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Abstract

In this paper, we present an unsupervised distance learning approach for
improving the effectiveness of image retrieval tasks. We propose a Reciprocal
kNN Graph algorithm that considers the relationships among ranked lists in the
context of a k-reciprocal neighborhood. The similarity is propagated among
neighbors considering the geometry of the dataset manifold. The proposed
method can be used both for re-ranking and rank aggregation tasks. Unlike
traditional diffusion process methods, which require matrix multiplication op-
erations, our algorithm takes only a subset of ranked lists as input, presenting
linear complexity in terms of computational and storage requirements. We con-
ducted a large evaluation protocol involving shape, color, and texture descrip-
tors, various datasets, and comparisons with other post-processing approaches.
The re-ranking and rank aggregation algorithms yield better results in terms of
effectiveness performance than various state-of-the-art algorithms recently pro-
posed in the literature, achieving bull’s eye and MAP scores of 100% on the
well-known MPEG-7 shape dataset.

Keywords: content-based image retrieval; re-ranking; rank aggregation

1. Introduction

The development of multimedia technologies for creating and sharing digital
contents has triggered an exponential increase of image collections. Traditional
search approaches based on image metadata can be unfeasible for large collec-
tions, since much human intervention is required for image annotation. Content-
Based Image Retrieval (CBIR) systems has emerged as a promising alternative,
aiming at retrieving the images which are the most similar to a given query.

The effectiveness of CBIR systems is very dependent on the distance measure
adopted. Images are often modelled as high dimensional points in an Euclidean
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space, and the distance among them is usually measured by Euclidean distances.
In this scenario, CBIR systems often consider only pairwise image analysis, that
is, compute similarity measures considering only pairs of images, ignoring the
information encoded in the relations among several images. On the contrary,
the user perception considers the query specification and responses in a given
context. In view of that, there has been significant research [45, 44, 13, 26, 14]
on improving the distance measures in CBIR systems, replacing pairwise simi-
larities by more global affinity measures that consider the relationships among
images. The overall goal of these methods is to mimic the human behavior
on judging the similarity among objects by taking into account the context of
the search process. As previous observed [43, 41], an effective distance measure
should describe the relationship between the query and retrieved objects in the
context of the whole collection.

Therefore, how to capture and utilize the intrinsic manifold structure of a
collection becomes a central problem in the vision and learning community [14].
A common recent approach is manifold learning, mainly based on non-linear
dimensionality reduction techniques. The idea is to explicitly construct a new
embedding space with a corresponding metric which is more faithful to the
manifold structure and hence induces a better distance/similarity measure. The
manifold learning algorithms are able to learn distances between data points that
correspond to geodesic distances on the data manifold [45]. In other words, the
new distances are estimated considering a walk along the geometric structure
of the dataset.

In this paper, we propose an unsupervised learning algorithm based on Recip-
rocal kNN Graph. The proposed algorithm improves the effectiveness of image
retrieval through re-ranking and rank aggregation tasks by taking into account
intrinsic geometry of the dataset manifold. The capacity of considering geom-
etry of the dataset manifold is illustrated in Figures 1, 2, and 3. We illustrate
the Two-Moon dataset, comparing the Euclidean distance with the proposed
Reciprocal kNN Graph. One point is selected as a labeled point (marked with
a triangle) in each moon. In the following, all other data points are assigned
to the closest labeled point, determining their color. Figure 1 illustrates the
classification computed by the Euclidean distance. Figure 2 illustrates the ideal
classification (with points in red and blue) considering the dataset manifold. The
Euclidean distance does not consider the geometry structure of the dataset. As
it can be observed, the extremities of the moons are misclassified. Figure 3
illustrates the distances learned by the Reciprocal kNN Graph, after only one
iteration. We can observe that several points were corrected compared with the
Euclidean distance. The arrows in Figure 3 illustrates how the Reciprocal kNN
Graph algorithm iteratively propagates the similarity along the dataset struc-
ture considering the connectivity of the data set: (i) the red points in the left
and; (ii) the blue points in the right.

The Reciprocal kNN Graph is mainly based on the information encoded in the
top positions of the ranked lists. Given a query image, the ranked lists represent
a relevant source of contextual information, since they define relationships not
only between pairs of images (as distance functions), but also among all the
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Figure 1: Euclidean distance. Figure 2: Ideal classfication.

Figure 3: Reciprocal kNN Graph (one iteration).

images in the ranked list. The modelling of similarity information consists
in the essential difference between the Reciprocal kNN Graph approach and
existing diffusion-based algorithms: the Reciprocal kNN Graph is based only
on the ranked lists, and therefore independent of any distance (or similarity)
scores.

By analyzing the ranked lists, it is expected, for example, that similar images
present reciprocal references at beginning of their ranked lists. It is also expected
that images ranked at the top positions of ranked lists are similar to each other.
In this way, aiming at redefining the distance between two images, the Reciprocal
kNN Graph uses both the reciprocal nearest neighbor references and the graph
structure considering all references among images at top positions of ranked lists.
This approach represents the main contribution of our method, since it enables
exploiting the maximum of contextual information available in the ranked lists
with low computational efforts. Another contribution relies on the efficiency of
the Reciprocal kNN Graph algorithm. Unlike other diffusion approaches based
on matrices multiplication [45, 43, 3], which presents complexity of O(n3), our
algorithm recomputes only the beginning of ranked lists with a constant size of
elements, which presents computational and storage requirements of only O(n),
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where n represents the number of images in the collection.
We conducted a large evaluation protocol involving shape, color, and tex-

ture descriptors, different datasets and comparisons with other post-processing
approaches. Experimental results demonstrate the effectiveness of our method.
The re-ranking and rank aggregation algorithm yields better results in terms of
effectiveness performance than various state-of-the-art algorithms.

