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Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

Motivation and Content-Based Image Retrieval
Unsupervised Methods for Image Retrieval
Formal Problem Definition and Related Work

Motivation

Huge growth of image collections:

Evolution of image acquisition devices

Reduction of storage costs

Facilities and motivations for sharing
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Motivation

Huge growth of image collections:

Not only a common/naive growth...

It is a change of behavior!

People moved from consumers to producers of images.
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Motivation

Change of behavior:
A few figures demonstrate this:
Photos which probably would not exist before the digital era...

http://blogdetec.blogfolha.uol.com.br/2013/10/16/fotos-que-nao-tirariamos-se-tivessemos-que-revelar-o-filme/
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Motivation

Huge growth of image collections:
Some numbers:

https://www.domo.com/learn/data-never-sleeps-8/ (As of September/2020)
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Motivation

Huge growth of image collections:
Trends:

https://ourworldindata.org/rise-of-social-media (As of September/2020)
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Motivation

Need for methods for indexing images:
Image retrieval based on keywords and metadata

Ambiguous, facing serious challenges
Ignores the huge source of information: visual content!
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Content-Based Image Retrieval

Alternative solution?

Content-Based Image Retrieval!

Definition:

“Content-based image retrieval (CBIR), as we see it today, is any
technology that in principle helps to organize digital picture
archives by their visual content. By this definition, anything
ranging from an image similarity function to a robust image
annotation engine falls under the purview of CBIR.” [15]
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Content-Based Image Retrieval

Content-Based Image Retrieval:

Input:
Image collection
Query image

Objective:
To retrieve similar images according to visual properties
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Content-Based Image Retrieval

Content-Based Image Retrieval:

How to measure the similarity between images?

Similar?
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Content-Based Image Retrieval

Comparing images:

Feature Extraction (shape, color, texture, learned-features)

Images represented by a point in a high-dimensional space

Distance Computation

[ 12 10 5.3 1 … 2.1 3.2 ]

[ 8 11 5.3 2 … 3.1 4.3 ]

ρ(i,j)= 53.2

Imagej

Imagei

Feature Extraction

Feature Extraction

Distance/Similarity
Computation
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Content-Based Image Retrieval

Content-Based Image Retrieval:

How to measure the similarity between images?

Features: shape, color, texture, learned-features?

Similar?
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Content-Based Image Retrieval

Limitations of CBIR Systems:

“Semantic Gap”:
Gap between low-level features and high-level concepts

Image HighLevel Concept:
Flowers

Feature 
Extraction

LowLevel Features:
Feature Vector

0.3   3.2   2.1

2.7   4.5   1.8

1.6   3.2   4.1

.  .  .

Semantic
Gap
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Content-Based Image Retrieval

Alternative Solution?:
Supervised Approaches
Relevance Feedback

Training Data

Supervised 
Algorithm Model:

f(x)= ∑ ...

Output/Predictions

Drawbacks:
Requires a lot of user intervention
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Unsupervised Methods for Image Retrieval

For decades, different visual features and distance measures
have been proposed for image retrieval tasks.

More recent research initiatives have focused on other stages
of the retrieval pipeline, which are not directly related to
feature extraction.

Post-processing methods [89, 29, 90] have been proposed
aiming at improving effectiveness of image retrieval tasks.

Without the need of user intervention!
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Unsupervised Methods for Image Retrieval

CBIR often performs only pairwise image analysis
Computes similarity (or distance) measures considering only
pairs of images
Ignores rich information encoded in the relationships among
images (context)

Ranked List

DistancesQuery Image
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Unsupervised Distance Learning for Image Retrieval

More formally:

Multimedia objects are often modeled as high dimensional
points in an Euclidean space

The distances between them often are measured by the
Euclidean distance.

Therefore, capturing and exploiting the intrinsic manifold
structure becomes a central problem in the vision and learning
community [28].

Even deep learning-based features faces similar challenges
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Unsupervised Distance Learning for Image Retrieval

In general:

Unsupervised distance learning methods propose:

More general and global affinity measures instead of
strategies based on pairwise distance computations [90];
Capability of encoding the geometry of dataset manifold
and structural similarity information.
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Unsupervised Distance Learning for Image Retrieval

Unsupervised Distance Learning for Image Retrieval:

Goals:

to improve the effectiveness of image retrieval tasks.
to reduce the Semantic Gap.

Strategies:

Using global measures instead of pairwise distance
computations
Considering the global dataset structure
Exploiting contextual information and relationship among
images
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Unsupervised Methods for Image Retrieval

Unsupervised Methods for Image Retrieval:

How to measure the similarity between images?

Answer: in the context of other images.

Similar? Similar?

Similar?
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Contextual Information

Contextual Information, encoded in ranked lists and
distance among images, can be exploited to improve the
effectiveness of image retrieval.

ρ(q,q)=0

Query Image

ρ(q,img1)=0.2 ρ(q,img2)=0.5 ρ(q,img3)=0.8

ρ(img1,img1)=0 ρ(img1,img3)=0.3 ρ(img1,imgN)=0.9

ρ(img2,img2)=0 ρ(img3,img1)=0.3 ρ(img2,img3)=0.7

Contextual
Information
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Problem Definition

Image Descriptor:

Let D be an image descriptor. An image descriptor can be
defined [13] as a tuple (ε, ρ):

ε: Î → Rn is a function, which extracts a feature vector vÎ

from an image Î ;

ρ: Rn ×Rn → R is a distance function that computes the
distance between two images according to the distance
between their corresponding feature vectors.

The distance between two images imgi and imgj is given by the
value of ρ(ε(imgi ), ε(imgj )).
The notation ρ(i , j) is used for readability purposes.
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Problem Definition

Image Retrieval Model:

Let C={img1, img2, . . . , imgn} be an image collection, where
n is the size of the collection.

Let ρ(i , j) denotes the distance between two images imgi and
imgj , according to a given image descriptor.

Let τq=(img1, img2, . . . , imgns ) be a ranked list, which can
be defined as a permutation of the subset Cs ⊂ C.

The subset Cs contains the ns most similar images to query
image imgq, such that and |Cs | = ns .

