq(i) as the
position (or rank) of image imgi in the ranked list Rq. Therefore, we can say
that, if imgx is ranked before imgy, that is σq(x) < σq(y), then ρ(imgq,imgx)
≤ ρ(imgq,imgy).

We also can take every image imgi ∈ C as an image query imgq, in order to
obtain a set R = {R1, R2, . . . , RN} of ranked lists for each image of collection
C.

red Our goal is to propose a re-ranking algorithm (represented by function
fr) which uses a contextual distance measure based on ranked lists. The re-
ranking algorithm takes as input the distance matrix A and the set of ranked
lists R for computing a new and more effective distance matrix Â:

Â = fr(A,R) (1)

Given the new distance matrix Â, a new set R̂ can be obtained. R̂ con-
tains the new ranking positions of all collection images, that is, the collection
images are re-ranked. Note that the main aspect of fr consists in exploiting all
relationships encoded in both A and R.

4. Contextual Distance Measure based on Ranked Lists

In this section, we define a contextual distance measure based on similar-
ity/dissimilarity of ranked lists. The contextual distance measure represents
the basis of our proposed re-ranking algorithm. According to the formalization
presented in the previous section, a given image descriptor D can compute a
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distance ρ(imgi,imgj) between two images imgi, imgj ∈ C. Therefore, this
distance value considers only the two images imgi, imgj .

In order to compute the ranked lists Ri, Rj for images imgi, imgj , distances
from these images to all other collection images need to be computed. In this
way, the ranked lists represent, by itself, a contextual description of images with
regard to the whole dataset. The images at top positions of ranked lists often
represent the most relevant images, in the sense that they usually represent
the results in which users are interested. In this scenario, we conjecture that
given any two images and their respective ranked lists, a new and more effective
distance measure between the two images can be computed by considering the
images at top positions of their ranked lists.

The proposed contextual distance measure is based on this conjecture. In
the commom case, the top positions of ranked lists contain many images that
are similar to the query image and some “wrong” (non-similar) images. Those
images placed at top positions usually are similar to each other and, therefore,
there are many images in common in their ranked lists. We can observe that this
set of images (similar to the query image and similar to each other) appears in
the ranked lists of all images that compose the set. The same behavior can not
be observed when analysing the top positions of the ranked lists of non-similar
images (the same set of images does not appear at top positions). In this
scenario, a low contextual distance score is produced, since there are few images
in common at top positions of ranked lists of non-similar images. The objective
of the proposed re-ranking algorithm is to move the non-similar images down
in the ranked lists, and as a result of this process, the effectiveness of ranked
lists is improved. We should note that, in extreme situations, in which the
CBIR descriptors completely confuse similar and non-similar images, there is
no contextual information available for improving the ranked lists.

red A new contextual distance measure, defined in the following, is iteratively
learned in a unsupervised setting which is able to incorporate the contextual
information, improving retrieval results. Our approach does not require any
user intervention, but can be combined with other techniques that take into
account the user’s preferences, such as relevance feedback approaches.

Let us consider the neighborhood set N (i) of an image imgi, which contains
images similar to imgi according to a given distance, say ρ defined by the image
descriptor. The set N (i) can be obtained, for example, by the well-known
k-Nearest Neighbor approach, where the cardinality of the set is denoted by
| N (i) |= k. In Section 5.1, we formally define approaches for obtaining the
neighborhood set N .

In the following, we formally define the top positions of a ranked list as a top
k list, according to [7]. We define a ranked list Ri as a permutation of collection
C, given by a bijection σi from the collection C onto the set [N ] = {1, 2, . . . , N}.
Similarlly, a top k list τi is a bijection from a domain N (i) (the members of
the top k list) to [k] = {1, 2, . . . , k}. We say that imgj appears in the top k
list τi if imgj ∈ N (i). We interpret τi(j) as the position (or rank) of image
imgj in τi. For the well-known k-Nearest Neighbor approach, we can say that if
img1 is ranked before img2 (τi(1) < τi(2)), then ρ(imgi,img1) ≤ ρ(imgi,img2).
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Approaches for computing top k lists are formally defined in Section 5.1.
Assume that τi and τj are top k lists computed for images imgi, imgj re-

spectively. Several similarity (or dissimilarity) measures for comparing τi and
τj can be defined [7, 39, 41] (different distance measures are discussed in Sec-
tion 5.2). Let d(τi, τj , k) denote a given distance measure for comparing top k
lists, we define a non-iterative contextual distance measure ρc(imgi, imgj) based
on comparison of the top k lists, as follows:

ρc(imgi, imgj) = d(τi, τj , k) (2)

Based on the conjecture that the contextual distance measure ρc represents a
more effective distance between images, we can recompute the distance among
all images in a collection based on this measure. In this way, a new set of
ranked lists (and their respective top k lists) can be obtained, such that the
contextual distance can also be recomputed. Therefore, this process can be
repeated in an iterative manner. Let (t) be a superscript that denotes the

iteration. Let τ
(t)
i be the top k list for image imgi at iteration t, which is

computed based on contextual distance ρ
(t)
c . Let ρ

(0)
c be the contextual distance

at first iteration, which is equal to the distance defined by the image descriptor,

such that ρ
(0)
c (imgi, imgj) = ρ(imgi, imgj) for all images imgi, imgj ∈ C. We

can define an iterative contextual measure as follows:

ρ(t+1)
c (imgi, imgj) = d(τ

(t)
i , τ

(t)
j , k) (3)

Once the effectiveness of the contextual distance measure improves along
iterations, the effectiveness of ranked lists also improve. Non-relevant images
are moved out from the first positions of the ranked lists and, therefore, k can be
increased for considering more images. In this way, a larger k can be considered
for computation of top k lists along iterations, as follows:

ρ(t+1)
c (imgi, imgj) = d(τ

(t)
i , τ

(t)
j , k + t) (4)

After a given number of T iterations, a new distance ρ̂ is computed based
on contextual distance measure ρc:

ρ̂(imgi, imgj) = ρ(T )
c (imgi, imgj) (5)

Finally, a new distance matrix Â can be computed based on ρ̂, such that for
all images imgi, imgj ∈ C we have Âij = ρ̂(imgi, imgj). Based on Â, a new set

of ranked lists R̂ can be computed completing the re-ranking process.

5. Comparing Ranked Lists

The comparison between ranked lists is the basis of our proposed contextual
measure. This section discusses and formalizes the process of comparison, which
can be divided in two main steps: (i) how to retrieve a neighborhood set for a
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given image imgi, which is used to compose a top k list τi; (ii) how to compute
a distance d(τi, τj , k) between two top k lists τi and τj .

Sections 5.1 and 5.2 discuss respectively steps (i) and (ii).

5.1. Neighborhood Set

This section presents and formally defines two different approaches for com-
puting the top k lists for a given image: the well-known k-Nearest Neighbors
(kNN) method and the Mutual k-Nearest Neighbors (MkNN).

5.1.1. k-Nearest Neighborhs

Let imgi be a collection image imgi ∈ C whose the k most similar images
(neighborhood set) we want to select. Let NkNN (i) be the neighborhood set
obtained using the k-nearest neighbors method, which is defined as follows:

NkNN (i, k) = {R ⊆ C, |R| = k ∧ ∀x ∈ R, y ∈ C −R : ρ(i, x) 6 ρ(i, y)} (6)

Based on the neighborhood set NkNN (i) we want also define the top k list
τikNN

using the k-Nearest Neighbors. Let τikNN
(j) be the position (or rank) of

image imgj in τikNN
, we can say that if imgx is ranked before imgy, that is

τikNN
(x) < τikNN

(y), then ρ(imgi,imgx) ≤ ρ(imgi,imgy).
More formally, let’s consider that there is no equal distances from imgi to

images in a neighborhood set NkNN (i, k) (or there is a pre-processing step for
tie breaking distances), such that {∀x, y ∈ NkNN (i, k) : ρ(i, x) = ρ(i, y)} = ∅.
The top k list τikNN

(j) is a permutation of C, that can also be considered as a
bijection τikNN

: C → [1, . . . , k] defined as follows:

τikNN
(j) = |{j ∈ NkNN (i, k),∀x ∈ NkNN (i, k) : ρ(i, x) < ρ(i, j)}|+ 1 (7)

5.1.2. Mutual k-Nearest Neighborhs

Let τikNN
(j) be the position (or rank) of image imgj in the top k list τikNN

.
Let τjkNN

(i) be the position of imgi in the top k list τjkNN
, it is very common in

CBIR systems that τikNN
(j) 6= τjkNN

(i). However, when the difference between
these positions is large, it may indicate an incorrect position of the image in one
of the top k lists.

Based on this observation, we define a Mutual k-Nearest Neighbors method
that considers reciprocal positions of images in their ranked lists. In fact, we
select the k-Nearest Neighbors considering c × k neighbors (where c is a con-
stant1). Given a neighborhood set NkNN (i, c× k), we select the k most similar
of this set by taking into account both: (i) the position of images in ranked
list of imgi as (ii) the position of imgi in the ranked list of these images. We

1We used c = 2 in our experiments.
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formally define the neighborhood set based on the Mutual k-Nearest Neighbor
as follows:

NMkNN (i, k) = {R ⊆ NkNN (i, c× k), |R| = k ∧ ∀x ∈ R, y ∈ C −R :

τikNN
(x) + τxkNN

(i) 6 τikNN
(y) + τykNN

(i)}
(8)

We also define the top k list τiMkNN
using the Mutual k-Nearest Neighbors:

τiMkNN
(j) = |{j ∈ NMkNN (i, k),∀x ∈ NMkNN (i, k) :

τikNN
(x) + τxkNN

(i) 6 τikNN
(y) + τykNN

(i)}|+ 1
(9)

5.2. Distance Measures between Top k Lists

Given the methods for obtaining neighborhood sets and top k lists, we now
discuss how to compute a distance d(τi, τj , k) between two retrieved top k lists
τi, τj . Note that the distance measure adopted d(·, ·, k) does not depend on the
method used for computing the neighborhood setN and top k lists τ . Therefore,
different combinations can be used in our re-ranking algorithm.

5.2.1. Intersection Measure

An approach to define the distance between two top k lists τi and τi proposed
in [7] is to capture the extent of overlap between τi and τi. This idea of overlap
can be extended by considering not only the overlap at depth k, but also the
cumulative overlap at increasing depths [39, 25]. For each kc ∈ {1 . . . k}, it is
computed the overlap at kc, and then those overlaps are averaged to derive a
similarity measure. The measure gives higher weights to the first positions of
top k lists, which are considered many times. Equation 10 formally defines the
intersection similarity measure ψ.

