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ABSTRACT
Ranking accurately collection images is the main objective
of Content-based Image Retrieval (CBIR) systems. In fact,
the set of images ranked at the first positions generally de-
fines the effectiveness of provided search services, i.e., they
are used for assessing automatically the quality of search sys-
tems as this set usually contains the collection images that
are of interest. Recently, the use of ranking information
(e.g., rank correlation) has been used in different research
initiatives with the objective of improving the effectiveness
of image retrieval tasks. This paper presents a broad rank
correlation analysis for unsupervised distance learning on
image retrieval tasks. Various well-known rank correlation
measures are considered and two new measures are pro-
posed. Several experiments were conducted considering var-
ious image datasets involving shape, color, and texture de-
scriptors. Experimental results demonstrate that ranking
information can be exploited for distance learning tasks suc-
cessfully. Evaluated approaches yield better results in terms
of effectiveness than various state-of-the-art algorithms.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms
Experimentation, Performance

Keywords
content-based image retrieval; rank correlation; measures

1. INTRODUCTION
The increasing availability of large image collections has

demanded the development of novel search and indexing
methods. In this scenario, Content-Based Image Retrieval
(CBIR) systems have emerged as promising approaches, as
they are able of considering the image visual content.
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Typically, the implementation of a content-based image
retrieval system relies on the definition of three important
concepts in the retrieval pipeline [7]: (i) image representa-
tion, (ii) image similarity measure, and (iii) result refine-
ment by post-processing methods. The first two steps were
exploited for decades and several visual features and dis-
tance measures have been proposed for image retrieval tasks
(based on shape, color, and texture properties).

Recently, post-processing methods have attracted a lot of
attention, mainly due to the significant effectiveness gains
obtained [27, 32, 35]. Different approaches have been em-
ployed, as diffusion process [35], graphs [32], and cluster-
ing [26]. More recently, ranking approaches have been pro-
posed, presenting important advantages, such as simplicity,
low-computational efforts, and total independence of dis-
tance measures [27]. Ranking scores and ranking correla-
tion measures have been used as the basis of various of these
methods.

This paper discusses methods for improving the effective-
ness of image retrieval results based on rank correlation mea-
sures. Two novel rank correlation measures are proposed
for unsupervised distance learning procedures on image re-
trieval tasks. The paper also presents an extended version
of the recently proposed RL-Sim (Ranked Lists Similarities)
algorithm [27] that exploits the proposed measures. In sum-
mary, the contributions of this paper are threefold: (i) pre-
sentation of the RL-Sim∗ Algorithm, which uses information
from both rank correlation measures and top-k lists overlap
for improving the effectiveness of distance measures; (ii) the
evaluation of six different rank correlation measures for the
proposed algorithm; and (iii) the proposal of two novel rank
correlation measures for unsupervised distance learning.

A large experimental evaluation was conducted, consider-
ing different datasets and image descriptors. Experiments
were conducted on four image datasets considering 16 dif-
ferent visual descriptors (shape, color, texture, and local de-
scriptors). Other aspects of the proposed approach were also
considered, such as the analysis of the impact of parameters
and the relationship among the considered rank correlation
measures.

The experimental evaluation demonstrates that the effec-
tiveness performance of the proposed RL-Sim∗ Algorithm is
superior to the original algorithm. Experimental results also
show that the proposed rank correlation measures achieved
significant effectiveness gains in several image retrieval tasks.
The proposed RL-Sim∗ Algorithm is also evaluated in com-
parison with several state-of-the-art approaches considering
a shape dataset commonly used as benchmarking. The pro-

Accepted version of paper published in International Conference on Multimedia Retrieval (ICMR), 2015.
DOI: http://dx.doi.org/10.1145/2671188.2749335

http://dx.doi.org/10.1145/2671188.2749335


posed unsupervised learning approach yields better results
in terms of effectiveness performance than various methods
recently proposed in the literature.

The paper is organized as follows: Section 2 discusses re-
lated work and Section 3 presents the problem formulation.
Section 4 briefly describes the original RL-Sim Algorithm,
while Section 5 presents the proposed RL-Sim∗ Algorithm.
In Section 6, we describe the evaluated rank correlation mea-
sures and present two novel measures. Section 6 discusses
our approach for measure combination. Section 7 presents
and discusses conducted experiments and, finally, Section 8
discusses conclusions and presents future work.

2. RELATED WORK
Rank correlation measures have been used in information

retrieval applications with the aim of computing similari-
ties or distances between rankings produced by different sys-
tems. Generally, these measures are based on simple rank-
ing functions, and provide information about the similar-
ity among different systems used to compute the rankings.
Many measures used to compare rankings are based on sta-
tistical associations of objects in different ranked lists, such
as Kendall τ and Spearman’s Footrule [10].

Although various measures have been used along decades,
the research field remains active and, even recently, novel
measures continue being proposed. The developing of new
measures is mainly based on statistical or probabilistic mod-
els. The Rank Biased Overlap [33] (RBO) measure, for ex-
ample, was recently proposed based on a model which com-
pares the overlap of two ranked lists at different increas-
ing depths. The RBO [33] measure consists in a measure
adapted to information retrieval, assigning to the top-k ob-
jects high weights. In a different venue, some studies are
proposing new measures that use classical methods as part
of the process, as SKT [14] measure that uses Kendall τ .