Taking every image imgi ∈ C as a query image imgq, a set of
ranked lists R = {τ1, τ2, . . . , τn} can be computed.
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Problem Definition

Unsupervised Distance Learning - Distances:

The objective is to define a function fd which takes a distance
matrix A as the input and computes a new and more effective
distance matrix Â:

Â = fd (A)

Unsupervised Distance Learning - Ranked lists:

The objective is to define a function fr which takes a set of ranked
lists R as the input and computes a new and more effective set of
ranked lists R̂:

R̂ = fr (R)
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Unsupervised Methods for Image Retrieval

Related Work:

Diverse Taxonomy according to the approach:
Graph Transduction [88]
Diffusion Process [89, 86]
Affinity Learning [90]
Contextual Similarity/Dissimilarity Measures [27]
Context-Sensitive Similarity [87]
Unsupervised Metric Learning [28]
Re-Ranking and Rank Aggregation [23, 58, 57]
Unsupervised Manifold Learning [68, 61]

Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

Motivation and Content-Based Image Retrieval
Unsupervised Methods for Image Retrieval
Formal Problem Definition and Related Work

Unsupervised Methods for Image Retrieval

Related Work:

Two main categories:
Diffusion Process

Use distance information for defining a graph
Spread the affinities through the graph
Effective, but require expensive matrix operations

Rank-Based Algorithms

Consider rank information, reducing computational costs
Excellent tradeoff effectiveness × efficiency
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Rank-based Unsupervised Learning for Image Retrieval

Various rank-based methods using different strategies: rank
correlation measures, graphs, recommendation, Cartesian
product, etc.

Some representative methods:

Unsupervised Methods for Image Retrieval

RL-Sim Algorithm [23, 58]

Unsupervised Manifold Learning By Reciprocal kNN
Graph [68]

Unsupervised Manifold Learning By Correlation Graph [61]

RL-Recommendation Algorithm [84]

Hypergraph Manifold Ranking
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RL-Sim Algortihm

RL-Sim Algorithm: Ranked Lists Similarities [58]

Main Ideas:

Ranked lists are a rich source of contextual information
They establishes a relationship among all collection images and
not only pairs of images

Based on the similarity between ranked lists, a more
effective distance can be computed
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RL-Sim Algortihm

Iterative Contextual Distance Measure:

A distance measure is used to compute Ranked Lists
(ρ→ RLs)

Comparison between Ranked Lists can lead to more effective
distance measures (RLs → ρ)

The process can be iteratively repeated

A new contextual distance measure is iteratively learned in a
unsupervised setting

The measure is able to incorporate the contextual
information, improving retrieval results.
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RL-Sim Algortihm

Contextual Distance Measure:

Let N (i) be the neighborhood set of image imgi .

Let d(τi , τj , k) denote a given distance measure for comparing
top k lists give by the neighborhood set.

A non-iterative contextual distance measure can be defined as:

ρc(imgi , imgj ) = d(τi , τj , k) (1)

Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

RL-Sim Algorithm
Manifold Learning By Reciprocal kNN Graph
Manifold Learning By Correlation Graph
RL-Recommendation Algorithm
Hypergraph Manifold Ranking

RL-Sim Algortihm

Contextual Distance Measure:

Let τ
(t)
i be the top k list for image imgi at iteration t.

We can define an iterative contextual measure as follows:

ρ
(t+1)
c (imgi , imgj ) = d(τ

(t)
i , τ

(t)
j , k) (2)

Once the effectiveness of the contextual distance measure
improves, k can be increased:

ρ
(t+1)
c (imgi , imgj ) = d(τ

(t)
i , τ

(t)
j , k + t) (3)

After T iterations, a definitive new distance is computed.
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RL-Sim Algortihm

Require: Original set of ranked lists R and parameters ks , T , λ
1: while t < T do
2: for all Ri ∈ R(t) do
3: counter ← 0
4: for all imgj ∈ Ri do
5: if counter ≤ λ then
6: A(t+1)[i , j ]← d(τi , τj , k)
7: else
8: A(t+1)[i , j ]← 1 + A(t)[i , j ]
9: end if

10: counter ← counter + 1
11: end for
12: end for
13: R(t+1) ← perfomReRanking (A(t+1))
14: k ← k + 1
15: t ← t + 1
16: end while
17: R̂ ← R(T )
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RL-Sim Algortihm

Neighborhood Sets:

Different approaches can be used for computing the top k lists :

k-Nearest Neighborhs

Mutual k-Nearest Neighborhs

(...)

others
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RL-Sim Algortihm

Comparing ranked lists:

Diverse rank correlation measures can be used [10]:

Intersection Metric

Kendall τ

Spearman ρ

Goodman

Jaccard

Rank Biased Overlap (RBO)

Jaccardl

Kendall τw
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RL-Sim Algortihm

Intersection Metric:

Distance between two top k lists τi and τi

Proposed in [17] aiming at capturing the cumulative overlap
at increasing depths (similarity measure):

ψ(τi , τj , k) =
∑k

kc=1 | N (i , kc) ∩N (j , kc) |
k

(4)

Since we are interested in a distance measure, we define dψ as
follows:

dψ(τi , τj , k) =
1

1 + ψ(τi , τj , k)
(5)
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RL-Sim Algortihm

Intersection Metric:
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RL-Sim Algortihm

Iterative Visual Results:
Query image (in green)
Wrong results (in red)
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Experimental Evaluation - Intersection Metric

Shape Descriptors - MPEG-7 dataset

Positive gains ranging from +4.14% to +26.63%, considering
MAP.

Descriptor Score (MAP) kNN Gain M-kNN Gain

SS [14] 37.67% 43.06% +14.31% 47.70% +26.63%

BAS [4] 71.52% 74.57% +4.25% 78.16% +9.28%

IDSC [38] 81.70% 86.75% +6.18% 87.67% +7.31%

CFD [51] 80.71% 88.97% +10.23% 90.78% +12.48%

ASC [39] 85.28% 88.81% +4.14% 90.88% +6.57%

AIR [22] 89.39% 93.54% +4.64% 93.52% +4.62%
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Experimental Evaluation - Intersection Metric

Color Descriptors - Soccer Dataset

Positive gains ranging from +4.40% to +20.28%, considering
MAP scores.

Descriptor Score (MAP) kNN Gain M-kNN Gain

GCH [77] 32.24% 33.66% +4.40% 33.84% +4.96%

ACC [24] 37.23% 43.54% +16.95% 44.78% +20.28%

BIC [75] 39.26% 43.45% +10.67% 44.08% +12.28%
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Unsupervised Manifold Learning By Reciprocal kNN Graph

Main Ideas:

The Reciprocal kNN Graph is mainly based on the information
encoded in the top positions of the ranked lists.

The algorithm uses:

The reciprocal nearest neighbor references (Reciprocal kNN
Score);
The graph structure considering all references among images
at top positions of ranked lists (Authority Score and
Collaborative Score).
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Unsupervised Manifold Learning By Reciprocal kNN Graph

Main Ideas:

The Reciprocal kNN Graph is mainly based on the information
encoded in the top positions of the ranked lists.

