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ABSTRACT
This paper presents a novel manifold learning approach that
takes into account the intrinsic dataset geometry. The dataset
structure is modeled in terms of a Correlation Graph and an-
alyzed using Strongly Connected Components (SCCs). The
proposed manifold learning approach defines a more effective
distance among images, used to improve the effectiveness of
image retrieval systems. Several experiments were conducted
for different image retrieval tasks involving shape, color, and
texture descriptors. The proposed approach yields better re-
sults in terms of effectiveness than various methods recently
proposed in the literature.

Index Terms— content-based image retrieval, unsuper-
vised manifold learning, correlation graph

1. INTRODUCTION

For decades, different visual features and distance measures
have been proposed for image retrieval tasks (based on shape,
color, and texture properties) [1]. More recently, aiming at
improving the retrieval effectiveness of Content-Based Image
Retrieval (CBIR) systems, research initiatives have also fo-
cused on other stages of the retrieval pipeline, which are not
directly related to low-level feature extraction [2]. In sev-
eral computer vision applications, for example, multimedia
objects are modeled as high dimensional points in an Eu-
clidean space, and the distances between them often are mea-
sured by the Euclidean distance. Since the data samples often
live in a much lower-dimensional intrinsic space, capturing
and exploiting the intrinsic manifold structure therefore be-
comes a central problem in the vision and learning commu-
nity [3]. Various approaches have also been proposed aiming
at improving the distance measures in CBIR systems [4–6].
In general, these approaches use more general global affin-
ity measures [6] instead of strategies based on pairwise dis-
tance computations. Example of different techniques include
the use of diffusion process [4, 6], graph-based learning meth-
ods [7], and iterative re-ranking approaches [8–10].

In this paper, we propose an unsupervised manifold learn-
ing algorithm based on the Correlation Graph and Strongly

Connected Components (SCCs). The proposed algorithm im-
proves the effectiveness of image retrieval by computing a
Correlation Graph Distance, which takes into account the in-
trinsic geometry of the dataset manifold. The main idea con-
sists in exploiting the distance correlation between images at
top positions of ranked lists for constructing a graph represen-
tation of the dataset. Based on the constructed graph, strongly
connected components are analyzed with the aim of discover-
ing the intrinsic geometry of the dataset manifold. To the best
of our knowledge, this is the first method for unsupervised
manifold learning using correlation graphs.

Our method also differs from related work regarding to
the low computational efforts needed. Unlike diffusion-based
approaches [4, 6], that requires the computation of powers
of the graph matrix, and iterative re-ranking methods [8, 9],
which require successively applying sorting steps, our method
computes a new distance among images without the need
of novel distance computations. In addition, the proposed
method considers only the top-ranked images, which repre-
sent a smaller number of elements when compared with the
number of objects handled in recently proposed methods [8].
A large experimental evaluation was conducted, consider-
ing different datasets, image descriptors, and retrieval tasks.
Experimental results demonstrate that the proposed method
yields better results in terms of effectiveness performance
than state-of-the-art approaches.

2. MANIFOLD LEARNING BY CORRELATION
GRAPH

Our objective is to represent the intrinsic geometry of a
dataset manifold in terms of a distance correlation analysis.
In this way, we propose a graph-based approach that can be
roughly divided into three main steps: first, the distance cor-
relation between each dataset image and the images placed at
top positions of its ranked list is computed. For each ranked
list, only a small set of images (which are the most likely to be
similar to the query image) are selected based on a correlation
threshold. Selected images have edges added to a Correlation
Graph. The Correlation Graph is then analyzed for identify-
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Fig. 1. Euclidean distance.
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Fig. 2. Intermediary Correlation Graph structures.
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Fig. 3. Correlation Graph Distance.

ing Strongly Connected Components (SCCs). SCCs are used
for expanding the set of similar images by taking account the
intrinsic geometry of the dataset manifold. Finally, the first
two steps are repeated using different values of correlation
threshold. For each value, the edges of the Correlation Graph
and the identified SCCs are used to compute a novel distance
called Correlation Graph Distance.

The capacity of the proposed method of considering the
geometry of the dataset manifold is illustrated in Figures 1, 2,
and 3. Figure 1 illustrates the Two-Moon dataset consider-
ing the Euclidean distance. One point is selected as a labeled
point (marked with a triangle) in each moon. In the following,
all other data points are assigned to the closest labeled point,
determining their color. As it can be observed, the extremities
of the moons are misclassified, since the Euclidean distance
does not consider the geometry structure of the dataset. Fig-
ure 2 illustrates an intermediary step of the proposed method.
Points with edges to the labeled point in the Correlation Graph
are marked with stars, the SCCs are illustrated in colors (blue
and red) and the unclassified points are illustrated in gray.
Figure 3 illustrates the final configuration that considers the
distances computed using the Correlation Graph Distance.
We can observe that the ideal classification, which respects
the whole geometry of the dataset manifold, was produced.

