
Université Catholique de Louvain

Faculté des Sciences Appliquées

Unité de Gestion Industrielle

THE GRAPH EQUIPARTITION PROBLEM: OPTIMAL SOLUTIONS,

EXTENSIONS AND APPLICATIONS

Thèse présentée en vue de l’obtention du Grade de Docteur en Sciences Appliquées

par

Cid Carvalho de Souza

Promoteur: Professeur Laurence A. Wolsey

Louvain-La-Neuve, November 1993.

Université Catholique de Louvain

Faculté des Sciences Appliquées

Unité de Gestion Industrielle

THE GRAPH EQUIPARTITION PROBLEM: OPTIMAL SOLUTIONS,

EXTENSIONS AND APPLICATIONS

Thèse présentée en vue de l’obtention du Grade de Docteur en Sciences Appliquées

par

Cid Carvalho de Souza

Promoteur: Professeur Laurence A. Wolsey

Jury: Prof. G. de Ghellinck

Prof. M. Grötschel

Prof. R. Keunings

Prof. E. Loute

Prof. L. A. Wolsey

Louvain-La-Neuve, November 1993.

To Tania
and Lucas

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude to my supervisor Prof. Laurence A.
Wolsey, for his attention to my research in the last four years. His constant guidance and
encouragement have been essential for the accomplishment of this work. It has been a
pleasure and a privilege to have him as supervisor.

I am grateful to the members of my comittee for their helpful comments and suggestions:
Prof. Guy de Ghellinck (UCL), Prof. Martin Grötschel (Konrad-Zuse Zentrum, Berlin),
Prof. Roland Keunings (UCL) and Prof. Etienne Loute (Facultés St. Louis and UCL). I
have tried to incorporate all of their contributions to the final text of the thesis.

At different stages of this work, I have benefited from the collaboration of many people.

I would like to express my gratitude to Prof. Monique Laurent who has made possible
the extension of several of my old results in Chapter 2, either by combining them with
her own results or by suggesting me the good directions to follow. I also thank her for
helping me to keep my list of references on graph partitioning problems up to date.

I am very grateful to Robert Weismantel, Alexander Martin and to Carlos Ferreira from
the Konrad-Zuse Zentrum (Berlin). Not only they have kindly provided me with their
own implementation of a branch-and-cut code for graph partitioning problems, but also
they have given me a valuable assistance in many computational matters of Chapter 4.
Some of the results in Chapter 3 are part of our joint research project which has been a
very rewarding work.

I would like to thank Prof. Roland Keunings for introducing me to the combinatorial
problem treated in Chapter 5 which is at the origin of our joint research. I have deeply
appreciated his support, as well as that of other researchers of the Division of Applied
Mechanics (MEMA, UCL), along the project. Among the researchers of MEMA, I would
like to mention Olivier Zone, Alain Couniot and Denis VanderStraeten.

I am greatly indebted to Prof. Celso Ribeiro (PUC-RJ, Brazil) for his most special
friendship and continuous incentive. He has introduced me to Integer Programming and
Combinatorial Optimization and made possible my return to the academic life. Especially

in the hard moments, the support I had from him has gone far beyond I could have
expected and, perhaps, deserved.

I also thank Prof. Nelson Maculan (UFRJ, Brazil) and Prof. Yves Pochet (UCL) for
their support.

I would like to thank my friends and fellows at CORE: El-Houssaine Aghezzaf, Miguel
Constantino, Karen Aardal, Francisco Ramos, Peng Kuang-Kai and Patrick Watteyne for
stimulating discussions on various topics and for their constant encouragement.

I wish to thank all the secretaries at CORE who have helped me in many different ways.

My stay at CORE was financed by a fellowship from the Conselho Nacional de Pesquisa
e Desenvolvimento (CNPq) of Brazil. The financial support is greatly acknowledged and
certainly recognized as the enabling condition for all the rest.

Some of my travel expenses in Europe have been financed by the Science Training Pro-
gram (SC1-CT91-0620) of the European Economic Community and by the Fond National
pour la Recherche Scientifique (Belgium). These financial supports are also acknowledged.

I would like to take the opportunity to thank some friends with whom I shared so
many good moments in Louvain-La-Neuve: José Salim, Joseneide and their wonderfully
funny children; Márcio and Rosângela; Luiz Gutierrez and Hideko; João and Lili. Though
the enormous physical distance between us, other people have also given me an important
support. I thank them all and, in particular, I would like to mention Airton and Nadiméa.

I wish to express my gratitude to my parents Altair and Ingrid, my sister Clarisse and
my brother Ibá whose love have given me the strength to overcome so many obstacles in
my life.

Last, but not least, I would like to thank my wife Tania for her great love and unlimited
patience. I would have never been able to go so far in this adventure without her. I am
sorry for the high bill she had to pay. On the other hand, I am extremely happy for having
her as my coauthor in the (undoubtedly) most beautiful work I (we) have ever done: our
lovely son Lucas !

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Scope 1

1.2 Graph Theory Background 5

1.3 Integer Programming Formulations and Algorithms 9

1.4 Polyhedral Theory Background 17

1.4.1 Basic Definitions 17

1.4.2 Characterizing Facets 19

1.4.3 Separation and Optimization Problems 23

1.5 Literature Survey 25

1.6 Thesis Outline 31

2. VALID INEQUALITIES FOR THE EQUIPARTITION PROBLEM 35

2.1 Introduction 35

2.2 Models for Equipartition and Clustering Problems 37

2.3 Preliminary Results for the Equipartition and Cut Polytopes 42

2.4 The Path-Block Cycle Inequalities 46

2.5 The Suspended Tree Inequalities 64

2.6 Extensions of PBC and Suspended Tree Inequalities 89

2.7 Further Remarks 95

i

3. VALID INEQUALITIES FOR SOME GRAPH PARTITIONING

PROBLEMS 97

3.1 Introduction 97

3.2 The Single Cluster Problem 100

3.3 The Graph Partitioning Problem with Cardinality Capacity Constraints 108

3.4 The Graph Partitioning Problem with Knapsack Capacity Constraints 126

4. SEPARATION ROUTINES AND COMPUTATIONAL RESULTS

FOR GRAPH PARTITIONING PROBLEMS 132

4.1 Introduction 132

4.2 Separation Routines 134

4.2.1 Separation Routine for the Cycle Inequalities 136

4.2.2 Separation Routine for the PBC Inequalities 143

4.2.3 Separation Routine for the Tree Inequalities 150

4.2.4 Separation Routine for the Knapsack Tree Inequalities 155

4.3 About the Branch-and-Cut Code 159

4.4 Problem Instances 165

4.5 Computational Results and Discussion 174

ii

5. THE FRONTWIDTH REDUCTION PROBLEM IN FINITE

ELEMENT COMPUTATIONS 190

5.1 Introduction 190

5.2 The Finite Element Concept and the Frontal Method 193

5.2.1 The Finite Element Concept 193

5.2.2 The Frontal Method 196

5.2.3 Existing Heuristic Algorithms for the FRP 200

5.3 Standard and Modified Frontwidth Problems 203

5.4 A Divide-and-Conquer Heuristic Algorithm for FRP 207

5.5 Heuristics for Minimum Weight Equipartition 213

5.5.1 Kernighan and Lin (KL) 214

5.5.2 Simulated Annealing (SA) 216

5.5.3 Stochastic Evolution (SE) 218

5.6 Initial Solution for Equipartition 221

5.7 Computational Results and Discussion 222

6. CONCLUSION 232

REFERENCES 238

NOTATION 247

iii

1. Introduction

1.1 Scope

In this thesis we consider three different graph optimization problems: the equipartition

problem, the clustering problem and the cutwidth problem.

In the equipartition problem we want to find a partition of the nodes of a graph into

two subsets of equal size such that the sum of the costs of the edges with endnodes in

different subsets is minimized.

In the clustering problem weights are assigned to each node of the graph and we are

interested in partitions of the node set into a fixed number of subsets such that the sum

of the node weights in each subset of the partition is bounded by a constant. The goal

is again to minimize the sum of the costs of the edges joining nodes in different subsets

of the partition. This problem generalizes the equipartition problem and is also known in

the literature as the graph partitioning or multicut problem.

Let V be the set of nodes in a graph. An ordering of V is a one-to-one function that

assigns labels in the set {1, 2, . . . , |V |} to the nodes in V . In the cutwidth problem an

ordering of V has to be found that optimizes a min-max cost function where the cost of

an ordering is computed as follows. Given an integer k in {1, 2, . . . , |V |}, consider the set

of nodes with label greater than k and count the number of edges going from this set to

its complement in V . The maximum of such values computed for all possible values of

k is defined to be the cost of the ordering. So, the cutwidth problem is the problem of

finding an ordering of minimum cost.

The graph optimization problems described above can be used to model a large variety of

practical optimization problems. Applications are found in VLSI design, compiler design,

finite element computations and physics.

1

These three problems belong to the class of NP-hard problems and two different ap-

proaches can be used to tackle them. In the first we look for optimal solutions and for

this exact algorithms are necessary. In the second we look for good, but not necessarily

optimal, solutions. In the latter case, heuristic algorithms have to be developed.

In this thesis our goal is to develop exact algorithms for the equipartition and clustering

problems and to develop a high performance heuristic for the cutwidth problem on graphs

arising from Finite Element meshes.

We choose an algorithm for solving problems exactly which is based on cutting planes.

This leads us to look for strong valid inequalities for the convex hull (polytope) of feasible

solutions of the integer programming formulations of the equipartition and clustering

problems. Several classes of facet defining inequalities for the equipartition polytope

are introduced in Chapter 2. In Chapter 3, we derive facet defining inequalities for the

polytopes related to three clustering problems: the single cluster polytope, the graph

partitioning polytope with cardinality capacity constraints and the graph partitioning

polytope with knapsack capacity constraints. In Chapter 4, we develop routines that

can automatically generate some of the inequalities introduced in Chapters 2 and 3 and

we give the computational results we have obtained with our exact algorithm. Optimal

solutions for small instances of practical problems are reported.

One way to solve a graph optimization problem to optimality is to formulate it as a

0-1 Integer Programming problem (0-1 IP problem). Then, in principle, exact algorithms

for general IP problems, such as branch-and-bound, can be used to find an optimal solu-

tion. However, this approach is often not effective in practice since the branch-and-bound

algorithm is too slow.

In the last decade cutting plane algorithms for IP have been used successfully to solve

reasonably sized instances of hard combinatorial optimization problems such as the Trav-

eling Salesman Problem (TSP). The design of a cutting plane algorithm is characterized

2

by two phases. The first phase is devoted to the study of the convex hull (polyhedron)

of the feasible solutions of the IP problem. The idea is to determine strong valid inequal-

ities for this polyhedron in order to improve the Linear Programming (LP) formulation

of the problem (which is obtained from the IP formulation by relaxing the integrality

constraints). Typically, the number of such inequalities grows exponentially with the size

of the input data and it becomes impractical to add them all to the initial LP formula-

tion. So, a second phase in the design of a cutting plane algorithm is necessary where

we consider the problem of generating valid inequalities as they are needed. The cutting

plane algorithm can be applied in each node of a branch-and-bound tree in which case we

speak of a branch-and-cut algorithm.

The success obtained by cutting plane (branch-and-cut) algorithms in solving practical

instances of the Traveling Salesman Problem, one of the most challenging combinatorial

optimization problems, was a motivation for the study that is carried on in this thesis for

the equipartition and clustering problems.

The cutwidth problem is used here as an approximation for the problem of reducing the

frontwidth of Finite Element meshes. The choice for a heuristic approach to tackle it is

initially motivated by the large sizes of the practical instances we have to treat. Another

reason to opt for a heuristic approach is that the IP formulation of the cutwidth problem

has far too many variables.

In Chapter 5 we describe the heuristics we propose for the cutwidth problem. These

heuristics are based on local search strategies which have been implemented by determin-

istic and nondeterministic algorithms. In the computational experiments we have carried

out, our heuristic has outperformed the standard Reverse Cuthill-McKee algorithm for

frontwidth reduction in finite element meshes and, in most cases, the relative improve-

ments in frontwidth are in the range 25-50%.

In the implementation of our heuristic, we have used two nondeterministic local search

algorithms, namely, the Simulated Annealing and the Stochastic Evolution algorithms.

3

The use of nondeterministic algorithms in combinatorial optimization started in the early

eighties with the paper by Kirkpatrick et al. (1982) on simulated annealing. Since then,

numerous applications of the simulated annealing algorithm in a large spectrum of com-

binatorial optimization problems have appeared in the literature (see, van Laarhoven and

Aarts, 1987). The flexibility of the simulated annealing algorithm, which allows us to

adapt it easily to many different problems, but specially the high quality of the solutions

it produces when compared to other deterministic heuristics can be pointed out as the two

main reasons why the algorithm has been so popular. Other nondeterministic algorithms,

like stochastic evolution (see, e.g., Saab and Rao, 1991) and tabu search (see, e.g., Glover

and Laguna, 1992) came later and they usually present alternative ways to improve on

the simulated annealing algorithm.

The present chapter is organized as follows. In the next section we formalize the defini-

tions of the equipartition, clustering and cutwidth problems in terms of graph optimization

problems. Some definitions and terminology from graph theory that are used in the text

are also given. In Section 3 we show how graph optimization problems can be formulated in

general as 0-1 IP problems and, in particular, we give an IP formulation for the clustering

problem. Methods for solving IP problems to optimality including the branch-and-bound

and branch-and-cut algorithms are also discussed in Section 3. The effectiveness of a

cutting plane algorithm heavily depends on the strength of the inequalities it adds to the

LP formulation (relaxation) of the problem. Thus, in Section 4 we introduce some basic

concepts of polyhedral theory that provide us with the tools to characterize how strong

an inequality is. Section 5 contains a literature survey on the polyhedral investigations

that have been carried out for equipartition, clustering and related problems. The survey

also includes a brief literature review relative to the cutwidth problem. Finally, in Section

6 we give the thesis outline.

4

1.2 Graph Theory Background

A graph G = (V,E) consists of a finite set V of nodes (or vertices) and a set E of edges

joining different pairs of distinct nodes. When the edges are defined by unordered pairs

of nodes the graph is undirected, otherwise it is a directed graph. All graphs treated here

are undirected. In the graphical representation of a graph, each node is indicated by a

point (or a circle) and each edge by a line linking the points that represent its ends.

Let V1 and V2 be two disjoint subsets of V . The cutset or cut of V1 and V2, denoted

by δ(V1, V2), is the set of edges with one end in V1 and the other in V2. If V2 = V \ V1,

the notation is abbreviated to δ(V1) (=δ(V2)) and we refer simply to the cutset of V1.

This definition can be extended naturally for more general partitions. If V1, V2, . . . , Vk is

a partition of V , δ(V1, V2, . . . , Vk) denotes the cutset of the partition, i.e., the set of edges

with ends in different subsets of the partition. When V is partitioned into more than 2

subsets, the resulting cutset is also called a multicut.

With the definitions above we can formalize the equipartition, the clustering and the

cutwidth problems for graph G as follows.

Equipartition Problem: Suppose that a cost ce is given to every edge e ∈ E. Find a

subset U ⊂ V with |U | = d |V |2 e that minimizes
∑
e∈δ(U) ce.

Clustering Problem: Suppose that costs ce are associated to every edge e ∈ E and

that weights wu are associated to every node u ∈ V . Given an integer K and values

F1, F2, . . . , FK (cluster capacities), let Π(F1, . . . , FK) denote the family of partitions

of graph G into K subsets of nodes V1, . . . , VK (clusters) such that
∑
u∈Vi wu ≤ Fi

for all i ∈ {1, . . . ,K}. Find a partition of G in Π(F1, . . . , FK) that minimizes∑
e∈δ(V1,...,VK) ce.

Cutwidth Problem: Suppose that an ordering is given to the node set V that makes

a one-to-one correspondence between the labels in {1, . . . , |V |} and the nodes of the

graph. For i ∈ {1, . . . , n}, let V i denote set of nodes with label at most i. The

5

v1

v2

v3

v4

v5

v6

v7

v8

v9

cutwidth of an ordering is computed as max{|δ(V i)| : i ∈ {1, . . . , n}}. Find an

ordering of V of minimum cutwidth.

It can be seen from these definitions that the equipartition problem is a particular

case of the clustering problem where the constant K and the Fi are taken as K = 2,

F1 = d |V |2 e and F2 = b |V |2 c, and all node weights are set to 1. The cutset corresponding

to an equipartition of the nodes in V is called an equicut. So, the equipartition problem

is also called the equicut problem.

Consider the graph in Figure 1.1. Assume that all edge costs are taken to be 1. The

nodes {v1, v2, v3, v4, v5} define a feasible equipartition of the graph with a cost of 4. Sup-

pose that an ordering is given to the nodes of the graph such that the label of node

vi is equal to i. The cutwidth of such an ordering is 5 since |δ({v1, . . . , v6})| = 5 and

|δ({v1, . . . , vi})| ≤ 5 for all i = 1, . . . , 9.

Figure 1.1:

6

Like many other graph optimization problems, the equipartition, clustering and

cutwidth problems are NP-hard. In broad terms, this means that any exact algorithm

known to solve one of these problems needs CPU time that grows exponentially with the

number of nodes in the graph. Thus, one can only expect to solve exactly equipartition,

clustering and cutwidth problems for graphs with a limited number of nodes. The goal

of using a cutting plane approach for solving these problems is precisely to push up these

limits. For a detailed introduction to complexity theory we refer to Garey and Johnson

(1979).

In the remainder of this section we give some basic definitions from graph theory that

we use throughout the text. Additional definitions will be given as they are needed. For

more on graph theory we refer to Bondy and Murty (1976).

A graph is called complete if there exists an edge joining each pair of distinct nodes.

The complete undirected graph on n nodes is denoted by Kn. A graph is said to be planar

if it can be drawn on a plane without edges crossing.

Two nodes i and j are adjacent if the edge e = (i, j) is in E. On the other hand, if

a node i is one of the ends of an edge e, e is said to be incident with i. The number of

incident edges with a node i is the degree of i.

A graph H = (V (H), E(H)) is a subgraph of G if V (H) ⊆ V and E(H) ⊆ E. Let V ′

be a nonempty subset of V and E′ the subset of edges in E with both ends in V ′. The

subgraph G′ = (V ′, E′) is called the subgraph of G induced by V ′; we say that G′ is an

induced subgraph of G.

A path is a sequence of nodes (v1, v2, . . . , vk) such that vi and vi+1 are adjacent for

i ∈ {1, . . . , k − 1}. Clearly, a path can also be defined in terms of its edges. A simple

(elementary) path is a path which does not use the same edge (node) more than once. All

paths treated here are simple and elementary.

7

A cycle is a path (v1, v2, . . . , vk) in which the initial node v1 coincides with the final node

vk. A simple cycle is a cycle that does not use the same edge more than once. Elementary

cycles are those in which the initial node is used exactly twice and all remaining nodes

are used exactly once. Unless the contrary is specified, all cycles we treat here are simple

and elementary.

Two vertices u and v of G are said to be connected if there exists a path in G with initial

node u and final node v. The subgraph induced by a subset of nodes V ′ of V such that

all pair of nodes in V ′ are connected and is maximal with respect to this property forms

a (connected) component of G. The graph is connected if it has exactly one component,

otherwise it is disconnected.

An acyclic graph is one that contains no cycle. A tree is a connected acyclic graph.

The nodes of the tree with degree one are called the leaves of the tree. A star is a tree in

which all nodes are leaves except one node called the center of the star. A graph made of

the union of disconnected trees is a forest..

8

1.3 Integer Programming Formulations and

Algorithms

A Linear Programming (LP) problem can be defined as the problem of optimizing a

linear function over a region described by a set of linear inequality and equality constraints.