More recently, rank correlation measures have been
used [7, 27] to compare ranked results, aiming at increas-
ing the effectiveness of CBIR systems. Although several
approaches were employed in post-processing methods (e.g.,
graph transduction [34], diffusion process [35], affinity learn-
ing [36]), the use of ranking information presents significant
advantages and have attracted a lot of research interest.

A ranking consistency model is proposed in [7], using
a result refinement procedure that re-ranks images based
on an improved image similarity measure. Basically, the
rank-consistency information indicates that query images
are likely to contain similar content. Rank correlation anal-
ysis is also employed for metric learning in content-based
medical image retrieval applications [14].

The RL-Sim Algorithm [27] is an unsupervised distance
learning method recently proposed that considers the sim-
ilarity between ranked lists for computing a more effective
distance measure. Its main motivation relies on the con-
jecture that ranked lists encode contextual information in
CBIR systems, providing not only a pairwise relation as
traditional distance measures, but a more global contextual
measure. In addition, the method presents important fea-
tures such as scalability, and low-computational complex-
ity [24].

This paper presents the RL-Sim∗ Algorithm, a new post-
processing method, which extends the original algorithm
by exploiting more contextual information. The proposed
method is based on information regarding the overlap be-

tween ranked lists combined with rank correlation measures.
In addition, two novel rank correlation measures are pro-
posed aiming at characterizing distance learning procedures
on image retrieval tasks.

3. PROBLEM DEFINITION
A formal definition of the image retrieval model considered

is presented in this section. Let C={img1, img2, . . . , imgn}
be an image collection. Let n = |C| be the size of the col-
lection C. Let D be an image descriptor, which can be de-
fined [8] as a tuple (ε, ρ), where ε: Î → Rn is a function,

which extracts a feature vector vÎ from an image Î; and
ρ: Rn × Rn → R is a distance function that computes the
distance between two images according to the distance be-
tween their corresponding feature vectors, i.e., the distance
distance between two images imgi and imgj is given by the
value of ρ(ε(imgi), ε(imgj)). The notation ρ(i, j) is used
along the paper for readability purposes.

The distance ρ(i, j) among all images imgi, imgj ∈ C can
be computed to obtain a squared n × n distance matrix A,
such that Aij = ρ(i, j). Also based on the distance func-
tion ρ, a ranked list τq can be computed in response to a
query image imgq. The ranked list τq=(img1, img2, . . . ,
imgn) can be defined as a permutation of the collection C.
A permutation τq is a bijection from the set C onto the set
[N ] = {1, 2, . . . , n}. For a permutation τq, we interpret τq(i)
as the position (or rank) of image imgi in the ranked list τq.
We can say that, if imgi is ranked before imgj in the ranked
list of imgq, that is, τq(i) < τq(j), then ρ(q, i) ≤ ρ(q, j). We
also can take every image imgi ∈ C as a query image imgq,
in order to obtain a set R = {τ1, τ2, . . . , τn} of ranked lists
for each image of the collection C.

The objective of the unsupervised learning algorithm con-
sists in redefining the initial distance ρ by computing a more
effective distance function. The general objective is to im-
prove the effectiveness of distances among images by using
the contextual information encoded in the ranked lists de-
fined by the set R. More formally, we can define the algo-
rithm as a function fr:

Â = fr(R, A). (1)

A new distance matrix Â can be computed by the function
fr, which takes as input the set of ranked lists R.

4. RL-SIM ALGORITHM
The RL-Sim Algorithm [27] is a recently proposed un-

supervised distance learning method that improves the ef-
fectiveness of image retrieval tasks though an iterative
re-ranking scheme. The RL-Sim Algorithm [27] exploits
contextual information encoded in the similarity between
ranked lists with the objective of improving the effective-
ness of CBIR descriptors. Ranked lists represent a relevant
source of information, since ranked lists establish a relation-
ship among a set a images contained in ranked lists, instead
of only between pairs of images.

In general, if two images are similar, their ranked lists
should be similar as well. Therefore, the main objective
of the algorithm is to improve the effectiveness of distance
measures by computing the similarity between the ranked
lists. The modeling of contextual information considering
only the similarity between ranked lists represents an ad-
vantage of this approach strategy. Instead of using the dis-



tance information, the algorithm requires only the ranking
information.

Given an initial set of ranked lists, an iterative approach is
used. Let the superscript (t) denote the current iteration, a
new and more effective set of ranked listsR(t+1) is computed
by taking into account distances among ranked lists. Next,
R(t+1) is used for the next execution of our re-ranking algo-
rithm and so on. These steps are repeated along iterations
aiming to improve the effectiveness incrementally. After a
number T of iterations a definitive re-ranking is performed.
In the following, this procedure is detailed.

Ranking Contextual Distance Measure
In this section, we briefly describe the RL-Sim Algo-
rithm [27] by using a ranking contextual distance measure
based on similarity/dissimilarity of ranked lists. The rank-
ing contextual distance measure is based on the conjecture
that top-ranked images are similar to each other and their
ranked lists contain many images in common [27]. In this
scenario, one straightforward strategy for computing the
similarity between images relies on the use of rank corre-
lation measures.