2.1. Correlation Graph
Let C={img1, img2, . . . , imgn} be an image collection,
where n is the size of the collection. Let ρ(i, j) denotes the
distance between two images imgi and imgj , according to
a given image descriptor. Let τq=(img1, img2, . . . , imgns)
be a ranked list, which can be defined as a permutation of the
subset Cs ⊂ C. The subset Cs contains the ns most similar
images to query image imgq , such that and |Cs| = ns. We
interpret τq(i) as the position (or rank) of image imgi in the
ranked list τq , computed in response to the query image imgq .

Given a directed graph G = (V,E), the set of vertices
V is defined by the image collection C, such that each im-
age is represented by a node and V = C. The edge set E
is defined considering the distances correlation among im-
ages at the top ns positions of each ranked list, as follows:
E = {(imgq, imgj) | τq(j) 6 ns ∧ cor(q, j) > tc}, where
cor(q, j) is the correlation score between imgq and imgj and
tc is the correlation threshold considered. Therefore, there

will be edge from imgq to imgj , if: (i) imgj is at the top
positions of ranked of imgq; and (ii) the distance correlation
between them are greater than a given threshold tc.

The correlation score cor(q, j) is computed by the Pear-
son’s Correlation Coefficient, considering the distances to the
k-nearest neighbors of imgq and imgj . Let Nk(q) be the
set containing the k-nearest neighbors to given image imgq .
Let Nk(q, j) be the union set containing the k-nearest neigh-
bors of both images imgq and imgj , such that Nk(q, j) =
Nk(q) ∪ Nk(j). We define two vectors X and Y contain-
ing, respectively, the distances from images imgq and imgj
to each image imgi ∈ Nk(q, j). Let imgi be the i-th image
of the set Nk(q, j), we define Xi = ρ(q, i) and Yi = ρ(j, i).
The correlation cor(q, j) score is defined as follows:

cor(q, j) =

∑ku

i=1(Xi −X)(Yi − Y )√∑ku

i=1(Xi −X)2
√∑ku

i=1(Yi − Y )2
. (1)

2.2. Strongly Connected Components
The edges defined by the Correlation Graph give a very strong
indication of similarity among images. However, although
very precise, the edges include a very small neighborhood
(as can be observed in Figure 2). In this way, we aim at
expanding the similarity neighborhood, but still considering
the geometry of the dataset manifold. Recently, the recipro-
cal neighborhood [11, 12] has been considered for analyzing
the dataset structure. With the same objective, we consider
the Strongly Connected Components (SCCs) of the Correla-
tion Graph. The strongly connected components of a directed
graph are defined by subgraphs that are themselves strongly
connected, i.e., where every vertex is reachable from every
other vertex. Since the SCCs define reciprocal references
among a set of nodes, it can be considered as an extension
of the concept of reciprocal neighborhood. We used the Tar-
jan [13] algorithm for computing the SCCs, which is linear on
the size of the graph. Each SCC is defined as a set of images
Si. Therefore, the overall output of the algorithm is a set of
SCCs S = {S1,S2, . . . ,Sm}, which is used for computing
the Correlation Graph Distance.

2.3. Correlation Graph Distance

The objective of the Correlation Graph Distance is to exploit
all information encoded in the Correlation Graph and SCCs



for computing a new and more effective distance among im-
ages. In this way, we define a Correlation Graph Similar-
ity Score Wi,j , which aims at quantifying the association be-
tween two given images imgi, imgj according to the Corre-
lation Graph and SCCs. The similarity score Wi,j is defined
in terms of increments, according to the Correlation Graph
edges and SCCs. Let E(q) denote a set of images to whom
imgq have edges in the Correlation Graph, the similarity score
between imgi, imgj ∈ E(q) receives an increment, accord-
ing to the correlation threshold tc considered. The same in-
crements are computed for two images that belong to a same
SCC. Algorithm 1 outlines the proposed method for comput-
ing the similarity score Wi,j .