The points in this region form the set of feasible solutions of the LP problem. Such a

problem can be written in matrix form as:

min{cx : A(<)x ≤ b(<) , A(=)x = b(=) , x ∈ IRn
+}

where c ∈ IRn, A(<) is a m(<)×n matrix, A(=) is a m(=)×n matrix, m = m(=) +m(<) and

b ∈ IRm. If the variables x are constrained to be integer (x ∈ ZZn instead of x ∈ IRn), the

problem is called an Integer Programming (IP) problem. Moreover, if the variables are

constrained to take values in {0, 1}, we have a 0-1 IP problem. The feasible solutions of the

IP (0-1 IP) problem are the integer (0-1) points satisfying the linear system. Sometimes

it is convenient to tackle a graph optimization problem by formulating it as a 0-1 Integer

Programming problem. Below we discuss how to obtain such a formulation.

Consider a graph G = (V,E) where |V | = n and |E| = m. Let IBd denote the set of 0-1

vectors of dimension d (vectors with all d components equal to either 0 or 1).

Suppose that x is a vector in IBm and let E′ be the subset of edges e ∈ E such that the

e-th component of x is equal to 1 (xe = 1). Then x is called the incidence or characteristic

vector of E′. Conversely, given an edge subset E′, the incidence vector of E′ is obtained

by setting xe to 1 if edge e is in E′ and to 0 if not. Equivalently, a vector y in IBn is the

incidence vector of a subset of nodes in V . The components of vector x are called the edge

variables and those of the vector y are the node variables.

Typically in a graph optimization problem, one has to find a subgraph of G satisfying a

set of properties which minimizes a given objective function. Representing the subgraphs

of G by their incidence vectors (x, y) ∈ IBm+n, the set of properties that characterize the

feasible subgraphs can usually be expressed in terms of a system of linear inequalities

9

Ax + By ≤ b and the objective function in terms of a linear function cx + wy. In this

case, the graph optimization problem has a 0-1 IP formulation of the form:

min{cx+ wy : Ax+By ≤ b , (x, y) ∈ IBm+n}

Consider, for instance, the 0-1 IP formulation of the clustering problem given below,

where the x and y variables are interpreted as follows:

xuv =


1 if edge (u, v) is in the multicut defined by the partition

(that is, nodes u and v are in different clusters)

0 otherwise

and

yku =

 1 if node u belongs to the k-th cluster of the partition

0 otherwise

An IP formulation of the clustering problem is then:

min
∑
e∈E

cexe

Subject to
∑
u∈V

wuy
k
u ≤ Fk ∀ k ∈ {1, . . . ,K} (I)

K∑
k=1

yku = 1 ∀ u ∈ V (II)

yku + y`v − xuv ≤ 1 ∀ k 6= ` ∈ {1, . . . ,K}
∀ (u, v) ∈ E (III)

yku + ykv + xuv ≤ 2 ∀ k ∈ {1, . . . ,K}
∀ (u, v) ∈ E (IV)

yku ∈ {0, 1} ∀ u ∈ V , ∀ k ∈ {1, . . . ,K} (V)

xuv ∈ {0, 1} ∀ (u, v) ∈ E (VI)

When K is the number of clusters in the partition, this formulation contains n×K node

variables and m edge variables. Constraint (I) says that all cluster capacities must be

satisfied; constraint (II) makes sure that every node of G is assigned to a cluster; constraint

(III) forces an edge to be in the multicut if its endnodes are in different clusters; constraint

(IV) forces an edge to be out of the multicut if its endnodes are in the same cluster, and

10

constraints (V) and (VI) are the 0-1 integer constraints. In the LP relaxation of this

problem, the last two constraints are replaced by the constraints below:

0 ≤ yku ≤ 1 ∀ u ∈ V , ∀ k ∈ {1, . . . ,K}
0 ≤ xuv ≤ 1 ∀ (u, v) ∈ E

The IP formulation given above for the clustering problem has two sets of variables: one

representing the nodes (the y variables) and the other representing the edges (the x vari-

ables) . Thus, we call this formulation the node-edge model. Noting that the cost function

only has terms in edge variables, one can think of working only with edge variables. This

gives rise to the edge model for the clustering problem.

We define S as the set of feasible solutions of the node-edge model and the projection

of S into the space of edge variables is denoted by X, that is:

X = {x ∈ IBm : ∃ y with (x, y) ∈ S}

Thus, the clustering problem can be written as min{∑e∈E cexe : x ∈ X}. The advantage

of the edge model when compared to the node-edge model is the fact that it has n ×K
less variables. However, one of the disadvantages of using the edge model is that it may

be difficult to find a compact linear system Ax ≤ b for which the set of integer solutions

is precisely X.

The theoretical results for the equipartition (Chapter 2) and clustering (Chapter 3)

problems in this thesis have been obtained for edge models, while for the computational

results (Chapter 4) we have used the node-edge model. The distinctions between the

models, and some reasons for such a choice will be discussed later in Chapter 2. For

the moment, we focus our attention on the methods that are available for solving 0-1 IP

problems.

Usually 0-1 IP problems are NP-hard. One way to tackle such a problem is to solve

linear relaxations of it. As remarked above, in the LP relaxation the integer constraints

(x, y) ∈ IBm+n are replaced by linear constraints of the type 0 ≤ (x, y) ≤ 1 and (x, y) ∈

11

IRm+n. There are two classical approaches to solving 0-1 IPs using linear approximations:

the fractional cutting plane algorithm (FCPA) and the branch-and-bound or implicit

enumeration algorithm. These algorithms are briefly described below. For the remainder

of this section, S denotes the set of feasible solutions of the 0-1 IP problem.

The FCPA algorithm is based upon the strengthening of the LP relaxation with the

addition of valid inequalities to the formulation. An inequality is said to be valid with

respect to S if it is satisfied by all points in S.

At each iteration i of FCPA, a linear relaxation LP i of the IP problem is solved. Let

(xi, yi) be an optimal solution obtained for the linear relaxation LP i. If (xi, yi) is in S, the

algorithm stops, returning (xi, yi) as an optimal solution of the IP problem. Otherwise,

the relaxation has to be strengthened. For this, a valid inequality πx + µy ≤ π0 for S

has to be found that is violated by (xi, yi). A new iteration has to be executed where

the relaxation LP i+1 is obtained from LP i by adding the inequality πx+ µy ≤ π0 to the

current set of linear constraints. Let zi and zi+1 denote the value of the optimal solutions

of LP i and LP i+1 respectively, that is, zi = cxi+wyi and zi+1 = cxi+1+wyi+1. Assuming

that the IP is a minimization problem, then zi+1 ≥ zi or, in other words, the lower bound

on the optimal solution of the IP problem monotonically increases as the iterations go on.

The idea of the FCPA is illustrated in Figure 1.2 for an IP (maximization) problem on

2 variables. The region limited by the black lines represents the set of feasible solutions of

the LP relaxation. The dots indicate the integer points. The points in S are denoted by

the black dots. The arrow indicates the direction of maximization and its tail is located

at the optimal LP (fractional) solution. The dashed line represents a valid inequality that

cuts off this fractional solution.

The initial study of adding valid inequalities for general IP was carried out by Gomory

in the late fifties. Unfortunately, the inequalities he proposed to add to the formulation

did not prove to be efficient in practice since the algorithm becomes too slow.

12

Figure 1.2:

The branch-and-bound approach is based on the general principle of divide-and-conquer,

i.e., if it is too hard to optimize over the set S, the set S is partitioned into smaller subsets

with the hope that optimizing is possible on these subsets, and then the results can be

merged to get the optimal solution in S.

Frequently, the partition is constructed recursively. This allows a graphical representa-

tion of the whole process in terms of a tree: the enumeration tree. In this representation,

the sons of a given node form the partition of the feasible region of their father.

In general, for 0-1 IP problems, the enumeration tree is a binary tree. Each node i of

the tree corresponds to a linear relaxation LP i of the IP problem defined on a subset Si

of S. Let (xi, yi) be the optimal solution found for LP i and zi = cxi + wyi. Depending

on the value of zi, node i can give rise to two other nodes (its sons) or can be pruned, i.e.,

the subset of feasible solutions of node i is either partitioned into two new subsets or it

will not be partitioned any more during the remaining steps of the algorithm.

13

Suppose that we decide for the partition at a node i. Then, a variable ξj with a

fractional value in (xi, yi) is chosen. This variable is called the branching variable. The

linear relaxation for the first (second) son of node i is obtained by adding the constraint

ξj = 0 (ξj = 1) to LP i. Therefore, in a given node of the enumeration tree, the set of

feasible solutions is a subset of S with some variables fixed to 1 and some others fixed to

zero. Clearly, if no nodes are pruned, we have a complete enumeration of the solutions in

S.

Some criteria are used to avoid branching at a node of the tree (the bounding phase).

Clearly, in a minimization problem, the optimal value in a given node can never be greater

than the optimal value of its sons. Therefore, if we know an upper bound for the optimal

value of the original IP problem, we can prune all nodes whose linear relaxations give

optimal values that are greater than that bound. Moreover, the nodes for which the

optimal solution is integral can also be pruned. The nodes of the tree that are not pruned

are said to be active nodes. The algorithm stops when there are no more active nodes.

Another method for solving 0-1 IP problems embeds a cutting plane phase in the branch-

and-bound algorithm. This gives rise to a branch-and-cut algorithm. To aid in describing

such an algorithm, we first consider how an integer program can be tackled, at least

partially, by linear programming.

Let conv(S) denote the convex hull of the feasible set S. The convex hull of S is a

polyhedron and therefore can be described as a system of linear inequalities and equations.

If this linear system is available, the IP problem can, in principle, be solved by linear

programming since all extreme points are integer feasible solutions in S. Unfortunately,

the number of inequalities in the system is exponential for NP-hard problems and usually

only few inequalities of the description of conv(S) are known. However, assume that a

certain class F of strong valid inequalities for conv(S) are known. Moreover, given any

point (x, y) ∈ IRn
+, assume that an algorithm is available that looks for an inequality in

F violated by the point (x, y). Such an algorithm is called a separation routine (this

14

nomenclature will become clear in the next section). The branch-and-cut algorithm can

now be described.

In a typical iteration of the algorithm we are at a node i of the enumeration tree and

P i = {(x, y) ∈ IRm+n : Aix + Biy ≤ b , 0 ≤ (x, y) ≤ 1} is the polytope corresponding

to the linear relaxation LP i. If (xi, yi) is the optimal solution of this linear relaxation

and it has fractional components (variables), the separation routine is called to look for

a violated inequality in F . If the separation routine returns an inequality πx+ µy ≤ π0,

this inequality is added to the system of inequalities defining P i and LP i is solved again.

We keep doing this until: either (xi, yi) is integral, or zi is greater than the current upper

bound available, or the separation routine fails to produce a new violated inequality cutting

the point (xi, yi). In this last case, a variable is to be chosen for branching.

Successful applications of branch-and-cut algorithms for the solution of difficult 0-1 IP

problems of large practical size have been reported. Examples can be found in: Padberg

and Grötschel (1985) and Padberg and Rinaldi (1987) for the Traveling Salesman Problem;

Crowder et al. (1983) for general large-scale 0-1 IP problems; Grötschel et al. (1984) for

the Linear Ordering problem; Barahona et al. (1988) for max cut problems arising from

circuit layout design and statistical physics or in Grötschel et al. (1992) for the design of

communication networks. Among others, these results have stimulated many authors to

design exact algorithms for other NP-hard problems within the same framework, as is the

case in this thesis.

The implementation of a branch-and-cut code is a major software development effort

(see for instance Padberg and Rinaldi, 1987). The efficiency of the code depends on many

factors ranging from data management to algorithmic aspects. Some of these algorithmic

aspects are discussed below.

First, the cutting phase is only attractive if a family F of ”strong” valid inequalities is

known. Finding such a family F implies a theoretical study of the polyhedron describing

15

the convex hull of the feasible solutions. On the other hand, it also requires the design of

an algorithm to generate violated inequalities in F . This algorithm, called a separation

routine for F , has to be fast and must have a high probability of returning a violated

inequality in F when one exists.

But finding strong valid inequalities and separation routines is not enough to have a

good branch-and-cut code.

There are other sensitive parts of the algorithm that are intrinsic to the branch-and-

bound algorithm. Thus, it is necessary to have heuristics to generate integer feasible

solutions from the fractional optimal solutions of the relaxed problems (which can produce

upper bounds that will prune some nodes of the enumeration tree) and a good branching

criterion. Further improvements include a preprocessing phase which, for instance, can

eliminate variables a priori (by fixing them to 0 or 1).

For more on enhancements and different possible strategies that can be used in im-

plementing branch-and-bound and branch-and-cut algorithms we refer to the book of

Nemhauser and Wolsey (1988).

We have mentioned that the branch-and-cut algorithm is only useful when F is a class

of strong valid inequalities for conv(S). Thus, we would like to characterize the strength

of a valid inequality. In the next section, we introduce some basic concepts of Polyhedral

Theory that allow us to discuss such questions.

16

1.4 Polyhedral Theory Background

In this section we summarize the definitions and fundamental results in polyhedral com-

binatorics that are used in this thesis. We start with some basic concepts like polyhedron,

valid inequality, face and facets. Afterwards, we present two ways to characterize facets.

We close the section by introducing the Separation and optimization Problems, together

with the fundamental result establishing their equivalence (in the sense of computational

complexity).

1.4.1 Basic Definitions

Definition 1.1 A set of points x1, . . . , xk ∈ IRn is linearly independent if the unique

solution to
∑k
i=1 λix

i = 0 is λi = 0 for all i ∈ {1, . . . , k}.

Definition 1.2 A set of points x1, . . . , xk ∈ IRn is affinely independent if the unique

solution to
∑k
i=1 λix

i = 0,
∑k
i=1 λi = 0 is λi = 0 for all i ∈ {1, . . . , k}.

Definition 1.3 Let S = {x1, . . . , xk} be a set of points in IRn. The convex hull of S is

the set of points given by

conv(S) = {
k∑
i=1

λix
i :

k∑
i=1

λi = 1 , xi ∈ S , λi ∈ IR , λi ≥ 0 , i = 1, . . . , k}

The affine hull of S is the set of points given by

aff(S) = {
k∑
i=1

λix
i :

k∑
i=1

λi = 1 , xi ∈ S , λi ∈ IR , i = 1, . . . , k}

Definition 1.4 A set S ⊆ IRn is of dimension k, denoted by dim(S) = k, if the maximum

number of affinely independent points in S is k + 1. S is said to be full-dimensional if

dim(S) = dim(IRn) = n.

Definition 1.5 A polyhedron P ⊆ IRn is a set of points that satisfy a finite number of

linear inequalities, i.e., P = {x ∈ IRn : Ax ≤ b}. If a polyhedron P is bounded, i.e.,

P ⊆ {x ∈ IRn : −w ≤ xj ≤ w , for all j = 1, . . . , n} for some w ∈ IR+, P is called a

polytope.

17

If S is a finite set of points in IRn, the convex hull of S is a polytope and, moreover,

each vertex of conv(S) is in S. For instance, consider a graph G = (V,E) where |E| = m.

Let S be the set of points in IRm corresponding to the incidence vectors of equicuts of G.

Then, conv(S) is called the equicut (or equipartition) polytope.

Definition 1.6 The cone generated by a set S ⊆ IRn, denoted by cone(S), is the set of

points given by

cone(S) = {y ∈ IRn : y = λx , for some x ∈ conv(S) and some λ ∈ IR+}

Definition 1.7 The rank of a matrix A, denoted by rank(A), is the maximum number

of linearly independent rows (columns) of A.

Let P = {x ∈ IRn : Ax ≤ b} where (A, b) is an m x (n + 1) matrix. Let M= = {i :

aix = bi for all x ∈ P}. Let (A=, b=) be the rows of (A, b) corresponding to M=.

Proposition 1.8 If P ⊆ IRn, then dim(P) = n− rank(A=, b=).

This means that if P is not full-dimensional, at least one of the inequalities in the

description of P is satisfied at equality by all points in P .

Definition 1.9 An inequality πx ≤ π0 is valid for a polyhedron P if it is satisfied by all

points in P .

Definition 1.10 Let πx ≤ π0 be a valid inequality for a polyhedron P . The set F = {x ∈
P : πx = π0} is called a face of P (F is the face defined in P by the inequality πx ≤ π0).

A face is said to be proper if F 6= ∅ and F 6= P .

Definition 1.11 Let F be a face of a polyhedron P ⊆ IRn. If dim(F) = dim(P)− 1, then

F is a facet of P .

Definition 1.12 The support of an inequality πx ≤ π0 is given by the set {j ∈
{1, . . . , n} : πj 6= 0}.

18

Suppose that the x variables are in one-to-one correspondence with the edges of a graph

G. Given the inequality πx ≤ π0, let S be the support of this inequality. The subgraph

of G whose edges are indexed by the elements of S is called the support graph of the

inequality πx ≤ π0. The graphical representation of the support graph is usually helpful

for the understanding of an inequality.

We now explain what we meant by lifting. Given an inequality πx ≤ π0 valid with

respect to a polyhedron P ⊆ IRn, let Fπ denote the face of P given by {x ∈ P : πx = π0}.
Suppose that there exists another inequality µx ≤ µ0, valid with respect to P , which

defines the face Fµ in P . Then, the inequality µx ≤ µ0 is said to be a lifting of the

inequality πx ≤ π0 if the following holds:

(i) Fπ ⊂ Fµ

(ii) dim(Fπ) < dim(Fµ) ≤ dim(P)− 1

Clearly, if an inequality is facet defining, then it cannot be lifted.

1.4.2 Characterizing Facets

There are two methods commonly used to characterize facets of a polyhedron. Given

a valid inequality πx ≤ π0 of a polyhedron P ⊆ IRn, the first method (direct), consists

to exhibit dim(P) affinely independent points in the set {x ∈ P : πx = π0}. A second

alternative (indirect method) comes up from the following theorem:

Theorem 1.13 Let (A=, b=) be the equality set of P ⊆ IRn and let F = {x ∈ P : πx =

π0} be a proper face of P . The following statements are equivalent:

i) F is a facet of P .

ii) If λx = λ0 for all x ∈ F , then

(λ, λ0) = (απ + uA=, απ0 + ub=)

for some α ∈ IR+ and some u ∈ IR|A
=|.

19

The characterization given in the above theorem is used for most of our proofs that

valid inequalities are facet defining. The search for facets of a polyhedron is justified in

the next paragraphs.

Consider the IP problem min{cx : x ∈ S} where S is a finite set of integer points in

IRn (i.e., S ⊂ ZZn). This problem can be solved by any linear programming algorithm, if

we know a system of linear inequalities Ax ≤ b that describes conv(S) (since the extreme

points of conv(S) are in S). If every inequality in Ax ≤ b is facet defining for conv(S)

and, conversely, every facet F of conv(S) is defined by exactly one inequality in Ax ≤ b,

then Ax ≤ b is a minimal system for conv(S). The previous statement summarizes the

importance of the concept of facet.

The use of a minimal system describing conv(S) is usually not possible in practice.

There are two main reasons for this. The first is that the number of inequalities in the

minimal system is frequently exponential. This is true not only for NP-hard problems,

but also for some polynomially solvable problems. The second reason is that, in general,

we do not know all the inequalities that describe conv(S), i.e., there are families of facet

defining inequalities that are unknown. This is often the case for NP-hard problems.

However, for a given objective function, the IP problem can be solved by linear pro-

gramming if the system of linear inequalities corresponding to a relaxation of conv(S)

contains the inequalities defining an optimal solution. This suggests the use of an algo-

rithm for the solution of the IP problem that recursively improves the linear relaxation of

conv(S) by adding new inequalities (preferably facets) with the hope that, at some point,

the optimal solution of the relaxation will be in S. This is the way how the fractional

cutting plane algorithm (FCPA) of Section 1.3 works. But here there is an attempt to

make the algorithm faster by adding preferably inequalities that are facet defining for

conv(S).

Figure 1.3 illustrates the idea of a cutting plane algorithm based on the use of facet

defining inequalities. The example given in this figure is the same as that in Figure 1.2.

20

The region limited by the bold lines represents the convex hull of S. In Figure 1.3(a)

the optimal LP (fractional) solution is cut off by the facet defining inequality represented

by the dashed line. The optimal solution of the new (strengthened) formulation is again

fractional but can be cut off by the facet defining inequality indicated in Figure 1.3(b).