This paper is organized as follows: Section 2 discusses related work; Sec-
tion 3 discusses the definition of the image re-ranking problem; in Section 4, we
present our Reciprocal kNN Graph algorithm. Section 5 presents the experimen-
tal evaluation and, finally, Section 6 draws on conclusions and presents future
work.

2. Related Work

Defining an effective distance measures consists in a key role in many mul-
timedia applications, including classification and retrieval tasks. For example,
choosing a good distance measure is often critical for building a content-based
image retrieval (CBIR) system. In general, aiming at retrieving the most similar
images to a given query image, CBIR systems compute a predefined distance
measure between the query image and each collection image. Traditional dis-
tance measures that consider only the pairwise similarity between two images, as
Euclidean distance, are often adopted. These approaches fail to return correct
results in many scenarios, mainly due to the well-known semantic gap prob-
lem [11].

Recently, there has been considerable research on improving the distance
measures in CBIR systems [43, 44, 15, 13, 41, 45, 3, 26]. The main idea of
various algorithms [45] is inspired by the success of Google PageRank [24] algo-
rithm. Basically, the data manifold is represented as a graph with edge weights
determined by similarity scores. Then, the similarities are propagated through
weighted connections in the context of other dataset objects. In [43], a graph-
based transductive learning algorithm is proposed for shape retrieval tasks. In-
spired by semi-supervised label propagation algorithm, the shape retrieval was
treated as an unsupervised problem. In [44], a locally constrained diffusion pro-
cess is proposed where the influence of other shapes is propagated as a diffusion
process on a graph formed by a given set of shapes. A shortest-path propaga-
tion algorithm was proposed [41] for explicitly finding the shortest path between
them in the distance manifold of the dataset objects. However, a disadvantage
of these methods is the large computational efforts required in the diffusion
process, which is usually O(n3).

Other methods analyze the k-neighborhood relationships for learning new
distance measures and performing re-ranking tasks. In [13], a contextual dis-
similarity measure was introduced aiming at improving the symmetry of the
k-neighborhood relationship by iteratively regularizing the average distance of
each vector to its neighborhood. The reciprocal kNN relationships are con-
sidered in [29] to construct a close-set and a far-set, used for performing a
re-ranking task. Another kNN re-ranking [34] uses the top-k retrieved object to
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refine retrieval results by using information of ranked lists of each k neighbors.
In [26], a recommendation process is simulated aiming at exploiting information
encoded in ranked lists and collaboratively redefining pairwise distances.

The Reciprocal kNN Graph proposed in this paper combines characteristics
of different methods. It uses the reciprocal kNN information, but also considers
the graph structure constructed based on top positions of ranked lists. The
distance among images are collaboratively redefined taking into account all ref-
erences contained in top-k lists. Unlike other diffusion approaches [45, 43, 3],
our algorithm redefines only the images placed at first positions of ranked lists.
This procedure presents computational and storage requirements of only O(n).
In addition, the Reciprocal kNN Graph can be used for re-ranking and rank
aggregation tasks, aiming at combining different descriptors.

3. Problem Formulation

Let C={img1, img2, . . . , imgn} be an image collection, where n is the number
of images in the collection. Let D be an image descriptor which defines a
distance function between two images imgi and imgj as ρ(imgi, imgj). For
simplicity and readability purposes, we use the notation ρ(i, j) for denoting the
distance between images imgi and imgj .

Based on the distance function ρ, a ranked list τq can be computed in re-
sponse to a query image imgq. Although the ranked lists contain distance infor-
mation from the entire collection, the top positions of ranked lists are expected
to contain the most relevant images related to the query image. Therefore, it
can be very desirable that the ranked list τq considers only a subset of the ns
most similar images, such that ns � n and ns is a constant value. That is even
more crucial specially for large collections, where n is very high, and therefore τq
is very expensive to compute. In addition, various index structures [1, 31] that
have been proposed to speed up similarity queries can be used for computing
the ranked lists.

The ranked list τq=(img1, img2, . . . , imgns) can be defined as a permutation
of the subset Cs ⊂ C, which contains the most similar images to query image
imgq, such that and |Cs| = ns. A permutation τq is a bijection from the set Cs
onto the set [ns] = {1, 2, . . . , ns}. For a permutation τq, we interpret τq(i) as
the position (or rank) of image imgi in the ranked list τq.

We can say that, if imgi is ranked before imgj in the ranked list of imgq,
that is, τq(i) < τq(j), then ρ(q, i) ≤ ρ(q, j). Note that, if the position of imgi
in the ranked list of imgq is higher than the constant ns, then τq(i) = ns.

We also can take every image imgi ∈ C as a query image imgq, in order to
obtain a set R = {τ1, τ2, . . . , τn} of ranked lists for each image of the collection
C. The storage requirements for handling the set R is O(n), since the size of
ranked lists is given by the constant ns.