Algorithm 1 Correlation Graph Distance
Require: Correlation Graph G = (V,E), Set of SCCs S
Ensure: Correlation Graph Similarity Score Wi,j

1: tc ← tstart

2: while tc 6 1 do
3: { Correlation Graph }
4: for all imgq ∈ V do
5: for all imgi, imgj ∈ E(q) do
6: Wi,j ← Wi,j + tc
7: end for
8: end for
9: { Strongly Connected Components }

10: for all Sc ∈ S do
11: for all imgi, imgj ∈ Sc do
12: Wi,j ← Wi,j + tc
13: end for
14: end for
15: tc ← tc + tinc

16: end while

Finally, based on the similarity score Wi,j , we compute
the Correlation Graph Distance ρc(i, j) as follows:

ρc(i, j) =
1

1 +Wi,j
. (2)

3. EXPERIMENTAL EVALUATION
This section presents a set of conducted experiments for as-
sessing the effectiveness of the proposed method.

3.1. Impact of Parameters
This section aims at defining the best parameter setting. We
conducted four experiments considering the MPEG-7 [14]
dataset. The MPEG-7 [14] dataset is a well-known shape
dataset, composed of 1400 shapes divided into 70 classes.
The Mean Average Precision (MAP) was considered as ef-
fectiveness measure. First, we evaluate the impact of the
parameters k (size of the neighborhood set) and tstart (start
value of Correlation Threshold tc). Figure 4 illustrates the
values of MAP according to variations of k and tstart for
the Aspect Shape Context (ASC) [15] descriptor. We can ob-
serve a large red region indicating high retrieval scores, which
demonstrates the robustness of the proposed method. We also
evaluate the impact of the size of ranked lists (ns) and the
threshold increments (tinc) on effectiveness gains, consider-
ing two shape descriptors: Aspect Shape Context (ASC) [15]
and Articulation-Invariant Representation (AIR) [16]. We

observed that only a small subset of ranked lists (ns = 200)
is enough to achieve the best results. Different values of tinc,
in turn, did not impact the effectiveness of the descriptors.
We used the values of k = 25, tstart = 0.35, ns = 200, and
tinc = 0.005 for all datasets and different descriptors.

Fig. 4. Impact of parameters k and correlation threshold.

3.2. General Image Retrieval Tasks

This section presents the results of proposed method for gen-
eral image retrieval tasks. We also conducted statistical paired
t-tests, comparing the results before and after the use of the
proposed manifold learning algorithm.

We evaluate the use of our method for shape retrieval
using the MPEG-7 [14] dataset. Six shape descriptors were
considered: Segment Saliences (SS) [17], Beam Angle Statis-
tics (BAS) [18], Inner Distance Shape Context (IDSC) [19],
Contour Features Descriptor (CFD) [20], Aspect Shape Con-
text (ASC) [15], and Articulation-Invariant Representation
(AIR) [16]. We considered two effectiveness measures for
the MPEG-7 dataset: the Mean Average Precision (MAP)
and the so-called Bull’s Eye Score, commonly used for this
dataset. This score counts all matching objects within the
40 most similar candidates. Since each class consists of 20
objects, the retrieved score is normalized with the highest
possible number of hits. Table 1 presents the MAP scores,
while Table 2 presents the results considering the bull’s eye
score of evaluated descriptors. Significant positive gains
are observed for all descriptors, considering both measures,
ranging from +6.90% to +34.54%.

The experiments with color descriptor were conducted
on a dataset [29] composed of images from 7 soccer teams,
containing 40 images per class. Used descriptors include:
Border/Interior Pixel Classification (BIC) [23], Auto Color
Correlograms (ACC) [22], and Global Color Histogram
(GCH) [21]. Table 1 presents the experimental results con-
sidering MAP as score. We can observe a positive gain for all
color descriptors ranging from +7.29% to +20.65%.

The experiments considering texture descriptors were
conducted on the Brodatz [30] dataset, which is composed
of 111 different textures. Each texture is divided into 16



Table 1. Correlation Graph Distance for various image retrieval tasks.
Mean Average Precision considering shape, color, and texture descriptors.

Descriptor Dataset Score Correlation Gain Statistical
(MAP) Graph Significance

Distance 99%
Shape Descriptors

SS [17] MPEG-7 37.67% 50.68% +34.54% •
BAS [18] MPEG-7 71.52% 81.97% +14.61% •
IDSC [19] MPEG-7 81.70% 89.39% +9.41% •
CFD [20] MPEG-7 80.71% 91.93% +13.90% •
ASC [15] MPEG-7 85.28% 92.53% +7.25% •
AIR [16] MPEG-7 89.39% 97.98% +9.61% •

Color Descriptors
GCH [21] Soccer 32.24% 34.59% +7.29% •
ACC [22] Soccer 37.23% 45.24% +21.51% •
BIC [23] Soccer 39.26% 47.37% +20.65% •

Texture Descriptors
LBP [24] Brodatz 48.40% 50.12% +3.55% •
CCOM [25] Brodatz 57.57% 64.73% +12.44% •
LAS [26] Brodatz 75.15% 79.87% +6.28% •

Table 2. Correlation Graph Distance on the
MPEG-7 [14] dataset (Bull’s Eye Score).