A ranking contextual distance measure is iteratively
learned in a unsupervised setting, by incorporating the con-
textual information provided by rank correlation measures.
Let us consider the neighborhood set N (i, k) of an image
imgi, which contains the k most similar images to imgi,
according to a given distance (say ρ defined by the image
descriptor). The set N (i, k) can be obtained by the well-
known k-Nearest Neighbor approach, where the cardinality
of the set is denoted by | N (i, k) |= k.

Let d(τi, τj , k) denote a rank correlation measure between
ranked lists τi and τj , considering their top-k positions given
by the sets N (i) and N (j) and defined in the interval [0, 1].
A non-iterative contextual distance measure ρc(imgi, imgj)
based on the comparison of ranked lists τi, τj can be defined
as follows:

ρc(imgi, imgj) = d(τi, τj , k) (2)

Based on the conjecture that the contextual distance mea-
sure ρc represents a more effective distance between im-
ages [27], the distance among all images in a collection can
be recomputed based on this measure. Therefore, a new
set of ranked lists can be obtained, such that the contex-
tual distance can also be recomputed and the process can
be repeated in an iterative way. Let (t) denote the current

iteration and let τ
(t)
i denote the ranked list at iteration t.

Let ρ
(0)
c be the contextual distance at first iteration, which

is equal to the distance defined by the image descriptor,

such that ρ
(0)
c (imgi, imgj) = ρ(imgi, imgj) for all images

imgi, imgj ∈ C. The iterative contextual measure is defined
as:

ρ(t+1)
c (imgi, imgj) = d(τ

(t)
i , τ

(t)
j , k) (3)

It is expected that the effectiveness of the distance mea-
sure improves along iterations, so non-relevant images are
moved out from the first positions of the ranked lists. In
this way, the size of the neighborhooed k can be increased
for considering more images along iterations. Therefore the
contextual measure can be redefined as:

ρ(t+1)
c (imgi, imgj) = d(τ

(t)
i , τ

(t)
j , k + t) (4)

After a given number of T iterations, a new distance ρ̂ is
computed based on contextual distance measure ρc:

ρ̂(imgi, imgj) = ρ(T )
c (imgi, imgj) (5)

Finally, using the distance ρ̂ a new distance matrix can
be computed such Âij = ρ̂(imgi, imgj). Based on Â, a new

set of ranked lists R̂ can be also computed.

5. RL-SIM∗ ALGORITHM
The RL-Sim Algorithm [27] computes a new distance be-

tween images imgi, imgj by analyzing the similarity between
their respectively ranked lists τi, τj considering the top-k po-
sitions defined by the sets N (i, k) and N (j, k).

The effectiveness gain, however, is obtained by redefining
the distances among the query image and images at initial
positions of ranked lists. It occurs since is very unlikely to
found similar images at the end of ranked lists. Therefore,
the distances are redefined considering the rank correlation
measure d(τi, τj , k) for the first positions of the each ranked
list, such that L ∈ N and k ≤ L � N . For images in the
remaining positions of the ranked lists, the new distance is
redefined based on the current distances (or rank positions)
and the function d(τi, τj , k) does not need to be computed.
As a result, this step of the algorithm depends only on a
constant L, and not on the collection size N .

Although this approach allows decreasing the demanded
computational costs, it still presents a limitation. Since the
rank correlation measures are computed considering the top-
k positions defined in terms of the neighborhood set N (i, k),
their accuracy tends to be low when there is no overlap be-
tween the ranked lists being compared at top positions. For
measures based on intersection analysis, it is still more crit-
ical, producing the same distance values for all pairs of im-
ages without overlap at top-k positions. In theses situations,
the effectiveness of distance can be worsened.

Based on this observation, we propose the extended RL-
Sim* Algorithm which aims at computing a different dis-
tance when there is no overlap between the ranked lists be-
ing compared. In this way, considering a query image imgi
we propose to divide the ranked list τi in three segments.
Each segment defines a subset of the ranked list, which is
processed differently:

(i) First Segment (top-L positions, with overlap):
this segment contains an image imgj at top-L positions if
the neighborhood sets of imgi, imgj present other images in
common. Formally, if (τi(j) < L) ∧ (N (i, k) ∩ N (j, k) 6= ∅).
For these cases, the new distance between imgi and imgj is
computed by the rank correlation measure (defined in the
[0, 1] interval).

(ii) Second Segment (top-L positions, no overlap):
if the imgj appears at top-L positions of τi, but there is
no overlap between top-k positions (N (i, k) ∩ N (j, k) = ∅),
the rank correlation measures have no enough information
for improving the distance measure. In this situations, the

current distance is only incremented by 1, such A
(t+1)
ij =

A
(t)
ij + 1. Notice that images with no overlap always will be

ranked after that with overlap.
(iii) Remaining Images: the remaining images, i.e., im-

ages after top-L positions have their distances incremented

by 2, such that A
(t+1)
ij = A

(t)
ij + 2. This procedure keeps

these images at the end of ranked lists, ensuring that they
are not mixed with images at top-L positions.

