
A Correlation Graph Approach for Unsupervised

Manifold Learning in Image Retrieval Tasks
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Abstract

Effectively measuring the similarity among images is a challenging problem
in image retrieval tasks due to the difficulty of considering the dataset man-
ifold. This paper presents an unsupervised manifold learning algorithm that
takes into account the intrinsic dataset geometry for defining a more effec-
tive distance among images. The dataset structure is modeled in terms of
a Correlation Graph (CG) and analyzed using Strongly Connected Compo-
nents (SCCs). While the Correlation Graph adjacency provides a precise
but strict similarity relationship, the Strongly Connected Components anal-
ysis expands these relationships considering the dataset geometry. A large
and rigorous experimental evaluation protocol was conducted for different
image retrieval tasks. The experiments were conducted in different datasets
involving various image descriptors. Results demonstrate that the manifold
learning algorithm can significantly improve the effectiveness of image re-
trieval systems. The presented approach yields better results in terms of
effectiveness than various methods recently proposed in the literature.
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1. Introduction

A huge amount of visual content has been accumulated daily, generated
from a large variety of digital sources [1, 2], from personal mobile cameras
to interactive video-games and surveillance devices. In this scenario, the
demand for methods capable of understanding the image and video content
is increasing. Human action recognition [3] and pose estimation [4] methods,
for example, have achieved relevant advances in human-computer interaction
applications and human behavior analysis.

Regarding image collections, a change of behavior can be observed, since
common users are not long mere consumers and have become active producers
of digital content, especially images. The Content-Based Image Retrieval
(CBIR) systems are considered a promising solution, supporting searches
capable of taking into account the visual properties of digital images [2, 5].
The main objective of these systems is to retrieve relevant collection images
ranked according to their similarity to a query input (e.g., query image).

For decades, the development of CBIR systems have been mainly sup-
ported by the creation of various visual features (based on shape, color, and
texture properties) and different distance measures [5]. A major challenge in
this scenario, known as semantic gap, consists in the difficulties in mapping
low-level features to high-level concepts typically found within images. The
semantic gap [6] affects a broad class of applications, from image retrieval
tasks to complex event detection in video sequences. In these scenarios, it
is beneficial to consider the common knowledge from both the low-level fea-
tures and the high-level concept information [7]. More recently, aiming at
improving the retrieval effectiveness by reducing the semantic gap, research
initiatives have focused on other stages of the retrieval process, which are
not directly related to low-level feature extraction procedures [8].

In several computer vision and image retrieval applications, images are
represented by feature vectors and modeled as high dimensional points in
an Euclidean space. Handling high dimensional feature representations con-
sists in a challenging task. Common approaches aim at both reducing the
complexity of a data set and preserving information that is important for un-
derstanding the data structure itself [9]. Dimensionality reduction methods,
for example, aims at finding meaningful low-dimensional structures hidden
in their high-dimensional observations [10, 11].

For images represented in high dimensional spaces, their comparison is of-
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ten based on the use of distance functions applied on their corresponding fea-
ture vectors. In retrieval scenarios, for example, images are commonly ranked
in increasing order of their distances to defined query patterns. Distance
functions usually consider pairs of images. However, the pairwise distance
analysis is very simplistic, since it provides only locally restrict comparisons
and ignores more global relationships and the dataset structure itself.

In fact, since collection images are often encoded in a much lower-dimensional
intrinsic space, capturing and exploiting the intrinsic manifold structure be-
comes a central problem for different vision, learning, and retrieval tasks [12,
13, 14]. In this scenario, methods have been proposed with the aim of ranking
collection objects with respect to the intrinsic global manifold structure [14].
Diverse methods also have been proposed in order to improve the effective-
ness of distance measures in image retrieval tasks [15, 16, 17, 12]. In general,
these approaches aims at replacing strategies based on pairwise distance com-
putations by more global affinity measures capable of considering the dataset
manifold [17].

In practical terms, the unlabeled information encoded in the dataset man-
ifold can be exploited for reducing the effects of the semantic gap. However,
while user preferences [18] and relevance feedback information [19] are com-
monly used for reducing the semantic gap, the use of unlabeled information
is much more challenging [20].

In this paper, we discuss a novel unsupervised manifold learning algo-
rithm, which aims at miming the human behavior in judging similarity. The
unconscious mind captures incomplete data from senses and completes the
missing information based on the context [21, 22, 23]. Analogously, in the
retrieval scenario image descriptors often provide incomplete similarity infor-
mation. The proposed algorithm exploits unlabeled contextual information
encoded in the dataset manifold through the Correlation Graph for improving
the effectiveness of distance/similarity measures. In this sense, the context
can be seen as any complementary information about similarity among im-
ages, as the set of images in a strongly connected component.

The algorithm is based on the Correlation Graph (CG) and Strongly Con-
nected Components (SCCs) and takes into account the intrinsic geometry of
the dataset manifold by computing a Correlation Graph Distance. A graph
representation of the dataset is constructed by exploiting the correlation in-
formation among images, which provides strong indicators of similarity. Cor-
relation indices are computed by analyzing the distances and top positions
of ranked lists. Strongly Connected Components are computed based on the
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Correlation Graph with the aim of expanding the similarity neighborhood
and discovering the intrinsic geometry of the dataset manifold. To the best
of our knowledge, this is the first method for unsupervised manifold learning
using correlation graphs and strongly connected components.

The low computational efforts required by the proposed method also rep-
resent a significant advantage when compared to related work [17, 15, 24, 25,
26, 27]. Diffusion-based approaches [28, 27, 15, 17] require the computation
of powers of the transition matrix or matrix inversion procedures. Graph-
based methods [26] compute the shortest paths independently of each query
element increasing the computational costs. Iterative re-ranking methods,
in turn, [24, 25, 29] require successively sorting steps. Unlike other meth-
ods, our approach computes a new distance among images considering only
different correlation thresholds, without the need of performing successively
distance computing procedures. In addition, the proposed method considers
only the top-ranked images, which represent a smaller number of elements
when compared with the number of objects handled in recently proposed
methods [24]. The low computational costs required is mainly due to the
strongly connected components analysis, through which it is possible consid-
ering geometry of the entire dataset manifold by using a small neighborhood
set.