ψ(τi, τj , k) =

∑k
kc=1 | N (i, kc) ∩N (j, kc) |

k
(10)

Note that if two ranked lists present the same images at the first positions,
the size of the intersection set is greater, and the value of ψ is greater as well.
Figure 1 illustrates the computation of ψ considering multiscale values of k.

Since we are interested in a distance measure between top k lists, we define
dψ as follows:

dψ(τi, τj , k) =
1

1 + ψ(τi, τj , k)
(11)

5.2.2. Kendal’s Tau Measure

The Kendall’s tau is a distance measure between permutations, used to
measure rank correlation. Its value turns out to be equal to the number of
exchanges needed in a bubble sort to convert one permutation to the other [7].
The normalized Kendall’s tau measure is defined as follows:
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Figure 1: Computation of measure ψ: intersection of ranked lists with different sizes.

dτ (τi, τj , k) =

∑
x,y∈N (i,k)∪N (j,k) K̄x,y(τi, τj)

k × (k − 1)
, (12)

where K̄x,y(τi, τj) is a function that determines if images imgx and imgy are
in the same order in compared ranked lists Ri and Rj . This function can be
defined as follows:

K̄x,y(τi, τj) =

{
0 if (σi(x) 6 σi(y) ∧ σj(x) 6 σj(y)) ∨ (σi(x) > σi(y) ∧ σj(x) > σj(y))
1 otherwise

The maximum value of defined Kendall’s tau meausure is given by k×(k−1),
which occurs when N (i, k) ∩N (j, k) = ∅ and σi is the reverse of σj .

Note that, although our goal is to compute the distance between the top k
lists τi and τj , we considered the ranked lists positions σi and σj because we
may have an image that is in only one of the top k lists (for example, imgx ∈ τi
and imgx /∈ τj).

6. The RL-Sim Re-Ranking Algorithm

red In this section, we present an algorithmic view of the proposed re-ranking
approach. The goal of our re-ranking algorithm is to exploit the initial set of
ranked lists R = {R1, R2, . . . , RN} for computing a more effective distance
matrix Â and, therefore, a more effective set of ranked lists R̂. The RL-Sim
Re-Ranking Algorithm is based on the presented contextual measure ρc, which
takes into account the similarity between ranked lists on an iterative way.
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An iterative approach is proposed. Let the superscript (t) denotes the current
iteration, a new (and more effective) set of ranked lists R(t+1) is computed by
taking into account distances among top k lists. Next, R(t+1) is used for the
next execution of our re-ranking algorithm and so on. These steps are repeated
along several iterations aiming to improve the effectiveness incrementally. After
a number T of iterations a re-ranking is performed based on the final distance
matrix Â. Based on matrix Â, a final set of ranked lists R̂ can be computed.
Algorithm 1 outlines the proposed RL-Sim Re-Ranking Algorithm.

Algorithm 1 RL-Sim Re-Ranking Algorithm

Require: Original set of ranked lists R and parameters ks, T , λ
Ensure: Processed set of ranked lists R̂

1: t← 0
2: R(t) ← R
3: A(t) ← A
4: k ← ks
5: while t < T do
6: for all Ri ∈ R(t) do
7: counter ← 0
8: for all imgj ∈ Ri do
9: if counter ≤ λ then

10: A(t+1)[i, j]← d(τi, τj , k)
11: else
12: A(t+1)[i, j]← 1 + A(t)[i, j]
13: end if
14: counter ← counter + 1
15: end for
16: end for
17: R(t+1) ← perfomReRanking(A(t+1))
18: k ← k + 1
19: t← t+ 1
20: end while
21: R̂ ← R(T )

Observe that the distances are redefined considering the function d(τi, τj , k)
for the first λ positions of the each ranked list, such that λ ∈ N and 0 ≤ λ ≤ N .
For images in the remaining positions of the ranked lists, the new distance is
redefined (Line 12) based on the current distances. In these cases, the func-
tion d(τi, τj , k) does not need to be computed, considering that relevant images
should be at the begining of the ranked lists. In this way, the computational ef-
forts decrease, making this step of the algorithm not dependent on the collection
size N .

In Line 18, at each iteration t, we increment the number of k neighbors
considered. The motivation behind this increment relies on the fact that the
effectiveness of ranked lists increase along iterations. In this way, non-relevant
images are moved out from the first positions of the ranked lists and k can
be increased for considering more images. red The increment value of 1 was
chosen because it represents the smallest possible increment, since the greater
the increment value, the greater the risk of considering non-relevant images in
the ranked list.

Note that the re-ranking algorithm does not depend on specific measures
between top k lists. In this way, an important advantage of our re-ranking al-

13



gorithm is the possibility of using different approaches for retrieving the neigh-
boorhood set (we discussed the kNN and Mutual kNN methods) and different
measures for comparing top k lists (we discussed the intersection and Kendall’s
tau measures). Therefore, the proposed RL-Sim Re-Ranking algorithm can be
easily extended in order to consider different and even more complex approaches
to compute the similarity between top k lists.