The algorithm uses:

The reciprocal nearest neighbor references (Reciprocal kNN
Score);
The graph structure considering all references among images
at top positions of ranked lists (Authority Score and
Collaborative Score).
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Authority Score:

Motivation: to estimate the quality of a ranked list.

An accurate ranked list has their top images referencing to
each other at the top positions of their ranked lists.

As(q, k) =
∑i∈N (q,k) ∑j∈N (i ,k) fin(j , q)

k2
, (6)

where fin returns 1 if imgj ∈ N (q, k) and 0 otherwise.
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Authority Score:
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Collaborative Score:

Motivation: to exploit contextual information encoded in all
ranked lists, according to its authority.

If two images appears at top positions of a ranked list with
high authority, they are probably similar.

Cs(q, i , k) =
k

∑
c=1

∑
j∈C

As(j , c)2 × fin(q, i , j), (7)

where fin returns 1 if imgq, imgi ∈ N (j , k) and 0 otherwise.
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Collaborative Score:
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Unsupervised Methods for Image Retrieval

Reciprocal kNN Score:

Motivation: to exploit the reciprocal neighborhood as a
stronger indication of similarity.

Give the position from which images became reciprocal
neighbors.

Rs(q, i) =
max(τq(i), τi (q))

ns
. (8)
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Reciprocal kNN Score:
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Unsupervised Methods for Image Retrieval

Reciprocal kNN Distance:

The Reciprocal kNN Distance uses the Collaborative (global)
and the Reciprocal kNN (local) scores for computing the new
distance.

The images with zero collaborative score keep the distance
between them as their current ranking.

ρr (q, i) =
Rs(q, i)

1 + Cs(q, i , k)
. (9)
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Reciprocal kNN Distance:
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Unsupervised Methods for Image Retrieval

Iterative Reciprocal kNN Distance:

Based on the distance ρr , the set of ranked lists R is updated

The process can be iteratively repeated. We can define an
iterative distance measure as follows:

ρ
(t+1)
r (q, i) =

R
(t)
s (q, i)

1 + C
(t)
s (q, i , k + t)

. (10)
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Iterative Visual Results:
Query image (in green)
Wrong results (in red)
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Two moons dataset: Ideal distance
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Two moons dataset: Euclidean Distance
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Two moons dataset: Reciprocal kNN Distance
Impact on distances after 1 iteration
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Convergence Analysis
Compute while the quality of ranked lists is improved
Convergence Score: average Authority Score
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Experimental Evaluation - Shape

Shape Descriptors

Positive gains ranging from +8.54% to +37.99%, considering
MAP.

Descriptor Type Dataset Score
(MAP)

Reciprocal
kNN Graph

Gain

SS [14] Shape MPEG-7 37.67% 51.98% +37.99%
BAS [4] Shape MPEG-7 71.52% 82.01% +14.67%
IDSC [38] Shape MPEG-7 81.70% 91.16% +11.58%
ASC [39] Shape MPEG-7 85.28% 93.15% +9.23%
CFD [51] Shape MPEG-7 80.71% 94.12% +16.62%
AIR [22] Shape MPEG-7 89.39% 97.02% +8.54%
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Experimental Evaluation - Color

Color Descriptors

Positive gains ranging from +4.50% to +15.33%, considering
MAP scores.

Descriptor Type Dataset Score
(MAP)

Reciprocal
kNN Graph

Gain

GCH [77] Color Soccer 32.24% 33.69% +4.50%
ACC [24] Color Soccer 37.23% 42.11% +13.11%
BIC [75] Color Soccer 39.26% 45.28% +15.33%
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Experimental Evaluation - Texture

Texture Descriptors

Positive gains ranging from +3.85% to +15.16%, considering
MAP scores.

Descriptor Type Dataset Score
(MAP)

Reciprocal
kNN Graph

Gain

LBP [45] Texture Brodatz 48.40% 51.05% +5.48%
CCOM [30] Texture Brodatz 57.57% 66.30% +15.16%
LAS [78] Texture Brodatz 75.15% 78.04% +3.85%
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Unsupervised Manifold Learning by Correlation Graph and
Strongly Connected Components

Main Ideas:

The edges defined by the Correlation Graph provide a very
strong indication of similarity among images (specially for
high correlation thresholds).

However, although very precise, the edges include a very small
neighborhood.

We aim at expanding the similarity neighborhood, but still
considering the geometry of the dataset manifold, by using
SCCs .

Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

RL-Sim Algorithm
Manifold Learning By Reciprocal kNN Graph
Manifold Learning By Correlation Graph
RL-Recommendation Algorithm
Hypergraph Manifold Ranking

Unsupervised Manifold Learning by Correlation Graph and
Strongly Connected Components

Contribution:

A novel Unsupervised Manifold Learning Algorithm based on the
Correlation Graph and Strongly Connected Components (SCCs).

The proposed algorithm computes a new distance which takes
into account the intrinsic geometry of the dataset
manifold.

Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

RL-Sim Algorithm
Manifold Learning By Reciprocal kNN Graph
Manifold Learning By Correlation Graph
RL-Recommendation Algorithm
Hypergraph Manifold Ranking

Correlation Graph Motivation

Main Steps:

1 Constructing a graph representation of the dataset by
exploiting the distance correlation between kNN constrained
by a correlation threshold

2 Strongly Connected Components (SCCs) of the graph are
analyzed with the aim of discovering the intrinsic geometry of
the dataset manifold ;

3 A similarity score combines information from the Correlation
Graph Adjacency and Strongly Connected Components;

4 A new Correlation Graph Distance is computed based on
the similarity score.
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Correlation Graph

Graph Definition:

Given a directed graph G = (V , E ), the set of vertices V is
defined by the image collection C, such that each image is
represented by a node and V = C.

The edge set E is defined considering the distances correlation
among images at the top ns positions of each ranked list:

E = {(imgq, imgj ) | τq(j) 6 ns ∧ cor(q, j) > tc},
cor(q, j) is the correlation score between imgq and imgj
tc is the correlation threshold considered.
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Correlation Graph

Correlation Score:

The correlation score cor(q, j) is computed by the Pearson’s
Correlation Coefficient, considering the distances to the kNN.

Let Nk(q) be the set containing the k-nearest neighbors to
given image imgq and Nk(q, j) = Nk(q) ∪Nk(j).

Vectors X and Y contain the distances from images imgq,
imgj to imgi ∈ Nk(q, j):

Xi = ρ(q, i) and Yi = ρ(j , i)

cor(q, j) =
∑ku

i=1(Xi − X )(Yi − Y )√
∑ku

i=1(Xi − X )2

√
∑ku

i=1(Yi − Y )2
. (11)
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Correlation Graph

Positions:

Union

Pearson Correlation Coefficient:

Graph
Edge:

...