This paper differs from our previous work [30] as it presents a deeper
and broader analysis of the unsupervised manifold learning algorithm. In
addition to the distance correlation analysis [30] using the traditional Pear-
son correlation coefficient, we also exploit recently proposed rank correlation
measures [31] for constructing the Correlation Graph. In this way, the pro-
posed method can also be modeled using only ranking information, without
the need of distance scores. A normalization of similarity scores is included
and it is demonstrated that this step improves the effectiveness results. In
addition, a distance fusion approach is also proposed and the experimental
evaluation is updated reflecting the novel contributions and expanded for
considering other datasets.

An extensive experimental evaluation was conducted, considering six pub-
lic datasets and 22 image descriptors, including global shape, color and tex-
ture descriptors, local descriptors, and convolution-neural-network-based de-
scriptors. Experiments were conducted on different retrieval tasks involving
general retrieval, object retrieval, and multimodal retrieval tasks, consider-
ing visual and textual descriptors. We also evaluated the proposed mani-
fold learning method in comparison with various other state-of-the-art ap-
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proaches. Results from a rigorous experimental protocol show that the pro-
posed method can achieve significant effectiveness gains (up to +38%) yield-
ing better results in terms of effectiveness performance than state-of-the-art
approaches.

The paper is organized as follows: In Section 1, we present the proposed
unsupervised manifold learning method. Section 3 presents the experimental
evaluation and, finally, Section 4 discusses the conclusions and presents future
work.

2. Manifold Learning By Correlation Graph

The main objective of the discussed unsupervised learning algorithm is
to model the intrinsic geometry of a dataset manifold in terms of a correla-
tion analysis and its correspondent connectivity. The use of the Correlation
Graph and Strongly Connected Components in manifold learning tasks was
first introduced by the authors in a conference paper [30]. However, the Cor-
relation Graph was originally constructed based on the correlation among
distances. In this work, a more comprehensive model is proposed, allowing
the use of different correlation indices, including rank-based measures. The
novel proposed method also allows the combination of different features in
distance fusion tasks. A new effectiveness estimation measure is proposed in
order to give higher weights to more effective features in fusion tasks.

2.1. Overview

An overview of the proposed graph-based approach is presented in this
section. The method can be roughly divided into four steps:

1. The correlation between each dataset image and the images placed at
top positions of its ranked list is computed. The method is able to
consider both distance and rank correlation measures. For each ranked
list, only a small set of the most correlated images, which are the
most likely to be similar to the query image, are selected based on a
correlation threshold. The adjacency of the Correlation Graph (CG) is
defined according to the selected images.

2. The Correlation Graph is analyzed for identifying Strongly Connected
Components (SCCs). The use of SCCs aims at expanding the neighbor-
hood set of similar images by taking into account the intrinsic geometry
of the dataset manifold.
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3. The first two steps are repeated using different values of correlation
thresholds. For each value, a similarity score is incrementally computed
by combining information from the correlation graph adjacency and
SCCs. The increments are defined according to the confidence defined
by the thresholds.

4. A new distance, named Correlation Graph Distance, is computed by ex-
ploiting the similarity scores computed for different correlation thresh-
olds.

While the edges defined by the Correlation Graph provide a very strong
indication of similarity (specially for high correlation thresholds), the edges
include a very small neighborhood set. The SCCs allow for the expansion of
the neighborhood considering the dataset structure. The capacity of the
proposed method of considering the geometry of the dataset manifold is
illustrated in Figures 1, 2, and 3.

Figure 1 illustrates the Two-Moon dataset considering the Euclidean dis-
tance. One point is selected as a labeled point in each moon (marked with a
filled circle and triangle). In the following, all other data points are assigned
to the closest labeled point, determining their neighborhood. As it can be
observed, the extremities of the moons are misclassified, since the Euclidean
distance does not consider the geometry structure of the dataset. Figure 2
illustrates an intermediary step of the proposed method. Points with edges
to the labeled point in the Correlation Graph are marked with stars, the
SCCs are illustrated in colors (blue and red) and the unclassified points are
illustrated in green. Figure 3 illustrates the final configuration that consid-
ers the distances computed using the Correlation Graph Distance. We can
observe that the ideal classification, which respects the whole geometry of
the dataset manifold, was produced.

2.2. Correlation Graph

This section formally describes the construction of the Correlation Graph
(CG). Let C={img1, img2, . . . , imgn} be an image collection, where n is the
size of the collection.

Let D be an image descriptor which can be defined [32] as a tuple D =
(ε, ρ), where ε: Î → Rn is a function, which extracts a feature vector vÎ
from an image Î; and ρ: Rn × Rn → R is a distance function that computes
the distance between two images according to the distance between their
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Figure 1: Euclidean distance.
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Figure 2: Intermediary CG structures.
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Figure 3: Correlation Graph Distance.

corresponding feature vectors. For readability purposes, the notation ρ(i, j)
is used to refer to the distance between two images imgi and imgj along the
paper.

Let τq=(img1, img2, . . . , imgns) be a ranked list computed based on the
distance function ρ, in response to a query image imgq. The ranked list τq
can be defined as a permutation of the subset Cs ⊂ C, where the subset
Cs contains the ns most similar images to query image imgq, and therefore,
|Cs| = ns and ns � n. We interpret τq(i) as the position (or rank) of image
imgi in the ranked list τq.

The Correlation Graph (CG) is a directed graph G = (V,E), where the
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set of vertices V is defined by the image collection C, such that each image
is represented by a node and V = C. The edge set E is defined considering
the correlation among images at the top ns positions of each ranked list, as
follows:

E = {(imgq, imgj) | τq(j) 6 ns ∧ cor(q, j) > tc}, (1)

where cor(q, j) defines a correlation measure between imgq and imgj and
tc is the correlation threshold considered. Therefore, there will be an edge
from imgq to imgj, if: (i) imgj is at the top-ns positions of ranked of imgq;
and (ii) the correlation score between them are greater than a given thresh-
old tc. Notice that, the smaller the correlation threshold is, the denser the
constructed graph is. That increases the neighborhood adjacency but also
increases the number of false positives. On the other hand, the higher the
threshold becomes, the sparser is the graph. That, however, leads to a higher
confidence.

The proposed manifold learning algorithm is robust to the use of different
correlation measures for computing the cor(q, j) coefficient. Next subsections
detail two different distance and rank correlation approaches.