Notice that the simple addition of constants (1 and 2)



are enough to differentiate images at different positions of
ranked lists. Algorithm 1 outlines the proposed RL-Sim∗

Algorithm. We can observe that the conditional structure
at Line 8 defines the first (Line 9) and second segments (Line
12). The remaining images are processed at Lines 17-19.

Algorithm 1 RL-Sim* Algorithm

Require: Distance matrix A, Set of ranked lists R and param-
eters k, T , L

Ensure: Processed set of ranked lists R̂
1: t← 0
2: k ← ks
3: R(t) ← R
4: A(t) ← A
5: while t < T do
6: for all τi ∈ R(t) do
7: for all {imgj ∈ C | τi(j) ≤ L} do
8: if N (i, k) ∩ N (j, k) 6= ∅ then
9: //First Segment - With Overlap

10: A(t+1)[i, j]← d(τi, τj , k)
11: else
12: //Second Segment - No Overlap

13: A
(t+1)
ij ← A

(t)
ij + 1

14: end if
15: end for
16: //Remaining Images - After top-L positions
17: for all {imgj ∈ C | τi(j) > L} do

18: A
(t+1)
ij ← A

(t)
ij + 2

19: end for
20: end for
21: R(t+1) ← sortRankedLists(A(t+1))
22: k ← k + 1
23: t← t+ 1
24: end while
25: R̂ ← R(T )

6. RANK CORRELATION MEASURES
The RL-Sim∗ (Algorithm 1) is not dependent on the rank

correlation measure used, so we can define d(τi, τj , k) us-
ing various approaches. However, only two measures were
evaluated for the original RL-Sim Algorithm [27].

In fact, the effectiveness gains are directly associated with
the measure used. Therefore, for obtaining high effectiveness
gains it is required the definition of appropriate measures.
In this paper, we perform a comparative study of eight corre-
lation measures: six measures of the literature (Intersection,
Kendall τ , Spearman, Goodman, Jaccard, and RBO); and
two novel measures, named Jaccardl and Kendall τw. These
measures are described in the following.

6.1 Intersection Measure
An approach to define the distance between two top-k lists

τi and τi proposed in [10] is to capture the extent of overlap
between τi and τi. This idea of overlap can be extended
by considering not only the overlap at depth k, but also
the cumulative overlap at increasing depth. For each depth
d ∈ {1 . . . k}, it is computed the overlap at d, and then those
overlaps are averaged to derive a similarity measure. The
measure assigns higher weights to the first positions of top k
lists, which are considered many times. Equation 6 formally
defines the intersection similarity measure ψ.

ψ(τi, τj , k) =

∑k
d=1 | N (i, d) ∩N (j, d) |

k
(6)

Note that if two ranked lists present the same images at
the first positions, the size of the intersection set is larger,
and therefore the value of ψ is higher as well. Since we are
interested in a distance measure, we define dI as follows:

dI(τi, τj , k) =
1

1 + ψ(τi, τj , k)
(7)

6.1.1 Kendall τ
The Kendall’s τ is a traditional distance measure between

permutations, used to measure rank correlation. Its value
turns out to be equal to the number of exchanges needed in
a bubble sort to convert one permutation to the other [10].
The normalized Kendall’s tau measure is defined as follows:

dτ (τi, τj , k) =

∑
x,y∈N (i,k)∪N (j,k) K̄x,y(τi, τj)

k × (k − 1)
, (8)

where K̄x,y(τi, τj) is a function that determines if images
imgx and imgy are in the same order in compared ranked
lists τi and τj . This function can be defined as follows:

K̄x,y(τi, τj) =

 0 if (τi(x) 6 τi(y) ∧ τj(x) 6 τj(y)),
0 if (τi(x) > τi(y) ∧ τj(x) > τj(y)),
1 otherwise.

The maximum value of defined Kendall’s tau meausure is
given by k×(k−1), which occurs when N (i, k)∩N (j, k) = ∅
and τi is the reverse of τj .

6.1.2 Spearman
The Spearman’s metric, commonly denoted by the let-

ter ρ, can be seen as the L1 distance between two per-
mutations [10]. The metric can also be defined as a non-
parametric measure, which evaluates the relationship be-
tween two variables. Equation 9 formally defines the mea-
sure.

dρ(τi, τj , k) =

∑
x,y∈N (i,k)∪N (j,k) |τi(j)− τj(i))|

2× k × n , (9)

6.1.3 Goodman
The Goodman and Kruskal’s measure [11], commonly de-

noted by letter γ, is a measure of rank correlation based on
pairwise analysis. The measure considers the relationship
between the number of discordant (Nd) and concordant pairs
(Ns), in a given set. The number of discordant pairs Nd can
be defined based on the function K̄x,y (Equation 6.1.1), as
follows:

Nd(τi, τj , k) =
∑

x,y∈N (i,k)∪N (j,k)

K̄x,y(τi, τj) (10)

We can also define the number of concordant pairs Ns as
the inverse of Nd, such Ns(τi, τj , k) = |N (i, k) ∪ N (j, k)| −
Nd. Finally, the distance dγ is formally defined by Equa-
tion 11.

dγ(τi, τj , k) =
Ns(τi, τj , k)−Nd(τi, τj , k)

Ns(τi, τj , k) +Nd(τi, τj , k)
. (11)