7. Rank Aggregation

Let C be an image collection and let Ds = {D1, D2, . . . , Dm} be a set of
CBIR descriptors. We can use the set of descriptors D for computing a set
of distances matrices As = {A1, A2, . . . , Am}. Our approach for combining
descriptors works as follows: first, we combine the set A in a unique matrix Ac.
For the matrices combination we use a multiplicative approach. Each position
(i, j) of the matrix is computed as follows:

Ac[i, j] = (1 +A1[i, j])× (1 +A2[i, j])× . . . (1 +Am[i, j]) (13)

Once we have a matrix Ac, we can compute a set of ranked lists Rc based on
this matrix. Then, we can submit the matrix Ac and the set Rc for our original
re-ranking algorithm.

8. Experimental Evaluation

This section presents the set of conducted experiments for demonstrating
the effectiveness of our method. We analyzed and compared our method under
several aspects. Section 8.1 presents an analysis of the re-ranking algorithm
considering the impact of parameters. Section 8.2 presents a brief discussion
about complexity and efficiency.

Section 8.3 discusses the experimental results for our re-ranking method.
Section 8.3.1 presents results of the use of our method for several shape descrip-
tors, considering the well-known MPEG-7 database [15]. Sections 8.3.2 and 8.3.3
aim to validate the hypothesis that our method can be applied to other image
retrieval tasks. In addition to shape descriptors, we conduct experiments with
color and texture descriptors.

Section 8.4 presents experimental results of our method on rank aggregation
tasks. Finally, we also conduct experiments aiming to compare our results to
state-of-the-art related post-processing and rank aggregation methods in Sec-
tion 8.5.

All experiments were conducted considering all images in the collections as
query images. Results presented in the paper (MAP and Recall@40 scores)
represent an average result.
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8.1. Experiment 1: Impact of Parameters

The execution of Algorithm 1 considers three parameters: (i) ks - number of
neighbors considered when algorithm starts; (ii) λ - number of images of each
ranked list that are considered for redefining distances; and (iii) T - number of
iterations along which the algorithm is executed.

To evaluate the influence of different parameter settings on the retrieval
scores and for determining the best parameters values, we conducted a set of
experiments considering the MPEG-7 [15] database. The MPEG-7 [15] database
is a well-known shape database, composed by 1400 shapes divided in 70 classes.
The size of images range from (50 × 48) to (526 × 408) pixels. For evaluation,
the so-called bullseye score was considered, which counts all matching objects
within the 40 most similar candidates. Since each class consists of 20 objects,
the retrieved score is normalized with the highest possible number of hits. For
distance computation, we used the ASC [17] shape descriptor.

Retrieval scores are computed considering the kNN method for the inter-
section measure. Parameter ks varies in the interval [1,20] while parameter T
varies in the interval [1,7]. Figure 2 illustrates the results of precision scores
for different values of parameters ks and T . We observed that best retrieval
scores increased along iterations yielding the best precision score (94.69%) for
ks = 15 and T = 3. We used these values in all experiments involving the
intersection measure (for kNN and Mutual kNN ). Analogous experiments were
conducted for the Kendall’s tau measure and very similar values were obtained:
ks = 15 and T = 2. Those values were also used in all experiments involving
the Kendall’s tau measure.

We also analyzed the impact of parameter λ on precision. As discussed be-
fore, the objective of λ consists in decreasing computation efforts needed for the
algorithm. It can be seen as a tradeoff between effectiveness and efficiency. In
this way, we ranged λ in the interval [0,N ] (considering the MPEG-7 collection).
Results are illustrated in Figure 3. Note that the precision scores achieve the
stability near to λ = 700 (value used in our experiments).

8.2. Experiment 2: Aspects of Efficiency

This paper has as its focus on the presentation of RL-Sim Re-Ranking Algo-
rithm and on its effectiveness evaluation. The focus on effectiveness is justified
by the fact that the execution of the algorithm is expected to be off-line, as
in other post-processing methods [38]. This subsection aims to briefly discuss
some aspects of efficiency and computational complexity.

The complexity of computation of comparison between top k lists, consid-
ering both intersection and Kendall’s tau measures, is O(k2). The number of
comparisons that should be processed is equal to (N × λ). Since the parame-
ters λ and k have fixed values independent on N , the asymptotic computional
complexity of the main step of the algorithm (computing distance between top
k lists) is O(N). Note, however, that the parameter λ is given in the interval
0 6 λ 6 N and, if defined with the maximum value λ = N , that makes this
step of the algorithm O(N2).
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Figure 2: Impact of parameters: ks and T .

Other steps of the algorithm have different complexities. The matrix A
are recomputed (O(N2)) at each iteration. The re-ranking step computes a
sort operation (O(NlogN)) for all images (O(N2logN)). However, these steps
admit optimizations: the matrix does not require to be totally recomputed and
the ranked lists do not require to be totally sorted again at each iteration.
The RL-Sim Re-Ranking Algorithm can also be massively parallelized, since
there is no dependence between comparisons between ranked lists in a same
iteration. Optimizations and parallelization issues will be investigated in future
work. Note also that other post-processing methods use matrices multiplication
approaches [42, 43] and graph algorithms [38], both with complexity of O(N3).

We evaluated the computation time of RL-Sim Re-Ranking algorithm for
MPEG-7 dataset (N = 1400), using the parameters defined in Section 8.1 (ks =
15, T = 3, and λ = 700), executing in a Linux Laptop Core i3 and using a C
implementation. This execution took approximately 7.6 s.