Our objective is to define a function fr which takes a set of ranked lists R
as the input and computes a new and more effective set of ranked lists R̂ by
taking into account contextual information available on ranked lists:
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R̂ = fr(R). (1)

The Reciprocal kNN Graph algorithm, presented in next section, represents
a definition of the function fr. For rank aggregation tasks, which combines
ranked lists computed by different descriptors, the input of function fr is given
by a set of sets {R1,R2, . . . ,Rm}, where m is the number of descriptors used.

4. Reciprocal kNN Graph

In this section, we present the Reciprocal kNN Graph algorithm and its ap-
plication in re-ranking and rank aggregation tasks. We also discuss convergence
and efficiency aspects.

4.1. Motivation and Overview

Ranked lists represent a relevant source of contextual information, since they
establish relationships not only between pairs of images (as distance functions),
but also among all images in the ranked list. The objective of Reciprocal kNN
Graph is to exploit all available contextual information in ranked lists using
three main strategies:
• Reciprocal Neighborhood: the k-reciprocal nearest neighborhood mit-

igates the risk of false positives at top positions of ranked lists.
• Collaborative Ranking: a ranked list can provide useful information for

improving effectiveness of other ranked lists. If two images appears at the top
position of any ranked list, it indicates that they are probably similar to each
other.
• Authority of Ranked Lists: we propose a score to estimate the author-

ity of a given ranked list for collaborating with other ranked lists. The score is
based on density of the graph that represents the reciprocal references among
images at top positions of the ranked list.

The new distance score between two images is computed based on the recip-
rocal reference between their ranked lists and collaboratively by other ranked
lists, considering their respective authority. The process is iteratively repeated
until a convergence criterion is reached.

The main concepts of the algorithm are formally defined in terms of three
scores: (i) Reciprocal kNN Score; (ii) Authority Score and; (iii) Collaborative
Score. Based on these scores, a new distance measure (nominated Reciprocal
kNN Distance Measure) is computed. Figure 4 illustrates the overall organiza-
tion of the algorithm considering the proposed scores, which are discussed in
details in the next sections.

4.2. Reciprocal kNN Score

Given a query image imgq, we can define a neighborhood set which contains
the k most similar images to imgq as N (q, k). For the k-nearest neighbors
query, we obviously have |N (q, k)| = k. The nearest neighbor relationships
are not symmetric [13, 29]. This means that imgi ∈ N (j, k) does not imply
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Figure 4: Main steps of the Reciprocal kNN Graph algorithm.

imgj ∈ N (i, k). The set of k-reciprocal nearest neighbors of image imgq can be
defined [29] as:

Nr(q, k) = {imgi ∈ N (q, k) ∧ imgq ∈ N (i, k)}. (2)

We can easily verify if a given image imgi is a k-reciprocal nearest neighbor
of an image imgq by checking if imgi ∈ Nr(q, k). However, beyond knowing
if two images are reciprocal neighbors, we are also interested in the position
from which on images became reciprocal neighbors. Therefore, we propose a
Reciprocal kNN Score Rs that consider this position:

Rs(q, i) =
max(τq(i), τi(q))

ns
. (3)

This score reduces the probability of false positives at top positions of ranked
lists. Therefore, a low value represents a strong indication of similarity between
images.

4.3. Reciprocal kNN Authority Score

We consider that a ranked list encodes contextual information that can be
used for improving effectiveness of other ranked lists. In this scenario, it is im-
portant to estimate the authority of a given ranked list. Our approach is analo-
gous to the PageRank [24] algorithm and inspired by the cohesion measure [26].
We consider that an accurate ranked list has their top images referencing to
each other at the top positions of their ranked lists. This conjecture is somehow
close to the cluster hypothesis [30], which states that “closely associated items
tend to be relevant to the same requests”.

Another important role of the authority score in the proposed algorithm is to
estimate the quality of a ranked list. In other words, the score is an unsupervised
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predictor of effectiveness of a given ranked list. The computation of authority
score is equivalent to measure the density of the graph that represents the
reciprocal references among images at top-k positions. The Reciprocal kNN
Authority Score of the ranked list τq is defined as follows:

As(q, k) =

∑
i∈N (q,k)

∑
j∈N (i,k) fin(j, q)

k2
, (4)

where fin returns 1 if imgj ∈ N (q, k) and 0 otherwise.
The score As is defined in the interval [0, 1]. Note that, for a complete

reciprocal graph (where all k images references each other at top-k positions)
this score returns a perfect score As(q, k) = 1.

4.4. Reciprocal kNN Collaborative Score

Beyond the Reciprocal kNN Score, the distance between two images is defined
using a collaborative score that considers information encoded in other ranked
lists and their respective authority score. This means that, when an image
imgi appears at top positions of a ranked list τq, the distance among imgi and
neighbors of image imgq (imgj ∈ N (q, k)) are reduced proportionally to the
authority of τq.