Although the next LP formulation (Figure 1.3(c)) does not describe conv(S), the optimal

LP solution is in S and therefore it is an optimal solution for the IP problem.

As stated above, it is crucial in a cutting plane algorithm to be able to generate violated

inequalities. In the next subsection the problem of the identification of violated inequalities

is addressed. This problem is known as the separation problem and we will see that, at

least in theory, it is as difficult to solve as the optimization problem.

21

(a)

(b)

(c)

Figure 1.3:

22

1.4.3 Separation and Optimization Problems

Consider the following problems:

Separation Problem for a Family of Polyhedra:

Given a point y ∈ IRn and a polyhedron P in the family, decide whether or not y

belongs to P and, if not, find an inequality πx ≤ π0 that is valid for P and such

that πy > π0.

Optimization Problem for a Family of Polyhedra:

Given a vector c ∈ IRn and a polyhedron P in the family, assume that P 6= ∅ and

that cx is bounded for all x ∈ P . Find a solution x∗ ∈ P such that cx∗ ≤ cx for all

x ∈ P .

Separation Problem for a Family F of Inequalities:

Given a point y ∈ IRn, show that y satisfies all the inequalities in F , or find one or

more inequalities πx ≤ π0 in F such that πy > π0.

Clearly, if we consider the family of polyhedra that are completely described by the family

F of inequalities, the first and the third problems are equivalent.

The next theorem, due to Grötschel, Lovasz and Schrijver (1981), shows that the com-

plexities of the separation and optimization problems are equivalent or, in other words,

these two problems are equally difficult to solve.

Theorem 1.14 For a family of polyhedra, there exists a polynomial algorithm for the sep-

aration problem if and only if there exists a polynomial time algorithm for the optimization

problem.

Let conv(S) be the convex hull of feasible solutions of a 0-1 IP problem that we want

to solve using a cutting plane algorithm. At each iteration of the algorithm conv(S) is

represented by a linear relaxation LP(F), where F is a family of valid inequalities for

conv(S). The number of inequalities in F is typically exponential and, therefore, LP(F)

only contains a few of them.

23

If conv(S) can be fully described using only inequalities in F and the IP problem is

polynomially solvable, then Theorem 1.14 implies that the separation problem is polyno-

mially solvable. This means that, during the cutting plane algorithm, we can always find

in polynomial time an inequality in F that cuts the fractional solution.

On the other hand, if the IP problem is NP-hard and F represents one or more families

of strong valid inequalities for conv(S), there may be some families of inequalities in F
for which the separation problem is polynomial, but, from Theorem 1.14, there will be

other families for which the separation problem is NP-hard. Therefore, there will be some

instances of the IP problem for which the cutting plane algorithm will terminate with a

fractional solution.

The next section is devoted to a literature survey on the problems that we tackle in this

thesis.

24

1.5 Literature Survey

There has been a large research effort on clustering (or graph partitioning) problems for

many years, but many of the problem variants still remain among the most difficult and

challenging combinatorial optimization problems. In this survey, we particularly focus

our attention on works involving polyhedral studies of clustering problems. We divide the

survey into four parts. The first is devoted to the max cut problem which is the most

studied case of graph partitioning problems. The second part of the survey refers to the

equipartition problem, while in the third part we review the literature for more general

graph partitioning problems. Finally, the fourth part refers to the cutwidth problem.

Max Cut Problem

In the classical cut problem we look for a partition of V into at most two subsets. The

cut problem has many applications such as in network flow design. The cut polytope has

been studied in Barahona and Mahjoub (1986). There the authors identify several classes

of facet defining inequalities and establish many fundamental results for the cut polytope.

One of these results is that all facets of the cut polytope can be obtained by knowing

only the facets that define one of its vertices. The cone generated by the points in the

cut polytope is the cut cone. The previous result implies that getting a characterization

of the cut cone is as hard as getting a characterization of the cut polytope itself.

In the light of the previous remark, the same authors have started investigating the

polyhedral properties of the cut cone. Important works that follow this research direction

are: Deza and Laurent (1992a, 1992b, 1992c), Deza, Grishukin and Laurent (1991), Deza,

Laurent and Poljak (1992), De Simone, Deza and Laurent (1989).

A cut is defined to be even (odd) if it is of even (odd) size. Deza and Laurent (1989)

study the polytope defined by the convex hull of the incidence vectors of even (odd)

cuts of a complete graph. They introduce some classes of facet defining inequalities for

these polytopes and give the relationship between theses inequalities and facet defining

25

inequalities for the cut polytope.

A graph is called bipartite if its node set V can be partitioned into two nonempty

disjoint sets V1 and V2 such that no two nodes of V1 and no two nodes of V2 define an

edge. The convex hull of the incidence vectors of all edge sets of bipartite subgraphs of a

graph G is the bipartite subgraph polytope of G. Given any cut δ(W) of G, it is clear that

the subgraph H = (V, δ(W)) is bipartite. Therefore, polyhedral results concerning the

bipartite subgraph polytope can be useful for the cut polytope. Grötschel and Pulleyblank

(1981) use these ideas to design polynomial time algorithms for special cases of the max cut

problem. These algorithms have been implemented by Barahona and Maccioni (1982) for

the solution of medium-sized real-world problems. Further investigations of the bipartite

subgraph polytope can be found in Barahona, Grötschel and Mahjoub (1985) and Gerards

(1985).

A cutting plane algorithm for the max cut problem, with applications to statistical

physics and circuit layout design, is given in Barahona et al. (1988). The authors report

that the max cut problem has been solved for graphs with up to 1600 nodes.

Boros and Hammer (1993) present a one-to-one correspondence between the valid in-

equalities for the cut polytope of the complete graph on n+1 nodes (Kn+1) and the set of

nonnegative quadratic functions on n Boolean variables. They obtain a large class of valid

and facet defining inequalities that includes many of the previously known inequalities for

the cut polytope. In fact, the correspondence mentioned above is given for the Boolean

Quadric polytope of the complete graph on n nodes. Then, the result is extended to the

cut polytope using the fact that the valid inequalities for the Boolean Quadric Polytope

of Kn are in a one-to-one correspondence with the valid inequalities of the cut polytope

of Kn+1 (Padberg, 1989).

Recently Deza and Laurent (1992d) list some applications of the cut polytope and also

of related polyhedra, namely, the boolean quadric, the hypermetric and metric polytopes.

26

Applications are reported in the fields of functional analysis, geometry of numbers, quan-

tum mechanics and multicommodity flow problems.

Algorithmic approaches can be found for some polynomially solvable versions of the max

cut problem. Hadlock (1975) gives a polynomial time algorithm for the planar version of

the problem, and in Hochbaum and Shmoys (1985) an efficient algorithm for the problem

of partitioning a graph into three connected components is proposed.

Equipartition Problem

The equipartition polytope is studied in Conforti et al. (1990a,b). The dimension as

well as basic and more complex classes of facet defining inequalities are introduced. Some

of their results are generalized in this thesis.

Deza, Fukuda and Laurent (1989) investigate the relationship between the cut cone, the

equipartition polytope and the inequicut cone (i.e. the cone generated by all incidence

vectors of cuts that do not form equipartitions). They show that the inequicut cone and

the equipartition polytope ”inherit” all facets of the cut cone.

Nonpolyhedral approaches to the equipartition problem can be found in Liebling and

Vaca (1991), where a dynamic programming based algorithm that polynomially solves

the problem for trees, and in Arbib (1988) where a polynomial algorithm is given for

partitioning a line-graph.

Different local search heuristics have been proposed for the equipartition problem. The

most well known such heuristic is due to Kernighan and Lin (1970). This heuristic is

discussed in detail in Chapter 5. Johnson et al. (1989) develop an algorithm for the

equipartition problem based on simulated annealing. In the latter paper the authors com-

pare the computational results produced by pure local search, Kernighan-Lin’s heuristic

and simulated annealing. The simulated annealing algorithm is also discussed in Chapter

5 of this thesis.

27

Graph Partitioning Problem

Chopra and Rao (1989a,b) study three different formulations of the clustering problem.

For the problems they consider, a fixed integer number K, with 1 ≤ K ≤ n, is given.

There are no node weights and capacity constraints. In these formulations the nodes

of V are to be partitioned into r subsets where either r ≤ K, or r ≥ K or r = K.

Results relative to the dimension, basic and more complex facet defining inequalities for

the corresponding polytopes are presented. These models cover a large spectrum of graph

partitioning problems.

Chopra and Rao (1989c) introduce more facets of the partitioning polytope for the case

where the number of subsets in the partition is at most K. For this problem, Chopra

(1991) gives a system of linear inequalities that completely describes the convex hull of

the incidence vectors of all feasible partitions of the node set V when G is a series-parallel,

or 4-wheel free graph.

Deza, Grötschel and Laurent (1991), using a computer program, give a complete linear

description of many different graph partitioning polytopes defined on complete graphs

of small size (n ≤ 5). The same authors (1992) study a class of clique web inequalities

for various graph partitioning polytopes, characterizing the conditions under which they

induce facets and exhibiting a subclass of them for which the separation problem can be

solved in polynomial time.

Grötschel and Wakabayashi (1987, 1989, 1990) investigate the polytope associated to

the clustering problem when there are no restrictions on the number of subsets in the

partition and on the number of nodes in each subset. They call this problem the clique

partitioning problem.

Johnson et al. (1991) consider the clustering problem with no restriction on the number

of subsets that form the partition but with capacity constraints associated to the subsets

(consequently, node weights are assigned to the nodes of the graph). They suggest a

28

column generation scheme to solve the problem where the choice of the column entering

the basis is made by solving an optimization problem in which we look for a subset

of the node set V such that the sum of the weights of the nodes in it is not greater

than a constant and the sum of the edges in the induced subgraph is minimized. This

subproblem is a NP-hard problem. The authors investigate the facial structure of the

corresponding polytope. Classes of valid and facet defining inequalities are presented

together with heuristic separation routines for some of them. Computational results for

problems arising in compiler design are reported.

Weismantel (1992) studies a variant of the clustering problem in which each node is not

necessarily assigned to a cluster. The number of clusters in this variant is fixed and the

cluster capacities are all the same. The author presents several classes of facet defining

inequalities for the corresponding polytope.

Aghezzaf (1992) studies the polytope associated to the problem of partitioning a tree

into subtrees, where weights are assigned to the nodes and the subtrees have weight

capacities.

Other approaches can be found in the literature. Barnes (1982) considers the problem

of partitioning a graph into at most k subsets and suggests a heuristic which involves the

solution of a linear programming transportation problem. Bui and Peck (1992) consider

the problem of partitioning a planar graph into two subsets of given size and cutting a

minimum number of edges. They obtain an O(b2n324.5b) for this problem where b is the

value of the optimal solution. Feo et al. (1992) considered the problem of partitioning

a graph into exactly K subsets of n
K nodes each. The objective is to maximize the total

weight of the edges not cut by the partition (within the clusters). For the cases where K

equals 3 and 4, the authors proposed a heuristic which yields solutions that are at least

one-half the weight of the optimal solution.

Another rather different approach to tackle graph partitioning and other graph opti-

mization problems makes use of eigenvalues. A survey on the use of eigenvalues in combi-

29

natorial optimization can be found in Mohar and Poljak (1992). A specific application of

that technique to the max cut problem with computational results and comparisons with

other methods is reported in Poljak and Rendl (1991). Rendl and Wolkowicz (1991) apply

eigenvalue techniques to graph partitioning problems and a computational study for the

cases of bipartition and tripartition of graphs is carried out in Falkner et al. (1992).

Cutwidth Problem

Yannakakis (1985) studies the cutwidth problem on tree graphs. He gives an O(n logn)

algorithm that solves the problem, when n is the number of nodes in the tree. An O(n)

algorithm for a planar version of the problem on trees (improving a previous algorithm of

Dovlev and Trickey, 1982) and applications of this special version of the to VLSI layout

design are given.

Another interesting application of the cutwidth problem is given in Andreatta et al.

(1989) for a problem arising in Flexible Manufacturing System design. The problem can

be briefly described as follows. Large rectangular panels are to be cut into smaller (rect-

angular) boards of standard sizes. There is a fixed number of cutting schemes (for the

panels) and of board standard sizes. The production of one sort of board is activated (de-

activated) when the first (last) cutting scheme producing it is executed. The problem is to

minimize the number of different productions that are active simultaneously. Clearly, this

depends on the execution ordering of the cutting schemes. The authors give a formulation

that generalizes the cutwidth problem to hypergraphs and propose some heuristics to the

problem using Simulated Annealing.

30

1.6 Thesis Outline

The remaining chapters of the thesis are organized as follows.

In Chapter 2, we investigate the facial structure of the convex hull of equicuts of a graph

which is called the equipartition or equicut polytope. The goal is to find class of strong

valid inequalities to be used in a branch-and-cut algorithm for solving the equipartition

problem.

In Section 2.2 we discuss the different models that can be used for the equipartition

and the clustering problems. Section 2.3 contains some preliminary results about the

equipartition and cut polytopes.

In many practical applications, the graph for which the problem is defined is sparse. It

is reasonable then to look for inequalities having sparse support graphs. Therefore, we are

initially interested in finding inequalities with planar support graphs. The departure point

of our research is the work of Conforti et al. (1990a,b). Very few of the facet defining

inequalities introduced by these authors have planar support graphs. However, one of

them has a cycle as support graph and we generalize this inequality in different ways.

The first generalization is given in Section 2.4 by the path-block cycle inequalities. Ba-

sically, the support graph of this inequality can be viewed as a sum of cycles. We give

necessary and sufficient conditions for a path-block cycle inequality to be valid for the

equipartition polytope and we show some special cases where it can be facet defining.

Moreover, we show how these inequalities can be transformed in order to obtain also a

new class of facet defining inequalities for the cut polytope.

A second generalization is given by the suspended tree inequalities of Section 2.5 which

we prove to be facet defining for the equipartition polytope. Here the support graph is

given by a tree and an additional node joined to some appropriate nodes in the tree.

31

The two generalizations of the cycle inequality mentioned above have connected support

graphs. In Section 2.5, another class of facet defining inequalities with support composed

by one suspended tree component and by an odd complete subgraph component. Again,

we are able to prove that these inequalities are facet defining for the equipartition polytope

and that they can be transformed so as to obtain new classes of facets for the cut polytope.

Section 2.6 contains a series of remarks concerning the path-block cycle and suspended

tree inequalities suggesting that all the new facet defining inequalities introduced here can

perhaps be put together into a unique large class of inequalities. The results of Chapter

2 are given for complete graphs. In Section 2.7 we discuss the extension of these results

to incomplete graphs.

Part of the results in Chapter 2 have been introduced in de Souza and Laurent (1991).

In Chapter 3, we use the inequalities of the equipartition polytope given in Chapter 2

to find new inequalities for some models of graph partitioning problems that appear in the

literature. In Section 3.2 we show that a class of facet defining inequalities introduced by

Johnson et al. (1991) which have trees as support graphs can be generalized to obtain a

larger class of facet defining inequalities. The support of an inequality in that class can be

viewed as a sum of trees which is similar to the view, taken in Chapter 2, of the support

of a path-block cycle inequality as a sum of cycles.

In Section 3.3, we study the clustering (graph partitioning or multicut) polytope when

the cluster capacity constraints reduce to cardinality constraints that limit the number of

nodes in a cluster. The dimension of the polytope is given and also conditions under which

some facet defining inequalities of the equipartition polytope can be directly adapted to

produce facet defining inequalities for this polytope.

Section 3.4 closes this chapter. There we consider the clustering polytope when weights

are assigned to the nodes of the graph and the cluster capacities are all equal to a fixed

constant. In this case, it is usually hard to determine the dimension of the polytope.

32

However, we derive some valid inequalities whose supports are of the same type as those

for inequalities in Section 3.3. Another valid inequality is given which has been obtained

in a different way. The support of this inequality is a tree and, for the edges in the tree, the

coefficients of the associated variables are computed using information from the (knapsack)

cluster capacity constraints. We call such an inequality a knapsack tree inequality.

The results in Sections 3.3 and 3.4 have been obtained in a joint research project with

R. Weismantel, A. Martin, C. Ferreira and L. Wolsey.

In Chapter 4, we test the use of the inequalities introduced in Chapters 2 and 3 when

generated within a branch-and-cut framework. Section 4.2 is devoted to the presentation of

heuristics for solving the separation problem for cycle, path-block cycle, tree and knapsack

tree inequalities. These routines have been added to a branch-and-cut code developed by

Ferreira, Martin and Weismantel (1992) for the graph partitioning problem. Their code

offers an easy way to insert separation routines for new classes of valid inequalities. A

small number of implementations details are discussed in Section 4.3. In Section 4.4, we

describe the problem instances we have used in the numerical experiments. Computational

results and the conclusions drawn from these runs are presented in Section 4.5.

In Chapter 5 we tackle a combinatorial optimization problem that comes from the

frontal approach to finite element computations. The Finite Element concepts and the

Frontal Method for solving linear systems in finite element computations are presented in

Section 5.2. For the Frontal Method to be efficient, a preprocessing phase is necessary in

which we look for a good solution to the frontwidth reduction problem. The description of

this problem and a review of the existing heuristics to solve it are presented at the end of

Section 5.2. An alternative formulation of the frontwidth reduction problem in terms of

a cutwidth problem on a graph is suggested in Section 5.3.

To solve the cutwidth problem, in Section 5.4, we propose a heuristic approach based on

a divide and conquer strategy. This algorithm recursively solves equipartition subproblems

33

and different versions of it arise from the fact that the equipartition problems are solved

by different local search heuristics.

The local search heuristics we choose are the Kernighan and Lin (1970), the Simulated

Annealing and the Stochastic Evolution algorithms. These heuristics are discussed in

detail in Section 5.5.

Since the quality of the solutions produced by local search algorithms heavily depends

on the initial solutions, in Section 5.6, we propose alternative methods to find one such

solution. Section 5.7 closes the chapter with the presentation and the analysis of the

computational results we obtained from a small sample of two and three dimensional

finite element meshes.

The results in Chapter 5 are taken from de Souza, Keunings, Wolsey and Zone (1992).

Finally, Chapter 6 contains our conclusions and suggestions for future research direc-

tions.

34

2. Valid Inequalities for the Equipartition
Problem

2.1 Introduction

This chapter is devoted to the study of the facial structure of the Equipartition Polytope.

As mentioned before, the effectiveness of a branch-and-cut scheme depends on the strength

of the inequalities that are added during the algorithm. One measure of the strength of

an inequality is the dimension of the face it defines in the polyhedron corresponding to

the convex hull of the (integer) feasible points.

The higher the dimension of the face, the stronger is the inequality defining it. In this

sense, the strongest inequalities are those that define facets of the polyhedron, i.e., faces

whose dimension is equal to the dimension of the polyhedron minus one.

In this chapter we introduce classes of valid inequalities for the equipartition polytope.

We prove that the inequalities in these classes, or in certain subclasses, define facets of the

polytope. Therefore, in the forthcoming sections, we deal with the theoretical question of

finding strong valid inequalities. The practical question of how to use these inequalities in

a branch-and-cut algorithm depends on our ability to solve the corresponding separation

problem. This question is addressed in Chapter 4.

The material of this chapter is divided as follows. In Section 2.2, different models for

the equipartition and clustering problems are discussed. The discussion of these models

will appear in a forthcoming paper by Wolsey, Weismantel, Martin, Ferreira and de Souza.

Section 2.3 contains some fundamental results about the cut polytope and the equipar-

tition polytope. The dimension of these polytopes and some facet defining inequalities

are presented. For the equipartition polytope, special attention is given to an inequality

that has a cycle as its support graph.

35

In Section 2.4, we introduce a new class of valid inequalities for the equipartition poly-

tope called path-block cycle inequalities and prove them to be facet defining in some special

cases. The support graph of these inequalities can be interpreted as a combination of cy-

cles. This allows us to view them as generalizations of the cycle inequality of Section

2.3. We also show that these inequalities can be transformed so as to give valid and facet

defining inequalities for the cut polytope.