2.2.1. Distance Correlation

Given two similar images imgq, imgj, the distances from these images to
other similar images in common is frequently low. In other words, we can
say that the distances to their neighborhood is correlated. In our approach,
the distance correlation between them is measured using the Pearson’s Cor-
relation Coefficient and considering the distances to the k-nearest neighbors
of imgq and imgj.

Let Nk(q) be the set containing the k-nearest neighbors to given image
imgq. Let Nk(q, j) be the union set containing the k-nearest neighbors of
both images imgq and imgj, such that Nk(q, j) = Nk(q) ∪ Nk(j). We define
two vectors X and Y containing, respectively, the distances from images imgq
and imgj to each image imgi ∈ Nk(q, j). Let imgi be the i-th image of the
set Nk(q, j), we define Xi = ρ(q, i) and Yi = ρ(j, i). The correlation cor(q, j)
score is defined as follows:

cor(q, j) =

∑ku
i=1(Xi −X)(Yi − Y )√∑ku

i=1(Xi −X)2
√∑ku

i=1(Yi − Y )2
. (2)
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The value of the Pearson’s correlation coefficient ranges from −1 to +1,
where +1 indicates a perfect positive linear relationship. We normalize the
computed value of cor(q, j) in the interval [0,1]. Figure 4 illustrates the
distance correlation analysis using the Pearson Correlation Coefficient for
computing the CG adjacency.

Union

Pearson Correlation 
Coefficient:

Graph
Edge:

...

0.0

0.2

0.3

0.5

...

...

Figure 4: Distance correlation analysis for computing the adjacency of the Correlation
Graph.

2.2.2. Rank Correlation

Ranked lists, which are commonly used for visualizing retrieval results,
can also be exploited for correlation analysis. Ranked lists encode relevant
contextual information [24] by defining relationships among several images,
and not only pairs of images as distance functions. In addition, an advantage
of using ranking information refers to the fact that there is no need of com-
puting distance scores, which usually may be computed in different ranges,
requiring therefore normalization procedures.

A recently proposed measure [31] based on a simple probabilistic user
model is used for performing the rank correlation analysis. The Rank-Biased
Overlap [31] (RBO) compares the overlap of two rankings at incrementally
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increasing depths. This measure takes a parameter that specifies the proba-
bility of considering the overlap at the next level. The weight of the overlap
measured at each depth is computed based on these probabilities. The cor-
relation score according to the RBO measure is defined as follows:

cor(q, j) = (1− p)
k∑

d=1

pd−1 × |Nk(q) ∩Nk(j)|
d

, (3)

where p is a constant, which determines the strength of the weighting to top
ranks.

2.3. Strongly Connected Components

The edges of the Correlation Graph represent a very strong indication of
similarity among images for high thresholds. However, although very pre-
cise, the edges include a very small neighborhood set. We can observe this
behavior in Figure 2. In this scenario, for ensuring the comprehensiveness
of the retrieval process is necessary to expand the similarity neighborhood.
Strongly Connected Components (SCCs) are considered for this task as it en-
codes the geometry of the dataset manifold. Recently, the reciprocal neigh-
borhood [33, 34] has been exploited in image retrieval tasks for analyzing
the dataset structure through reciprocal references. We use the SCCs of
the Correlation Graph with an analogous objective, since SCCs also define a
reciprocal connectivity relationship among a set of nodes.

The strongly connected components of a directed graph are defined by
subgraphs that are themselves strongly connected, i.e., where every vertex is
reachable from every other vertex. Formally, let S be a SCC, for every pair
imgq, imgj ∈ S there is an oriented path between imgq and imgj and vice
versa.

The Tarjan [35] algorithm, which is linear on the size of the graph, is used
for computing the SCCs. Each SCC is defined as a set of images Si. The
overall output of the algorithm is a set of SCCs S = {S1, S2, . . . , Sm}. The
information provided by SCCs is exploited for computing the Correlation
Graph Distance.

2.4. Correlation Graph Distance

The objective of the Correlation Graph Distance is to exploit all informa-
tion encoded in the Correlation Graph and SCCs for computing a new and
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more effective distance among images. In this way, we define a Correlation
Graph Similarity Score, which aims at quantifying the association between
images according to the Correlation Graph and SCCs. The similarity score
between two given images imgi, imgj is defined by Wi,j, given by an sparse
similarity matrix W .

The similarity score Wi,j is computed in terms of increments, according to
the adjacency defined by Correlation Graph and correspondent SCCs. The
sparsity of the matrixW is given by the fact that increments are computed for
non-similar images, and therefore, most of the elements of the affinity matrix
remain empty. Let E(q) denote a set of images to whom imgq have edges
in the Correlation Graph, the similarity score between imgi, imgj ∈ E(q)
receives an increment, according to the correlation threshold tc considered.
The same increments are computed for images that belong to a same SCC,
i.e., for every pair imgq, imgj ∈ S.

The correlation threshold tc defines the magnitude of the similarity in-
crement since it provides an unsupervised estimation of the confidence of
connectivity information of the Correlation Graph.

Algorithm 1 outlines the proposed method for computing the similarity
score Wi,j. Lines 4-11 define the similarity increments according to the CG
adjacency, while Lines 13-17 exploit information from SCCs for computing
other increments. Different threshold values (tc) are considered, according to
the external loop (Lines 2-19).

Figure 5 illustrates an example of the Correlation Graph and its capacity
of discovering new relationships among images. The solid lines represent
the graph adjacency, according to the correlation conditions. As previously
discussed, these edges provide a strong indication of similarity, and therefore,
the images imgi, imgj, imgl are probably similar as well. In this scenario,
the increments are illustrated by dashed lines.

Based on computed similarity scores a normalization procedure is defined.
Since the Correlation Graph is oriented and the adjacency is not symmetric,
the similarity scores may present high variations. Therefore, a normalization
step is performed according to Equation 4. The normalized similarity score
WNi,j

is computed proportionally to the accumulated increments received for
each image.
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Algorithm 1 Correlation Graph Distance

Require: Correlation Graph G = (V,E), Set of SCCs S
Ensure: Correlation Graph Similarity Score Wi,j

1: tc ← tstart
2: while tc 6 1 do
3: { Correlation Graph }
4: for all imgq ∈ V do
5: for all imgi ∈ E(q) do
6: Wq,i ←Wq,i + tc
7: for all imgj ∈ E(q) do
8: Wi,j ←Wi,j + tc
9: end for

10: end for
11: end for
12: { Strongly Connected Components }
13: for all Sc ∈ S do
14: for all imgi, imgj ∈ Sc do
15: Wi,j ←Wi,j + tc
16: end for
17: end for
18: tc ← tc + tinc
19: end while
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Figure 5: Example of correlation graph and similarity increments.