0.0

0.2

0.3

0.5

...

...
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Correlation Graph

Strongly Connected Components (SCCs)

The Strongly Connected Components of a directed graph are
defined by subgraphs that are themselves strongly connected.

Every vertex is reachable from every other vertex.

SCCs Computation

Each SCC is defined as a set of images Si , computed using
Tarjan’s [79] Algorithm.

The overall output of the algorithm is a set of SCCs
S = {S1,S2, . . . ,Sm}
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Correlation Graph

Strongly Connected Components (SCCs):

Sets of similar images
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Correlation Graph Distance - Algorithm

Require: Correlation Graph G = (V , E ), Set of SCCs S
Ensure: Correlation Graph Similarity Score Wi ,j

1: tc ← tstart

2: while tc 6 1 do
3: { Correlation Graph Adjacency }
4: for all imgq ∈ V do
5: for all imgi , imgj ∈ E (q) do
6: Wi ,j ←Wi ,j + tc

7: end for
8: end for
9: { Strongly Connected Components }

10: for all Sc ∈ S do
11: for all imgi , imgj ∈ Sc do
12: Wi ,j ←Wi ,j + tc

13: end for
14: end for
15: tc ← tc + tinc

16: end while
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Correlation Graph Distance

The similarity score Wi ,j uses information from both Correlation
Graph Adjacency and Strongly Connected Components (SCCs).

Correlation Graph Distance

Based on the similarity score Wi ,j , the Correlation Graph Distance
ρc(i , j) is computed:

ρc(i , j) =
1

1 + Wi ,j
. (12)
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Example: Euclidean Distance
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Two moon data set: Euclidean Distance.

Red neighbors
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Example: Intermediary Correlation Graph Structures
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Two moons data set: Correlation Graph at an intermediary threshold.

Red adjacency
Red SCC

Blue adjacency
Blue SCC

Other nodes
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Example: Correlation Graph Distance
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Two moon data set: Correlation Graph Distance.

Red neighbors
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Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

RL-Sim Algorithm
Manifold Learning By Reciprocal kNN Graph
Manifold Learning By Correlation Graph
RL-Recommendation Algorithm
Hypergraph Manifold Ranking

Experimental Evaluation

Experimental Evaluation

Evaluation of impact of parameters

4 different datasets

13 CBIR descriptors

shape, color, and texture

Statistical tests (t-tests)

Comparison with state-of-the-art approaches

Results

Effectiveness gains up to +34.54%.

Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

RL-Sim Algorithm
Manifold Learning By Reciprocal kNN Graph
Manifold Learning By Correlation Graph
RL-Recommendation Algorithm
Hypergraph Manifold Ranking

Impact of Parameter on Effectiveness
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Impact of Algorithm on Distances - Similar Images
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Impact of Algorithm on Distances - Non-Similar Images
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Experimental Evaluation - Shape

Shape Descriptors

Positive gains ranging from +7.25% to +34.54%, considering
MAP scores.

Descriptor Dataset Score Correlation Gain Statistical
(MAP) Graph Significance

Distance 99%

SS [14] MPEG-7 [31] 37.67% 50.68% +34.54% •
BAS [4] MPEG-7 [31] 71.52% 81.97% +14.61% •

IDSC [38] MPEG-7 [31] 81.70% 89.39% +9.41% •
CFD [51] MPEG-7 [31] 80.71% 91.93% +13.90% •
ASC [39] MPEG-7 [31] 85.28% 92.53% +7.25% •
AIR [22] MPEG-7 [31] 89.39% 97.98% +9.61% •
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Experimental Evaluation - Shape

Shape Descriptors

Positive gains ranging from +6.90% to +29.28%, considering
Bull’s Eye Score (Recall@40).

Shape Bull’s Correlation Gain
Descriptor Eye Graph

Score Distance

SS [14] 43.99% 56.88% +29.28%

BAS [4] 75.20% 86.52% +15.05%

IDSC [38] 85.40% 92.20% +7.80%

CFD [51] 84.43% 94.27% +11.65%

ASC [39] 88.39% 95.22% +7.73%

AIR [22] 93.67% 100% +6.90%
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Experimental Evaluation - Color

Color Descriptors

Positive gains ranging from +7.29% to +21.51%, considering
MAP scores.

Descriptor Dataset Score Correlation Gain Statistical
(MAP) Graph Significance

Distance 99%

GCH [77] Soccer [85] 32.24% 34.59% +7.29% •
ACC [24] Soccer [85] 37.23% 45.24% +21.51% •
BIC [75] Soccer [85] 39.26% 47.37% +20.65% •
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Experimental Evaluation - Texture

Texture Descriptors

Positive gains ranging from +6.28% to +12.44%, considering
MAP scores.

Descriptor Dataset Score Correlation Gain Statistical
(MAP) Graph Significance

Distance 99%

LBP [45] Brodatz [8] 48.40% 50.12% +3.55% •
CCOM [30] Brodatz [8] 57.57% 64.73% +12.44% •

LAS [78] Brodatz [8] 75.15% 79.87% +6.28% •
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Experimental Evaluation - Object Retrieval

Object Retrieval - Color Descriptors

Positive gains ranging from +4.39% to +18.10%, considering
MAP scores.

Descriptor Dataset Score Correlation Gain
(MAP) Graph

Distance

BIC [75] ETH-80 [32] 49.72% 54.20% +9.01%

ACC [24] ETH-80 [32] 48.50% 50.63% +4.39%

CSD [43] ETH-80 [32] 48.46% 57.23% +18.10%

GCH [77] ETH-80 [32] 41.62% 45.07% +8.29%
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Comparison to State-of-the-Art

Algorithm Descriptor(s) Bull’s Eye
Score

LCDP [89] IDSC [38] 93.32%

Shortest Path Propagation [87] IDSC [38] 93.35%

Mutual kNN Graph [29] IDSC [38] 93.40%

Pairwise Recommendation [57] ASC [39] 94.66%

RL-Sim [58] ASC [39] 94.69%

Correlation Graph Distance ASC [39] 95.22%
LCDP [89] ASC [39] 95.96%

Tensor Product Graph [90] ASC [39] 96.47%

Self-Smoothing Operator [28] SC [6] +IDSC [38] 97.64%

Pairwise Recommendation [57] CFD [51]+IDSC [38] 99.52%

RL-Sim [58] AIR [22] 99.94%

Tensor Product Graph [90] AIR [22] 99.99%

Correlation Graph Distance AIR [22] 100%
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RL-Recommendation Algorithm: Motivation

RL-Recommendation: Motivation

Various methods have demonstrated the high potential for
producing relevant effectiveness gains.