6.1.4 Jaccard
The Jaccard coefficient is a well-known distance between

sets. Given two non-empty sets, it measures the probability
that an element of at least one of two sets is an element
of both, and thus is a reasonable measure of similarity or
overlap between the two [18]. The Jaccard Coefficient is
defined as follows:

J(τi, τj , k) =
|N (i, k) ∩N (j, k)|
|N (i, k) ∪N (j, k)| , (12)

As the coefficient J(τi, τj , k) computes a similarity score,
the distance measure is defined as:



dJ(τi, τj , k) =
1

1 + J(τi, τj , k)
. (13)

6.1.5 Rank Overlap Biased (RBO)
The Rank-Biased Overlap (RBO) is a recently proposed

measure [33] that compares the overlap of the two rankings
at incrementally increasing depths. The measure takes a
parameter that specifies the probability of considering the
overlap at the next level. The weight of the overlap mea-
sured at each depth is computed based on these probabili-
ties. The RBO measure is defined by Equation 14:

RBO(τi, τj , k, p) = (1− p)
k∑
d=1

pd−1 × |N (i, k) ∩N (j, k)|
d

,

(14)
where p is a constant. The distance measure can be com-
puted as the inverse of RBO function, as follows.

dR(τi, τj , k) =
1

1 +RBO(τi, τj , k)
. (15)

6.1.6 Kendall τw
The original Kendall τ measure is a non-weighted mea-

sure. Pairs of images in a discordant order but with a small
difference between their positions have the same weight of
pairs very distant in the ranking. In this way, we propose a
Kendall τw measure, which aims at giving higher weights to
distant pairs. The measure is defined as follows:

dτw (τi, τj , k) =

∑
x,y∈N (i,k)∪N (j,k) W̄x,y(τi, τj)

n2 × k2 × (k − 1)
. (16)

The measure is very similar to the original Kendall mea-
sure, except by the function W̄x,y that computes the weight
of each pair. The function W̄x,y is defined as follows:

W̄x,y(τi, τj) =

 0 if (τi(x) 6 τi(y) ∧ τj(x) 6 τj(y)),
0 if (τi(x) > τi(y) ∧ τj(x) > τj(y)),
f × (k −min(τi(y), τj(x), τi(y), τj(x)) otherwise,

where f is a factor that aims at penalizing discordant pairs
which are distant in the ranked lists. The pairs are con-
sidered distant when the difference between their positions
are greater than k. Therefore, the value f = 2 is assigned
when (|τi(x)− τi(y)|+ |τj(x)− τj(y)|) > (2× k), and f = 1,
otherwise.

6.1.7 Jaccardl
The traditional Jaccard coefficient establishes a relation-

ship between the size of the union and the intersection sets,
at a certain depth in the ranked list defined by k. However,
in information retrieval tasks this approach ignores the in-
formation provided by top positions, smaller than k. In this
way, we proposed to compute a accumulated Jaccard score
considering different depths, as Intersection and RBO mea-
sures. Equation 17 formally defines the proposed approach:

Jl(τi, τj , k) =

∑k
d=1 J(τi, τj , k)

k
(17)

As the accumulated score gives a similarity score, the re-
spectively distance is defined as follows:

dJl(τi, τj , k) =
1

1 + Jl(τi, τj , k)
. (18)

7. EXPERIMENTAL EVALUATION
A large experimental evaluation was conducted aiming at

assessing the effectiveness of the presented approach. Sec-
tion 7.1 describes the image descriptors and datasets consid-
ered. Section 7.2 discusses the impact of parameters. Sec-
tions 7.3 and 7.4 present the experimental results for the
original and the proposed algorithm considering all discussed
rank correlation measures. Various shape, color, and texture
descriptors were considered. Section 7.5 presents a compar-
ison with other state-of-the-art approaches and Section 7.6
discusses the correlation among different measures.

7.1 Datasets and Image Descriptors
The experimental evaluation was conducted considering

four different datasets with diverse characteristics and size
ranging from 280 to 10,200 images. Various local and global
descriptors were used, considering shape, color, and texture
properties. Table 1 summarizes information about datasets
and descriptors. All images of each dataset are considered
as query images for effectiveness evaluation purposes. The
Mean Average Precision (MAP) was used as effectiveness
measure for most of datasets. For the N-S [22] dataset, the
N-S retrieval score is used and for the MPEG-7 [17] dataset,
the Recall@40 is considered in addition to MAP.

7.2 Analysis of Parameters
The computation of RL-Sim∗ Algorithm considers three

parameters: (i) k: the size of the neighborhood set; (ii) T :
the number of iterations; and (iii) L: the position at which
the ranked lists are considered in the distance learning proce-
dure. To evaluate the impact of different parameter settings
on the effectiveness of the method and for determining the
best parameters values, we conducted various experiments
considering the MPEG-7 [17] dataset.

The first experiment aims at analyzing the impact of
parameters k and T on the effectiveness of the proposed
method. We set L = 700 and varied the values of parameter
k and T in the intervals [5, 20] and [1, 5], respectively. We
considered the RBO [33] measure and the CFD [25] descrip-
tor. The MAP was used as effectiveness measure. Figure 1
illustrates the obtained results. A large red region can be
observed around k = 15, indicating high effectiveness scores
and robustness of the method regardless the parameter value
variations. We used L = 700 and k = 15 for all experiments.
The only exception is the N-S [22] dataset, which has a very
small number of relevant images per class. In this case, we
used k = 5 and L = 200.