8.3. Experiment 3: Re-Ranking Evaluation

In this section, we present a set of conducted experiments for demonstrating
the effectiveness of our method. We analyzed our method in the task of re-
ranking images considering shape, color, and texture descriptors.

8.3.1. Shape Descriptors

We evaluate the use of our method with five shape descriptors: Segment
Saliences (SS) [36], Beam Angle Statistics (BAS) [2], Inner Distance Shape Con-
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Figure 3: Impact of parameter λ on precision.

text (IDSC) [16], Contour Features Descriptor (CFD) [21], and Aspect Shape
Context (ASC) [17]. We consider the MPEG-7 [15] database, described in Sec-
tion 8.1.

Table 1 presents results (bullseye score - Recall@40) for shape descriptors us-
ing the intersection measure on MPEG-7 [15] database. Both kNN and Mutual
kNN methods are considered in the experiments. We can observe significative
gains from +6.62% to +30.90% in relation to the initial descriptor’s results.

The iterative behavior of the RL-Sim Re-Ranking algorithm can be observed
in results illustrated in Figure 4. The figure shows the evolution of rankings
(and their precision) along iterations. The first row presents 20 results for a
query image (first column with green border) according to the CFD [21] shape
descriptor. We can observe that wrong results contain images from different
classes, situation where the re-ranking algorithm can correct the rankings based
on the contextual information. The remaining rows present the results for each
iteration of RL-Sim Re-Ranking algorithm, considering the Mutual kNN and
intersection measure approaches. We can observe the significant improvement in
terms of precision, ranging from 45% (on the ranking computed by the CFD [21]
descriptor) to 100% at the third iteration of the re-ranking algorithm.

Table 2 presents results for shape descriptors using the Kendall’s tau measure
on MPEG-7 database. Results of both kNN and Mutual kNN methods are
presented. We can also observe significative gains ranging from +5.98% to
+27.44%.

17



Figure 4: Evolution of rankings according to iterations on MPEG-7 [15] database. The first
column (green border) contains the query image. The first row presents the results of CFD [21]
shape descriptor (wrong results with red borders). The remaining rows present the results of
RL-Sim Re-Ranking algorithm for each iteration.

Table 1: RL-Sim Re-Ranking using Intersection Distance Measure for shape descrip-
tors on MPEG-7 dataset (Recall@40).

Shape
Descrip-
tor

Score kNN +
Intersec-
tion

Gain Mutual
kNN +
Intersection

Gain

SS [36] 43.99% 53.15% +20.82% 57.58% +30.90%
BAS [2] 75.20% 82.94% +10.29% 85.87% +14.19%
IDSC [16] 85.40% 92.18% +7.94% 92.62% +8.45%
CFD [21] 84.43% 94.13% +11.49% 95.33% +12.91%
ASC [17] 88.39% 94.69% +7.13% 95.75% +8.33%
AIR [9] 93.67% 99.90% +6.65% 99.87% +6.62%

Results for MAP (Mean Average Precision) score are presented in Table 3,
considering the insersection measure; and Table 4, considering the Kendall’s
tau measure. Both tables present results considering the kNN and Mutual
kNN approaches. We can observe positive gains for all shape descriptors in all
combinations of approaches, ranging from +2.42% to +26.63%.

In addition to shape descriptors, we conducted experiments with color and
texture descriptors, considering 12 image descriptors in 3 different datasets.
Experiments with color and texture descriptors are described in next Sections.

8.3.2. Color Descriptors

We evaluate our method with three color descriptors: Border/Interior Pixel
Classification (BIC) [30], Auto Color Correlograms (ACC) [11], and Global
Color Histogram (GCH) [31]. The experiments were conducted on a database
used in [40] and composed by images from 7 soccer teams, containing 40 images

Table 2: RL-Sim Re-Ranking using Kendall’s Tau Distance Measure for shape de-
scriptors on MPEG-7 dataset (Recall@40).

Shape
Descrip-
tor

Score kNN +
Kendall’s
Tau

Gain Mutual
kNN +
Kendall’s
Tau

Gain

SS [36] 43.99% 52.67% +19.73% 56.06% +27.44%
BAS [2] 75.20% 81.16% +7.93% 83.44% +10.96%
IDSC [16] 85.40% 91.12% +6.70% 92.06% +7.80%
CFD [21] 84.43% 93.12% +10.29% 94.27% +11.65%
ASC [17] 88.39% 93.68% +5.98% 94.56% +6.98%
AIR [9] 93.67% 99.94% +6.69% 99.93% +6.68%
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Table 3: MAP scores for RL-Sim Re-Ranking using Intersection Distance Measure
in different CBIR tasks.
Descriptor Type Dataset Score

(MAP)
kNN +
Intersec-
tion

Gain M-kNN
+ Inter-
section

Gain

SS [36] Shape MPEG-7 37.67% 43.06% +14.31% 47.70% +26.63%
BAS [2] Shape MPEG-7 71.52% 74.57% +4.25% 78.16% +9.28%
IDSC [16] Shape MPEG-7 81.70% 86.75% +6.18% 87.67% +7.31%
CFD [21] Shape MPEG-7 80.71% 88.97% +10.23% 90.78% +12.48%
ASC [17] Shape MPEG-7 85.28% 88.81% +4.14% 90.88% +6.57%
AIR [9] Shape MPEG-7 89.39% 93.54% +4.64% 93.52% +4.62%