Most of approaches consider only effectiveness.

However, for real-word applications, the three aspects should
be considered:

Effectiveness: quality of the retrieval process,
Efficiency: the time spent to obtain the results
Scalability: the capability of handling growing image
collections
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RL-Recommendation Algorithm

Contribution:

A novel a novel unsupervised distance learning method for
improving the effectiveness of image retrieval tasks.

The proposed method is scalable and efficient as it exploits
parallel and heterogeneous computing on CPU and GPU
devices.
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RL-Recommendation Algorithm

Main Steps:

1 Computing the Sparse Distance Matrix:
The input of the algorithm is a set of ranked lists
The recommendation are performed based on distance scores
Ranked lists are used for computing a sparse distance matrix,
maintaining scalability properties

2 Computing the Cohesion Measure:
Density of references among images at top positions
Unsupervised estimation of effectiveness of ranked lists
Also used as convergence criterion
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RL-Recommendation Algorithm

Main Steps:

3 Performing Unsupervised Recommendations:
Top positions of ranked lists results with higher accuracy
Two images at top position of a ranked lists are recommended
to each other
Recommendations indicated decrease of distance between
images

4 Sorting Ranked Lists:
Recommendations update distance among images
Ranked lists must reflect the updates
Sorting of ranked lists according to new distances
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Computing Sparse Distance Matrix

Computing distances from ranking information:

Distance is computed based on the sum of the reciprocal
references at their ranked lists.
ρ(q, i) = τq(i) + τi (q)

Only images at top-L positions have their distances computed

Sparse distance matrix
Scalability purposes

An algorithm was proposed for non-symmetric references
between ranked lists
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Computing Sparse Distance Matrix

Require: Blank matrix A and set of ranked lists R
Ensure: Processed sparse distance matrix A

1: for all imgq ∈ C do
2: for all imgi ∈ τq do
3: Aqi ← 2× L
4: Aiq ← 2× L
5: end for
6: end for
7: for all imgq ∈ C do
8: for all imgi ∈ τq do
9: Aqi ← Aqi + τq(i)− L

10: end for
11: end for
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Unsupervised Recommendations

k

k>>N

(cohesion)

Recommendation
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Cohesion Measure

Cohesion Measure

Unsupervised estimation of the effectiveness of ranked lists

High cohesion scores indicate that ranked lists have more
authority to recommend

Density of references among images at top positions of a
given ranked list

Convergence criterion:

The algorithm is iteratively computed while cohesion is
increasing ( ≥ ε)
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Parallel Design

Parallel Design and Heterogeneous Computing

OpenCL:
Standard for parallel and heterogeneous computing
Evaluation on CPU and GPU devices

Paralell:

OpenCL

Serial:
C/C++

  Fill Matrix A
       Part I
 (n workitems)

Global SynchronizationGlobal Synchronization

  Fill Matrix A
       Part II
 (n workitems)

Sum
 Cohesions

Perform
Recommendations

(n workitems)

Update/Sort 
Ranked Lists

(n workitems)

Compute
Cohesions

 (n workitems)

Repeat until convergence

RLRecommendation Algorithm – Parallel Design

k=k+1
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Experimental Evaluation

Experimental Evaluation

Impact of parameters

Five public datasets

Ranging from 280 to 70,000 images

Effectiveness evaluation

Efficiency evaluation

Serial and Parallel, CPU and GPU

Scalability evaluation

Comparison with state-of-the-art approaches

Results

Effectiveness gains up to +29%.
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Impact of Parameter on Effectiveness: k × ε
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Impact of Parameter on Effectiveness: L
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Effectiveness Evaluation - Shape

Shape Descriptors -Shape Dataset (1,400 images)

Positive gains ranging from +7.11% to +29.22%, considering
MAP scores.

Descriptor Dataset Original Pairwise RL-Recom. RL-Recom. Gain
MAP Recom. [57] Serial Parallel GPU

SS [14] MPEG-7 37.67% 39.90% 48.68% 48.64% ± 0.0062 +29.22%
BAS [4] MPEG-7 71.52% 77.65% 79.58% 79.57% ± 0.0047 +11.27%

IDSC [38] MPEG-7 81.70% 86.83% 88.80% 88.78% ± 0.0067 +11.86%
CFD [51] MPEG-7 80.71% 91.38% 91.39% 91.37% ± 0.0055 +13.23%
ASC [39] MPEG-7 85.28% 91.80% 91.34% 91.32% ± 0.0050 +7.11%
AIR [22] MPEG-7 89.39% 95.50% 96.12% 96.12% ± 0.0071 +7.53%
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Effectiveness Evaluation - Color

Color Descriptors - Soccer Dataset (280 images)

Positive gains ranging from +6.64% to +15.00%, considering
MAP scores.

Descriptor Dataset Original Pairwise RL-Recom. RL-Recom. Gain
GCH [77] Soccer 32.24% 32.35% 34.38% 34.44% ± 0.0340 +6.64%
ACC [24] Soccer 37.23% 40.31% 41.23% 41.20% ± 0.0239 +10.74%
BIC [75] Soccer 39.26% 42.64% 45.15% 45.17% ± 0.0693 +15.00%

Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

RL-Sim Algorithm
Manifold Learning By Reciprocal kNN Graph
Manifold Learning By Correlation Graph
RL-Recommendation Algorithm
Hypergraph Manifold Ranking

Effectiveness Evaluation - Texture

Texture Descriptors - Brodatz Dataset (1,776 images)

Positive gains ranging from +5.91% to +11.76%, considering
MAP scores.

Descriptor Dataset Original Pairwise RL-Recom. RL-Recom. Gain
LBP [45] Brodatz 48.40% 51.92% 51.26% 51.24% ± 0.0047 +5.91%

CCOM [30] Brodatz 57.57% 66.46% 64.34% 64.32% ± 0.0059 +11.76%
LAS [78] Brodatz 75.15% 80.73% 79.71% 79.71% ± 0.0031 +6.07%
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Effectiveness Evaluation - Natural Image Retrieval

Natural Image Retrieval - N-S Dataset (10,200 images)

Positive gains ranging from +3.23% to +13.39%, considering
MAP scores.

Descriptor Type Original RL- Gain
Score Recom.