In this way, given two images imgq and imgi, we define a Reciprocal kNN
Collaborative Score, that accumulates the authority scores of all ranked lists in
which images imgq and imgi appear. The collaborative score considers different
values of k (varying from 1, 2, . . . , k) with the purpose of giving greater weights
to references at top positions. The collaborative score Cs between two images
imgq and imgi is defined as follows:

Cs(q, i, k) =

k∑
c=1

∑
j∈C

As(j, c)
2 × fin(q, i, j), (5)

where fin returns 1 if imgq, imgi ∈ N (j, k) and 0 otherwise. A squared value
is used for the authority score aiming at penalizing low scores. Notice that,
although by definition j iterates for each j ∈ C (what requires linear computation
efforts on the size of the collection), the value As(j, c)

2 is added only when
imgq, imgi ∈ N (j, k), that is, considering only top-k positions. Therefore, the
collaborative score Cs(q, i, k) can be computed requiring only O(k2).

4.5. Reciprocal kNN Distance Measure

In this section, we define an iteratively distance measure which is the basis of
the proposed re-ranking and rank aggregation algorithms. Using this distance,
a new set of ranked lists can be computed.

Based on Reciprocal kNN Score (Rs) and Reciprocal kNN Collaborative Score
(Cs), we define the distance measure ρr. All images imgq, imgi ∈ C that present
collaborative score Cs(q, i, k) > 0 have the distance between them updated as:

ρr(q, i) =
Rs(q, i)

1 + Cs(q, i, k)
. (6)
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The remaining images with zero collaborative score (Cs(q, j, k) = 0) keep
the distance between them as their current ranking, i. e., ρr(q, j) = τr(j). No
more computation efforts are required for those images. The main motivation of
Equation 6 is to consider information from both: (i) reciprocal reference between
images being compared (dividend) and; (ii) information given by ranked list of
other images, according to their authority (divisor). While the Reciprocal kNN
Score (Rs) avoids false positives at top positions of ranked lists, the Reciprocal
kNN Collaborative Score (Cs) propagates the similarity among different ranked
lists, considering their quality estimation given by authority score.

Based on the distance ρr, the set of ranked lists R is updated, for ensuring
that, if τq(i) < τq(j), then ρ(q, i) ≤ ρ(q, j). Finally, the process can be iter-

atively repeated. Let the superscript (t) denotes the iteration and let ρ
(0)
r be

the distance at first iteration, we can define an iterative distance measure as
follows:

ρ(t+1)
r (q, i) =

R
(t)
s (q, i)

1 + C
(t)
s (q, i, k + t)

. (7)

Note the value of k grows along iterations. It is expected that non-relevant
images are moved out from the first positions of the ranked lists and, therefore,
k can be increased for considering more images.

4.6. Discussion

This section presents a detailed discussion on how the method works as
well as its main equations. As previously mentioned, the ranked lists define
relationships not only between pairs of images (as distance functions), but also
among all the images in the ranked list. In this sense, if an image is well ranked
for a given query, other images, similar to this image, are also expected to be
well ranked for the same query. This observation is consistent with the “cluster
hypothesis” [30], which states that closely related items tend to be relevant to
the same requests.

The Reciprocal kNN Graph aims at exploiting the cluster hypothesis by
analyzing the reciprocal references among ranked lists at their top positions.
The three scores which define the algorithm are based on this principle: (i)
Reciprocal kNN Score; (ii) Reciprocal kNN Authority Score; (iii) Reciprocal
kNN Collaborative Score. We discuss the cluster hypothesis for each score in
the following.

Given two similar images, a content-based descriptor is expected to produce
ranked lists which present reciprocal references at the beginning of their ranked
lists. When an image does not refer to the other image at the top positions of
its ranked list, this behavior indicates a low confidence in the similarity between
them. The Reciprocal kNN Score (Equation 3) represents the position in which
this confidence is reached. Therefore, this score can be used to provide a more
accurate distance measure than that used to compute the initial ranked lists.

However, the Reciprocal kNN Score considers the reciprocal references only
between pairs of images. In addition, it is also expected that images ranked
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at the top positions of ranked lists present reciprocal references among each
other (similar images tend to be relevant to the same queries). Therefore, the
Reciprocal kNN Authority Score (Equation 4) measures the amount of reciprocal
references by computing the density of the graph that represents the references
among images at top-k positions of a given ranked list. Therefore, an effective
ranked list which presents similar images at its top positions will also present
a high authority score. In this way, this score can be used to estimate the
effectiveness of a ranked list. Figure 5 illustrates the computation of authority
score, which is proportional to the number of edges on the Reciprocal kNN
Graph.
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3
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2

3
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2

3

4
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Figure 5: Reciprocal kNN Authority Score computation.

Once we have an estimation of the effectiveness of ranked lists given by the
authority score, images which appear at top positions of effective ranked lists are
very likely to be similar. This assumption consists in the basis of the Reciprocal
kNN Collaborative Score. The collaborative score between two images is given
by the sum of authority scores of ranked lists in which these two images appears
at top positions.

Finally, the Reciprocal kNN Distance Measure is computed by combining
the Reciprocal kNN Score (that considers reciprocal references between two
images), and the Reciprocal kNN Collaborative Score (that considers the top-k
positions of all ranked lists using the Reciprocal kNN Authority Score).
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4.7. Convergence

Basically, an iterative method is said to converge, if the difference between
results obtained along iterations decreases, tending to reach an ultimate result.
In our case, a new distance measure should be iteratively executed while the
quality of ranked lists is improved. We define a convergence criterion that de-
termines the number of iterations using the proposed authority score. While the
authority of ranked lists is increasing more than a threshold ε per iteration, the
algorithm should continue executing. Given that the authority score estimates
the quality of ranked lists, the proposed criterion is equivalent to keep executing
the algorithm while the quality of ranked lists are improving.