The class of suspended tree inequalities is introduced in Section 2.5. The cycle inequal-

ity of Section 2.3 is again a member of this more general class of inequalities which we

show to be facet defining for the equipartition polytope. Further classes of facet defining

inequalities are derived where the support graph typically contains two connected compo-

nents: one which is a suspended tree and the other which is an odd complete subgraph.

For each of these classes of inequalities, we show the transformations that produce facet

defining inequalities for the cut polytope.

Sections 2.3, 2.4 and 2.5 include the results that appear in de Souza and Laurent (1991).

In Section 2.6, we show some examples that suggest that the path-block cycle inequali-

ties of Section 2.4 and the suspended tree inequalities of Section 2.5 can be combined into

a unique larger class of valid inequalities for the equipartition polytope.

The results in this chapter are given for complete graphs. Since in many applications

the graphs considered are not complete, in Section 2.7 we discuss the extension of these

results to incomplete graphs.

36

2.2 Models for Equipartition and Clustering Problems

In Section 1.3 two different IP (Integer Programming) formulations that can be used

to tackle graph partitioning problems are presented. One of these formulations contains

variables corresponding to nodes and edges of the graph, the node-edge model, and the

other only contains variables corresponding to edges, the edge model. Before applying

a polyhedral approach to the graph partitioning (or equipartition) problem, we have to

choose a model to work with. In this section, we discuss these models, the links between

them and the choices we have made in this thesis.

Let us start by recalling the node-edge model given in Section 1.3 for the graph parti-

tioning problem (as defined in Section 1.2). This model is as follows:

Variables:

xuv =


1 if edge (u, v) is in the multicut defined by the partition

(that is, nodes u and v are in different clusters)

0 otherwise

and

yku =

 1 if node u belongs to the k-th cluster of the partition

0 otherwise

IP formulation:

min
∑
e∈E

cexe

Subject to
∑
u∈V

wuy
k
u ≤ Fk ∀ k ∈ {1, . . . ,K} (I)

K∑
k=1

yku = 1 ∀ u ∈ V (II)

yku + y`v − xuv ≤ 1 ∀ k 6= ` ∈ {1, . . . ,K}
∀ (u, v) ∈ E (III)

yku + ykv + xuv ≤ 2 ∀ k ∈ {1, . . . ,K}
∀ (u, v) ∈ E (IV)

yku ∈ {0, 1} ∀ u ∈ V , ∀ k ∈ {1, . . . ,K} (V)

xuv ∈ {0, 1} ∀ (u, v) ∈ E (VI)

37

For the special case of the equipartition problem (as defined in Section 1.2) this model is

given below:

Variables:

xuv =


1 if edge (u, v) is in the equicut defined by the partition

(that is, node u ∈ U and node v ∈ V \ U)

0 otherwise

and

yku =

 1 if node u belongs to the k-th cluster of the partition

0 otherwise

IP formulation:

min
∑
e∈E

cexe

Subject to
∑
u∈V

yku ≤ d |V |2 e k = 1, 2

y1
u + y2

u = 1 ∀ u ∈ V
y1
u + y2

v − xuv ≤ 1

y2
u + y1

v − xuv ≤ 1 ∀ (u, v) ∈ E
y1
u + y2

v + xuv ≤ 2

y2
u + y1

v + xuv ≤ 2 ∀ (u, v) ∈ E
yku ∈ {0, 1} ∀ u ∈ V , k = 1, 2

xuv ∈ {0, 1} ∀ (u, v) ∈ E

We define the following sets:

S = {(x, y) ∈ IRm+n×K : (x, y) satisfies (I)-(VI)}

and

X = {x ∈ IRm : ∃ ywith (x, y) ∈ S}

Thus, X represents the set of incidence vectors of feasible multicuts (or equicuts) of the

graph G. In fact, X is the projection of the set S into the space of x variables. Since there

are no costs associated to the node variables in the node-edge model, it is reasonable to

38

look for an alternative model that only contains edge variables. An edge model of that

type is at hand if we can find a q ×m matrix A and a vector b ∈ IRq such that:

X = {x ∈ IBm : Ax ≤ b}

An obvious advantage of the edge model compared to the node-edge model is that it has

less variables.

However, the edge model presents some shortcomings. The first is that in most cases

it is not known how to find a matrix A and a vector b (as defined above) which give

a compact IP formulation for the problem of minimizing cx over X. This is the case,

for instance, when X represents the set of incidence vectors of equicuts in an arbitrary

incomplete graph (a compact formulation of the problem when the graph is complete is

given at the end of this section).

A second shortcoming presented by the edge model is the following. Consider the graph

partitioning problem defined on a graph G as in Section 1.2. Assume that we have an

algorithm that can find an optimal solution x∗ for the minimization problem defined over

the set X.

Now, suppose that we want to find a partition that corresponds to this optimal multicut.

If G is a complete graph, this is an easy task. It suffices to remove from G all the edges e

with x∗e = 1, and the resulting graph will have at most K connected components, each of

them corresponding to the nodes forming one cluster of the partition. The problem arises

when G is not complete and, after removing the edges satisfying x∗e = 1, the resulting

graph has more than K connected components. Again, we know that the nodes within

a component belong to a same cluster. The problem, which may be hard to solve, is to

decide which components come togheter in each cluster.

The question raised in the previous paragraph is still more delicate when a cutting plane

algorithm is used to solve the graph partitioning problem on the edge model. Recall that

a cutting plane algorithm solves Linear Programming problems on approximations of the

39

set X. Thus, it may be the case that the algorithm stops with an integer solution x∗.

Since an approximation of X is used, we have to decide whether or not x∗ is a feasible

multicut. If the answer to this question cannot be given, the algorithm fails to solve the

problem.

Nevertheless, the edge model presents interesting features. The value of the optimal

solutions in X and S are the same. Because X is a projection of S, any valid inequality

for X is also valid for S. Moreover, it is technically easier to work with X than with S,

since X lies in a lower dimensional space (less variables).

Due to the points raised above, we decide to use the edge model to apply the polyhedral

approach, that is, we seek valid inequalities for the convex hull of X. In this chapter, X

is the set of incidence vectors of equicuts of graph G, while in Chapter 3, X represents

the set of incidence vectors of multicuts of more general partitions.

In Chapter 4, the node-edge model is used for the computational experiments. The

advantage of the node-edge model for the computation is that the feasibility of an integer

feasible solution can be checked simply by substituting the value of the variables in the

system (I)-(VI).

To end this section, we give one case for the equipartition problem where the edge model

is convenient both for polyhedral study and for computation. Consider the equipartition

problem defined on Kn = (V,E) (the complete graph on n nodes). Then, X is the set of

incidence vectors of equicuts in Kn and it has a compact formulation given by:

X = {x ∈ IR|E| : xij + xjk + xki ≤ 2 , for all i 6= j 6= k, i, j, k ∈ V ,
xij − xjk − xki ≤ 0 , for all i 6= j 6= k, i, j, k ∈ V ,
x(E) = dn2 ebn2 c ,
xe ∈ {0, 1}, ∀e ∈ E}

The first two set of inequalities and the integrality constraints describe the set of incidence

vectors of cuts in Kn (see, for instance, Barahona, Grötschel and Mahjoub, 1985), while

40

the equation restricts the solution set to the cuts containing dn2 ebn2 c edges (the equicuts).

It can be noticed that this edge model for the equipartition problem on Kn has less

variables than the corresponding node-edge model. Therefore, the edge model is suitable

for computation in the case of equipartition problem on a complete graph. But, this is

one of the few cases we have found where such a situation occurs.

41

2.3 Preliminary Results for the Equipartition and Cut Poly-

topes

We first recall the definition of the equipartition problem. Consider a graph G = (V,E)

with costs ce associated to the edges e ∈ E. For U ⊆ V , we denote by δ(U) the set of

edges with one endnode in U and the other endnode in V \U . The set δ(U) is called a cut

of G. If |U | = d |V |2 e, then δ(U) is said to be an equicut and (U, V \U) is an equipartition of

G. The minimum (maximum) equipartition problem is the problem of finding an equicut

δ(U) minimizing (maximizing) c(δ(U)) =
∑
e∈δ(U) ce over all equicuts of G.

The incidence vector of a subset E′ ⊆ E is the vector xE
′ ∈ IR|E| defined by:

xE
′

e =

 1 if e ∈ E′

0 otherwise

The convex hull of all equicuts in G is the equipartition polytope of G denoted by

PEC(G); similarly the cut polytope of G is the convex hull of all cuts of G and is denoted

by PC(G).

The facial structure of the equipartition polytope was first investigated in Conforti et al.

(1990a, 1990b). Most of the results in this section were obtained by these authors. Further

polyhedral investigations of the equipartition problem are due to Deza et al. (1989).

The cut polytope has been extensively studied (see Section 1.5). This study was initiated

by a paper of Barahona and Mahjoub (1986) from which we extract the following two

results.

Theorem 2.1 The cut polytope is full dimensional, i.e., dim(PC(G)) = |E|.

Theorem 2.2 Let G = (V,E) be a graph and PC(G) the corresponding cut polytope. If

G′ = (V ′, E′) is an induced complete subgraph of G with |V ′| odd, then

x(E′) ≤ d|V
′|

2
eb |V

′|
2
c

is facet defining for PC(G).

42

The importance of this result lies in the following fact. Assume that G is the complete

graph on 2p + 1 nodes for some positive integer p. Now, in Theorem 2.2, take V ′ = V

(and consequently E′ = E). We have that x(E) ≤ d |V |2 eb
|V |
2 c = p(p+ 1) is facet defining

for PC(G) = PC(K2p+1). This facet contains all points that are incidence vectors of cuts

of size p(p+1) which are nothing but the equicuts of G. Thus, the equipartition polytope

of an odd complete graph is a facet of the cut polytope of the same graph. From Theorem

2.2, this implies that the dimension of PEC(K2p+1) is |E| − 1. This remark will be used

below to obtain new classes of facets for PC(G) from those we introduce for PEC(G).

Another interesting result shown by Deza et al. (1989) is that, if the inequality ax ≤ 0

defines a facet of PC(Kn), then it also defines a facet of PEC(Km) for any odd m, m ≥
2n+1; therefore, in some sense, the equicut polytope contains all facets of the cut polytope

and much more.

The dimension of the equipartition polytope is given in the theorem below.

Theorem 2.3 (Conforti et al., 1990a) Consider the graph G = (V,E) and let p be some

positive integer. Then,

(i) If G is of odd size and |V | = 2p + 1, then PEC(G) is full dimensional if and only

if G is not a complete graph. If G = K2p+1, then dim(PEC(G)) = |E| − 1 and

aff (PEC(G)) = {x ∈ IR|E| : x(E) = p(p+ 1)}.

(ii) If G is of even size and |V | = 2p, define G to be the partial graph of K2p induced by

E = E(K2p)−E. Let q be the number of bipartite connected components of G. Then,

the dimension of PEC(G) is |E| − q. If G = K2p, then dim(PEC(G)) = |E| − 2p and

aff (PEC(G)) = {x ∈ IR|E| : x(δ(v)) = p , ∀ v ∈ V }.

Conforti et al. pointed out that from a complete linear description of PEC(K2p−1) one

can always deduce a complete linear description of PEC(K2p). The reason for that is the

following. Suppose that K2p−1 is the complete subgraph of K2p obtained by removing a

node u and its incidence edges from K2p. Note that the dimension of PEC(K2p−1) is equal

43

to that of PEC(K2p) and that, for every equipartition of K2p−1, if node u is added to the

smallest subset of the partition, then an equipartition of K2p is created. So, take any facet

defining inequality of PEC(K2p−1), say πx ≤ π0, and let S be a maximal set of affinelly

independent points in that facet. From every equipartition corresponding to a point in

S, we can obtain the incidence vector of an equicut in K2p in the way mentioned above.

All these incidence vectors clearly satisfy πx = π0 and are affinelly independent. Since

dim(PEC(K2p−1)) = dim(PEC(K2p)), the set of these incidence vectors is maximal and,

therefore, πx ≤ π0 is also facet defining for PEC(K2p).

Therefore, we can restrict ourselves to the study of the odd case or the even case.

From the above theorem, the difference between the dimension of the space and that

of the polytope is smaller for the odd case. Thus, it is technically easier to work with

PEC(K2p+1) than with PEC(K2p).

To simplify the proofs, we only deal with complete graphs. However, the next lemma

shows how the facet defining property is preserved when G is a subgraph of the complete

graph K2p+1.

Lemma 2.4 (Conforti et al., 1990a) Let ax ≤ a0 be a facet inducing inequality for

PEC(K2p+1). Then, for any graph G′ obtained from K2p+1 by removing a subset of its

edges not belonging to the support of the vector a, the inequality ax ≤ a0 is a facet induc-

ing inequality for PEC(G′).

In many practical applications the graph G to be equipartitioned is sparse (|E| ¿
n(n−1)

2) and, as a consequence, the support graphs of strong valid inequalities of PEC(G)

are also sparse. Thus, if G is a subgraph of K2p+1, by Lemma 2.4, we have that the

face defining inequalities of PEC(K2p+1) that are inherited by PEC(G) must have sparse

support graphs. This was a motivation for us to look for facets of PEC(K2p+1) with

planar supports. As we will see later on, the path-block cycle inequalities of Section 2.3

and the suspended tree inequalities of section 2.4 satisfy this property. In some other

classes of inequalities introduced in Section 2.4 planarity is lost and the support graphs

44

are disconnected. This is in contrast to the cut polytope where the support graphs of all

facets are 2-connected (De Simone, 1990).

Many of the facet defining inequalities for the equipartition polytope introduced by

Conforti et al. have dense support graphs. Among those having sparse supports, special

attention is paid here to the one given in Theorem 2.5 below. This inequality has a cycle

as its support graph and is a particular case of the more general classes of inequalities

given in Sections 2.3 and 2.4.

Theorem 2.5 Let C be a cycle of K2p+1 with |V (C)| = p + 2 and p ≥ 3. Then the

inequality

x(E(C)) ≥ 2 (1)

is facet defining for PEC(K2p+1).

To close this section we present a lemma that is used repeatedly in our proofs that valid

inequalities are facet defining for PEC(K2p+1).

Lemma 2.6 Let G = (V,E) be a graph with |V | = 2p + 1 nodes and let ax ≤ a0 be a

valid inequality for PEC(G). Let S1, S2, T1 and T2 be four mutually disjoint subsets of

V such that |S1| = |S2|, |T1| = |T2| and |S1 ∪ S2 ∪ T1 ∪ T2| = 2p. Finally, let {w} =

V \ (S1 ∪ S2 ∪ T1 ∪ T2) and suppose that the incidence vectors of the following equicuts of

G:

Γ1 = δ(S1 ∪ T1)

Γ2 = δ(S2 ∪ T2)

Γ3 = δ(S1 ∪ T2)

Γ4 = δ(S2 ∪ T1)

satisfy ax = a0. Then, ∑
z∈S1

awz =
∑
z∈S2

awz

45

2.4 The Path-Block Cycle Inequalities

We start this section by introducing a new graph structure that we call a path-block

cycle. Next, we define the path-block cycle inequalities which have that structure as sup-

port graph. Necessary and sufficient conditions are given for a path-block cycle (PBC)

inequality to be valid for PEC(K2p+1). We then prove that a subclass of the PBC in-

equalities define facets of the equipartition polytope. Finally, we show how to extend this

result to obtain new classes of valid and facet defining inequalities for the cut polytope

PC(K2p+1).

Let C = ((V (C1), C1), (V (C2), C2), . . . , (V (Cr), Cr)) be a collection of r cycles in a graph

G = (V,E). Assume that the cycles in C are such that if u ∈ V (Ci) ∩ V (Cj) for some

1 ≤ i 6= j ≤ r, then u ∈ V (C`) for all 1 ≤ ` ≤ r. In other words, if a node that is

common to a pair of cycles in C, it must be common to all cycles. Moreover, assume that

the common nodes are visited in the same sequence whatever the cycle we traverse in C.
The subgraph of G with node set given by

⋃r
i=1 V (Ci) and the edge set given by

⋃r
i=1Ci

defines a path-block cycle on G. Figure 2.1 shows an example of a PBC graph composed

of three cycles. Note that, in this example, nodes 1, 2, 3, 4 and 5 are common to all cycles

and the edge (3,4) is common to cycles C1 and C2.

In order to describe the PBC inequality associated to a given PBC support graph, we

have to introduce more definitions. Let N be the set of nodes that are common to all cycles

in C and t = |N |. Let (s1, s2, . . . , sr) be the sequence in which the nodes in N are visited

if we traverse any of the cycles in C in a fixed direction starting at node s1 ∈ N . We define

((V (Pij), Pij) to be the path in cycle Cj joining the nodes si and si+1 (indices are taken

modulo t) and qij = |V (Pij)| − 2. In fact, qij is the number of nodes in V (Pij) \ {si, si+1}.

A path-block is the set of paths Pij , 1 ≤ j ≤ r, for any fixed i in {1, . . . , t}. A path-block,

or simply block, is said to be degenerate if the number of distinct paths in it is less than

r. The nodes si and si+1 are said to be respectively the source and the destination nodes

of the i-th block.

46

17
12

1

2

3 4

5

6

7

8

9

11

13

14

15

16

18

19

20

21

C1

C2
C3

10

Figure 2.1:

For every edge e ∈ C1 ∪ . . . ∪ Cr, let ae be the number of cycles that contain edge e

(ae = |{j : e ∈ Cj ∈ C}|). The path-block cycle inequality associated to the collection C
of cycles is given by: ∑

e∈
⋃r

i=1
Ci

aexe ≥ 2r (2)

We investigate the validity of a PBC inequality with respect to the equipartition poly-

tope. For this, assume that no = |V \ V (
⋃r
i=1Ci)| and that q1 is the largest of the values

qij for 1 ≤ j ≤ r, q2 is the second largest among those values and so on. Let Q =
∑r−1
i=1 qi.

The following theorem gives the necessary and sufficient conditions for the PBC inequality

to be valid for PEC(K2p+1).

Theorem 2.7 The PBC inequality (2) is valid for PEC(K2p+1) if and only if Q+no < p.

Proof:

Necessity: We prove that, if Q + no ≥ p, then (2) is not valid. Let P i be the path

corresponding to the value qi and V i = V (P i)\N , where i ∈ {1, . . . , r−1}. By definition,

we have that |V i| = qi. Now, we construct a set U ⊆ V by successively adding nodes

47

to it until we reach |U | = p. This is done in the following way. If no ≥ p, then take

U as any subset of V \ V (
⋃r
i=1Ci) with |U | = p and the proof is complete because∑

e∈E aex
δ(U)
e = 0 and (2) is not valid since δ(U) is an equicut. If no < p, we initialize

U by assigning all nodes in V \ V (
⋃r
i=1Ci) to it and then |U | = no. Starting with i set

to one, if |U | − p ≥ qi we add the nodes of V i to U , we increment i and we repeat the

process. Because
∑r−1
i=1 qi + no = Q + no ≥ p, we will stop either with |U | = p, or with

i = k such that |U | − p < qk. In the last case, we assign exactly |U | − p nodes of V (P k)

that form a subpath of P k to the set U . Constructed in this way, δ(U) is an equicut.

Moreover, |δ(U) ∩ (
⋃r
i=1Ci)| ≤ 2r − 2 and ae = 1 for all edges in δ(U) ∩ (

⋃r
i=1Ci). Thus,∑

e∈E aexe < 2r and (2) is not valid. Necessity is proved.

Sufficiency: The proof is by contradiction. We assume that Q + no < p and that there

exists an equicut Γ = δ(U) for which
∑
e∈E aexe < 2r. Our goal is to find such an equicut

Γ.

Clearly, if xΓ(Ci) > 0 for all Ci ∈ C, inequality (2) is satisfied (xΓ(Ci) > 0⇒ xΓ(Ci) > 2).