Figure 1: Impact of parameters k, T on MAP scores -

CFD [25] descriptor and RBO [33] measure.

The number of iterations is more dependent on the rank
correlation measure than the size of neighborhood. There-



Table 1: Datasets and images descriptors used in the experimental evaluation.
Dataset Size Type General Descriptors Effectiv.

Description Measure
Soccer [31] 280 Color

Scenes
Dataset composed of images from 7 soccer
teams, containing 40 images per class

Border/Interior Pixel Classification (BIC) [28], Auto
Color Correlograms (ACC) [13], and Global Color His-
togram (GCH) [29]

MAP (%)

MPEG-7 [17] 1,400 Shape A well-known dataset composed of 1400
shapes divided in 70 classes. Commonly
used for evaluation of unsupervised dis-
tance learning approaches.

Segment Saliences (SS) [9], Beam Angle Statistics
(BAS) [1], Inner Distance Shape Context (IDSC) [19],
Contour Features Descriptor (CFD) [25], Aspect Shape
Context (ASC) [20], and Articulation-Invariant Repre-
sentation (AIR) [12]

MAP (%),
Recall@40

Brodatz [4] 1,776 Texture A popular dataset for texture descriptors
evaluation composed of 111 different tex-
tures divided into 16 blocks

Local Binary Patterns (LBP) [23], Color Co-Occurrence
Matrix (CCOM) [16], Local Activity Spectrum
(LAS) [30]

MAP (%)

N-S [22] 10,200 Objects/
Scenes

Composed of 2,550 objects or scenes. Each
object/scene is captured 4 times from dif-
ferent viewpoints, distances and illumina-
tion conditions

ACC [13], BIC [28], Color and Edge Directivity Descrip-
tor (CEED) [5], Fuzzy Color and Texture Histogram
(FCTH) [6], Joint Composite Descriptor (JCD) [37],
Scale-Invariant Feature Transform (SIFT) [21]

N-S score

Table 2: Effectiveness of the RL-Sim [27] Algorithm for various rank correlation measures. MAP scores (%) for shape,

color, and texture descriptors considering different datasets. Best score for each descriptor in bold.
Descriptor Type Initial MAP Intersection Kendallτ Spearman Goodman Jaccard RBO Jaccardl Kendallτw

SS [9] Shape 37.67 43.06 44.24 44.53 40.95 45.18 43.34 46.11 46.60
BAS [1] Shape 71.52 74.57 73.25 75.78 61.66 73.79 76.39 76.58 76.01

IDSC [19] Shape 81.70 86.75 86.93 84.26 69.79 86.09 87.76 87.25 86.67
CFD [25] Shape 80.71 88.97 88.40 85.32 72.43 88.72 90.64 90.51 89.13
ASC [20] Shape 85.28 88.81 88.10 87.11 70.26 88.46 89.70 89.75 89.39
AIR [12] Shape 89.39 93.54 96.27 97.86 84.84 96.68 94.84 96.43 96.44
GCH [29] Color 32.24 33.66 32.96 34.66 32.16 32.65 33.13 33.23 33.60
ACC [13] Color 37.23 43.54 44.29 45.23 39.49 44.81 41.83 43.33 43.59
BIC [28] Color 39.26 43.45 43.76 46.28 39.31 43.19 42.58 43.86 42.23
LBP [23] Texture 48.40 47.77 45.20 47.07 44.80 45.55 50.22 49.28 48.53

CCOM [16] Texture 57.57 62.01 60.30 58.52 56.68 60.72 63.62 63.49 61.67
LAS [30] Texture 75.15 77.81 75.62 75.13 69.29 76.04 79.31 79.00 78.30

Average - 61.34 65.33 64.86 65.14 56.80 60.61 66.11 66.57 66.01

fore, we conducted an experiment for evaluating the im-
pact of T considering different measures in order to defining
the best values for this parameter. Figure 2 shows the re-
sults. The CFD [25] descriptor and the MPEG-7 [17] dataset
were used, but other experiments were conducted consider-
ing other descriptors and datasets with similar results. The
value of T was defined as 3, 2, 1, 1, 2, 3, 2, and 2 for
the measures Intersection, Kendall τ , Spearman, Goodman,
Jaccard, and RBO, Jaccardl, and Kendall τw, respectively.
We used p = 0.9 as suggested by [33] for RBO measure.
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Figure 2: Evolution of MAP scores along Iterations for

various Rank Correlation Measures.

7.3 Rank Correlation Measures for RL-Sim
Algorithm

This section presents the evaluation of the two rank cor-
relation measures proposed and the other six measures dis-
cussed in Section 6 for the original RL-Sim [27] Algorithm.
Table 2 presents the results considering MAP scores for
twelve descriptors and three datasets.

We can note that, considering shape descriptors, there
is not a clear best measure, although RBO, Jaccardl, and
Kendallτw measures have reached higher scores. The Spear-
man measure obtained the best MAP scores for color de-
scriptors, while RBO measure obtained the best results con-
sidering texture descriptors. In a more general analysis, con-
sidering the average of all descriptors, Jaccardl, RBO, and
Kendallτw obtained the best scores.