ACC [24] Color 3.36 3.53 +5.06%
BIC [75] Color 3.04 3.15 +3.62%

CEED [11] Color/Text. 2.61 2.72 +4.21%
FCTH [12] Color/Text. 2.73 2.80 +2.56%
JCD [91] Color/Text. 2.79 2.88 +3.23%
SIFT [41] Local 2.54 2.88 +13.39%
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Effectiveness Evaluation - Object Retrieval

Natural Image Retrieval - ALOI Dataset (70,000 images)

Positive gains ranging from +11.67% to +23.42%, considering
MAP scores.

Descriptor Original Baseline: RL- Gain
MAP RL-Sim [23] Recom.

ACC [24] 44.15% 46.12% 50.11% +13.50%
BIC [75] 71.95% 78.84% 80.35% +11.67%
CCV [47] 47.77% 50.96% 53.52% +12.04%
GCH [77] 50.87% 53.14% 55.81% +9.71%
LCH [42] 58.85% 66.03% 72.63% +23.42%
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Effectiveness Evaluation: Visual Results
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Efficiency Evaluation - Various Datasets

Efficiency Evaluation

Serial, Parallel CPU and GPU

Algorithm Exec. Device Soccer [85] MPEG-7 [31] Brodatz [8] N-S Dataset [44]
Pairwise Recom. [57] Serial CPU 0.1149 ± 0.00018 0.3663 ± 0.00094 0.6672 ± 0.00140 14.802 ± 0.11059

RL-Recommendation Serial CPU 0.0607 ± 0.00000 0.1462 ± 0.00021 0.1108 ± 0.00102 0.1868 ± 0.00018

RL-Recommendation Parallel GPU1 0.1380 ± 0.00642 0.1401 ± 0.00250 0.1004 ± 0.00412 0.0582 ± 0.00633

RL-Recommendation Parallel GPU2 0.1538 ± 0.01056 0.2438 ± 0.00371 0.2376 ± 0.00326 0.3754 ± 0.00604

RL-Recommendation Parallel CPU1 0.0131 ± 0.00100 0.0319 ± 0.00043 0.0299 ± 0.00129 0.1166 ± 0.00085

RL-Recommendation Parallel CPU2 0.0128 ± 0.00104 0.0290 ± 0.00075 0.0284 ± 0.00114 0.1149 ± 0.00055

Memory Transfer Model: 1Write Buffer; 2Map Buffer.
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Efficiency Evaluation: different executions
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General run time comparison on MPEG-7 (logarithmic scale)
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Effectiveness and Efficiency Evaluation: MPEG-7 dataset

90

90.5

91

91.5

92

10-2 10-1 100 101

M
A

P
 (

%
)

Time (s) (logarithmic scale)

Comparison of effectiveness and efficiency on MPEG-7 dataset

RL-Sim Serial 
RL-Sim Parallel 

Pairwise Recom. Serial 
RL-Recom. Serial 

RL-Recom. Parallel GPU 
RL-Recom. Parallel CPU 
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Scalability Evaluation: ALOI dataset
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Comparison to State-of-the-Art

Shape Descriptors
DDGM [81] - 80.03%
CFD [51] - 84.43%
IDSC [38] - 85.40%
SC [6] - 86.80%
ASC [39] - 88.39%
AIR [22] - 93.67%

Post-Processing Methods
Algorithm Descriptor(s) Score
Locally C. Diffusion Process [89] IDSC 93.32%
Shortest Path Propagation [87] IDSC 93.35%
Mutual kNN Graph [29] IDSC 93.40%
RL-Sim [58] CFD 94.13%
RL-Recommendation CFD 94.38%
RL-Recommendation ASC 94.40%
Locally C. Diffusion Process [89] ASC 95.96%
Self-Smoothing Operator [28] SC+IDSC 97.64%
Co-Transduction [5] SC+IDSC 97.72%
Self-Smoothing Operator [28] SC+IDSC+DDGM 99.20%
Pairwise Recommendation [57] CFD+IDSC 99.52%
RL-Recommendation AIR 99.78%
Tensor Product Graph [90] AIR 99.99%
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Hypergraph Manifold Ranking

Log-based Hypergraph of Ranking References:

Hypergraphs are a generalization of graphs

Graphs often model pairwise relationships

Many relationships among objects are more complex than
pairwise

Main ideas:
Each query defines a hyperedge
Similarity between images is given by similarity between
hyperedges
Cartesian product among elements in a hyperedge
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Hypergraph Manifold Ranking

A. Rank Normalization B. HypergraphConstruction
C. HyperedgesSimilarities

D. Cartesian Product of Hyperedges
e3

E. Hypergraph-basedSimilarity
UnsupervisedHypergraphManifoldRanking:
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Hypergraph Manifold Ranking

v1
v2

v4
e1

e2

e3

e4v3
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Hypergraph Manifold Ranking

Log-based Hypergraph of Ranking References:

h(ei , vj ) =

{
r(ei , vj ), if vj ∈ ei ,
0, otherwise.

(13)

r(ei , vj ) = ∑
ox∈N (i ,k)∧oj∈N (x ,k)

wp(i , x)× wp(x , j),
(14)

wp(i , x) = 1− logk τi (x). (15)
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Hypergraph Manifold Algorithm

o1 o3

o3

τ1 o2τ3
τ2 o2

o2 o1

o3 o1

e1wp(v1,v3)
Hyperedge Definition:

o4

o4

o4

Ranking Results: k=3 v1

v3

v2wp(v1,v2)
v1v2

v1v3

wp(v3,v2)

wp(v2,v2)

r(e1,v2) = wp(o1,o3) x wp(o3,o2) + 
Hyperedge vs  Vertice

 wp(o1,o2) x wp(o2,o2) 
r(e1,v2) = (1-log32) x (1-log32) +  (1-log33) x (1-log31) 
r(e1,v2) = (0.63) x (0.63) +  (0) x (1) 
r(e1,v2) = 0.40 
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Hypergraph Manifold Ranking

Hyperedge Weights

Nh(q, k) = {S ⊆ eq, |S| = k ∧ ∀oi ∈ S , oj ∈ eq − S :
h(q, i) > h(q, j)}.

(16)

w(ei ) = ∑
j∈Nh(i ,k)

h(i , j). (17)
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Hypergraph Manifold Ranking

Hyperedge Similarities

Sh = HHT (18)

Sv = HT H (19)

S = Sh ◦ Sv (20)
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Hypergraph Manifold Ranking

Cartesian Product of Hyperedge Elements

eq × ei = {(vx , vy ) : vx ∈ eq ∧ vy ∈ ei}. (21)

p(eq, vi , vj ) = w(eq)× h(eq, vi )× h(eq, vj ). (22)

c(i , j) = ∑
eq∈E∧(vi ,vj )∈eq

2

p(vi , vj ) (23)
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Hypergraph Manifold Ranking

Hypergraph-Based Similarity

W = C ◦ S (24)

Hypergraph Manifold Ranking

Admits an efficient algorithm solution

Can be used for rank aggregation
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Hypergraph Manifold Ranking

Experimental Results

Table: Comparison with state-of-the-art on the Holidays [26] dataset
(MAP score).