Aiming at verifying the convergence criterion, an average authority score
between all collection images is computed as follows:

Gs =

∑k
c=1

∑
j∈C As(j, c)

k × n
(8)

In the following, the difference between iterations is compared with the
threshold ε for defining the convergence criterion. The re-ranking is executed

while (G
(t+1)
s −G(t)

s ) > ε.

4.8. Rank Aggregation

In general, different types of measures may focus on different aspects of the
images and are often complementary to each other [3]. Our goal is to use the
Reciprocal kNN Graph algorithm to fuse different distance measures in rank
aggregation tasks. We propose a multiplicative approach inspired by [26] for
combining the Reciprocal kNN Graph Distance Measures of different descrip-
tors. The combination is computed only at the first iteration and subsequent

iterations are computed over the already combined ranked lists. Let ρ
(1)
rd be the

kNN reciprocal distance measure at first iteration of a given descriptor d, with d
defined in the interval [1,m], where m is the number of descriptors considered.
The fused distance measure can be defined as:

ρ(1)
r (q, i) =

m∏
d=1

ρ(1)
rd

(q, i) (9)

By multiplying the distance measures between the same images considering
different descriptors, high distances obtained by one descriptor will be propa-
gated to the others, leading to high aggregate values. Note that our algorithm
multiplies distance measures computed by the Reciprocal kNN Graph algorithm
and it does not depend on the original descriptors distance measures. It only
considers the ranked lists. Therefore, our approach does not present a com-
mon problem in late fusion tasks of combining heterogeneous scores at different
numeric scales.
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4.9. Aspects of Efficiency

This section briefly discusses some aspects of efficiency, computational com-
plexity and storage requirements. The proposed algorithm takes as input only
the beginning of ranked lists (with a constant size ns of elements), which be-
comes the storage requirements of O(n). It represents a significant advantage in
comparison with other methods that requires the complete similarity/distance
matrix [45, 26].

The asymptotic computational complexity of the algorithm is also O(n),
since only the ns top positions of ranked lists are redefined, independent on
the size n of the dataset. The computation of the authority and collaborative
scores, which presents the high computational effort needed, is proportional
to (nTk2), where T denotes the number of iterations and k the number of
neighbors considered when algorithm starts. Other steps of the algorithm have
diverse computation cost, but all limited to the asymptotic cost of O(n). State-
of-the art methods based on random walks on graphs [45, 43, 3] uses matrices
multiplication which presents complexity of O(n3). Beyond that, the Reciprocal
kNN Graph algorithm has potential to be massively parallelized.

5. Experimental Evaluation

This section demonstrates the effectiveness of the proposed re-ranking and
rank aggregation methods in image retrieval tasks. A large set of experiments
was conducted considering four datasets and nineteen CBIR descriptors, aiming
at analyzing and comparing our method under several aspects.

5.1. Experiment 1: Impact of Parameters

The computation of Reciprocal kNN Graph algorithm considers only two
parameters: (i) k: number of neighbors considered when algorithm starts; and
(ii) ε: convergence threshold parameter.

To evaluate the influence of different parameter settings on the retrieval
scores and for determining the best parameters values, we conducted a set of
experiments considering the MPEG-7 [17] dataset. The MPEG-7 [17] dataset
is a well-known shape dataset, composed of 1400 shapes divided in 70 classes.
For evaluation, the so-called bull’s eye score was considered, which counts all
matching objects within the 40 most similar candidates. Since each class consists
of 20 objects, the retrieved score is normalized with the highest possible number
of hits. For distance computation, we used the Contour Features Descriptor
(CFD) [25] shape descriptor.

We varied the parameter k in the interval [1, 20] and iterations in the interval
[1, 15]. Figure 6 illustrates the results of precision scores for different values of
k and iterations.

We observed that best retrieval scores increased along iterations yielding
the best precision score (96.49%) for k = 15 and final iteration T = 7. At
this iteration, the difference value of convergence score to previous iteration
is 0.0125. Therefore, we set the parameter values as k = 15 and ε = 0.0125.
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Figure 6: Impact of k and the number of iterations on precision.

Figure 7 illustrates the evolution of convergence score along iterations. As we
can observe, the algorithm converges very quickly, requiring a very small number
of iterations for reaching the threshold.

As previous discussed, our algorithm considers only a subset of ranked lists.
The size of ranked lists considered in experiments is ns = 200. These values
are used in all experiments, both for re-ranking and rank aggregation tasks,
considering different descriptors and datasets, what demonstrates the robustness
of our method.

5.2. Experiment 2: Re-Ranking Evaluation

In this section, we present the set of conducted experiments for evaluat-
ing our method in the task of re-ranking images considering shape, color, and
texture descriptors.

5.2.1. Shape Descriptors

We evaluate the use of our method with six shape descriptors: Segment
Saliences (SS) [32], Beam Angle Statistics (BAS) [2], Inner Distance Shape
Context (IDSC) [18], Contour Features Descriptor (CFD) [25], Aspect Shape
Context (ASC) [19], and Articulation-Invariant Representation (AIR) [10]. We
consider the MPEG-7 [17] dataset, described in Section 5.1.