Therefore, Γ must be a cut in which at least one of the cycles in C is not cut. In this case,

all nodes in N belong to the same shore of the equipartition (i.e., N ⊆ U or N ⊆ V \U).

This implies that the paths Pij , for all 1 ≤ i ≤ r, 1 ≤ j ≤ t are cut in an even number

of edges and therefore
∑
e∈E aexe = 2k for some integer k ≤ r − 1 (otherwise we have no

violation). Suppose that N ⊆ V \ U . If path Pij contains a node in U , then xΓ(Pij) > 2.

Thus, for a violation of (2), we may have at most r − 1 paths with nodes in U .

Let P̃1, P̃2, . . . , P̃s be the set of paths having a nonempty intersection with U and define

q̃i = |P̃i ∩ U | for 1 ≤ i ≤ s ≤ r − 1. We have that: Q̃ =
∑s
i=1 q̃i = |U ∩ V (

⋃r
j=1Cj)|.

Let qo be the size of the set of nodes given by (V \ V (
⋃r
j=1Cj)) ∩ U . This yields:

|U | = Q̃+ qo ≤ Q+ qo ≤ Q+ no < p

where the first inequality comes from the definition of Q (and the fact that s ≤ r−1), the

second comes from the definition of no and the third by hypothesis. Therefore, (U, V \U)

does not form an equipartition and we conclude that there is no equicut Γ violating (2).

The proof is complete. 2

48

The next lemma characterizes the equicuts whose incidence vectors satisfy the PBC

inequality at equality.

Lemma 2.8 Let xδ(U) be the incidence vector of an equicut satisfying (2) at equality.

Then δ(U) is such that:

(I) either there are two blocks of the PBC which have all paths cut only in one edge and

the remaining blocks do not have edges in δ(U).

(II) or there are r paths Pij in the PBC that are cut exactly in two edges and the re-

maining paths are not cut.

Proof: Suppose first that the path Pij is cut in an odd number of edges of δ(U), i.e.,

xδ(U)(Pij) = 2kij + 1 for some integer kij ≥ 0. This implies that the endnodes si and si+1

of the i-th path-block are in different shores of the partition. Thus, all the r cycles of C
are cut in an odd number of edges both inside and outside the i-th block. This yields:

r∑
`=1

∑
e∈C`

aexe =
r∑
`=1

∑
e∈Pi`

aex
δ(U)
e +

r∑
`=1

t∑
h=1 , h 6=i

∑
e∈Ph`

aex
δ(U)
e

≥
r∑
`=1

(2ki` + 1) +
r∑
`=1

(2k` + 1)

≥ 2r + 2
r∑
i=1

(ki` + k`)

where ki` and k` are nonnegative integers for 1 ≤ ` ≤ r. But, since xδ(U) lies in the face

defined by (2), we have that all ki`’s and k`’s are zero. This implies that all paths in block

i are cut exactly once. Symmetric arguments show that the r paths Pij that contain one

edge in δ(U) are concentrated on a single block (other than i). We conclude that xδ(U)

must be in the incidence vector of an equicut satisfying I.

A second possibility is that all paths Pij in the PBC are cut in an even number of edges.

Using cyclic arguments it is easy to see that in this case all nodes of N must be in the

same shore of the partition, say V \ U . So, only the paths that are cut contain nodes in

49

U . Let P1, . . . , Ps be such paths and qi = |V (Pi)|, for 1 ≤ i ≤ s. Since δ(U) is an equicut

for which xδ(U) satisfies (2) at equality, s must be less than or equal to r. If s is strictly

less than r, we have that: |U | ≤ ∑s
i=1 +no < Q + no ≤ p. Therefore, (U, V \ U) cannot

form an equipartition if s < r. On the other hand, if s = r and xδ(U) belongs to the face

defined by (2), then the r paths that are cut contain precisely two edges in δ(U) and so

we are in case II. 2

Lemma 2.8 together with Lemma 2.6 will provide the necessary amount of affinely in-

dependent points needed to prove the facet defining property for a subclass of the PBC

inequalities. In fact, it does not seem to be an easy task to obtain the necessary and

sufficient conditions for PBC inequalities to define facets of PEC(K2p+1) in general. How-

ever, if we restrict ourselves to PBCs that have some symmetry a proof can be given that

they define facets. Before presenting one such case, we note that the cycle inequality is a

member of the class of PBC inequalities. For this, we restrict C to a single cycle C1 which

implies that r = 1, N = V (C1), qij = 0 and ae = 1 for all e ∈ C1.

Consider now the class of PBC inequalities for which the collection of cycles C satisfies

the conditions below.

(i) All r cycles in C are of the same same size, i.e., |V (Ci)| = |V (Cj)| for Ci 6= Cj ∈ C
and r ≥ 2;

(ii) The number of blocks in the PBC is even, i.e., |N | = 2t, t ∈ ZZ, t ≥ 2;

(iii) All blocks indexed by an odd integer i ∈ {1, . . . , 2t} are such that Pij = {si, si+1}
for all j ∈ {1, . . . , r} and consequently, qij = 0 and a(si,si+1) = r;

(iv) All blocks indexed by an even integer i ∈ {1, . . . , 2t} are such that Pi` ∩ Pik = ∅ for

all 1 ≤ ` 6= k ≤ r and qij = q > 0. In other words, those blocks are formed by r

disjoints paths going from si to si+1 and their lengths are all equal to a constant

q + 1. So, ae = 1 for all edges e in Pij .

50

An example of such PBC is shown in Figure 2.2. In this example, |V (Ci)| = 15,

r = t = q = 3. The edges represented by thick lines belong simultaneously to the three

cycles that form the PBC.

Figure 2.2:

Let Vin denote the set of nodes in the PBC and Ein the the set of its edges. If Vout is the

set of nodes in V \ Vin, then no = |Vout|. Now, consider a PBC satisfying the conditions

(i)-(iv). If ni is the size of Vin, then ni = t(rq + 2). Moreover, if we partition the edge

set Ein into two sets E1 and Er such that E1 is the set of edges in nondegenerate blocks

(indexed by even numbers) and Er is the set of edges in degenerate blocks (indexed by

odd numbers), inequality (2) can be written as:

x(E1) + rx(Er) ≥ 2r (3)

Theorem 2.9 Suppose that a PBC satisfying conditions (i)-(iv) is a subgraph of K2p+1

and that no = p − (r − 1)q − 1. Then, the PBC inequality (3) is facet defining for

PEC(K2p+1).

Before we prove the theorem, we introduce some notation. The name block is used to

refer to the nondegenerate blocks (even ones) and PBk is in fact the 2k-th block of the

51

PBC and its endnodes are given by s2k and s2k+1. To simplify notation, we define the

following node sets:

• Vkj = V (P2k,j) \ {s2k, s2k+1} (nodes of the j-th path of the 2k-th path-block PBk

excluding nodes s2k and s2k+1);

• Vk =
⋃r
j=1 Vkj (nodes of the 2k-th path-block PBk excluding nodes s2k and s2k+1);

Proof of Theorem 2.9: Validity comes directly from Theorem 2.7 since Q = (r − 1)q

and, therefore, no +Q = p− (r − 1)q − 1 + (r − 1)q = p− 1 ≤ p.

Let πx ≥ π0 be a facet defining inequality for PEC(K2p+1). We define:

F = {x ∈ PEC(K2p+1) : x(E1) + rx(Er) = 2r}

Fπ = {x ∈ PEC(K2p+1) : πx = π0}

Assume that F ⊆ Fπ. We want to prove that πx ≥ π0 can be written as a linear

combination of (3) and the equation x(E) = p(p + 1), i.e., there exists λ1 ∈ IR+ and

λ2 ∈ IR such that:

(πx ≥ π0) = λ1(x(E1) + rx(Er) ≥ 2r) + λ2(x(E) = p(p+ 1))

The proof is divided into two major parts. In the first one, using Lemma 2.6, we show

that all components of the vector π associated to edges not in Ein take the same value.

In the second part, we compute the values of the components of π corresponding to edges

in Ein.

Usually, when Lemma 2.6 is applied, the choice of the node w and that of the set S1 and

S2 arises in a natural way from what is being proved. The difficult task is to build the sets

T1 and T2. One way to do so makes use of a balancing criterion which works as follows.

Suppose that the nodes of a given set U are to be assigned to T1 and T2. According to the

balancing criterion, we choose the assignment that minimizes ||U ∩T1|− |U ∩T2||. This is

necessary to guarantee that the proof is correct for any triple of parameters (r, t, q), where

r, t, q ≥ 2.

52

The incidence vectors of the cuts Γ1-Γ4 as in Lemma 2.6 must lie on the face defined

by (3) in PEC(K2p+1). For the equicuts Γ1-Γ4 that we construct in this proof, this fact

can be easily verified and we limit ourselves to indicating the type of root they define in

(3), i.e., to which case of Lemma 2.8 correspond the incidence vectors xΓ1 , . . . , xΓ4 .

First we prove that the components of π corresponding to edges incident to any node

in Vout take all the same constant value.

(a) : Let u be a node in Vin and u′, v′ any two nodes in Vout. Let w = u′, S1 = {u},
S2 = {v′} and C be a cycle in PBC containing u.

Now starting from u we move clockwise around the cycle until we reach the d t(q+2)
2 e-th

node, say v. We define A1 as the set of all nodes visited up to v excluding u. The set A2

is then the set of nodes visited after v. Clearly, V (C) = A1 ∪A2 ∪ {u}.

Let PBk and PBi be the blocks containing nodes u and v respectively. The procedure

BuildSets described below can be applied to correctly build the sets T1 and T2:

Step 1: Assign the nodes of A1 (respectively, A2) to T1 (respectively, T2).

Step 2: For blocks other than PBk and PBi, if both endnodes are in T1 (respectively,

T2), assign its remaining unassingned nodes to T1 (respectively, T2).

Step 3: For PBk (respectively, PBi), if u (respectively, v) corresponds to one of the

endnodes, say the source, the remaining unassigned nodes of it are assigned to the

same set as the other endnode, in that case, the destination.

Step 4: If block PBk (or PBi) still has unassigned nodes, they are assigned to T1

and T2 according to the Balancing Criterion (applied to Vin) in such a way that

δ(T1, T2) ∩ Ein has one edge intersecting each of its internal paths.

Step 5: The sets T1 and T2 are filled up to size p− 1 with the unassigned nodes of Vout.

53

By construction PBk is different from PBi and, thus, Γ1, . . . ,Γ4 are equicuts of type I.

We conclude that πu′u = πu′v′ = γ for all u ∈ Vin, u′, v′ ∈ Vout. Note that, since u′ and v′

were taken arbitrarily, πe takes the value γ for any edge e with both endnodes in Vout .

Below, we prove that πe = γ for all edges e not in Ein but joining two nodes in different

blocks of PBC.

(b) : Let u, v be two nodes in different blocks of PBC such that e = (uv) 6∈ Ein and u′

a node in Vout. Let w = u, S1 = {v}, S2 = {u′} and C be a cycle in PBC with edge set

given by:

• The edges of a path arbitrarily chosen for each block except the ones containing u

and v, say PBk and PBi, respectively;

• The edges of the path in PBk that contains u;

• The edges of the path in PBi that contains v;

• The edges in Er.

Defining the sets A1 and A2 exactly as we did in (a) and applying the procedure Build-

Sets, we conclude that πuv = πuu′ = γ for all nodes u, v ∈ Vin (u 6= v and (uv) 6∈ Ein)
and u′ ∈ Vout. Again we have that Γ1, . . . ,Γ4 are equicuts of type I.

Next we investigate the case when we have two nodes in a same block of PBC and

besides this they belong to a common path of the block.

(c) : Let u and v be two nonadjacent nodes of a block PBk in PBC and u′ a node of Vout.

Suppose that there are paths (one or r) in PBk containing both u and v. Let w = u,

S1 = {v} and S2 = {u′}. To build T1 and T2, we apply the following procedure:

Step 1: For all internal paths of PBk containing both u and v, assign the nodes between

u and v to T1.

54

Step 2: For the remaining paths of PBk (if any), assign its intermediate nodes to T1

such that; (i) |δ(T1, T2)| (calculated on these paths) is equal to two if both u and v

are not endnodes of PBk or equal to one otherwise and (ii) the current size of T1

attains q(r − 1) + 1.

Step 3: Assign the nodes of Vout to T1 until |T1| = p − 1. The remaining nodes of Vout

are then assigned to T2.

If both u and v are endnodes of PBk, then Γ1, . . . ,Γ3 are roots of type I and Γ4 is

a root of type II. In contrary, if both u and v are not endnodes of PBk, then all four

equicuts give rise to roots of type II. If U is an endnode of PBk but not v, then Γ1 and

Γ3 are type I while Γ2 and Γ4 are type II. Finally, if v is an endnode of PBk but not u

Γ1 and Γ2 are type I while Γ3 and Γ4 are type II.

We conclude that πuv = πuu′ = γ for all nodes u, v both belonging to a same block in

Vin and to at least one internal path of it and all nodes u′ in Vout.

In (d) we deal with the case not treated in (c) when the nodes belong to a same block

but are not in a same path.

(d) : Let u and z be two nodes of a block PBk in PBC and u′ a node of Vout. Suppose that

there are no paths in PBk containing both u and z. Let w = u, S1 = {z} and S2 = {u′}.
Let C, v, A1 and A2 be defined as in (a).

To correctly construct the sets T1 and T2, we apply the same procedure BuildSets

from (a) but with a slight change in Step 4. Suppose that z is in the j-th path of PBk

(necessarily different from the one containing u). For path j, in Step 4, the nodes between

the source (respectively, destination) and z are forced to be in the same set of the source

(respectively, destination). After doing this, the nodes from other paths of PBk are

assigned following the rules expressed in Step 4.

55

Note that Step 3 is never executed because u and z cannot be endnodes of PBk. All

the four equicuts of Lemma 2.6 are of type I.

This shows that πuz = πuu′ = γ for all nodes u and z belonging to a same block in

PBC (but not to a same path) and all u′ in Vout.

We already proved that all edges not belonging to the support graph of (6) are associated

to components of π with value γ. From (e) to (g) we show that the components of π

associated to edges in E1 have a constant value α.

(e) : Let u be a node of Vk for some block PBk of PBC and j be the path containing u in

PBk with v and z its two adjacent nodes in it. We then build the following sets: w = u,

S1 = {v}, S2 = {z}, T1 = ∪i6=j(Vik) ∪ Vout and T2 = V \ (S1 ∪ S2 ∪ T1 ∪ {w}).

In this case, if both v and z are endnodes of PBk, we have that Γ1, . . . ,Γ4 are of type

I. On the other hand, if both v and z are not endnodes of PBk, Γ1, . . . ,Γ4 are of type

II. If v (z) is an endnode of PBk but not z (v), then Γ1 and Γ2 (Γ3 and Γ4) are of type

I and Γ3 and Γ4 (Γ1 and Γ2) are of type II.

From Lemma 2.6, we deduce that πuv = πuz = αjk, i.e., πe = αjk for all edges e in the

j-th path of PBk.

In the remaining of the proof, we do not use Lemma 2.6. We simply exhibit two equicuts

satisfying (3) at equality and, since they must satisfy πx = π0, we obtain further relations

between the components of π.

(f) : Let i and j be two distinct paths of some block PBk and u a node in Vk−1. We define

the following subsets of V :

U1 =
⋃r
`=1(V`k : ` 6= i) ∪ Vout ∪ {u} (type II)

U2 =
⋃r
`=1(V`k : ` 6= j) ∪ Vout ∪ {u} (type II)

56

The incidence vectors of both δ(U1) and δ(U2) satisfy (3) at equality. Hence, πxδ(U1) =

πxδ(U2) which implies that αik = αjk := αk. Hence, for all k ∈ {1, . . . , t}, if e is an edge

of PBk then πe = αk.

Now, we prove that αk is a constant not depending on the block k, i.e., αk := α.

(g) : Let v be a node in the r-th path of PBk and U3 =
⋃r−1
`=1(V`k) ∪ Vout ∪ {v}. The

incidence vector of δ(U3) satisfies (3) at equality and, therefore, πxδ(U1) = πxδ(U3) = π0

which shows that αk = αk−1 := α. By symmetry, we have proved that, for all edges E in

E1, πe = α. Note that U3 is of type II.

All the edges in Er are associated to components in π that take the same value as we

prove below.

(h) : Consider the following subsets of V :

U4 =
⋃r−1
`=1(V`k) ∪ Vout ∪ {s2k} (type I)

U5 =
⋃r−1
`=1(V`k) ∪ Vout ∪ {s2k+1} (type I)

The equicuts δ(U4) and δ(U5) both satisfy (6) at equality. Comparing the values of

πxδ(U4) and πxδ(U5) (which are equal to π0), we get that πs2ks2k−1
= πs2k+1s2k+2

= β.

Again, by using symmetric arguments, we deduce that for all edges e in Er, πe = β.

It remains to investigate how α, β and γ are related. This is easily done by noting that

both xδ(U3) and xδ(U4) are in F . Hence, πxδ(U3) = πxδ(U4) = π0 implying that:

β = rα− (r − 1)γ .

The results we proved so far show that πx ≥ π0 can actually be written as a linear

combination of (3) and x(E) = p(p+ 1) as stated before. In order to do so we take:

• λ1 = α− γ;

• λ2 = γ.

57

The proof is complete. 2

For a PBC satisfying conditions (i)-(iv), we have that Q + no = p − 1. In the next

theorem, we see that this is a necessary condition for a PBC inequality to be facet defining

for PEC(K2p+1).

Theorem 2.10 Consider a PBC which is a subgraph of K2p+1. If the corresponding PBC

inequality is facet defining for PEC(K2p+1), then Q+ no = p− 1.

Proof: By contradiction. Assume that Q + no ≤ p − 2. From Theorem 2.7 the PBC

inequality is valid. Suppose first that Pij is a path in the PBC such that qij = min{qab >
0 , ∀ a, b such that 1 ≤ a ≤ t and 1 ≤ b ≤ r}.

Let u, v, z be three nodes in V (Pij) with (u, v), (u, z) ∈ Pij (u is not an endnode

of block i). We claim that there exists no vector in F = {x ∈ PEC(K2p+1) :

x satisfies (2) at equality} such that xuv = xuz = 1. In fact, if δ(U) is an equicut cor-

responding to a root of (2) and it cuts the edges (u, v) and (u, z), according to Lemma

2.8, it must cut (r − 1) different paths in two edges. Suppose that all the nodes between

the two edges that are cut in these (r − 1) paths and the node u are in set U . All the

other nodes in the PBC are in V \ U . Thus, even if all nodes not in the PBC are in U ,

we have that |U | ≤ ∑r−1
i=1 qi + no + 1 = Q + no + 1 = p − 1 and (U, V \ U) cannot be

an equipartition. Thus, all vectors in F satisfy xuv + xuz = xvz and (2) can be lifted by

reducing the coefficient auv and auz from 1 to 0 and increasing avz from 0 to 1.

Now assume that qij = 0 for all paths in the PBC. This implies that Q = 0 and the

support graph of the PBC inequality reduces to a cycle on more than p+ 2 nodes (since

no ≤ p− 2). If (u, v) and (u, z) are two adjacent edges in this cycle, it is easy to see that

xuv + xuz = xvz for all incidence vectors in F (defined as above). By repeating the same

operation described in this previous case, we obtain a stronger inequality that proves that

the original one does not define a facet of PEC(K2p+1). This completes the proof. 2

58

We have seen in Theorem 2.2 that the equipartition polytope ofK2p+1 is a facet of the cut

polytope of K2p+1 Therefore, given a facet defining inequality of PEC(K2p+1), there exists

a suitable linear combination of this inequality and the equation x(E) = p(p + 1) which

produces a facet defining inequality for PC(K2p+1). In the next theorem we introduce

an inequality which arises from such a linear combination and we give the necessary and

sufficient conditions for this inequality to be valid with respect to PC(K2p+1). Moreover,

if the PBC inequality is facet defining for PEC(K2p+1) and the linear combination results

in a valid inequality for PC(K2p+1), Theorem 2.10 above is used to prove that the former

defines a facet for PC(K2p+1).