MAP scores for state-of-the-art methods.
Tolias Paulin Qin Zheng Sun

et al. [80] et al. [48] et al. [73] et al. [94] et al. [76]

82.20% 82.90% 84.40% 85.20% 85.50%

Zheng Pedronette Iscen Li Liu
et al. [93] et al. [66] et al. [25] et al. [37] et al. [40]

85.80% 86.19% 87.5% 89.20% 90.89 %
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Hypergraph Manifold Ranking

Experimental Results

Table: Comparison with state-of-the-art on the Holidays [26] dataset
(MAP score).

MAP scores for the proposed method
Baseline: Proposed:

Descriptor Graph LHRR
Fusion [92]

ACC 66.42% 71.61%
CNN-Caffe 66.79% 70.81%

CNN-Overfeat 83.79% 85.54%
CNN-OLDFP 89.00 % 89.15%

ACC+CNN-Caffe 71.02% 81.84%
ACC+CNN-Overfeat 76.55% 86.35%

ACC+CNN-Caffe+CNN-Overfeat 80.06% 87.62%
CNN-OLDFP+CNN-Overfeat 79.36% 90.94%
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Unsupervised Distance Learning Framework (UDLF)

Contribution:

A common software environment to easily implement, use, and
evaluate unsupervised learning methods

The framework defines a general model, allowing the
implementation of different methods

Easy tool to execute, evaluate and compare unsupervised
methods

The retrieval results can be represented by distance measures
or ranked lists
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Unsupervise Distance Learning Framework (UDLF)

UDLF is implemented on C++ trough an object-oriented
paradigm

The framework is independent of external libraries and
portable among different operation systems

No installation is required. Both source code and binary
releases are available

Different executions can be done just by changing a
configuration file

The framwork includes evaluation aspects, computing
effectiveness measures (Precision, Recall, MAP)
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Overall Organization

Contextrr

-l: int
-k: int
-t: int
-nByK: int
-matrixW: FloatArray

+Contextrr()
-setMatrixW()
-contextImgProc()
-processMatrixWUpdates()
-normalizeMinDistances()
-execContextImgProc()
-execComputeNewDists()
-execSortRankedLists()

RkGraph

-k: int
-t: int
-l: int
-p: double
-smetric: DoubleArray
-adj: DoubleArray

+RkGraph()
-initGraphStructure()
-runIteration()
-computeNewDists()
-execSortRankedLists()

Cprr

-l: int
-k: int
-t: int
-imgRef: IntegerArray
-posRef: IntegerArray

+Cprr()
-execFillPosMatrix()
-execSortRankedLists()
-execSortRankedListsZero()
-execSortRankedListsAgg()
-execCartProd()
-execReverseCartProd()
-execCleanRef()

None

-l: int

+None()

ReckNNGraph

-l: int
-k: int
-epsilon: double
-tmpMatrix: FloatArray
-posMatrix: IntegerArray

+ReckNNGraph()
-initializeMatrix()
-initializePositions()
-initializeDB()
-iterationReciprocalkNNGraph()
-computeIncrements()
-computeNewDB()
-updateModels()

RlRecom

-l: int
-k: int
-lambda: double
-epsilon: double
-cohesionVector: FloatArray

+RlRecom()
-execFillMatrix()
-execFillPosMatrix()
-execCalcCohesion()
-execPerformRecommendations()
-execSortRankedLists()

RlSim

-topK: int
-cK: int
-t: int
-metric: String

+RlSim()
-execUpdateDistances()
-execSortRankedLists()
-normalizeMinDistances()

Udl

#matrix: FloatArray
#rkLists: IntegerArray

+Udl()
+run()
#runUdlMethod()
#runFusionMethod()
#initDataStructuresUdl()
#initDataStructuresFusion()
#loadParameters()
#checkParameters()
#prepareInput()
#prepareOutput()
#readInputFile(String inputFile)
-readImagesList()
-generateExecutionLog()

Exec

-m_variables: HashMap<String; String>

+Exec()
+getInstance(): &Exec
+run()
+parseFile(String filename): Boolean
+getConfigVariable(String& dest, String variable)

Validation

+Validation()
+getInstance(): &Validation
+validate(): Boolean
-fillValidationMap(String filename): Boolean
-applyValidation(): Boolean

Time

+Time()
+addTime(timeval startTime, float currentTime): float
+getCurrentTime(): String

Type

+Type()
+convertToBoolean(String str): Boolean
+isInteger(String str): Boolean
+isIntegerPos(String str): Boolean
+isNumeric(String str): Boolean
+isBoolean(String str): Boolean
+numDigits(int number): Boolean

TxtFile

+TxtFile()
+printFile(String path)
+replace(String& str, String from, String to)

Effectiveness

-classes: HashMap<String; String>

+Effectiveness()
+readClassesFile(String classFile)
+computeMAPMeasure()
+computeRecall(int recallAt)
+fillPrecisionsMap(String precisionsToCompute)
+getClass(int x): String

CorrelationGraph

-l: int
-k: int
-correlation: String
-thStart: double
-thEnd: double
-thInc: double

+CorrelationGraph()
-runCorrelationGraphReRanking()
-computeCorrelationForKNN()
-initializeGraph()
-buildCorrelationGraph()
-buildSCC()
-computeFinalDistances()

uses

uses

uses

 uses

cal ls

uses

cal ls

Core

Methods

Evaluation

Utils

Class Division

Model::Main

Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

ULDF Execution Workflow
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UDLF Configuration

Configuration:

The framework can be configured by using a single file

The file is validated by the framework before execution

The configurations are divivided in 5 categories:

Category 1: General Configurations
Category 2: Input File Settings
Category 3: Output File Settings
Category 4: Evaluation Settings
Category 5: Method Parameters
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UDLF Configuration

C1. General Configurations:

C2. Input file settings:
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UDLF Configuration

C3. Output File Settings:

C4. Evaluation Settings:
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UDLF Configuration and Execution

C5. Method Parameters:

Framework execution:

./udlf [config.ini]

Different config files can be used for distinct executions
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Input/Output Data

Input/Output Data:

Simplicity and Flexibility

Text files (or HTML output)
Similarity information defined by configuration

Ranked Lists
Distance/Similarity Matrix

Make it part of the Retrieval Pipeline

Input and output files use the same format
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Input Data