Table 1 presents results considering the bull’s eye score (Recall@40 ) and
accuracy (Precision@20 ) for shape descriptors on the MPEG-7 [17] dataset.
We can observe very significant gains in relation to the results observed for each
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Figure 7: Convergence of Reciprocal kNN Graph algorithm.

descriptor initially, ranging from +6.69% to +29.48% for the bull’s eye score
and ranging from +6.10% to +40.50% for the accuracy measure.

The iterative behavior of the Reciprocal kNN Graph algorithm can be ob-
served in the results shown in Figure 8. The figure shows the evolution of rank-
ings along iterations. The first row presents a query image (first column with
green border) and 20 image results, according to the CFD [25] shape descriptor.
Note that wrong results (with red border) contain images from different classes.
The remaining rows present the results for each iteration of Reciprocal kNN
Graph algorithm. We can observe the significant improvement in terms of pre-
cision, ranging from 20% (on the ranking computed by the CFD [25] descriptor)
to 100% at the 7th iteration of the proposed re-ranking algorithm.

Table 1: Reciprocal kNN Graph for various shape descriptors on the MPEG-7 dataset.

Shape Bull’s Reciprocal Gain Accuracy Reciprocal Gain
Descriptor Eye kNN kNN

Score Graph Graph

SS [32] 43.99% 56.96% +29.48% 35.50% 49.88% +40.50%
BAS [2] 75.20% 86.50% +15.03% 67.33% 78.25% +16.22%
IDSC [18] 85.40% 93.38% +9.34% 77.21% 88.91% +15.15%
CFD [25] 84.43% 96.49% +14.28% 75.59% 91.80% +21.44%
ASC [19] 88.39% 95.27% +7.78% 80.66% 90.60% +12.32%
AIR [10] 93.67% 99.94% +6.69% 88.17% 93.55% +6.10%
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Figure 8: Evolution of rankings along iterations on the MPEG-7 [17] dataset. The first column
(green border) contains the query image. The first row presents the results of CFD [25]
shape descriptor (wrong results with red borders). The remaining rows present the results of
Reciprocal kNN Graph algorithm for each iteration (iterations grow from top to bottom).

Results for shape descriptor considering the MAP (Mean Average Precision)
score are presented in Table 2. We can observe positive gains for all shape
descriptors ranging from +8.54% to +37.99%.

5.2.2. Color Descriptors

We evaluate our method with three color descriptors: Border/Interior Pixel
Classification (BIC) [35], Auto Color Correlograms (ACC) [12], and Global
Color Histogram (GCH) [36]. The experiments were conducted on a dataset
used in [42] and composed of images from 7 soccer teams, containing 40 images
per class. The size of images range from (198 × 148) to (537 × 672) pixels.

Table 2 presents the experimental results considering MAP as score. We
can observe a positive gain for all color descriptors ranging from +4.50% to
+15.33%.

5.2.3. Texture Descriptors

The experiments consider three well-known texture descriptors: Local Bi-
nary Patterns (LBP) [22], Color Co-Occurrence Matrix (CCOM) [16], and Lo-
cal Activity Spectrum (LAS) [38]. We used the Brodatz [6] dataset, a popular
dataset for texture descriptors evaluation. The Brodatz dataset is composed of
111 different textures of size (512 × 512) pixels. Each texture is divided into 16
blocks (128 × 128) pixels of non-overlapping sub images, such that 1776 images
are considered.

Table 2 presents the experimental results considering MAP as score. We
can observe a positive gain for all texture descriptors ranging from +3.85% to
+15.16%.

5.3. Experiment 3: Rank Aggregation Evaluation

We evaluate the use of Reciprocal kNN Graph method to combine different
CBIR descriptors.
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Table 2: MAP scores for Reciprocal kNN Graph in different re-ranking tasks.

Descriptor Type Dataset Score
(MAP)

Reciprocal
kNN
Graph

Gain

SS [32] Shape MPEG-7 37.67% 51.98% +37.99%
BAS [2] Shape MPEG-7 71.52% 82.01% +14.67%
IDSC [18] Shape MPEG-7 81.70% 91.16% +11.58%
ASC [19] Shape MPEG-7 85.28% 93.15% +9.23%
CFD [25] Shape MPEG-7 80.71% 94.12% +16.62%
AIR [10] Shape MPEG-7 89.39% 97.02% +8.54%

GCH [36] Color Soccer 32.24% 33.69% +4.50%
ACC [12] Color Soccer 37.23% 42.11% +13.11%
BIC [35] Color Soccer 39.26% 45.28% +15.33%

LBP [22] Texture Brodatz 48.40% 51.05% +5.48%
CCOM [16] Texture Brodatz 57.57% 66.30% +15.16%
LAS [38] Texture Brodatz 75.15% 78.04% +3.85%

Table 3: Bull’s eye score, MAP, and Accuracy retrieval scores for Reciprocal kNN Graph
in rank aggregation tasks considering Shape Descriptors on the MPEG-7 dataset.

Descriptor Bull’s eye MAP Accuracy
score

CFD [25] 84.43% 80.71% 75.59%
ASC [19] 88.39% 85.28% 80.66%
AIR [10] 93.67% 89.39% 88.17%

CFD+ASC 99.83% 99.24% 98.61%
CFD+AIR 100.00% 100.00% 100.00%
ASC+AIR 99.98% 99.93% 99.88%

We selected three shape descriptors with highest retrieval scores in re-ranking
tasks and evaluated the different combinations between them. Table 3 presents
the rank aggregation results. Besides MAP scores, we also present the accuracy
and the bull’s eye score on the MPEG-7 dataset. Notice that the combination
of CFD [25]+AIR [10] presents retrieval scores of 100% for the three considered
measures, which means perfect retrieval results.