Theorem 2.11 Given a PBC inequality that is a subgraph of K2p+1, let ax ≥ 2r be the

corresponding inequality. Consider the following inequality:

(πx ≤ π0) = (x(E) = p(p+ 1))− (ax ≥ 2r)

= (x(E)− ax ≤ p(p+ 1)− 2r) (4)

Then,

(i) For all k ∈ ZZ+ with k(k + 1) ≤ 2(r − 1), let Qk be such that

Qk =
r−1−ε(k)∑

i=1

qi

where ε(k) = k(k+1)
2 (according to this definition, we have that Q = Q0). Then,

(4) is valid for PC(K2p+1) if and only if n0 + Qk ≤ p − 1 − k for all k ∈ ZZ+ with

k(k + 1) ≤ 2(r − 1).

(ii) If (4) is valid for PC(K2p+1) and ax ≥ 2r is facet defining for PEC(K2p+1), then (4)

is facet defining for PC(K2p+1).

Proof:

(i) : As in Theorem 2.7, we first prove necessity. For this, assume that ∃ j ∈ ZZ+ such

that j(j + 1) ≤ 2(r − 1) and n0 + Qj ≥ p − j. This means that there exists a node set

U ⊆ V with |U | = p − j such that the nodes in U are all internal nodes of the paths

59

corresponding to the r − 1− j(j+1)
2 largest qi values and all the remaining nodes are not

in the PBC. For such a set U , we have that:

xδ(U)(E)− axδ(U) = p(p+ 1)− j(j + 1)− 2(r − 1− j(j + 1)
2

)

= p(p+ 1)− 2r + 2− j(j + 1) + j(j + 1)

= p(p+ 1)− 2r + 2

Therefore (4) is not valid for PC(K2p+1).

To prove sufficiency, we assume that n0 +Qk ≥ p−k−1 for all k ∈ ZZ+ with k(k+1) ≤
2(r − 1) and that (4) is not valid. If we end up with a contradiction the result is proved.

Since (4) is not valid for PC(K2p+1) there exists at least one cut δ(U) such that

xδ(U)(E) − axδ(U) > p(p + 1) − 2r. As in the proof of Theorem 2.7, we know that δ(U)

cannot intersect all the r cycles of the PBC and that it can only intersect r− λ paths Pij

for some λ ≥ 1 ∈ ZZ+. Our goal is to find a cut δ(U) corresponding to a violation of (4)

and we can eliminate all equicuts from our search.

Suppose that |U | = p− k and |V \U | = p+ k+1. For the left-hand side of (4) we have:

xδ(U)(E)− axδ(U) = p(p+ 1)− k(k + 1)− axδ(U)

= p(p+ 1)− k(k + 1)− 2(r − λ)

= p(p+ 1)− 2r + 2λ− k(k + 1)

Violation of (4) implies that λ > k(k+1)
2 or, because the quantities in this inequality are

integer, λ ≥ k(k+1)
2 + 1. Thus, the nodes of U are distributed in such a way that α nodes

are not in the PBC and β nodes are concentrated in at most r − 1− k(k+1)
2 paths of the

PBC. We have that:

α+ β ≤ n0 + β ≤ n0 +Qk ≤ p− k − 1

where the second inequality comes from the definition of Qk and the last one comes from

the assumption. But since α+ β = p− k, we get a contradiction.

60

Note that, using the definition of Qk, we implicitly have assumed that k(k+1)
2 ≤ r − 1.

To complete the proof, consider now that k(k+1)
2 ≥ r. For the left-hand side of (4) we get:

xδ(U)(E)− axδ(U) = p(p+ 1)− k(k + 1)− axδ(U)

≤ p(p+ 1)− 2r − axδ(U)

≤ p(p+ 1)− 2r

and the inequality is trivially satisfied. This completes the proof of (i).

(ii) : Let U be the set of all nodes not in the PBC and the internal nodes of the paths

P 1, . . . , P r−1 (recall that |V (P i)| − 2 = qi, 1 ≤ i ≤ r − 1). From Theorem 2.10, since

ax ≥ 2r is facet defining for PEC(K2p+1) we have that |U | = n0 +Q0 = n0 +Q = p−1. So,

(U, V \ U) does not form a equipartition of V . Let X be a maximal affinely independent

set of incidence vectors of equicuts satisfying (4) at equality, i.e., |X| = |E| − 1. The set

X ∪ {xδ(U)} is affine independent and if we prove that xδ(U) is on the face defined by (4)

in PC(K2p+1) we are done.

The left-hand side of (4) is given by:

xδ(U)(E)− axδ(U) = p(p+ 1)− 2− axδ(U)

So, xδ(U) satisfies (4) at equality if and only if axδ(U) = 2(r − 1). This implies that

P 1, . . . , P r−1 are all cut twice, which is true if and only if qi > 0 for all i = 1, . . . , r − 1.

The validity of (4) for PC(K2p+1) implies that Q1 + n0 ≤ p − 2. By definition, Q0 =

Q1 + qr−1 and qr−1 ≤ . . . ≤ q1. From Theorem 2.10, Q0 + n0 = p − 1. Combining these

results we have:

p− 1 = Q0 + n0

= Q1 + qr−1 + n0

≤ p− 2 + qr−1 ≤ . . . ≤ p− 2 + q1

⇒ 1 ≤ qr−1 ≤ . . . ≤ q1

The proof is complete. 2

61

(3)

(2)

(3)

(3)(3)

(3) (3)

(3)

(3)

V
OUT

The requirements on the Qk in part (i) of Theorem 2.11 can be relaxed if the collection

C of cycles forming the PBC does not contain two or more cycles that are identical. Figure

2.3 illustrates a PBC in K15 which is the support of a valid inequality for PEC(K15). The

numbers indicated in parenthesis refer to the coefficients ae in the PBC inequality and

are omitted if ae = 1. The value of r is 3 and Q + n0 = 6 ≤ p − 1 = 6. However, the

inequality x(E)−ax ≤ 50 is not valid for PC(K15) and the cut that violates the inequality

is indicated in the figure. For this cut, x(E)− ax is equal to 52.

Figure 2.3:

We show now that this situation occurs because qr−1 = 0. Indeed, if qr−1 = 0, then

all blocks of the PBC have at least two paths which reduce to the edge joining the source

and the destination nodes. Without loss of generality, we can suppose that these paths

form the cycles Cr and Cr−1 of C and, clearly, Cr = Cr−1. All the roots of the associated

PBC inequality are of type I (following the notation of Lemma 2.8) the reason being that,

for qr−1 = 0, at most r − 2 paths can be cut twice. Therefore, removing Cr from C and

decreasing r by one, we obtain a new inequality defining the same face of PEC(K2p+1).

This cycle elimination can be repeated until we obtain qr−1 ≥ 1. This implies that

q1 ≥ . . . ≥ qr−1 ≥ 1. If Q+ n0 = Q0 + n0 ≤ p− 1, we can use the recurrence formula:

Qk + n0 = Q0 + n0 −
r−1∑

i=r− k(k+1)
2

qi

62

≤ p− 1− (r − 1− r +
k(k + 1)

2
+ 1)

≤ p− 1− k(k + 1)
2

⇒ Qk + n0 ≤ p− 1− k

The results in the preceeding paragraph, together with Theorem 2.11, can be used to

prove the following theorem.

Theorem 2.12 Consider a PBC which is a subgraph of K2p+1 and such that C does not

contain two or more cycles that are identical. Then, inequality (2) is valid for PEC(K2p+1)

if and only if inequality (4) is valid for PC(K2p+1). Moreover, if inequality (2) defines a

facet of PEC(K2p+1), then inequality (4) defines a facet of PC(K2p+1).

An immediate corollary of Theorem 2.12 is the following (see Theorem 2.9).

Corollary 2.13 Let ax ≥ 2r be the PBC inequality corresponding to a PBC subgraph

of K2p+1 satisfying conditions (i)-(iv) and such that n0 = p − (r − 1)q − 1. Then, the

inequality

(πx ≤ π0) = (x(E) = p(p+ 1))− (ax ≥ 2r)

is facet defining for PC(K2p+1).

In the next section we introduce another class of facet defining inequalities for

PEC(K2p+1) having sparse support graphs.

63

2.5 The Suspended Tree Inequalities

In this section, we describe another generalization of the cycle inequality obtained by

replacing the cycle structure by a more complicated graph, namely a (suitably weighted)

suspension of a tree. This idea comes from Boros and Hammer (1993) who applied it to

construct a class of facets for the cut polytope (see also Remark 1).

Moreover, we shall see that we can relax the conditions on the number of nodes on

which the cycle is defined. Clearly, if we take a cycle C which is defined on more than

p+2 nodes in K2p+1, inequality (1) remains valid, but is not facet defining; for example, if

C is the cycle (u1, u2, . . . , up+3), then x(E(C)) ≥ 2 is the sum of two valid inequalities for

PEC(K2p+1): x(E(C ′)) ≥ 2 and xu1,up+3 + xup+2,up+3 − xu1,up+2 ≥ 0 where C ′ is the cycle

(u1, u2, . . . , up+2). However, if we take a cycle C which is defined on less than p+2 nodes,

e.g. on p + 1 or p nodes, by suitably modifying the original inequality we will produce

some facet defining inequality for PEC(K2p+1).

A nice feature of the inequality (1) is the planarity of its support graph. The general-

ization we proposed in the previous section and most of those we present in this section

still posess the planarity property. This is indeed the case for the inequalities (5) and (6).

From Lemma 2.4, all these inequalities provide facets for the equicut polytope of planar

graphs.

Let (V (T), T) be a tree in K2p+1 and u0 be a node in V \V (T). For every node u ∈ V (T),

we denote by du the degree of u in T . We consider the following inequality:

ω(T, u0)x :=
∑

u∈V (T)

(2− du)xu0u +
∑
uv∈T

xuv ≥ 2 (5)

Note that, if T is the path (u1, u2, . . . , uk), then ω(T, u0)x = x(E(C)), where C is the

cycle (u0, u1, u2, . . . , uk). Therefore, inequality (5) generalizes the cycle inequality. The

support graph of the inequality (5) is a suspension of the tree T with apex u0, whose

edges are the pairs (u0, u) for u ∈ V (T) such that du 6= 2 and (u, v) ∈ T . An example

64

(2)

apex

of a suspended tree is shown in Figure 2.4. The dashed lines correspond to the edges

having negative coefficients in (5). Coefficients with absolute values different from one are

indicated in parenthesis.

Figure 2.4:

Lemma 2.14 Let U be a subset of V (T) and consider the complete graph with node-

set V (T) ∪ {u0}. Then ω(T, u0)xδ(U) = 2c(U), where c(U) is the number of connected

components of the subgraph (U, T (U)) of (V (T), T) induced by U .

Proof: We compute:

ω(T, u0)xδ(U) =
∑
u∈U

(2− du) + |T ∩ δ(U)|

= 2|U | −
∑
u∈U
|{uv ∈ T : v ∈ V (T)}|+∑

u∈U
|{uv ∈ T : v ∈ V (T) \ U}|

= 2|U | −
∑
u∈U
|{uv ∈ T : v ∈ U}|

= 2|U | − 2(|U | − c(U)) = 2c(U)

2

An immediate corollary is:

Corollary 2.15 Let T be a tree of K2p+1 with |V (T)| = p + 1 and u0 be a node of

V (K2p+1) \ V (T), then inequality (5) is valid for PEC(K2p+1). Moreover, the equicuts of

65

K2p+1 satisfying the equality ω(T, u0) x = 2 are of the form δ(U) with |U | = p, p+ 1 and

T (U ∩ V (T)) is connected.

A connected graph G = (V,E) is called a star if there exists u ∈ V (the center of the

star) such that G− {u} consists only of isolated nodes, i.e., E = {(v, u) : v ∈ V \ {u}}.

Theorem 2.16 Let T be a tree of K2p+1 with |V (T)| = p + 1 and u0 be a node of

V (K2p+1) \ V (T). Then, inequality (5) defines a facet of PEC(K2p+1) if and only if T

is not a star.

Proof: We first prove necessity. For this, suppose that T is a star and p ≥ 2. We want to

prove that (5) cannot be a facet defining inequality for PEC(K2p+1). The case p = 1 will

be treated separately.

Let v be the center of the star T and consider the complete subgraph K2p−1 defined on

the nodes in V \ {u0, v}. It is not difficult to see that the incidence vector xδ(U) of any

equicut δ(U) that satisfies (5) at equality also satisfies x(E(K2p−1)) = p(p− 1). Thus, (5)

cannot define a facet of PEC(K2p+1).

If p = 1 any tree on p+ 1 nodes is a star composed by a single edge and the suspended

tree support graph is the complete graph K3. Thus, inequality (5) does not induce a

proper face of PEC(K3) and necessity is proved.

To prove sufficiency we apply Lemma 2.6 and, once more, we restrict ourselves to show

how the sets S1, S2, T1 and T2 are constructed. The resulting equicuts can be easily seen

to define roots of (5) by applying Lemma 2.14.

Again, we use the following characterization for proving that inequality (5) is facet

defining for PEC(K2p+1). Let πx ≥ π0 be a valid inequality for PEC(K2p+1) such that:

F = {x ∈ PEC(K2p+1) : ω(T, u0) x = 2}
Fπ = {x ∈ PEC(K2p+1) : πx = π0}

66

and F ⊆ Fπ. We show that there exist some scalars λ1, λ2 such that:

π x = λ1 ω(T, u0) x+ λ2
∑
e∈E(K2p+1) xe and

π0 = 2λ1 + λ2p(p+ 1)

This amounts to check the existence of some scalars α, β such that the following con-

ditions hold:

• πu,v = α for all edges (u, v) ∈ T ;

• πe = β for all edges e ∈ E(K2p+1) \ (T ∪ {(u0, u) : u ∈ V (T)})

• πu0,u = (α− β)(2− du) + β for all u ∈ V (T);

• π0 = 2(α− β) + βp(p+ 1)

We set V = V (K2p+1) = V (T)∪{u0}∪V ′, implying that |V ′| = p− 1. We just indicate

how to build the sets W , S1, S2, T1 and T2 that suggests the use of Lemma 2.6 leading to

the results below.

(a) : Take any three distinct nodes u′, v′ and w′ of V ′. Set A′ = V ′ \{u′, v′, w′} and take a

subset A of three nodes in V (T) that induces a connected subtree of T . Now, let w = u′,

S1 = {v′}, S2 = {w′}, T1 = A ∪ A′ and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1). From Lemma 2.6,

we deduce that πu′v′ = πu′w′ and, therefore, there exists a scalar β such that πu′v′ = β for

all u′ and v′ in V ′.

(b) : Take u ∈ V (T) and two distinct nodes u′, v′ ∈ V ′. Since T is not a star, we can

find an edge (v, z) (v,z 6= u) such that T ({u, v, z}) is connected. Now, we set w = u′,

S1 = {v′}, S2 = {u}, T1 = {v, z} ∪ (V ′ \ {u′, v′}) and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1). From

Lemma 2.6, conclude that:

πu′u = πu′v′

Hence,

πuu′ = β for all u ∈ V (T), u′ ∈ V ′

67

(c) : Let A be a subset of V (T) such that 2 ≤ |A| ≤ p−1 and both T (A) and T (V (T)\A)

are connected (to find such set A, take a node u of V (T) of degree at least 2 in T ; since

T is not a star, some component of T − {u} is not reduced to an isolated node; chose its

nodeset for A). Take distinct nodes u′, v′ ∈ V ′ and A′ ⊆ V ′\{u′, v′} with |A′|+|A| = p−1.

Now, we set: w = u′, S1 = {v′}, S2 = {u0}, T1 = A∪A′ and T2 = V \ (W ∪S1 ∪S2 ∪ T1).

From Lemma 2.6, we have:

πu′u0 = πu′v′ = β

Hence,

πu0u′ = β for all v ∈ V ′

(d) : Take two distinct nodes u and v in V (T) that are not adjacent in T . Let Puv be

the path in T joining u to v; set A = V (Puv) \ {u, v} (clearly, 1 ≤ |A| ≤ p − 1). Take

u′ ∈ V ′ and A′ ⊆ V ′ \ {u′} with |A|+ |A′| = p− 1. Setting: w = u, S1 = {v}, S2 = {u′},
T1 = A ∪A′ and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1). From Lemma 2.6, we deduce that:

πuv = πuu′ = β

Or, more generally:

πuv = β for all u ∈ V (T), v ∈ V (T) with (uv) 6∈ T

(e) : Assume that u, v and z are in V (T) and that u is adjacent to both v and z. Let

w = u, S1 = {v}, S2 = {z}, T1 = V ′ and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1). Using Lemma 2.6,

we prove that:

πuv = πuz

By connectivity of the tree T we can deduce that, for some scalar α, πe = α for all

edges e ∈ T .

68

Finally, we compute the value of πu0u for u ∈ V (T) and of π0. Take an edge (u, v) of

T ; both sets A = {u, v} ∪ V ′ and A′ = {v} ∪ V ′ define roots of (5), so we deduce that:

0 = πxδ(A) − πxδ(A′) ⇒
0 = πu0u + α(du − 1) + β(p− du)− β(p− 1)− α ⇒
πu0u = (2− du)(α− β) + β

Moreover, for A′′ = V ′ ∪ {u}:

π0 = πxδ(A
′′) ⇒

π0 = β(p− 1)(p+ 1) + πu0u + αdu + β(p− du) ⇒
π0 = βp(p+ 1) + 2(α− β)

2

Remark 1 : If we relax the connectivity condition and suppose that T is a forest

with |V (T)| = p + 1, then inequality (5) remains valid for PEC(K2p+1), however, the

facet property is lost if T is not a tree. Indeed, suppose T has k connected components

T1, . . . , Tk; choose two leaves `i and `′i in each tree Ti and construct the tree T ′ obtained

by adding to T the edges (`′i+1, `i) for i = 1, 2, . . . , k − 1. Then, we have that:

ω(T, u0)x = ω(T ′, u0)x+
k−1∑
i=1

(xu0,`′i
+ xu0,`i+1

− x`′i,`i+1
)

and, thus, the inequality ω(T, u0)x ≥ 2 is the sum of the valid inequalities: ω(T ′, u0)x ≥ 2

and the inequalities xu0,`′i
+ xu0,`i+1

− x`′i,`i+1
≥ 0 for i = 1, . . . , k − 1, and hence is not

facet defining.

We now see how to modify inequality (5) (or inequality (1)) when the tree T is defined

on p nodes only. Let T be a tree of K2p+1 with p nodes and u1, u2, u3 be distinct nodes

of V (K2p+1) \ V (T). Let ∆ denote the clique (triangle) with nodes u1, u2 and u3. We set

∆x := xu1,u2 + xu1,u3 + xu2,u3 . We consider the inequality:

ω(T,∆, u0)x =
∑

u∈V (T)

(2− du)xu0,u +
∑
e∈T

xe −
∑
e∈∆

xe ≥ 0 (6)

Thus, ω(T,∆, u0)x is given by ω(T, u0)x − ∆x. Figure 2.5 shows the support graph of

such an inequality.

69

apex

Figure 2.5:

Proposition 2.17 Let T be a tree of K2p+1 with |V (T)| = p, ∆ be a triangle with V (∆) ⊆
V (K2p+1) \ V (T) and u0 be a node in V (K2p+1) \ (V (T) ∪ V (∆)). Then, inequality (6) is

valid for PEC(K2p+1).