Shape Bull’s Correlation Gain
Descriptor Eye Graph

Score Distance
SS [17] 43.99% 56.88% +29.28%
BAS [18] 75.20% 86.52% +15.05%
IDSC [19] 85.40% 92.20% +7.80%
CFD [20] 84.43% 94.27% +11.65%
ASC [15] 88.39% 95.22% +7.73%
AIR [16] 93.67% 100% +6.90%

Table 3. Correlation Graph Distance for Object
Retrieval on ETH-80 [27] dataset (MAP Score).

Descriptor Score Correlation Gain
(MAP) Graph

Distance
BIC [23] 49.72% 54.20% +9.01%
ACC [22] 48.50% 50.63% +4.39%
CSD [28] 48.46% 57.23% +18.10%
GCH [21] 41.62% 45.07% +8.29%

blocks, such that 1,776 images are considered. We used three
texture descriptors: Local Binary Patterns (LBP) [24], Color
Co-Occurrence Matrix (CCOM) [25], and Local Activity
Spectrum (LAS) [26]. Results considering MAP scores are
presented in Table 1. We can observe positive gains ranging
from +3.55% to +12.44% for all texture descriptors.

Table 4. Comparison with various post-processing methods
on the MPEG-7 dataset (Bull’s eye score).

Algorithm Descriptor(s) Bull’s
eye
score

Graph Transduction [31] IDSC [19] 91.00%
LCDP [4] IDSC [19] 93.32%
Shortest Path Propagation [7] IDSC [19] 93.35%
Mutual kNN Graph [5] IDSC [19] 93.40%
Pairwise Recommendation [9] ASC [15] 94.66%
RL-Sim [8] ASC [15] 94.69%
Correlation Graph Distance ASC [15] 95.22%
LCDP [4] ASC [15] 95.96%
Tensor Product Graph [6] ASC [15] 96.47%
Self-Smoothing Operator [3] SC [32] +IDSC [19] 97.64%
Pairwise Recommendation [9] CFD [20]+IDSC [19] 99.52%
RL-Sim [8] CFD [20]+ASC [15] 99.65%
RL-Sim [8] AIR [16] 99.94%
Tensor Product Graph [6] AIR [16] 99.99%
Correlation Graph Distance AIR [16] 100%

We also evaluated the proposed approach for object re-
trieval tasks. The experiments were conducted on the ETH-
80 [27] dataset, which is composed of 3,280 images. Each
image contains one single object. This dataset is equally di-
vided into 8 classes where each class represents a different
object, and all images have 128 × 128 pixels. Four color
descriptors were used: BIC [23], ACC [22], GCH [21] and
Color Structure Descriptor (CSD) [28]. Table 3 presents the

MAP scores of each descriptor. Positive gains were obtained
for all descriptors, ranging from +4.39% to +18.10%.

Finally, we also evaluate our method in comparison with
other state-of-the-art post-processing methods. We consider
again the MPEG-7 dataset [14], commonly used in the eval-
uation of post-processing methods. Table 4 presents the
results of the proposed Correlation Graph Distance consid-
ering the Bull’s Eye Score in comparison with several other
post-processing methods recently proposed. The Correlation
Graph Distance presents comparable and better effectiveness
performance when compared to various recently proposed
methods. Note that the Correlation Graph Distance achieves
a Bull’s Eye Score of 100% for the AIR [16] shape descriptor.

4. CONCLUSIONS
We have presented a novel unsupervised manifold learning
method for improving image retrieval tasks. The proposed
approach exploits the distance correlation for constructing
a graph representation of the dataset. Based on the graph,
strongly connected components are used for discovering the
intrinsic geometry of the dataset manifold. We conducted
a large set of experiments for assessing the effectiveness of
the proposed approach, considering different descriptors and
datasets. Experimental results demonstrated the high effec-
tiveness of our method in several image retrieval tasks. Future
work focuses on: (i) the investigation of distance fusion ap-
proaches for descriptor combination; and (ii) the evaluation
of efficiency and scalability aspects.
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