GCH [31] Color Soccer 32.24% 33.66% +4.40% 33.84% +4.96%
ACC [11] Color Soccer 37.23% 43.54% +16.95% 44.78% +20.28%
BIC [30] Color Soccer 39.26% 43.45% +10.67% 44.08% +12.28%

LBP [18] Texture Brodatz 48.40% 47.77% -1.30% 48.51% +0.23%
CCOM [14] Texture Brodatz 57.57% 62.01% +7.72% 63.48% +10.27%
LAS [33] Texture Brodatz 75.15% 77.81% +3.54% 78.11% +3.94%

Table 4: MAP scores for RL-Sim Re-Ranking using Kendall’s Tau Distance Measure
in different CBIR tasks.
Descriptor Type Dataset Score

(MAP)
kNN +
Kendall’s
Tau

Gain M-kNN +
Kendall’s
Tau

Gain

SS [36] Shape MPEG-7 37.67% 44.24% +17.92% 46.74% +24.08%
BAS [2] Shape MPEG-7 71.52% 73.25% +2.42% 75.38% +5.40%
IDSC [16] Shape MPEG-7 81.70% 85.93% +8.18% 86.53% +5.91%
CFD [21] Shape MPEG-7 80.71% 88.40% +9.53% 89.50% +9.55%
ASC [17] Shape MPEG-7 85.28% 88.10% +3.31% 89.92% +5.44%
AIR [9] Shape MPEG-7 89.39% 96.27% +7.70% 95.72% +7.08%

GCH [31] Color Soccer 32.24% 32.96% +2.18% 33.76% +4.71%
ACC [11] Color Soccer 37.23% 44.29% +18.96% 46.02% +23.61%
BIC [30] Color Soccer 39.26% 43.76% +11.46% 45.58% +16.35%

LBP [18] Texture Brodatz 48.40% 45.20% -6.61% 45.78% -5.41%
CCOM [14] Texture Brodatz 57.57% 60.30% +4.74% 61.41% +6.67%
LAS [33] Texture Brodatz 75.15% 75.62% +0.63% 76.13% +1.30%

per class. The size of images range from (198 × 148) to (537 × 672) pixels.
Table 3 presents the experimental results considering the insersection mea-

sure while Table 4 considers the Kendall’s tau measure. Both tables present
results considering the kNN and Mutual kNN approaches. We can observe a
positive gain for all color descriptors for approaches ranging from +2.18% to
+23.18% (considering MAP as score).

8.3.3. Texture Descriptors

The experiments consider three well-known texture descriptors: Local Bi-
nary Patterns (LBP) [18], Color Co-Occurrence Matrix (CCOM) [14], and Lo-
cal Activity Spectrum (LAS) [33]. We used the Brodatz [5] dataset, a popular
dataset for texture descriptors evaluation was considered. The Brodatz dataset
is composed of 111 different textures of size (512 × 512) pixels. Each texture is
divided into 16 blocks (128 × 128) pixels of non-overlapping sub images, such
that 1776 images are considered.

Table 3 presents the experimental results considering the insersection mea-
sure while Table 4 considers the Kendall’s tau measure. Both tables present
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Table 5: MAP scores regarding the use of RL-Sim Algorithm for Rank Aggregation
Descriptor Type Dataset Neighbor

Set
Measure Score

(MAP)

CFD [21] Shape MPEG-7 - - 80.71%
ASC [17] Shape MPEG-7 - - 85.28%
CFD [21] + ASC [17] Shape MPEG-7 kNN Intersection 98.75%
CFD [21] + ASC [17] Shape MPEG-7 M-kNN Intersection 98.96%
CFD [21] + ASC [17] Shape MPEG-7 kNN Kendall’s Tau 98.57%
CFD [21] + ASC [17] Shape MPEG-7 M-kNN Kendall’s Tau 98.57%

ACC [11] Color Soccer - - 37.23%
BIC [30] Color Soccer - - 39.26%
BIC [30] + ACC [11] Color Soccer kNN Intersection 44.49%
BIC [30] + ACC [11] Color Soccer M-kNN Intersection 44.16%
BIC [30] + ACC [11] Color Soccer kNN Kendall’s Tau 44.45%
BIC [30] + ACC [11] Color Soccer M-kNN Kendall’s Tau 45.16%

CCOM [14] Texture Brodatz - - 57.57%
LAS [33] Texture Brodatz - - 75.15%
LAS [33] + CCOM [14] Texture Brodatz kNN Intersection 80.26%
LAS [33] + CCOM [14] Texture Brodatz M-kNN Intersection 83.39%
LAS [33] + CCOM [14] Texture Brodatz kNN Kendall’s Tau 80.51%
LAS [33] + CCOM [14] Texture Brodatz M-kNN Kendall’s Tau 81.68%

Table 6: Post-processing methods comparison on MPEG-7 database (Recall@40).
Algorithm Shape Descriptor Score Gain

Shape Descriptors
Data Driven Generative Models (DDGM) [37] - 80.03% -
Contour Features Descritpor (CFD) [21] - 84.43% -
Inner Distance Shape Context (IDSC) [16] - 85.40% -
Shape Context (SC) [4] - 86.80% -
Aspect Shape Context (ASC) [17] - 88.39% -
Articulation-Invariant Representation (AIR) [9] - 93.67% -