List File:

List of images in the dataset

Also used to assign an identifier to each multimedia object
(line number)
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Input Data

Distances or Ranked Lists file:

Main input file: represents the retrieval results (distances or
ranked lists)

Ranked List (string file name or numeric id)

Distance/Similarity matrix (float separated by spaces)
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Input Data

Class File:

Indicates the class of each multimedia object

Used only for computing effectieveness measures

Precision, Recall, MAP
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Output Data

Log File

General information about the execution

Method and parameters used
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Output Data

Log File

Evaluation Results

Effectiveness (configured measures)
Efficiency (time)
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Output Data

Various formats available:

Ranked lists (string or numeric id)

Distance/Similrity Matrix (float spearated by space)

HTML:
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Output Data

Other visual examples

HTML:
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pyUDLF

pyUDLF

Wrapper for acessing ULDF methods in Python

https://github.com/UDLF/pyUDLF
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Discussion

In general:

Unsupervised Distance Learning methods can achieve
significant effectiveness gains for image retrieval tasks

Without the need of user intervention
Capacity of considering the intrinsic dataset geometry

Recent advances in effectiveness and scalability, enabling
real-world applications
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Discussion

What these methods have in common?
All the methods are rank-based approaches
The use of the ranked lists information represents an important
advantage: the top positions encodes the most relevant
information, reducing the computations costs.
The complexity of some rank-based algorithms is defined by
the re-sorting procedures at top L positions, therefore
O(n× L log L) or O(n) if L� N.
Various related approaches, which uses distance information
and diffusion processes, have typically computational
complexity of O(n3)
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Evolution of the methods:
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Evolution of the methods:
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Evolution of the methods:
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Discussion

Why to have various methods? Which method to use?

Each approach encodes the contextual information in a
specific way, producing different results in different situations.

One method can be more adequate for a descriptor or dataset
in particular

Different methods generate complementary information,
and therefore can be combined [55].
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Combination of Methods

Selection and Combination

Based on effectiveness and correlation

Original (ASC Descriptor)

ReckNNGraph

RL-Recommendation

Combination (ReckNNGraph + RL-Recommendation)
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Key Challenge in Machine Learning

Data hungry algorithms:

Excelent results!

Need for huge sets of training data

But how to train with less labeled data?

Or with no labeled data?
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Applications in Machine Learning

Several machine learning algorithms are based on similarity
between data elements

The use of unsupervised distance learning algorithms can
provide:

contextual information
more effective similarity measures

More effective similarity measures can lead to:

train better with less labeled data
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Applications in Machine Learning

Similarity pre-processing by unsupervised distance learning for
graph-based classification methods

Classification based in semi-supervised learning [7]

Classification based in supervised learning [1]

Data Collection

Particle Competition 
and Cooperation

Euclidean 
Distance

kNN 
Graph

Reciprocal
kNN Distance

Classification

[   ] 
Distance
Matrix

A=
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Applications in Machine Learning

Interative image retrieval based on semi-supervised
learning [69]

Unsupervised manifold learning as a step

Relevance
Feedback

Information

CBIR System
Interface

(2) User Interaction:
Relevance Feedback

(3) Supervised Learning:
Similarity Sets(1) Display of

Images

Unsupervised
Manifold 

Reciprocal kNN
Graph(4) SemiSupervised

Learning

(5) Active Learning: updated Ranked Lists, with the next most informative images.
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Applications in Machine Learning

Weakly supervised learning based on ranking information [72]

Label expansion based on rank correlation measures

Unsupervised Contextual Measure
Test SetTraining Set Expanded Training Set
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Applications in Machine Learning

Weakly supervised learning based on a rank-based
hypergraph [71]

Label expansion based on hypergraph measures
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Applications in Machine Learning

Similarity pre-processing for improved clustersing tasks [74]
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Applications in Machine Learning

Rank-based Self-Training for Classification on Graph
Convolutional Networks [67]

x4
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x1 x3

x5
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(X, A)

Input Layer

Labels

z4

z2
z1 z3

z5
z6 ...z7Hidden Layers

Output Layer

z2
z5
z3
z1
z6

...

Y1Y2

thr

Rank
SecondStage

FirstStage
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Z
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Applications in Machine Learning

Self-Supervised Clustering based on Graph Convolutional
Networks (Accepted on WACV 2023)
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Applications in Machine Learning

Impact of Self-Supervised Clustering on Data Distribution
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Applications in Other Domains

Different Tasks and Domains:

Time Series Retrieval [2]

Video Retrieval [3]

Image Multimodal Retrieval [60]

Multimedia Geocoding [35, 36, 33, 34]

Classifier Selection for Remote Sensing [18]

Image Segmentation [70]

Speaker Recognition [9]

Diagnostic Support in Medical Domain [46]
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Applications in Other Domains

Plant species identification based on semantic user
interaction [20]

Query Image Ranked Lists SURF Without RLSimA.

Query Image Ranked Lists SURF With RLSimB.

Ranked Lists SURF With Semantic Interactive Image Retrieval, after 1 questionC.
Query Image

Asparagaceae

The corolla is joined with the calyx? YES NO DON'T KNOW

Daniel Carlos Guimarães Pedronette Rank-based Unsupervised Learning for Image Retrieval



Introduction
Unsupervised Learning Algorithms

Unsupervised Distance Learning Framework
Discussion, Evolution and Combinations

Applications in Machine Learning and Other Domains

Applications in Other Domains

Plant species identification based times series [2]

Similarity among Time Series:
Neighborhood Similarity

Representation Contextual Similarity
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Applications in Other Domains

Person Re-Identification
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Applications in Other Domains: Medical Image Retrieval

Use of Rank-based Contextual Similarity for improving
effectiveness of medical image retrieval

Fusion of different features extracted from brain MRI images

Ranked lists before and after contextual similarity learning:

Figure: Diagnostic Support for Alzheimers Disease through Feature-Based
Brain MRI Retrieval and Unsupervised Distance Learning [46]
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Other Related Works

Other Related Tasks and Works:

Rank-based Semi-Supervised Classifier [83]

Graph Embedding [16]

Feature Selecton [82]

Re-Ranking for Regression [21]

Related References:
Parallel Design of Unsupervised Methods [62, 64, 63, 19]
Unsupervised Effectiveness Estimation [59]
Other Re-Ranking and Rank Aggregation
Algorithms [56, 65, 53, 50, 49, 51, 52, 54]
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Questions?

Thank you for your attention!
Questions?

Available at: http://www.ic.unicamp.br/~dcarlos
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