Proof : Take an equicut δ(U) of K2p+1 with |U | = p, p + 1 and we can suppose that

u0 6∈ U . Then:

ω(T,∆, u0)xδ(U) = ω(T, u0)xδ(U) −∆xδ(U)

= 2c(U ∩ V (T))−∆xδ(U) (by Lemma 2.14)

If ∆xδ(U) = 0, then clearly ω(T,∆, u0)xδ(U) ≥ 0 ; else, ∆xδ(U) = 2, implying that

|U∩V (∆)| = 1 or 2 and thus, since |U | = p or p+1, |U∩V (∆)| ≥ 1 and so c(U∩V (T)) ≥ 1,

implying that ω(T,∆, u0)xδ(U) ≥ 0 and this completes the proof. 2

As a consequence of the previous proof, the equicuts of K2p+1 satisfying (6) at equality

are of the form δ(U) with U = V (K2p+1)\(V (T)∪{u0}) or, |U | = p, p+1 and |U∩V (∆)| =
1, 2, T (U ∩ V (T)) is connected.

Theorem 2.18 Let T be a tree of K2p+1 with |V (T)| = p, u0, u1, u2, u3 be nodes of

V (K2p+1) \ V (T) and ∆ denote the triangle with nodes u1, u2, u3. If p ≥ 5 and T is

not a star, then inequality (6) defines a facet of PEC(K2p+1),

70

Proof : Take a valid inequality πx = π0 for PEC(K2p+1) and let:

F = {x ∈ PEC(K2p+1) : ω(T,∆, u0) x = 0}
Fπ = {x ∈ PEC(K2p+1) : πx = π0}

and F ⊆ Fπ. We show below that there exists some scalars α and β such that:

• πuv = α for all edges (uv) ∈ T ;

• πuv = β for all (uv) ∈ E(K2p+1) \ (T ∪∆ ∪ E0) where E0 = {(u0, u) : u ∈ V (T)};

• πu0u = (α− β)(2− du) + β for all u ∈ V (T);

• πuv = 2β − α for all u,v ∈ V (∆), u 6= v;

• π0 = βp(p+ 1)

We set V ′ = V (K2p+1)− (V (T) ∪ {u0} ∪ V (∆)), so the size of V ′ is p− 3.

The idea of the proof is basically the same of the one for Theorem 2.16. We want to

use Lemma 2.6 and, for this, we need to define the sets W , S1, S2, T1 and T2 such that

the incidence vectors of the equicuts defined in the lemma are in F . The former can be

checked easily from the result contained in the paragraph just preceding the theorem.

(a) : Let A be a subset of three nodes of V (T) such that T (A) is connected. Take z, u,

v in V ′, A′ = V ′ \ {u, v, z} and set: w = z, S1 = {u}, S2 = {v}, T1 = A ∪ A′ ∪ {u1, u2}
and T2 = V \ ({w} ∪ S1 ∪ S2 ∪ T1). Using Lemma 2.6, we have that: πzu = πzv. Hence,

for some scalar β:

πzu = β for all z, u ∈ V ′ and z 6= u

Take now two distinct nodes z, u in V ′, A′ = V ′ \ {z, u} and set: w = z, S1 = {u},
S2 = {u1}, T1 = A ∪ A′ ∪ {u2} and T2 = V \ ({w} ∪ S1 ∪ S2 ∪ T1). Lemma 2.6 implies

that: πz,u1 = πzu = β. Similarly, one can prove that: πz,u1 = πz,u2 = πz,u3 = β.

71

(b) : Given an edge (uv) of T , set: W = {u1}, S1 = {u2}, S2 = {u3}, T1 = V ′ ∪{u, v} and

T2 = V \ (W ∪ S1 ∪ S2 ∪ T1). Lemma 2.6 implies that:

πu1u2 = πu1u3

Or similarly,

πuiuj = β′ for all i, j ∈ {1, 2, 3}, i 6= j

(c) : Given u ∈ V (T), let A be a subset of V (T) \ {u} such that 2 ≤ |A| ≤ p− 2 and T (A),

T (A∪ {u}) and T (V (T) \A) be connected subtrees of T (this is possible, since T is not a

star). Take w ∈ V ′,A′ ⊆ V ′ \ {w} such that |A|+ |A′| = p− 2. With W = {w}, S1 = {u},
S2 = {u1}, T1 = A ∪A′ ∪ {u2} and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1) we build the roots of (6)

which, from Lemma 2.6, imply that: πwu = πwu1 = β. Hence:

πwu = β for all u ∈ V (T), w ∈ V ′

On the other hand, setting: W = {u1}, S1 = {u}, S2 = {w} and keeping T1 and T2 as

before, we obtain different roots of (6), implying that: πu1u = πu1w = β. Hence:

πuu1 = πuu2 = πuu3 = β for all u ∈ V (T)

Also for the same sets T1 and T2, settingW = {w}, S1 = {u0} and S2 = {u1}, will define

new roots of (6) leading to the conclusion that: πwu0 = πwu1 = β; and for W = {u1},
S1 = {u0} and S2 = {w} the roots obtained for (6) imply that: πu1u0 = πu1w = β.

Therefore,

πu0v = β for all v ∈ V (∆) ∪ V ′

(d) : Take two distinct nodes w, u ∈ V (T) that are not adjacent in T . Let P = (v1 =

w, v2, . . . , vk, vk+1 = u) be a path in T joining u to w. Let A = {v2, . . . , vk}, so that

1 ≤ |A| ≤ p − 2 and take A′ ⊆ V ′ with |A| + |A′| = p − 2. Set W = {w}, S1 = {u},
S2 = {u2}, T1 = A ∪ A′ ∪ {u1} and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1). From Lemma 2.6, we

deduce that πwu = πwu2 = β.

72

(e) : Take distinct nodes w, u, v ∈ V (T) such that w is adjacent to both u and v in T .

Let : W = {w}, S1 = {u} S2 = {v}, T1 = V ′ ∪ {u1, u2} and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1).

The usual argument shows that: πwu = πwv. By connectivity of T , we deduce that, for

some scalar α:

πuv = α for all edges (uv) ∈ T

(f) : It only remains to check that β′ = 2β − α, and to compute the values of πu0u for

u ∈ V (T) and of π0. Take u ∈ V (T), then δ(V ′ ∪ {u, u1, u2}) is a root of (6), implying

that:

π0 = πxδ(V
′∪{u,u1,u2})

and, thus:

π0 = πu0u + αdu + 2β′ + β(p2 + p− 3− du)

(g) : Now, if (uv) ∈ T , then δ(V ′ ∪ {u, v, u1, u2}) is a root of (6), implying that:

π0 = πu0u + πu0v + 2β′ + α(du + dv − 2) + β(p2 + p− 2− du − dv)

(h) : Comparing the equations obtained in (e) and (f), we get:

π0 = 2β′ + 2α+ β(p2 + p− 4)

Using the equation in (h), we deduce from (f) that:

πu0,u = (α− β)(2− du) + β

Since δ(V ′ ∪ V (∆)) is in F , we can deduce that:

π0 = πxδ(V
′∪V (∆)) = βp(p+ 1)

Finally, comparing this value of π0 with the one given in (h), we show that: β′ = 2β−α.

This concludes the proof. 2

We now describe a second extension for the inequalities (5) and (6) for the case when

the tree T is defined on p− 1 nodes instead of p+ 1 or p nodes.

73

apex

Given five nodes u1, . . . , u5, consider the cycles C = (u1, u2, u3, u4, u5) and C ′ =

(u1, u3, u5, u2, u4). Let us call chorded pentagon, denoted by CP , the weighted graph

on the nodes u1, . . . , u5 whose edges are those of C with weights +1 and those of C ′

with weights −1. We set CP.x =
∑
e∈E(C) xe −

∑
e∈E(C′) xe. Let T be a tree of K2p+1,

u0, u1, . . . , u5 be nodes of V (K2p+1) \ V (T) and CP be the chorded pentagon defined on

nodes u1, . . . , u5. We consider the inequality:

ω(T,CP, u0)x =
∑

u∈V (T)

(2− du)xu0,u +
∑
e∈T

xe +
∑
e∈C

xe −
∑
e∈C′

xe ≥ 0 (7)

So, ω(T,CP, u0)x is given by ω(T, u0)x+CP.x. The support graph of such an inequality

is shown in Figure 2.6.

Figure 2.6:

Proposition 2.19 Let T be a tree of K2p+1 with |V (T)| = p−1, CP be a chorded pentagon

with V (CP) = {u1, . . . , u5} ⊆ V (K2p+1) \ V (T) and u0 ∈ V (K2p+1) \ (V (T) ∪ V (CP).

Then, the inequality (7) is valid for PEC(K2p+1).

Proof : Take an equicut δ(U) of K2p+1 with u0 6∈ U . One checks easily that, if |U ∩
V (CP)| = 1 or 4, then CP.xδ(U) = 0; if U ∩ V (CP) is of the form {u1, u2} or {u1, u2, u3}
(i.e., a circular interval of size 2, 3 on the cycle C), then CP.xδ(U) = −2 and CP.xδ(U) = 2

otherwise. But, if |U ∩V (CP)| ≤ 3, then, since |U | = p or p+1, |U ∩V (T)| ≥ 1 and, thus,

by Lemma 2.14, ω(T,CP, u0)xδ(U) ≥ 2. Therefore, ω(T,CP, u0).xδ(U) ≥ 0 for all equicuts

δ(U). 2

74

Let us set V ′ = V (K2p+1)\(V (T)∪V (CP)∪{u0}), so |V ′| = p−4. We see from the last

proof that the equicuts whose incidence vectors satisfy equality ω(T,CP, u0).x = 0 are of

the form δ(U) with U = V (CP)∪V ′, V (CP)\{uh}∪V ′ for uh ∈ V (CP), V (CP)∪V ′\{v}
for v ∈ V ′ and U such that T (U ∩ V (T)) is connected, U ∩ V (CP) = {uh, uh+1} or

{uh, uh+1, uh+2} (indices taken modulo 5) and |U | = p or p+ 1.

Given an integer k ≥ 1, a connected graph G = (V,E) is called a k-star with center v1

if v1 ∈ V and all the connected components of G − v1 are trees on at most k nodes. In

particular, a 1-star is a usual star and, in a 2-star with center v1, all components of G−v1

are isolated nodes or edges.

Theorem 2.20 Let T be a tree of K2p+1 with |V (T)| = p− 1, CP be a chorded pentagon

of K2p+1 with V (CP) ⊆ V (K2p+1) \V (T) and u0 ∈ V (K2p+1) \ (V (T)∪V (CP)). If p ≥ 6

and T is not a 2-star, then inequality (7) is facet defining for PEC(K2p+1).

Proof: Let us consider a valid inequality πx ≥ π0 for PEC(K2p+1) such that:

F = {x ∈ PEC(K2p+1) : ω(T,CP, u0) x = 0}
Fπ = {x ∈ PEC(K2p+1) : πx = π0}

and F ⊆ Fπ. We show below that there exist some scalars α and β such that:

• πuv = α for all edges (uv) ∈ T ;

• πuv = β for all (uv) ∈ E(K2p+1)\(T∪E(CP)∪E0) where E0 = {(u0, u) : u ∈ V (T)};

• πu0u = (α− β)(2− du) + β for all u ∈ V (T);

• πuiuj = α for all (ui, uj) ∈ C, i 6= j;

• πuiuj = 2β − α for all (ui, uj) ∈ C ′, i 6= j;

• π0 = βp(p+ 1)

The proof is similar to those for Theorems 2.16 and 2.18: we give the sets S1, S2, T1

and T2 and the node w used to construct the equicuts which can be easily check to be

roots of (7) (see Proposition 2.19).

75

(a) : For some scalar β, πuv = β for u, v ∈ V ′ and πwu = β for all u ∈ V ′ and all

w ∈ V (CP) (the details are omited, the proof is similar to that of (a) in Theorem 2.16).

(b) : Since, by assumption, T is not a 2-star, given u ∈ V (T), we find A ⊆ V (T) \ {u}
such that 3 ≤ |A| ≤ p− 3 and T (A), T (A ∪ {u}), T (V (T) \A) are all connected.

For v, z ∈ V ′, take A′ ⊆ V ′ \{v, z} such that |A|+ |A′| = p−3 and set: w = z, S1 = {u}
S2 = {v}, T1 = A ∪ A′ ∪ {u1, u2} and T2 = V \ ({w} ∪ S1 ∪ S2 ∪ T1). We obtain roots of

(7) which from Lemma 2.6 imply: πzu = πzv = β. Keeping T1 and T2 as above and taking

w = u0, S1 = {z}, S2 = {v}, we obtain:

πu0z = β for all z ∈ V ′

For v ∈ V ′ and u ∈ V (T), take A′ ⊆ V ′ \ {v} such that |A| + |A′| = p − 3 and set:

w = u1, S1 = {u} S2 = {v}, T1 = A ∪ A′ ∪ {u2, u3} and T2 = V \ ({w} ∪ S1 ∪ S2 ∪ T1).

We then build the roots of (7) leading to:

πu1u = πu1v = β

By changing the sets S1 and S2 to: S1 = {u0}, S2 = {v}, we define new roots of (7)

implying that:

πu1u0 = πu1v = β

Therefore,

πu0uh = πuhu = β for all u ∈ V (T) and uh ∈ V (CP)

(c) : If w, u ∈ V (T) and are not adjacent in T , take a path P = {v1 = w, v2, . . . , vk, vk+1 =

u} joining w to u. Let A = {v2, . . . , vk}, A′ ⊆ V ′ such that |A| + |A′| = p − 3 and set:

W = {w}, S1 = {u} S2 = {u1}, T1 = A ∪A′ ∪ {u2, u3} and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1).

We build the roots of (7) and deduce that:

πwu = πwu1 = β

76

(d) : If w, u ∈ V (T) and are adjacent in T , then πwu = α for some constant α. Indeed, if

w is adjacent to u and v in T , set W = {w}, S1 = {u} S2 = {v}, T1 = V ′ ∪ {u1, u2, u3}
and T2 = V \ (W ∪ S1 ∪ S2 ∪ T1). We build the roots of (7) and deduce that:

πwu = πwv = α

The result follows by the connectivity of T .

(e) : Since δ(V (CP) ∪ V ′) is a root of (7), we deduce that:

π0 = πδ(V (CP)∪V ′)
x = βp(p+ 1)

Given an edge (uv) ∈ T , set U = {u, v} ∪ V ′. The equicuts U1 = U ∪ {u2, u3}, U2 =

U ∪ {u4, u5}, U3 = U ∪ {u1, u2, u3} and U4 = U ∪ {u1, u4, u5} are in F , implying the

following relation:

πu1u2 + πu1u3 = πu1u4 + πu1u5

(f) : Since δ((V (CP) \ {u5}) ∪ V ′) is a root of (7), we deduce that:

π0 = πxδ((V (CP)\{u5})∪V ′)

= β(p+ 1)(p− 4) + 4βp+ πu1u5 + πu2u5 + πu3u5 + πu4u5

= β(p+ 1)(p− 4) + 4βp+ 2(πu1u5 + πu2u5)

Therefore, we deduce that:

πu1u5 + πu2u5 = 2β

(g) : Let:

γ = πu1u4 = πu1u3 = πu2u4 = πu2u5 = πu3u5

then,

πu1u2 = πu2u3 = πu3u4 = πu4u5 = πu1u5 = 2β − γ

For u ∈ V (T) and A = {u1, u2, u3, u} ∪ V ′, xδ(A) is a root of (7), implying that:

π0 = πxδ(A)

= πu0u + (α− β)du + β(p2 + p− 3) + πu4u2 + πu4u1

77

Therefore,

πu0u = βp(p+ 1)− (α− β)du − β(p2 + p− 3)− 2γ i.e.

πu0u = (β − α)du + 3β − 2γ

Given an edge (uv) ∈ T and A = {u1, u2, u, v}∪V ′, xδ(A) is a root of (7), implying that:

π0 = πxδ(A), from which we deduce that:

0 = πu0u + πu0v + (α− β)(du + dv)− 2α− 2β + 2γ

Using the last relation in (g), we deduce that: γ = 2β − α. Hence, from (g),

πu0u = (α− β)(2− du) + β

Also,

πu1u2 = 2β − γ = α

and

πu1u3 = γ = 2β − α

This concludes the proof. 2

We have seen in the previous section that an appropriate linear combination of the

equation x(E) = p(p+1) and a facet defining inequality πx ≤ π0 of PEC(K2p+1) produces

a facet defining inequality for PC(K2p+1), i.e., for the cut polytope. Consider the following

three inequalities obtained by subtracting inequalities (5), (6) and (7), respectively, from

the equation x(E) = p(p+ 1):

x(E)− ω(T, u0)x ≤ p(p+ 1)− 2 (8)

x(E)− ω(T,∆, u0)x ≤ p(p+ 1) (9)

x(E)− ω(T,CP, u0)x ≤ p(p+ 1) (10)

To prove that these inequalities are facet defining for PC(K2p+1), we have to show that

they are valid and to exhibit a cut which is not an equicut and which has the incidence

vector on the face defining in PC(K2p+1) for each of the inequalities (8)-(10).

78

Theorem 2.21 Suppose that the inequalities ω(T, u0)x ≥ 2, ω(T,∆, u0)x ≥ 0 and

ω(T,CP, u0)x ≥ 0 are facet defining for PEC(K2p+1). Then, inequalities (8), (9) and

(10) are facet defining for PC(K2p+1).

Proof:

Validity: Let δ(U) be a cut and |U | = p−k. This implies that xδ(U)(E) = p(p+1)−k(k+1)

which is decreasing with k. Inequalities (8)-(10) are valid for equicuts and therefore we

only have to check validity when k ≥ 1. From Propositions 2.15, 2.17 and 2.19, it is easy

to see that −ω(T, u0)x, −ω(T,∆, u0)x and −ω(T,CP, u0)x are bounded respectively by

the values 0, +2 and +2. Since k ≥ 1, we have that:

(i) xδ(U)(E)− ω(T, u0)xδ(U) ≤ (p(p+ 1)− 2) + 0

= p(p+ 1)− 2

(ii) xδ(U)(E)− ω(T,∆, u0)xδ(U) ≤ p(p+ 1)− 2 + 2

= p(p+ 1)

(iii) xδ(U)(E)− ω(T,CP, u0)xδ(U) ≤ p(p+ 1)− 2 + 2

= p(p+ 1)

Thus the validity of (8) comes from (i) and those of (9) and (10) from (ii) and (iii)

respectively.

Facet: Consider the cuts:

U1 = V (T) ∪ {u0}
U2 = V (T) ∪ {u0, u1} (V (∆) = {u1, u2, u3})
U3 = V (T) ∪ {u0, u1, u3} (V (CP) = {u1, u2, u3, u4, u5})

We have that |U1| = |U2| = |U3| = p+ 2. Thus, δ(U1), δ(U2) and δ(U3) are not equicuts

and xδ(U1)(E) = xδ(U2)(E) = xδ(U3)(E) = p(p+ 1)− 2. Moreover, ω(T, u0)xδ(U1) = 0 and

ω(T,∆, u0)xδ(U2) = ω(T,CP, u0)xδ(U3) = 2. Thus, xδ(U1) is a root of (8), xδ(U2) is a root

of (9) and xδ(U3) is a root of (10). The proof is complete. 2

79

u

u
u

u
u

uu

1

2

3

45

6

7

u

u
u

u
u

uu

1

2

3

45

6

7

u

u
u

u
u

uu

1

2

3

45

6

7

C
7 7 7

1 2 3C C

The inequalities (9) and (10) give some new facets of the cut polytope but inequality

(8) corresponds, via the switching operation (Barahona and Mahjoub, 1986), to a facet

introduced by Boros and Hammer (1993).

Note that, when we pass from inequality (5) to inequality (6) and from inequality (6)

to inequality (7), the size of the suspended tree component in the support graph decreases

by one. We would like to know if we can still reduce the size of this component to get

a facet defining inequality for the equipartition polytope and, if so, what is the other

component of the support graph. It is natural to conjecture that this second component

is nothing but K7 with some weights suitably chosen. We now examine this idea and to

keep the analogy with the K3 and K5 components in inequalities (6) and (7) respectively,

we assume that the 21 edges of K7 are partitioned into three cycles in which the edges

have equal weights. These cycles are shown in Figure 2.7 below.