Post-Processing Methods
Graph Transduction (LP) [42] IDSC [16] 91.00% +6.56%
Distance Optimization Algorithm [22] CFD [21] 92.56% +9.63%
Locally Constrained Diffusion Process [43] IDSC [16] 93.32% +9.27%
Shortest Path Propagation [38] IDSC [16] 93.35% +9.31%
Mutual kNN Graph [13] IDSC [16] 93.40% +9.37%
Contextual Re-Ranking [20] CFD [21] 94.55% +11.99%
RL-Sim Re-Ranking [kNN+Intersection] ASC [17] 94.69% +7.13%
RL-Sim Re-Ranking [M-kNN+Intersection] CFD [21] 95.33% +12.91%
RL-Sim Re-Ranking [M-kNN+Intersection] ASC [17] 95.75% +8.33%
Locally Constrained Diffusion Process [43] ASC [17] 95.96% +8.56%
RL-Sim Re-Ranking [M-kNN+Kendall’s tau] AIR [9] 99.93% +6.68%
RL-Sim Re-Ranking [kNN+Kendall’s tau] AIR [9] 99.94% +6.69%
Tensor Product Graph [44] AIR [9] 99.99% +6.75%

Rank Aggregation Methods
Borda [45] CFD [21]+IDSC [16] 91.06% -
Borda [45] CFD [21]+ASC [17] 93.51% -
Reciprocal Rank Fusion [6] CFD [21]+IDSC [16] 94.98% -
Reciprocal Rank Fusion [6] CFD [21]+ASC [17] 96.25% -
Co-Transduction [3] IDSC [16]+DDGM [37] 97.31% -
Co-Transduction [3] SC [4]+DDGM [37] 97.45% -
Co-Transduction [3] SC [4]+IDSC [16] 97.72% -
RL-Sim Re-Ranking [kNN+Intersection] CFD [21]+IDSC [16] 99.31% -
RL-Sim Re-Ranking [kNN+Intersection] CFD [21]+ASC [17] 99.44% -
RL-Sim Re-Ranking [M-kNN+Intersection] CFD [21]+IDSC [16] 99.49% -
RL-Sim Re-Ranking [M-kNN+Intersection] CFD [21]+ASC [17] 99.65% -
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results considering the kNN and Mutual kNN approaches. We can observe
that our re-ranking methods presents positive gains ranging from +0.63% to
+10.27%, except for LBP [18], which presents loss of effectiveness in some cases.
The LBP [18] descriptor on Brodatz dataset represents the extreme situations,
discussed in Section 4, in which the CBIR descriptor confuses classes of images.
In these situations, there is no enough contextual information available in the
ranked lists to distinguish the classes, causing the loss of effectiveness. This sit-
uation is contrary to that illustrated in Figure 4, in which wrong results contain
few images from different classes.

8.4. Experiment 4: Rank Aggregation Evaluation

We evaluate the use of our re-ranking method to combine different CBIR
descriptors. We select two descriptors for each visual property. Table 5 presents
results of MAP score of these descriptors. We can observe that significatve gains
are obtained when compared with the results of descriptors in isolation.

8.5. Experiment 5: Comparison to Other Approaches

Finally, we also evaluate our method in comparison with other state-of-
the-art post-processing methods. We use the MPEG-7 [15] dataset, with the
called bullseye score (Recall@40 ), commonly used for post-processing methods
evaluation and comparison. Table 6 presents results of our RL-Sim Re-Rannking
algorithm (considering selected variations of shape descriptors, kNN, Mutual
kNN, intersection and Kendall’s tau measure approaches) in comparison with
several other post-processing and rank aggregation methods recently proposed
in the literature. The gains in relation to initial descriptors results are also
presented.

Note that the results of our RL-Sim Re-Ranking method presents bet-
ter effectiveness performace when compared to various methods. In re-ranking
tasks, the best combination (M-kNN + Kendall’s tau) results reached 99.94%.
In rank aggregation tasks comparison, we consider as baselines the traditional
Borda [45] method, the recently proposed Reciprocal Rank Fusion [6] method,
and the recently proposed Co-Transduction [3] method, proposed for CBIR ap-
plications. We can observe that the best combination of RL-Sim Re-Ranking
algorithm (M-kNN + Intersection measure) in rank aggregation tasks reached
99.65%.

9. Conclusions

In this work, we have presented a new re-ranking method that exploits con-
textual information for improving CBIR tasks. The main idea consists in ana-
lyzing similarity between ranked lists for redefing distance among images. We
conducted a large set of experiments and experimental results demonstrated
the applicability of our method to several image retrieval tasks based on shape,
color, and texture descriptors.
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Future work focuses on: (i) considering other different measures between top
k lists; (ii) combining results obtained from different measures; (iii) optimizing
the proposed re-ranking algorithm by considering parallel architectures; red(vi)
combining our re-ranking algorithm with other supervised methods, such as
relevance feedback approaches.
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rotation invariant texture classification with local binary patterns. IEEE
Transactions on Pattern Analysis and Machine Intelligence 2002;24(7):971–
987.

[19] Park, G., Baek, Y., Lee, H.K.. Re-ranking algorithm using post-retrieval
clustering for content-based image retrieval. Information Processing and
Management 2005;41(2):177–194.

[20] Pedronette, D.C.G., da S. Torres, R.. Exploiting contextual information
for image re-ranking. In: Iberoamerican Congress on Pattern Recognition
(CIARP’2010). 2010. p. 541–548.