7.4 Rank Correlation Measures for RL-Sim∗

Algorithm
We conducted a set experiments aiming at evaluating

the proposed RL-Sim∗ Algorithm, considering different rank
correlation measures and comparing the results with the
original RL-Sim [27] Algorithm.

Table 3 presents the experimental results considering
MAP scores for shape, color, and texture descriptors. We
can observe a significant increase in the best value observed
for each descriptor in most cases, when compared with Ta-
ble 2. The Kendallτw and RBO measures obtained the best
scores for most descriptors. The Jaccardl and Kendallτw
proposed measures reached the best average scores. We can
also observe an increase of the average values for all mea-
sures evaluated in comparison with Table 2, demonstrating
the effectiveness of proposed of RL-Sim∗ Algorithm.

We also considered the Bull’s Eye Score , commonly used
in the literature for the MPEG-7 [17] dataset. This score
counts all matching objects within the 40 most similar can-
didates. Since each class consists of 20 objects, the retrieved
score is normalized with the highest possible number of hits
and is equivalent to Recall@40. Table 4 presents the ob-
tained results.

Table 5 presents the experimental results for the N-S [22]



Table 3: Effectiveness of the RL-Sim∗ Algorithm for various rank correlation measures. MAP scores (%) for shape,

color, and texture descriptors considering different datasets. Best score for each descriptor in bold.
Descriptor Type Initial MAP Intersection Kendallτ Spearman Goodman Jaccard RBO Jaccardl Kendallτw

SS [9] Shape 37.67 44.10 46.54 44.70 44.11 45.49 44.23 46.60 47.87
BAS [1] Shape 71.52 76.05 76.12 75.94 72.61 74.87 77.34 77.51 77.75

IDSC [19] Shape 81.70 87.38 87.59 85.03 83.50 87.03 88.26 88.08 88.02
CFD [25] Shape 80.71 90.15 90.07 86.57 86.19 89.51 91.13 90.91 90.81
ASC [20] Shape 85.28 89.96 90.14 88.03 85.75 89.54 90.57 90.77 90.84
AIR [12] Shape 89.39 96.17 95.94 97.86 96.08 97.72 96.08 96.78 97.23
GCH [29] Color 32.24 33.99 33.93 34.29 33.38 33.43 33.99 34.04 34.39
ACC [13] Color 37.23 45.19 45.94 44.91 42.77 45.63 44.03 44.60 45.75
BIC [28] Color 39.26 45.42 45.10 45.40 43.05 44.56 45.10 45.47 45.50
LBP [23] Texture 48.40 48.83 48.94 47.32 49.06 46.53 51.00 50.10 49.92

CCOM [16] Texture 57.57 62.89 62.44 59.02 61.19 61.37 64.23 64.06 63.53
LAS [30] Texture 75.15 78.58 78.49 75.74 75.76 76.76 79.80 79.57 79.34

Average - 61.34 66.56 66.77 65.4 59.93 66.04 67.15 67.37 67.59

Table 4: RL-Sim∗ Algorithm: Rank Correlation Measures on the MPEG-7 [17] dataset - Recall@40 (%).
Descriptor Original Intersection Kendallτ Spearman Goodman Jaccard RBO Jaccardl Kendallτw

SS [9] 43.99 52.92 53.96 51.97 51.5 53.76 51.61 53.92 54.92
BAS [1] 75.20 82.94 82.25 80.91 81.93 81.32 83.45 83.23 82.86

IDSC [19] 85.40 92.20 91.73 88.68 90.79 91.18 92.73 92.15 91.70
CFD [25] 84.43 94.16 93.77 89.64 92.32 93.20 94.67 94.43 94.24
ASC [20] 88.39 94.66 94.06 91.35 92.85 93.74 94.67 94.39 94.11
AIR [12] 93.67 99.90 98.27 100 99.79 99.95 99.87 99.91 99.92

Average 78.51 88.13 85.67 83.76 84.87 85.52 86.17 86.34 86.29

Table 5: Rank Correlation Measures for the RL-Sim∗ Algorithm on the N-S Dataset [22].
Descriptor Initial Score Intersection Kendallτ Spearman Goodman Jaccard RBO Jaccardl Kendallτw

ACC [13] 3.36 3.54 3.51 3.45 1.06 3.47 3.54 3.55 3.52
BIC [28] 3.04 3.20 3.17 3.02 1.05 3.13 3.19 3.21 3.19

CEED [5] 2.61 2.75 2.71 2.56 1.04 2.68 2.75 2.76 2.74
FCTH [6] 2.73 2.84 2.79 2.63 1.04 2.77 2.84 2.85 2.81
JCD [37] 2.79 2.92 2.88 2.72 2.87 2.85 2.92 2.93 2.9

SIFT [21] 2.54 2.81 2.82 2.86 1.03 2.77 2.79 2.80 2.80

Average 2.84 3.01 2.98 2.87 1.35 2.94 3.01 3.02 2.99

dataset.1 Each image is used as query and the N-S retrieval
score [22] between 1 and 4 is computed. The score corre-
sponds to the number of relevant images among the first
four image returned (the highest achievable score is 4). The
propose Jaccardl measure obtained the best scores for this
dataset.