We also selected two color and texture descriptors, with the highest MAP
scores in re-ranking tasks. Table 4 presents results of MAP score of these de-
scriptors. We can observe that significant gains are obtained when compared
with the results of descriptors in isolation.

Figure 9 illustrates the Precision × Recall curves of two shape descriptors
in different situations: before and after applying the Reciprocal kNN Graph
algorithm, and after using it for rank aggregation. We can observe that sig-
nificant gains in terms of precision have been achieved, in special for the rank
aggregation task.
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Table 4: MAP scores for Reciprocal kNN Graph in rank aggregation tasks for color and
texture descriptors.

Descriptor Type Dataset Score
(MAP)

ACC [12] Color Soccer 37.23%
BIC [35] Color Soccer 39.26%
BIC+ACC Color Soccer 43.24%

CCOM [16] Texture Brodatz 57.57%
LAS [38] Texture Brodatz 75.15%
LAS+CCOM Texture Brodatz 83.71%

5.4. Experiment 4: Comparison with Other Approaches

Finally, we also evaluate our method in comparison with other state-of-the-
art post-processing methods. We use the MPEG-7 [17] dataset, with the bull’s
eye score, commonly used for post-processing methods evaluation and compar-
ison. Table 5 presents results of the proposed Reciprocal kNN Graph algorithm
in comparison with several other post-processing methods recently proposed in
the literature. Note that the results of Reciprocal kNN Graph algorithm presents
better effectiveness performance when compared to various recently proposed
methods in re-ranking tasks. We report the results of CFD [25] and AIR [10]
descriptors, respectively the descriptors that presented the highest gain and the
highest bull’eyes score in re-ranking tasks.

We also present results of Reciprocal kNN Graph in rank aggregation tasks in
comparison to other recently proposed methods. Note that the Reciprocal kNN
Graph applied to the combination of only two descriptors CFD [25]+AIR [10]
reached a perfect retrieval scores (considering MAP, accuracy and the bull’s eye
score), obtained by other state-of-the-art method only combining three descrip-
tors.

5.5. Experiment 5: Natural Image Retrieval

The University of Kentucky Recognition Benchmark [21] (“UKBench”), also
referred as Nister and Stewenius (N-S) Dataset, has a total of 10,200 images.
The dataset is composed of 2,550 objects or scenes, where each object/scene is
captured 4 times from different viewpoints, distances and illumination condi-
tions. Thus, it consists of 2,550 image classes, and each class has only 4 images.
For evaluation purposes, each image is used as query and the N-S retrieval score
between 1 and 4 is computed. The score corresponds to the number of rele-
vant images among the first four image returned (the highest achievable score
is 4, indicating that all similar images are retrieved at top positions). Due to
the small number of images in each class, the N-S dataset is a very challenging
dataset especially for unsupervised learning approaches.

In the following, we describe several experiments conducted aiming at eval-
uating the Reciprocal kNN Graph on N-S Dataset. For all experiments, we use
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Figure 9: Impact of Reciprocal kNN Graph algorithm for re-ranking and rank aggregation
tasks on MPEG-7 dataset.

the same parameters used for other datasets, except for k = 5, due to small
number of similar images. The experiments consider nine descriptors1, exploit-
ing several features as color, texture and local features. In the following, we
briefly describe the descriptors based on considered features:

• Color: Auto Color Correlograms (ACC) [12], Border/Interior Pixel Clas-
sification (BIC) [35], Local Color Histogram (LCH) [37].

• Color and Texture: Color and Edge Directivity Descriptor (CEED) [7],
Fuzzy Color and Texture Histogram (FCTH) [8], Joint Composite De-
scriptor (JCD) [46].

• Local: Scale-Invariant Feature Transform (SIFT) [20], considering the
number of matches between images as a similarity score2.

• Bag of visual words: Several configurations of descriptors based on

1We used the LIRE implementation (http://www.semanticmetadata.net/lire/) of de-
scriptors ACC [12], CEED [7], FCTH [8], and JCD [46].

2We considered resized dataset images of 160 × 120 pixels and a public available imple-
mentation at http://www.cs.ubc.ca/~lowe/keypoints.
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Table 5: Post-processing methods comparison on the MPEG-7 dataset (bull’s eye score).