[21] Pedronette, D.C.G., da S. Torres, R.. Shape retrieval using contour
features and distance optmization. In: International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions (VISAPP’2010). volume 1; 2010. p. 197 – 202.

23



[22] Pedronette, D.C.G., da S. Torres, R.. Exploiting clustering ap-
proaches for image re-ranking. Journal of Visual Languages and Computing
2011;22(6):453–466.

[23] Pedronette, D.C.G., da S. Torres, R.. Exploiting contextual information
for rank aggregation. In: International Conference on Image Processing
(ICIP’2011). 2011. p. 97–100.

[24] Pedronette, D.C.G., da S. Torres, R.. Exploiting contextual spaces for
image re-ranking and rank aggregation. In: ACM International Conference
on Multimedia Retrieval (ICMR’11). 2011. p. 13:1–13:8.

[25] Pedronette, D.C.G., da S. Torres, R.. Image re-ranking and rank aggre-
gation based on similarity of ranked lists. In: Computer Analysis of Images
and Patterns (CAIP’2011). volume 6854; 2011. p. 369–376.

[26] Perronnin, F., Liu, Y., Renders, J.M.. A family of contextual mea-
sures of similarity between distributions with application to image re-
trieval. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’2009). 2009. p. 2358–2365.

[27] Rijsbergen, C.J.V.. Information Retrieval. London: Butterworth-
Heinemann, 1979.

[28] Roweis, S.T., Saul, L.K.. Nonlinear dimensionality reduction by locally
linear embedding. Science 2000;290(5500):2323–2326.

[29] Schwander, O., Nielsen, F.. Reranking with contextual dissimilarity mea-
sures from representational bregmanl k-means. In: International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISAPP’2010). volume 1; 2010. p. 118–122.

[30] Stehling, R.O., Nascimento, M.A., Falcão, A.X.. A compact and ef-
ficient image retrieval approach based on border/interior pixel classifica-
tion. In: ACM Conference on Information and Knowledge Management
(CIKM’2002). 2002. p. 102–109.

[31] Swain, M.J., Ballard, D.H.. Color indexing. International Journal on
Computer Vision 1991;7(1):11–32.

[32] Tan, H.K., Ngo, C.W.. Fusing heterogeneous modalities for video and
image re-ranking. In: Proceedings of the 1st ACM International Conference
on Multimedia Retrieval. ICMR ’11; 2011. .

[33] Tao, B., Dickinson, B.W.. Texture recognition and image retrieval using
gradient indexing. Journal of Visual Comunication and Image Representa-
tion 2000;11(3):327–342.

[34] Tenenbaum, J.B., Silva, V.d., Langford, J.C.. A global geometric frame-
work for nonlinear dimensionality reduction. Science 2000;290(5500):2319–
2323.

24



[35] Torres, R.d.S., Falcão, A.X.. Content-Based Image Retrieval: Theory and
Applications. Revista de Informática Teórica e Aplicada 2006;13(2):161–
185.

[36] Torres, R.d.S., Falcão, A.X.. Contour Salience Descriptors for Effective
Image Retrieval and Analysis. Image and Vision Computing 2007;25(1):3–
13.

[37] Tu, Z., Yuille, A.L.. Shape matching and recognition - using generative
models and informative features. In: European Conference on Computer
Vision (ECCV’2004). 2004. p. 195–209.

[38] Wang, J., Li, Y., Bai, X., Zhang, Y., Wang, C., Tang, N.. Learning
context-sensitive similarity by shortest path propagation. Pattern Recog-
nition 2011;44(10-11):2367–2374.

[39] Webber, W., Moffat, A., Zobel, J.. A similarity measure for indefi-
nite rankings. ACM Transactions on Information Systems 2010;28(4):20:1–
20:38.

[40] Weijer, J.V.D., Schmid, C.. Coloring local feature extraction. In: Euro-
pean Conference on Computer Vision (ECCV’2006). volume Part II; 2006.
p. 334–348.

[41] Wu, S., Crestani, F.. Methods for ranking information retrieval systems
without relevance judgments. In: ACM Symposium on Applied Computing
(SAC’03). 2003. p. 811–816.

[42] Yang, X., Bai, X., Latecki, L.J., Tu, Z.. Improving shape retrieval by
learning graph transduction. In: European Conference on Computer Vision
(ECCV’2008). volume 4; 2008. p. 788–801.

[43] Yang, X., Koknar-Tezel, S., Latecki, L.J.. Locally constrained diffusion
process on locally densified distance spaces with applications to shape re-
trieval. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’2009). 2009. p. 357–364.

[44] Yang, X., Latecki, L.J.. Affinity learning on a tensor product graph
with applications to shape and image retrieval. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’2011). 2011. p. 2369–
2376.

[45] Young, H.P.. An axiomatization of borda’s rule. Journal of Economic
Theory 1974;9(1):43–52.

[46] Zhou, W., Tian, Q., Lu, Y., Yang, L., Li, H.. Latent visual con-
text learning for web image applications. Pattern Recognition 2011;44(10-
11):2263–2273.

[47] Zhu, X.. Semi-supervised learning with graphs. Ph.D. thesis; Pittsburgh,
PA, USA; 2005. John Chair-Lafferty and Ronald Chair-Rosenfeld.

25