A summary of the best MAP results is presented in Ta-
ble 6, considering the twelve descriptors and three datasets.
The table also presents the relative effectiveness gains ob-
tained for each descriptor. We can observe very significant
gains ranging from +5.37% to +27.08%.

Table 6: Summary of best MAP Scores (%).
Descriptor Initial Rank RL-Sim∗ Relative

MAP Measure MAP Gain (%)

SS [9] 37.67 Kendall τw 47.87 +27.08
BAS [1] 71.52 Kendall τw 77.75 +8.71

IDSC [19] 81.70 RBO 88.26 +8.03
CFD [25] 80.71 RBO 91.13 +12.91
ASC [20] 85.28 Kendall τw 90.84 +6.52
AIR [12] 89.39 Spearman 97.86 +9.48
GCH [29] 32.24 Kendall τw 34.39 +6.67
ACC [13] 37.23 Kendall τ 45.94 +23.40
BIC [28] 39.26 Kendall τw 45.50 +15.89
LBP [23] 48.40 RBO 51.00 +5.37

CCOM [16] 57.57 RBO 64.23 +11.57
LAS [30] 75.15 RBO 79.80 +6.19

7.5 Comparison with Other Approaches
We also evaluated the proposed approach in comparison

with state-of-the-art post-processing methods. We consid-
ered the MPEG-7 [17] dataset and the Bull’s Eye Score,
commonly used for post-processing methods evaluation and

1
For the N-S [22] dataset we used T = 1 for all measures.

comparison. Table 7 presents the comparison, with two se-
lected best results of our approach. We can observe that
high scores were obtained by the proposed approach, com-
parable or superior to various recently proposed methods.

7.6 Correlation Among Measures
Finally, we also conducted an experiment aiming at eval-

uating the correlation among measures. The hypothesis is
that non-correlated measures encode diverse information,
what justifies the evaluation of different measures and en-
ables the investigation of approaches for combining them.
The Pearson Correlation Coefficient was computed between
each pair of measures, based on distances given by each
measure for top images at ranked lists. We considered top
200 images, k = 15 and T = 1. Table 8 presents the re-
sults, with hot colors indicating low correlation scores. As
we can observe, various measures present low correlation.
That opens a novel research venue related to the investiga-
tion of approaches for combining the information provided
by ranked lists obtained considering the use of different cor-
relation measures.

8. CONCLUSIONS
In this paper, we have presented an unsupervised distance

learning approach based on rank correlation measures. We
propose the RL-Sim∗ Algorithm, which considers the rank
correlation measures and the overlap between the neighbor-
hood sets aiming at computing a more effective distance
measure. Six traditional measures were evaluated and two
novel rank correlation measures were proposed specially for
the unsupervised distance learning problem on image re-
trieval tasks.



Table 7: Post-processing methods comparison on the

MPEG-7 [17] dataset - Bull’s Eye Score (Recall@40).
Shape Descriptors

CFD [25] - 84.43%
IDSC [19] - 85.40%
SC [3] - 86.80%
ASC [20] - 88.39%
AIR [12] - 93.67%

Post-Processing Methods
Algorithm Descriptor(s) Score
Graph Transduction [34] IDSC 91.00%
Locally C. Diffusion Process [35] IDSC 93.32%
Shortest Path Propagation [32] IDSC 93.35%
Locally C. Diffusion Process [35] ASC 95.96%
Pairwise Recommendation [26] CFD 96.15%
Tensor Product Graph [36] ASC 96.47%
Self-Smoothing Operator [15] SC+IDSC 97.64%
Co-Transduction [2] SC+IDSC 97.72%
Pairwise Recommendation [26] CFD+IDSC 99.52%
RL-Sim∗ with Jaccard AIR 99.95%
Tensor Product Graph [36] AIR 99.99%
RL-Sim∗ with Spearman AIR 100%

Table 8: Correlation Among Measures.
Rank Measures (I) (K) (S) (G) (J) (R) (Jl) (Kw)
(I) Intersection 1 0.23 0.31 0.74 0.77 0.65 0.65 0.31
(K) Kendallτ 0.23 1 0.75 0.22 0.55 0.61 0.63 0.98
(S) Spearman 0.31 0.75 1 0.19 0.52 0.47 0.65 0.76
(G) Goodman 0.74 0.22 0.19 1 0.82 0.86 0.86 0.28
(J) Jaccard 0.77 0.55 0.52 0.82 1 0.86 0.91 0.55
(R) RBO 0.65 0.61 0.47 0.86 0.86 1 0.99 0.65
(Jl) Jaccardl 0.65 0.63 0.49 0.86 0.91 0.99 1 0.66
(Kw) Kendallτw 0.31 0.98 0.76 0.28 0.55 0.65 0.66 1

We conducted a large set of experiments for assessing the
effectiveness of the proposed approach, considering different
descriptors, datasets and rank correlation measures. Ex-
perimental results demonstrated that high effectiveness re-
sults were obtained by the proposed approach when com-
pared with recent related work [27] and other state-of-the-
art methods. Future work focuses on the investigation of:
(i) novel rank correlation measures; and (ii) approaches for
combining different rank correlation measures.
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