WNi,j
=

Wi,j
n∑

c=1

Wj,c

. (4)

Finally, based on the normalized similarity score WNi,j
, the Correlation

Graph Distance ρc(i, j) is computed as follows:

ρc(i, j) =
1

1 +WNi,j

. (5)

Notice that the similarity matrix is sparse, since most of the similarity
scores WNi,j

between images imagi, imgj ∈ C do not receive increments. For
these cases, the ranked lists are organized according to the initial ranked
lists.
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2.5. Correlation Graph for Distance Fusion

Different features often encode distinct and complementary visual infor-
mation extracted from images. Therefore, it is intuitive that, for a given
query, if a feature is associated with good effectiveness scores by itself and is
complementary (heterogeneous) to other features, then it is expected that a
higher search accuracy can be achieved by combining them [36].

In fact, many recent works [36, 37, 29] have been demonstrating the ef-
fectiveness of fusion approaches in image retrieval tasks. An important chal-
lenge for fusion methods consists in estimating the quality of retrieval results
obtained by distinct features [34, 36, 38]. Other relevant aspect consists
in performing the distance fusion considering information encoded in the
dataset manifold.

In this work, we present a distance fusion approach, which aims at ad-
dressing both relevant aspects at the same time. We propose a simple and
effective measure for estimating the quality of retrieval results. Our approach
is inspired by the observation [36] that good features tend to better differen-
tiate the top positions of ranked lists, producing a higher score variability.

Aiming at measuring the score variability for a given feature, we exploit
the relation between the accumulated distances for images at top-k and for
images until the ns positions. More effective features are expected to pro-
duce a very low accumulated top-k distances in comparison with the subset
contained until the ns positions. The accumulated distances for k and ns

positions are formally defined in Equations 6 and 7, respectively.

ρk(q) =
∑

imgi∈Nk(q)

ρ(q, i). (6)

ρns(q) =
∑

imgi∈Nns (q)

ρ(q, i). (7)

The estimation measure e(q) for a query image imgq is defined as follows:

e(q) = 1− ρk(q)

ρns(q)
. (8)
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In the following, the distances from different features are combined using
a late fusion approach. A multiplicative approach inspired on recent positive
results [29, 24] is used for combining the distances. The query-adaptive
quality estimation e(q) is used as exponent for assigning weights for each
feature distance, as follows:

ρf (q, i) =
d∏

j=1

ρ(q, i)e(q). (9)

Finally, once the different distances have been fused on a single distance
(or corresponding ranked lists), the Correlation Graph Distance is performed
for considering the relationships encoded in the the dataset manifold.

3. Experimental Evaluation

In this section, we present the results of a large experimental evaluation
conducted for assessing the effectiveness of the proposed method. Various
different datasets and descriptors are considered aiming at evaluating the al-
gorithm in diverse retrieval tasks. Experiments were conducted on six public
image datasets commonly used in the literature, considering 22 different im-
age descriptors. The visual features include global shape, color, and texture
features. Searching scenarios considering local descriptors, descriptors based
on the use convolutional neural networks, and multimodal retrieval involving
visual and textual descriptors are also considered. A rigorous experimen-
tal protocol was employed, involving all image datasets and statistical tests.
Table 1 summarizes the datasets and descriptors considered.

Figure 6 illustrates sample images from different image datasets used
in the experimental evaluation. Each row contains images from a dataset,
following the same order of Table 1.

The remainder of this section is organized as follows: Section 3.1 discusses
the parameter values and Section 3.2 discusses the impact of the algorithm
on distance distribution. Section 3.3 presents the experimental results for
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Table 1: Summary of datasets used on the experimental evaluation.

Dataset Type Size Descriptors
MPEG-7 [39] Shape 1,400 6
Soccer [40] Color 280 3

Brodatz [41] Texture 1,776 3
ETH-80 [42] Color Objects 3,280 4

UW Dataset [43] Color Scenes + Keywords 1,109 6 visual; 6 textual
UKBench [44] Color Objects/Scenes 10,200 7

Figure 6: Sample images from various datasets considered.

the proposed approach considering various shape, color, and texture descrip-
tors. Section 3.4 presents the experimental results for object retrieval tasks.
Section 3.5 presents results for natural image retrieval, while Section 3.6 dis-
cusses the results for multimodal retrieval tasks. Finally, Section 3.7 presents
a comparison of the proposed approach with state-of-the-art related methods.

16



3.1. Impact of Parameters

This section aims at evaluating the robustness of the method to different
parameter settings and defining the best parameter values. We conducted
various experiments considering the MPEG-7 [39] shape dataset (described
in Section 3.3). The first experiment evaluates the impact of the parameters
k (size of the neighborhood set used for correlation analysis) and tstart (start
value of correlation threshold tc).

Figure 7: Impact of parameters k and correlation threshold.

Figure 7 illustrates the variations of effectiveness scores given by Mean
Average Precision (MAP) according to variations of k and tstart. The experi-
ment considered the Aspect Shape Context (ASC) [45] shape descriptor and
the Pearson correlation coefficient. We can observe a large red region indicat-
ing high retrieval scores for different parameter settings, which demonstrates
the robustness of the proposed method. An analogous experiment was con-
ducted considering the RBO rank correlation measure with similar results.
In most of remaining experiments, we used the values of tstart = 0.35 and
tstart = 0.05 for the Pearson and RBO measures, respectively. For the size of
the neighborhood, we used k = 25 for both measures.

We also evaluate the impact of the size of ranked lists (ns) and the thresh-
old increments (tinc) on effectiveness gains, considering two shape descriptors:
Aspect Shape Context (ASC) [45] and Articulation-Invariant Representation
(AIR) [46]. Figures 8 and 9 illustrates the impact of these parameters on the
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MAP scores. As we can observe, only a small subset of ranked lists is enough
to achieve high effectiveness results. The value ns = 200 is used in all other
experiments.
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Figure 8: Impact of the size of ranked lists
(ns) on effectiveness results.
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Figure 9: Impact of correlation increments
(tinc) on effectiveness results.