Algorithm Shape Bull’s eye
descriptor score

Shape Descriptors

DDGM [39] - 80.03%
CFD [25] - 84.43%
IDSC [18] - 85.40%
SC [4] - 86.80%
ASC [19] - 88.39%
AIR [10] - 93.67%

Post-Processing Methods

Graph Transduction [43] IDSC 91.00%
Locally Constrained Diffusion Process [44] IDSC 93.32%
Shortest Path Propagation [41] IDSC 93.35%
Mutual kNN Graph [15] IDSC 93.40%
Locally Constrained Diffusion Process [44] ASC 95.96%
Pairwise Recommendation [26] CFD 96.15%
Tensor Product Graph [45] ASC 96.47%
Reciprocal kNN Graph CFD 96.49%
Co-Transduction [3] IDSC+DDGM 97.31%
Co-Transduction [3] SC+DDGM 97.45%
Self-Smoothing Operator [14] SC+IDSC 97.64%
Co-Transduction [3] SC+IDSC 97.72%
Self-Smoothing Operator [14] SC+IDSC+DDGM 99.20%
Pairwise Recommendation [26] CFD+IDSC 99.52%
Reciprocal kNN Graph AIR 99.94%
Tensor Product Graph [45] AIR 99.99%
Cross Diffusion Process [40] SC+IDSC+DDGM 100%
Reciprocal kNN Graph AIR+CFD 100%

visual words were evaluated3. The results presented in this section con-
sider only the best configurations, which are: sparse sampling (Harris-
Laplace detector), OpponentSIFT [33], codebook of 1,000 visual words,
soft assignment (σ = 150) and spatial pooling WSA (Word Spatial Ar-
rangement) [27, 28], using threshold for soft assignment as 0.01 and the
distance function presented in [27].

• Holistic: GIST [23], a scene recognition descriptor based on the Spatial
Envelope low dimensional representation 4.

Table 6 presents the experimental results considering the N-S score for all
considered descriptors on re-ranking tasks. We can observe positive gains for all
descriptors ranging from +3.30% to +15.35%. Table 6 also presents the exper-
imental results for Reciprocal kNN Graph considering rank aggregation tasks.
We consider for the combination the three descriptors which have obtained the
best scores in the re-ranking tasks (ACC [12], BIC [35], SIFT [20]). We compute

3We varied the low-level feature extraction using sparse and dense sampling, and using
SIFT [20] and OpponentSIFT [33]. Different codebook sizes were evaluated, varying from 100
to 50,000 visual words. Hard and soft assignment [9] were also used, and we tested average and
max pooling [5] and a spatial pooling approach called WSA (word spatial arrangement) [27].

4We considered resized dataset images of 256 × 256 pixels and a public available C imple-
mentation at http://lear.inrialpes.fr/software.
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Table 6: Reciprocal kNN Graph evaluation for various descriptors on the N-S Dataset.

Descriptor N-S Reciprocal Gain
Score kNN Graph

GIST [23] 2.18 2.28 +4.59%
LCH [37] 2.25 2.41 +7.11%
WSA [27] 2.28 2.59 +13.60%
CEED [7] 2.61 2.74 +4.98%
FCTH [8] 2.73 2.82 +3.30%
JCD [46] 2.79 2.91 +4.30%
SIFT [20] 2.54 2.93 +15.35%
BIC [35] 3.04 3.20 +5.26%
ACC [12] 3.36 3.58 +6.55%

ACC [12]+BIC [35] - 3.55 +5.65%
ACC [12]+SIFT [20] - 3.79 +12.80%
BIC [35]+SIFT [20] - 3.60 +18.42%

Table 7: Comparison of N-S scores on the N-S dataset considering the best scores obtained
by recent retrieval methods and fusion approaches.

Jégou Qin Wang Zhang Reciprocal
et al. [13] et al. [29] et al. [40] et al. [47] kNN Graph

3.68 3.67 3.68 3.77 3.79

the gain considering the highest score obtained by descriptors considered in the
combination. We can observe that the combination of ACC [12]+SIFT [20]
present a very high score (N-S=3.79) and BIC [35]+SIFT [20] a very high gain
(+18.42%).

We also compare the Reciprocal kNN Graph with state-of-the-art methods
recently proposed on the N-S dataset. Table 7 presents the best N-S scores
obtained by Reciprocal kNN Graph and reported by the recent retrieval methods
and fusion approaches. We can observe that the Reciprocal kNN Graph presents
the highest N-S score when compared with other approaches.

5.6. Experiment 6: Efficiency Analysis

In this Section, we present the run time for the Reciprocal kNN Graph on the
N-S dataset, considering the four descriptors which have presented the highest
retrieval scores (ACC [12], BIC [35], SIFT [20], JCD [46]). We use a serial
C implementation running over Linux on an Intel Xeon 2.40 GHz processor.
Figure 10 presents the total run time and the run time per iteration for the four
considered descriptors. The ACC [12] descriptor, for example, converged after
only 3 iterations, with a total run time of 8.3 s. The average time required for
the re-ranking of each image in this case is only 8.1 ms.
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Figure 10: Run time of Reciprocal kNN Graph for the N-S Dataset.

6. Conclusions

In this work, we have presented a novel re-ranking and rank aggregation
approach that exploits the Reciprocal kNN Graph for improving image retrieval
tasks. The main idea consists in analyzing the reciprocal references at top
positions of ranked lists for performing re-ranking and rank aggregation tasks.
The Reciprocal kNN Graph algorithm iteratively propagates the similarity along
the dataset structure by taking into account intrinsic geometry of the dataset
manifold.

We conducted a large set of experiments considering different descriptors and
datasets. Experimental results demonstrated the applicability of our method to
several image retrieval tasks based on shape, color, and texture descriptors. In
re-ranking tasks, for example, the Reciprocal kNN Graph algorithm achieves
gains up to +37.99% considering MAP scores. Our proposed approach also
achieves very high effectiveness performance when compared with recent state-
of-the-art methods on well-known datasets.

Future work focuses on optimizing the proposed re-ranking and rank aggre-
gation methods by considering parallel architectures.
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