The correlation increment tinc defines the granularity of correlation analy-
sis, representing a smooth trade-off between efficiency and effectiveness. For
large increments, the algorithm executes faster, but its effectiveness tends to
decrease. Figure 9 illustrates the variations of effectiveness scores according
to different values of correlation increment. Notice that the figure presents
a very stable behavior. Different values of tinc cause a very small impact on
the effectiveness score. We used tinc = 0.005 for all datasets and different
descriptors.

3.2. Impact of the Algorithm on Distance Distribution

This section discusses the impact of the proposed manifold algorithm on
distance distribution. For analyzing this impact, we present a bi-dimensional
representation of the MPEG-7 [39] dataset before and after the execution of
the algorithm. We selected two arbitrary images, named as reference images,
and represent all collection images in the bi-dimensional space. The position
of images into this space is defined according to their distance to the reference
images. Formally, given two reference images imgi and imgj and an image
imgl that we want to represent in the bi-dimensional space, the position (x, y)
of imgl is defined as (ρ(imgi, imgl), ρ(imgj, imgl)).
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Figure 10 (a) illustrates the similar reference images. Figure 10 (b) illus-
trates the respectively distance distribution, presenting similar images in red
circles and remaining images in blue. As we can observe, similar and non-
similar images (red circles and blue crosses) are mixed in the distance space.
Figure 10 (c) illustrates the distance distribution considering the proposed
Correlation Graph Distance. Notice the capacity of the proposed algorithm
of considering the dataset manifold, which increases the separability between
similar and non-similar images.
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Figure 10: Impact of the algorithm on distances distribution for similar reference images:
(a) Similar Reference Images imgi and imgj (fly-2.gif and fly-3.gif) from the MPEG-7 [39]
dataset; (b) Original distances distribution; (c) Distances distribution after the execution
of the proposed algorithm.

Figure 11: Visual example of the effectiveness gain. Retrieval results before (first row) and
after the use of the algorithm (second row). Query image (fly-2.gif) from the MPEG-7 [39]
dataset with green border and wrong images with red borders.

Figure 12: Visual example analogous to Figure 11, considering other query image (fly-3.gif)
from the MPEG-7 [39] dataset.
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The effects of distance distribution on visual retrieval results can be ob-
served in Figures 11 and 12. The figures present the reference images as
queries with green borders and the retrieval results with non-similar images
with red borders. For each figure, the first and second rows represent the
results before and after the use of the algorithm.

The improvements on the effectiveness and the positive effects of the
proposed method in the semantic gap problem are remarkable. The orig-
inal low-level shape features retrieve various different images with several
saliences, without any distinction among different meanings. On the con-
trary, the proposed method successfully exploits the query context and the
similarity among most of responses for improving the results and retrieving
images from the class “fly.”

We also perform this analysis considering two non-similar reference im-
ages, which are illustrated in Figure 13 (a). The distance distribution before
the use of of the algorithm is illustrated in Figure 13 (b), which presents the
similar images to each reference images in red and green circles. Again, we
can observe that these images are mixed with non-similar images (in blue).
Figure 13 (c) presents the distance distribution considering the Correlation
Graph Distance. Analogously to what was observed for similar images, the
separability among similar and non-similar images is drastically increased.
The impact of the Correlation Graph Distance on the retrieval results can
also be observed in Figure 14.

3.3. General Image Retrieval Tasks

This section presents the effectiveness results of the proposed method on
general image retrieval tasks, considering shape, color, and texture descrip-
tors. All collection images of each dataset are considered as query images
and the Mean Average Precision (MAP) is used as effectiveness measures in
most of experiments. We report the relative gains obtained by the use of
the proposed manifold learning algorithm for each descriptor and dataset.
We also conducted statistical paired t-tests, aiming at assessing the differ-
ence between the retrieval results before and after the use of the algorithm
is statistical significant.

3.3.1. Shape Retrieval

The MPEG-7 [39] dataset is a well-known shape dataset, composed of
1,400 shapes which are grouped into 70 classes, with 20 objects per class.
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Figure 13: Impact of the algorithm on distances distribution for non-similar images: (a)
Non-similar reference images imgi and imgj (fly-2.gif and ray-16.gif) from the MPEG-
7 [39] dataset; (b) Original distances distribution; (c) Distances distribution after the
execution of the proposed algorithm.

Figure 14: Visual examples of retrieval results before and after the algorithm, considering
the query image ray-16.gif.

The dataset is widely used for shape retrieval and post-processing methods
evaluation.

The proposed manifold learning algorithm was evaluated on the MPEG-
7 [39] dataset, considering six different shape descriptors: Segment Saliences
(SS) [47], Beam Angle Statistics (BAS) [48], Inner Distance Shape Context
(IDSC) [49], Contour Features Descriptor (CFD) [50], Aspect Shape Context
(ASC) [45], and Articulation-Invariant Representation (AIR) [46].

Two effectiveness measures were considered the for the MPEG-7 [39]
dataset: the MAP and the bull’s eye score, commonly used for this dataset.
This score counts all matching shapes within the top-40 ranked images. The
retrieved score is normalized, since each class consists of 20 shapes which
defines highest possible number of hits. Notice that the bull’s eye score is
equivalent to recall at 40.

Table 2 presents the results considering the bull’s eye score of evaluated
descriptors. Also positive for all descriptors, the gains range from +6.76%
to +33.01% for the Pearson, and from +6.70% to +29.51% for the RBO
measure. The paired t-tests indicated statistical significance at 99% for the
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Table 2: Correlation Graph Distance on the MPEG-7 [39] dataset, considering the Bull’s
Eye Score (Recall@40).

Shape Bull’s Correlation Statistic Correlation Statistic
Descriptor Eye Score Graph Dist. Gain Signific. Graph Dist. Gain Signific.

(Recall@40) Pearson 99% RBO 99%
SS [47] 43.99% 58.51% +33.01% • 56.97% +29.51% •

BAS [48] 75.20% 87.85% +16.82% • 84.29% +12.09% •
IDSC [49] 85.40% 92.49% +8.30% • 92.04% +7.78% •
CFD [50] 84.43% 94.84% +12.33% • 94.00% +11.33% •
ASC [45] 88.39% 95.50% +8.04% • 94.47% +6.88% •
AIR [46] 93.67% 100% +6.76% • 99.95% +6.70% •

results of all experiments.
Table 3 presents the MAP scores for both distances an rank correlation

measures (Pearson Correlation Coefficient and RBO, respectively). Signif-
icant positive gains are observed for all descriptors, ranging from +9.17%
to +38.23% for the Pearson, and from +7.23% to +35.70% for the RBO
measure.

Table 3: Correlation Graph Distance for general image retrieval tasks, considering shape,
color, and texture descriptors. Mean Average Precision (MAP) as effectiveness measure
and t-tests for evaluating statistical significance.

Original Correlation Statistic Correlation Statistic
Descriptor Dataset Score Graph Dist. Gain Signific. Graph Dist. Gain Signific.

(MAP) Pearson 99% RBO 99%
Shape Descriptors

SS [47] MPEG-7 37.67% 52.07% +38.23% • 51.12% +35.70% •
BAS [48] MPEG-7 71.52% 83.25% +16.40% • 80.18% +16.40% •
IDSC [49] MPEG-7 81.70% 90.10% +10.28% • 89.31% +9.31% •
CFD [50] MPEG-7 80.71% 92.52% +14.63% • 91.77% +13.70% •
ASC [45] MPEG-7 85.28% 93.10% +9.17% • 91.45% +7.23% •
AIR [46] MPEG-7 89.39% 97.98% +9.61% • 97.83% +9.44% •

Color Descriptors
GCH [51] Soccer 32.24% 34.71% +7.66% • 34.56% +7.20% •
ACC [52] Soccer 37.23% 46.74% +25.54% • 47.52% +27.64% •
BIC [53] Soccer 39.26% 47.99% +22.24% • 48.02% +22.31% •

Texture Descriptors
LBP [54] Brodatz 48.40% 50.26% +3.84% • 49.96% +3.22% •

CCOM [55] Brodatz 57.57% 65.18% +13.22% • 65.26% +13.36% •
LAS [56] Brodatz 75.15% 80.50% +7.12% • 79.60% +5.92% •

3.3.2. Color Image Retrieval

The experiments considering color image retrieval were conducted on a
dataset [40] composed of images from 7 soccer teams, containing 40 im-
ages per class. Used descriptors include: Border/Interior Pixel Classification
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(BIC) [53], Auto Color Correlograms (ACC) [52], and Global Color His-
togram (GCH) [51].

Results considering MAP as score are presented in Table 3, for both
distance and rank correlation measures. Significant positive gains can also
be observed for all color descriptors, ranging from +7.66% to +25.54% for
the Pearson and from +7.20% to +27.64% for the RBO measure.

3.3.3. Texture Retrieval

The popular Brodatz [41] dataset was used for experiment on texture
retrieval. The dataset is composed of 1,776 images, in which 111 different
textures are divided into 16 blocks. Three texture descriptors were con-
sidered: Local Binary Patterns (LBP) [54], Color Co-Occurrence Matrix
(CCOM) [55], and Local Activity Spectrum (LAS) [56].

Results considering MAP scores are presented in Table 3. Consider-
ing the Pearson Correlation Coefficient, the gains ranged from +3.84% to
+13.22%, while considering the RBO measure, the gains ranged from +3.22%
to +13.36%. Notice that the LBP [54] descriptor, which presented the smaller
gain among all descriptor (+3.84% and +3.22%), constitutes a challenging
scenario, in which recent approaches [24, 38] presented negative gains.

3.3.4. Distance Fusion

We also evaluate the use of Correlation Graph for distance fusion, aim-
ing at combining different CBIR descriptors. Two descriptors were selected
for each visual property, including shape, color, and texture features. We
selected the descriptors with similar and highest retrieval scores in distance
learning tasks.

Table 4 presents results of MAP score of these descriptors. We can ob-
serve that significant gains are obtained when compared with the results of
descriptors in isolation. For shape descriptors, the fused MAP score achieves
99.52%, while the best descriptor considered yields 85.71%. Similar positive
results are also presented for color and texture descriptors. For color descrip-
tors, while the best descriptor in isolation yields only 39.26%, the distance
fusion achieves a MAP of 49.12%.
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Table 4: Correlation Graph for distance fusion on shape, color and texture retrieval.
Descriptor Type Dataset Correlation Score

Measure (MAP)
CFD [50] Shape MPEG-7 - 80.71%
ASC [45] Shape MPEG-7 - 85.28%

CFD+ASC Shape MPEG-7 Pearson 99.52%
CFD+ASC Shape MPEG-7 RBO 99.46%
ACC [52] Color Soccer - 37.23%
BIC [53] Color Soccer - 39.26%

BIC+ACC Color Soccer Pearson 46.88%
BIC+ACC Color Soccer RBO 49.12%
CCOM [55] Texture Brodatz - 57.57%

LAS [56] Texture Brodatz - 75.15%
LAS+CCOM Texture Brodatz Pearson 83.66%
LAS+CCOM Texture Brodatz RBO 84.56%

3.4. Object Retrieval

We also evaluated the proposed manifold learning algorithm for object
retrieval tasks. The ETH-80 [42] dataset was considered for the experiment.
The dataset is composed of 3,280 images of 128 × 128 pixels, and each image
contains one single object. This dataset is equally divided into 8 classes
where each class represents a different object.

The experiments were conducted considering four color descriptors: Bor-
der/Interior Pixel Classification (BIC) [53], Auto Color Correlograms (ACC) [52],
Global Color Histogram (GCH) [51], and Color Structure Descriptor (CSD) [57].

Table 5 presents the MAP scores of each descriptor. Positive gains with
statistical significance were also obtained for all descriptors. The gains range
from +7.67% to +18.43%, considering the Pearson Correlation Coefficient
and from +4.08% to +19.73% considering the RBO measure.

Table 5: Correlation Graph Distance for Object Retrieval on ETH-80 [42] dataset.
Original Correlation Statistic Correlation Statistic

Descriptor Score Graph Dist. Gain Signific. Graph Dist. Gain Signific.
(MAP) Pearson 99% RBO 99%

BIC [53] 49.72% 55.79% +12.21% • 57.05% +14.74% •
ACC [52] 48.50% 52.22% +7.67% • 50.48% +4.08% •
CSD [57] 48.46% 57.39% +18.43% • 53.08% +9.53% •
GCH [51] 41.62% 47.26% +13.55% • 49.83% +19.73% •
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3.5. Natural Image Retrieval

The University of Kentucky Recognition Benchmark - UKBench [44] has
a total of 10,200 images. The dataset is composed of 2,550 objects or scenes,
where each object/scene is captured 4 times from different viewpoints, dis-
tances and illumination conditions. Thus, it consists of 2,550 image classes,
and each class has only 4 images. For the UKBench dataset, the same param-
eters of other datasets are used, except for k = 5 (for RBO) and tstart = 0.5
(for Pearson) are used, due to the very small number of similar images.

The experiments consider seven descriptors, exploiting various different
features.1 In the following, we briefly describe the descriptors used in the
experiment:

• Global Color: Auto Color Correlogram (ACC) [52], Auto Color Cor-
relogram Spatial Pyramid (ACC-SPy) [58], Scalable Color Descriptor
(SCD) [59].

• Global Color and Texture:, Color and Edge Directivity Descriptor
Spatial Pyramid [60, 58] (CEED-SPy), Fuzzy Color and Texture His-
togram Spatial Pyramid [61, 58] (FCTH-SPy), Joint Composite De-
scriptor Spatial Pyramid [62, 58] (JCD-SPy).

• Bag of Visual Words: we considered a variant of vocabulary tree
based retrieval (VOC) [44, 63], which uses SIFT features. For VOC, we
considered the rank positions provided by recent approaches [37, 34]2

as the distances among images.3

• Convolutional Neural Network (CNN): features are extracted
from the 7th layer using the Caffe framework [64]. A 4096-dimensional
CNN-Caffe descriptor was considered for each input image resized of
256 × 256 pixels.

1The global descriptors were implemented based on the LIRE library – http://www.

semanticmetadata.net/lire/ (As of September 2015).
2http://research.rutgers.edu/~shaoting/image_search.html (As of September

2015).
3Images not present in the provided rankings had their distance defined as a constant

ns = 200 and only the RBO ranking function is considered.
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Table 6 present the results of Correlation Graph for distance learning
and distance fusion tasks. For evaluation purposes, the N-S score is used
computed between 1 and 4, which corresponds to the number of relevant
images among the first four image returned. Therefore, the highest achievable
score is 4, indicating that all similar images are retrieved at top positions.

Very expressive gains can be observed. The N-S score obtained for the
CNN-based descriptor, for example, was improved from 3.31 to 3.57, consid-
ering the RBO measure. For distance fusion tasks, the results are even more
expressive reaching a very high score of 3.86.

Table 6: Correlation Graph on the UKBench dataset (N-S score).
Original Correlation Correlation

Descriptor N-S Graph Dist. Gain Graph Dist. Gain
Score Pearson RBO

CEED-SPy [58] 2.81 2.96 +5.34% 3.02 +7.47%
FCTH-SPy [58] 2.91 3.02 +3.78% 3.12 +7.22%

SCD [59] 3.15 3.18 +0.95% 3.33 +5.71%
ACC-SPy [58] 3.25 3.42 +5.23% 3.46 +6.46%
CNN-Caffe[64] 3.31 3.56 +7.55% 3.57 +7.85%

ACC [58] 3.36 3.49 +3.87% 3.56 +5.95%
VOC [63] 3.54 - - 3.73 +5.37%

VOC [63]+ACC [52] - - - 3.84 +8.47%
VOC [63]+CNN[64] - - - 3.82 +7.91%
ACC [52]+CNN[64] - 3.71 +4.80% 3.78 +6.78%

VOC [63]+ACC [52]+CNN[64] - - - 3.86 +9.04%

3.6. Multimodal Image Retrieval

The UW dataset [43] was created at the University of Washington and
consists of a roughly categorized collection of 1,109 images. This dataset
includes vacation pictures from various locations. The images are partly
annotated using keywords. The number of words per image ranges from 1
to 22, containing 6 words on the average. The dataset is classified into 18
categories, ranging from 22 images to 255 images per category.

The experiments consider twelve descriptors, which are listed below:

• Visual Color Descriptors: we considered three color descriptors on
experiments: Border/Interior Pixel Classification (BIC) [53], Global
Color Histogram (GCH) [51], and the Joint Autocorrelogram (JAC) [65].
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• Visual Texture Descriptors: for texture we used the Homogeneous
Texture Descriptor (HTD) [66], Quantized Compound Change His-
togram (QCCH) [67], and Local Activity Spectrum (LAS) [56].

• Textual Descriptors: six well-known text similarity measures are
considered for textual retrieval, like the Cosine similarity measure (COS),
Term Frequency - Inverse Document Frequency (TF-IDF), and the Dice
coefficient (DICE).

Table 7 presents the MAP scores for descriptors in isolation. Table 8
presents the results for the Correlation Graph method in multimedia retrieval
tasks. The experiments were conducted considering four different scenarios:
using all descriptors of each modality and using only the best descriptors.

Two baselines are also considered in the experiments: the traditional
Borda [68] method and the recently proposed Reciprocal Rank Fusion [69].
It can be observed that, except for the combination of all visual descriptors,
all the remaining results overcome the best individual descriptor (52.26%).
The best multimodal retrieval result (75.59%) presents a very significant
gain of +44.64% over the best individual descriptor in isolation.

3.7. Comparison with Other Approaches

The proposed Correlation Graph method were also evaluated in compar-
ison with other state-of-the-art post-processing and retrieval methods. Two
well-known datasets commonly used for benchmark were considered. The
comparisons are presented in next sub-sections.

3.7.1. Shape Retrieval

The MPEG-7 dataset [39] was considered for the first comparison, since it
has been commonly used in the evaluation and comparison of post-processing
and distance fusion approaches. The bull’s eye score (recall@40) is used as
evaluation measure.

Table 9 presents the bull’s eye score obtained by the Correlation Graph
Distance in comparison with several other post-processing methods recently
proposed.

For distance learning, the three best results of the proposed approach
are reported. For distance fusion, the CFD [50]+ASC [45] combination is
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Table 7: Correlation Graph for visual and textual retrieval on the UW dataset [43].
Original

Descriptor Type Score
(MAP)

GCH [51] Visual/Color 31.75%
BIC [53] Visual/Color 43.46%
JAC [65] Visual/Color 52.26%

QCCH [67] Visual/Texture 17.81%
LAS [56] Visual/Texture 20.44%
HTD [66] Visual/Texture 22.61%
DICE [70] Textual 50.73%

OKAPI [71] Textual 51.68%
BOW [72] Textual 48.84%
COS [73] Textual 41.80%

JACKARD [70] Textual 50.29%
TF-IDF [73] Textual 49.25%

Table 8: Correlation Graph on multimodal retrieval tasks (MAP as score).
Retrieval Correlation Correlation Baselines

Task Descriptors Graph Dist. Graph Dist. Borda [68] Reciprocal
Pearson RBO Fusion [69]

Visual All visual descriptors 47.22% 49.77% 40.29% 43.29%
Textual All textual descriptors 60.46% 61.45% 53.07% 53.14%

Multimodal All descriptors 69.87% 73.25% 54.89% 59.34%
Visual BIC [53]+JAC [65] 60.65% 60.38% 52.54% 53.00%

Textual DICE [70]+OKAPI [71] 63.33% 62.28% 54.57% 54.31%
Multimodal BIC [53]+JAC [65]+ 74.79% 75.59% 61.91% 63.67%

DICE [70]+OKAPI [71]
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Table 9: Comparison with various post-processing methods on the MPEG-7 dataset con-
sidering the Bull’s Eye Score (Recall@40).

Algorithm Descriptor(s) Bull’s eye
score

Shape Descriptors
DDGM [74] - 80.03%
CFD [50] - 84.43%
IDSC [49] - 85.40%

SC [75] - 86.80%
ASC [45] - 88.39%
AIR [46] - 93.67%

Unsupervised Post-Processing Methods
Graph Transduction [27] IDSC [49] 91.00%

LCDP [15] IDSC [49] 93.32%
Shortest Path Propagation [26] IDSC [49] 93.35%

Mutual kNN Graph [16] IDSC [49] 93.40%
Pairwise Recommendation [25] ASC [45] 94.66%

RL-Sim [24] ASC [45] 94.69%
Reciprocal kNN Manifold [29] ASC [45] 95.27%

Cor. Graph Distance - Pearson ASC [45] 95.50%
LCDP [15] ASC [45] 95.96%

Tensor Product Graph [17] ASC [45] 96.47%
RL-Sim [24] AIR [46] 99.94%

Reciprocal kNN Manifold [29] AIR [46] 99.94%
Cor. Graph Distance - RBO AIR [46] 99.95%

Tensor Product Graph [17] AIR [46] 99.99%
Generic Diffusion Process [28] AIR [46] 100%

Cor. Graph Distance - Pearson AIR [46] 100%
Unsupervised Distance Fusion Methods

Reciprocal Rank Fusion [69] CFD+IDSC 94.98%
Reciprocal Rank Fusion [69] CFD+ASC 96.25%

Co-Transduction [76] IDSC [49]+DDGM [74] 97.31%
Self-Smoothing Operator [12] SC [75] +IDSC [49] 97.64%
Self-Smoothing Operator [12] SC [75] +IDSC [49] +DDGM [74] 99.20%

Pairwise Recommendation [25] CFD [50]+IDSC [49] 99.52%
RL-Sim [24] CFD [50]+ASC [45] 99.65%

Cor. Graph Distance - RBO CFD [50]+ASC [45] 99.80%
Cor. Graph Distance - Pearson CFD [50]+ASC [45] 99.92%

considered. The Correlation Graph Distance presents comparable and bet-
ter effectiveness performance, achieving a bull’s eye score of 100% for the
AIR [46] shape descriptor.

3.7.2. Natural Image Retrieval

The UKBench is a well-known image dataset commonly used as bench-
mark for image retrieval methods. The UKBench is a very challenging dataset
specially for unsupervised learning approaches, due to the small number of
images in each class.
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Table 10 presents the N-S scores obtained by various recent retrieval
state-of-the-art methods, including fusion approaches. The best scores ob-
tained by the Correlation Graph Distance are also reported. As we can
observe, the Correlation Graph Distance presents comparable and better ef-
fectiveness in comparison with various approaches. The proposed approach
reached a very high N-S score of 3.86 for RBO correlation measure fusing
VOC+ACC+CNN.

Table 10: Retrieval comparison between the proposed Correlation Graph algorithm and
recent retrieval methods on the the UKBench dataset.

N-S scores for recent retrieval methods
Luo Zheng Qin Jégou Wang Zhang Zheng

et al. [77] et al. [78] et al. [33] et al. [79] et al. [80] et al. [37] et al. [36]
3.56 3.57 3.67 3.68 3.68 3.83 3.84

N-S scores for the proposed Correlation Graph method
C. Graph RBO C. Graph RBO C. Graph RBO C. Graph RBO C. Graph RBO

VOC ACC+CNN VOC+CNN VOC+ACC VOC+ACC+CNN
3.73 3.78 3.82 3.84 3.86

4. Conclusions

An unsupervised manifold learning approach for improving image re-
trieval tasks is discussed in this paper. The algorithm performs a correlation
analysis for constructing a graph representation of the dataset. The Corre-
lation Graph (CG) and Strongly Connected Components (SCCs) are used
for discovering the intrinsic geometry of the dataset manifold, improving
distance among images.

The algorithm is able to exploit both distance and rank correlation mea-
sures for constructing the Correlation Graph. The distance correlation is
measured by the Pearson correlation coefficient, while the rank correlation
analysis is performed using a recent proposed rank correlation measure, the
Rank-Biased Overlap [31] (RBO). The use of rank information enables the
construction of the graph representation without the need of distance scores.

A large set of experiments was conducted for assessing the effectiveness of
the proposed approach, considering different descriptors and datasets. The
high effectiveness of the manifold learning algorithm is demonstrated by the
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experimental results obtained in several image retrieval tasks. The effective-
ness gains associated with the low computational efforts required represent a
significant advantage of the discussed method when compared with existing
approaches proposed in the literature.

Future work focuses on: (i) the investigation of relevance feedback and
collaborative image retrieval using the correlation graph; and (ii) the eval-
uation of efficiency and scalability aspects using parallel and heterogeneous
computing scenarios.
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