Figure 2.7:

Suppose that: T is a tree on p− 2 nodes in K2p+1, K7 is a complete subgraph of K2p+1

node disjoint from T , (C1
7 , C

2
7 , C

3
7) is a partition of the edges of K7 into three edge disjoint

cycles (see Figure 2.7) and u0 is a node in V (K2p+1)\V (K7∪T). We will look for weights

α, β and γ such that the inequality

ω(T, u0)x ≥
∑
e∈C1

7

αexe −
∑
e∈C2

7

βexe −
∑
e∈C3

7

γexe = WK7(α,−β,−γ)x

80

is, hopefully, facet defining for PEC(K2p+1).

To have simpler proofs, we consider the case where the suspended tree component is a

cycle on p− 1 nodes, that is, when the tree T reduces to a path on p− 2 nodes. So, the

previous inequality reduces to

x(Cp−1) ≥WK7(α,−β,−γ)x (11)

where Cp−1 denotes a cycle on p− 1 nodes. We first find values α, β and γ for which (11)

is valid for PEC(K2p+1).

Let δ(U) be an equicut of K2p+1. If WK7(α,−β,−γ)x is nonpositive, then (11) is

trivially valid. On the other hand, x(Cp−1) is positive if and only if not all nodes of Cp−1

are in U (or V \U) and this implies that U and V \U both contain at least three nodes not

in Cp−1. Thus α, β and γ must be chosen in such a way that WK7(α,−β,−γ)x is always

less than or equal to 2 and is nonpositive whenever the nodes of K7 are not equipartitioned

between U and V \ U .

Figure 2.8 shows all possible configurations of partitions of K7 and the inequalities that

must be satisfied by α, β and γ according to what is stated in the previous paragraph.

The analogy with inequalities (6) and (7) suggests us to set the coefficients of edges in

one of the cycles of K7 to 1. Therefore, if α takes the value 1, then the validity of (11)

implies that β and γ are such that:

(β, γ) ∈ Sβγ = {(β, γ) ∈ IR2 : β + γ ≥ 1

β + 2γ ≥ 2

2β + γ ≥ 2

2β + 2γ ≥ 1

2β + 3γ ≥ 0

3β + γ ≥ 1}

81

The interesting values of β and γ are those corresponding to the extreme points of the

polyhedron Sβγ , since they correspond to tight solutions for inequality (11).

82

Figure 2.8:

83

Consider the extreme point of Sβγ given by β = γ = 2
3 . For this point, inequality (11)

can be written as:

x(Cp−1) ≥ x(C1
7)− 2

3
x(C2

7)− 2
3
x(C3

7)

or equivalently,

3x(Cp−1) ≥ 3x(C1
7)− 2x(C2

7 ∪ C3
7) (12)

If δ(U) is an equicut whose incidence vector satisfies (12) at equality, one of the three

conditions below holds:

(I) V (Cp−1) ⊂ U and V (K7) = {u1, . . . , u7} ⊂ V \ U ;

(II) U = V (Cp−1) ∪ {ui, uj} where ui and uj form one of the following pairs of nodes in

K7 (see Figure 2.8): (u1, u3), (u3, u5), (u5, u7), (u2, u7), (u2, u4), (u4, u6), (u1, u6),

(u1, u4), (u4, u7), (u3, u7), (u3, u6), (u2, u6), (u2, u5) or (u1, u5);

(III) Let (V1, V2) be a partition of the nodes in Cp−1 such that all nodes in V1 (and V2)

appear consecutively in the cycle Cp−1. Then U is given by:

U = V1 ∪ {ui, uj , uk}

where ui, uj and uk form one of the following triples of nodes in K7 (see Figure

2.8): (u1, u3, u5), (u2, u4, u6), (u3, u5, u7), (u4, u6, u1), (u5, u7, u2), (u6, u1, u3) or

(u7, u2, u4);

We have then the following theorem.

Theorem 2.22 Let Cp−1 be a cycle of K2p+1 with |V (Cp−1)| = p− 1 and K7 a complete

subgraph of K2p+1 node disjoint from Cp−1. Then, for p ≥ 5, inequality (12) is facet

defining for PEC(K2p+1).

Proof: Validity of (12) comes from our construction. The usual technique is used to prove

it to be facet defining, i.e., if F = {x ∈ PEC(K2p+1) : πx = π0}, πx ≥ π0 is valid for

PEC(K2p+1) and F ′ = {x ∈ PEC(K2p+1) : x satisfies (12) at equality} and F ′ ⊆ F , then

84

we have to prove that (πx ≥ π0) is a linear combination of (12) and x(E) = p(p+ 1). For

this we apply Lemma 2.6. The equicuts obtained by means of the sets S1, S2, T1 and T2

that we give along the proof can be easily seen to satisfy one of the three conditions of

the paragraph preceding the theorem to be a root of (12).

(a) : Let v ∈ V (Cp−1) and w, z ∈ V0 = V \ V (Cp−1 ∪ K7), w 6= z. Choose one direction

to traverse Cp−1 starting from node v. Define T ′1 to be the set of dp−2
2 e first nodes visited

after v and T ′2 to be the set of bp−2
2 c last nodes visited before reaching node v again. Now,

setting S1 = {v}, S2 = {z}, T1 = T ′1∪{u1, u3, u5}∪V01 and T2 = T ′2∪{u2, u4, u6, u7}∪V02

where (V01, V02) is a partition of V0 \ {v, z} and V01 and V02 have appropriate sizes that

makes |T1| = |T2|, Lemma 2.6 implies that:

πwv = πwz = γ ∀ w, z ∈ V0, v ∈ V (Cp−1)

(b) : Let w ∈ V (Cp−1) and v ∈ V0. We construct the sets T ′1 and T ′2 as we did in

(a) but using w as the reference node (instead of v). Define: S1 = {u1}, S2 = {v},
T1 = T ′1 ∪ {u2, u4, u6} ∪ V01 and T2 = T ′2 ∪ {u3, u5, u7} ∪ V02 where (V01, V02) is a partition

of V0 \ {v} and are chosen such that |T1| = |T2|. From Lemma 2.6, we obtain:

πwv = πwu1 = γ

and by symmetry:

πwv = πwui = γ ∀ v ∈ V0,∀ w ∈ V (Cp−1),∀ i ∈ {1, . . . , 7}

Changing the roles played by nodes w and ui, we have:

πuiv = πwui = γ ∀ v ∈ V0, ∀ w ∈ V (Cp−1), ∀ i ∈ {1, . . . , 7}

(c) : Let w, u ∈ V (Cp−1), (w, u) be a chord of Cp−1 and v ∈ V0. Suppose we traverse

the cycle Cp−1 starting at node w. We define T ′1 to be the set of nodes visited before u

(excluding w) and T ′2 to be the set of nodes visited after node u. Assume that |T ′1| ≥ |T ′2|

85

(if this is not the case, inverse the roles played by u and w). If S1 = {u}, S2 = {v} and

the sets T1 and T2 are built exactly as in (a) with T ′1 and T ′2 defined as above, we get that:

πwu = πwv = γ ∀ (w, u) chord of Cp−1

Up to now, we have proved that the coefficients of all edges not belonging to the support

graph of (12) are equal to a constant γ.

(d) : Let w, u, v ∈ V (Cp−1) and (w, u) and (w, v) be two consecutive edges of Cp−1.

Suppose that we traverse the cycle starting from u in the direction such that w is the last

node visited. Define T ′1 (T ′2) to be the first dp−4
2 e (last bp−4

2 c) nodes visited. With S1

given by {u}, S2 by {v} and T1 and T2 defined as in (a) (for T ′1 and T ′2 as above), we have:

πwu = πwv = α ∀ (w, u) ∈ Cp−1 (using cyclic arguments)

(e) : Suppose that (u, v) ∈ Cp−1. Define: w = ui, S1 = {ui+1, ui+3, ui+5}, S2 =

{ui+2, ui+4, ui+6}, T1 = V (Cp−1) \ {u, v} and T2 = {u, v} ∪ V0 (where the indices for

the uj ’s are taken modulo 7). By Lemma 2.6 we have:

πuiui+1 + πuiui+3 + πuiui+5 = πuiui+2 + πuiui+4 + πuiui+6 ∀ i ∈ {1, . . . , 7}

(f) : Consider the set U i ⊆ V given by:

U i = V (Cp−1) ∪ {ui, ui+2} ∀ i ∈ {1, . . . , 7}

The incidence vectors of δ(U i) and δ(U i∪{ui+4}) are both roots of (12). Using the results

from (a) to (d) we have that:

πuiui+4 + πui+2ui+4 + 4γ =
6∑

i=1,i 6=2,4

(πui+4ui+j) + 2α

Comparing the equation obtained in (e) for a given i ∈ {1, . . . , 7} and the one obtained

in (f) for i− 4, we get:

πuiui+1 = 2γ − α

So, the coefficients of all edges in C1
7 (Figure 2.8) are given by a constant α1 = 2γ − α.

86

(g) : Let U i be given by V (Cp−1) ∪ {ui} for all i ∈ {1, . . . , 7}. The two following equicuts

correspond to roots of (12): δ(U i∪{ui+2}) and δ(U i∪{ui+4}). Thus, for all i ∈ {1, . . . , 7},
we conclude that:

πuiui+4 + πui+2ui+6 + πui+2ui+5 = πuiui+2 + πui+1ui+4 + πui+4ui+6

Comparing this result with the equality obtained in (e) for i + 4 and using the fact that

πui,ui+1 = α1 for all i ∈ {1, . . . , 7}, yields:

πuiui+4 + πui+2ui+6 + πui+2ui+5 = πuiui+2 + πui+4ui + πui+4ui+2

or

πui+2ui+6 + πui+2ui+5 = πuiui+2 + πui+4ui+2

Since the indices are taken modulo 7, the equation above can be rewritten as:

πuiui+4 + πuiui+3 = πuiui+5 + πuiui+2

which, when compared to the equation in (e), gives:

πuiui+3 = πuiui+2 = α2

This argument applied repeatedly leads to the conclusion that πe = α2 for all edges in

C2
7 ∪ C3

7 (see Figure 2.8).

Consider now the two following equicuts that are roots of (12): δ(V (Cp−1) ∪ {v}) and

δ(V (Cp−1)∪{u1, u3}) where v ∈ V0. Comparing the values of πx for the incidence vectors

of these equicuts, we obtain the following relation between α1, α2 and γ:

2α1 + 3α2 = 5γ

Thus, if λ1 = α2−γ
2 and λ2 = γ:

(πx ≥ π0) = λ1((12)) + λ2(x(E) = p(p+ 1))

2

87

Figure 2.9:

In Figure 2.9, we show the support of an inequality given as in (11) (or equivalently, in

(12)).

The left-hand side of inequality (12) has a cycle on p − 1 nodes as support graph. In

inequalities (6) and (7) the cycles were replaced by suspended trees. Also, in inequality

(12), a more general inequality can probably be obtained in that way and this suggests us

that there exists a class of facet defining inequalities for PEC(K2p+1) which support graphs

have two connected components. The first is a suspended tree T on p− q nodes with apex

node u0 and the second component is a complete graph on 2q + 1 nodes. The values of

the coefficients corresponding to edges in the suspended tree component are computed in

the usual way, while those of edges in the component K2q+1 have a much more involved

computation.

88

2.6 Extensions of PBC and Suspended Tree Inequalities

We have seen in the previous sections that both the PBC and the suspended tree

inequalities ((2) and (5)) generalize the cycle inequality (1). In this section we investigate

whether the intersection between the families of PBC inequalities and suspended tree (ST)

inequalities is restricted to the cycle inequality.

Recall that the PBCs are composed of a collection of cycles. Since the suspended trees

are, in some sense, generalizations of cycles, let us consider that we have now a collection

T = ((T1, u
1
0), . . . , (Tr, u

r
0)) of suspended trees. As for PBCs, we require that T has the

property that, if a node v is in the intersection of any pair of two suspended trees in T ,

then v belongs to all suspended trees in the collection. Consider the following inequality:
r∑
i=1

ω(Ti, ui0)x ≥ 2r (13)

where ω(Ti, ui0)x is defined as in (5).

An example of a support graph for an inequality of type (13) is shown in Figure 2.10.

If we define N to be the set of nodes that are common to all suspended trees in T , we

have for Figure 2.10 that N = {2, 3, 6, 7} (the nodes indicated by squares).

To study the validity of (13) with respect to PEC(K2p+1), we split this class of inequali-

ties into 2 subclasses. In the first, we assume that the apex node of any suspended tree in

T belongs to N . In the second case, we assume that there are suspended trees in T with

apex not in N . For the first case, we can establish necessary and sufficient conditions for

validity while for the second case we only have a necessary condition for validity.

Consider the first case where ui0 ∈ N for all 1 ≤ i ≤ r. Removing all nodes in N

from the structure, we get a forest formed by connected subtrees of the trees T1, . . . , Tr.

Let ((V (A1), A1), (V (A2), A2), . . .) be the ordered sequence of those subtrees such that

|V (A1)| ≥ |V (A2)| ≥ Moreover, define: Q =
∑r−1
i=1 |V (Ai)|, VC =

⋃r
i=1 V (Ti, ui0),

V0 = V \ VC and n0 = |V0|.

89

1

(2)
10

6
(2)

7
5

2

3

9

8 4

(a pe x)

2

3

6

7

9

10

(a pe x)

5

8

1

6

7

2

3

4
(T 1, u1)o (T 2, u2)o

su p p or t gr a p h

Figure 2.10:

Theorem 2.23 If ui0 ∈ N for all 1 ≤ i ≤ r, then inequality (13) is valid for PEC(K2p+1)

if and only if Q+ n0 ≤ p− 1.

Proof: Similar to that of Theorem 2.7.

Necessity: By contradiction, assume that Q+n0 ≥ p. Then, if we take U = (
⋃r−1
i=1 V (Ai))∪

V ′0 where V ′0 ⊆ V0 is chosen such as to obtain |U | = p, then Lemma 2.14 can be used to

show that
∑r
i=1 ω(Ti, ui0)x = 2(r − 1) and we are done.

Sufficiency: As in Theorem 2.7, if validity is not satisfied, then the equicut δ(U) correspond-

ing to the violation must satisfy w(Tj , u
j
0)x

δ(U) = 0 for some j ∈ {1, . . . , r}. This implies

that all nodes in N are in a same shore, say V \ U , of that equicut. To have a violation

of (13) there must be at most r − 1 subtrees in {A1, A2, . . .} with nodes in U (since all

nodes ui0 are in V \ U and, from Lemma 2.14, each subtree with nodes in U contributes

90

19

20

21

1

2

3

4

5

6
7

8

9 10 11

12 13 14

15

16

17

18

11109

8

(-2)

(T 1, u1)o

(T 2, u2)
o

Vo

(apex)

(apex)

with 2 unities to the left-hand side of (13)). Even if we take the nodes in the r− 1 largest

subtrees and those of V0 to be in U , we get: |U | = Q+ n0 ≤ p− 1. Thus, (U, V \U) does

not form an equipartition and sufficiency is proved. 2

Theorem 2.23 does not hold when there exists one suspended tree in T with the apex

node not in N . To see this, consider the example shown in Figure 2.11.

Figure 2.11:

In this example we have: Q = 7 (corresponding to the subtree with nodes 1, . . . , 7),

r = 2, N = {8, 9, 10, 11}, n0 = 3 and p = 10. Note that the apex of both trees (nodes 1 and

18) are not in N . Moreover, Q+n0 = 10 = p. However, the inequality
∑2
i=1 ω(Ti, ui0)x ≥ 4

can be easily checked to be valid for PEC(K21).

If there exists j ∈ {1, . . . , r} such that uj0 /∈ N , we can redefine the subtrees (V (Ai), Ai)

by considering that they are obtained by removing all nodes of N ∪ {u1
0, . . . , u

r
0} from the

structure. Keeping the definitions of Q, VC , V0 and n0 as before, we have the following

result.

91

19

1

2

3
4

5 6

7

9

10 11

12 13 14 1516 17

18

8

14

(2)

1512 13

(a p e x)

(T1 ,u1)o

(T 2,u2)o

Vo

(a pe x)

Theorem 2.24 Suppose that there exists j ∈ {1, . . . , r} such that uj0 /∈ N . If inequality

(13) is valid for PEC(K2p+1), then Q+ n0 ≤ p− 1.

Proof: same as in Theorem 2.23. 2

However, Q+n0 ≤ p− 1 is not a sufficient condition for the validity of (13) when there

exists j ∈ {1, . . . , r} with uj0 /∈ N . This can be seen in Figure 2.12, where it is shown the

support graph of an inequality as in (13) which is not valid for PEC(K19). In this case, we

have Q = 5 (subtree with nodes 2, 3, 4, 10, 11), n0 = 3, p = 9 and the equicut δ(1, . . . , 9)

violates the inequality.

Figure 2.12:

We did not investigated the properties of the suspended tree combination (STC) in-

equalities any further. Nevertheless, the result given below indicates that the study of

STC inequalities is perhaps a promising way to find new facets for PEC(K2p+1).

92

Theorem 2.25 Consider the inequality below corresponding to the support graph shown

in Figure 2.10:

x1,5 + x4,5 + x4,7 + x1,6 + x3,4 + x1,2 + x9,10+

x8,10 + x2,9 + x3,8 + x7,8 + x6,9 + 2x2,3 + 2x6,7−
x8,9 − x1,4 ≥ 4

This inequality is facet defining for PEC(K13).

Another possibility that may be exploited is the use of PBCs combined with complete

odd subgraphs as in inequalities (6), (7) and (12). Two results indicating that this can be

a direction for investigation are given below.

Theorem 2.26 (i) The PBC + triangle inequality corresponding to the support graph

of Figure 2.13(a), i.e.,

(x1,3 + x3,4 + x2,4 + x1,6 + x6,7 + x2,7 + x1,5

+x2,5 + x1,8 + x2,8)− (x9,10 + x10,11 + x9,11) ≥ 2

is facet defining for PEC(K11).

(ii) The PBC + chorded-pentagon inequality corresponding to the support graph of Figure

2.13(b), i.e.,

(x1,3 + x3,4 + x4,5 + x5,6 + x2,6 + x1,8 + x8,9+

x9,10 + x10,11 + x2,11 + x1,7 + x2,7 + x1,12 + x1,12)−
(x13,14 + x14,15 + x15,16 + x16,17 + x17,13)+

(x13,15 + x17,15 + x17,14 + x14,16 + x16,13) ≥ 2

is facet defining for PEC(K17).

93

1

2

3

4

5

6

7

8

9

10 11

1

2

7

8

6

9

11

10

4

5

3

12

13

14

15 16

17

(a)

(b)

Figure 2.13:

94

2.7 Further Remarks

We have introduced here large classes of facet defining inequalities of the equicut poly-

tope for complete graphs. In practice, one does not always deal with complete graphs

and, when this is the case, the natural question that arises is how useful it is to have

results for complete graphs. Some comments on this question have been made earlier in

this chapter (see Lemma 2.4). In the next paragraphs we discuss further the interest of

studying classes of facet defining inequalities for complete graphs.

There are some technical reasons to work with complete graphs. Specifically the proofs

concerning the dimension and facets are easier for complete graphs than for incomplete

graphs, for which the proofs are often case dependent.

Another reason for studying complete graphs is the following. Consider the equipartition

problem defined for a graph G = (V,H) where G is a subgraph of Kn = (V,E) (that is,

H ⊆ E). Define the sets X and XE by:

X = {x ∈ IB|H| : x is the incidence vector of an equicut of G}

and

XE = {x̃ ∈ IB|E| : x̃ is the incidence vector of an equicut of Kn}

Note that X is the projection of XE in the space of the variables corresponding to the

edges in H. Moreover, PEC(G) is the convex hull of X and PEC(Kn) is the convex hull

of XE .

If the vector c̃ ∈ IR|E| is defined such that:

c̃e =

 ce if e ∈ H
0 if e ∈ E \H

then, min{cx : x ∈ X} = min{c̃ x̃ : x̃ ∈ XE}. This means that the equipartition problem

defined on any arbitrary graph G can always be transformed into an equipartition problem

defined on the minimal complete graph containing G. Thus, at least theoretically, it is

95

enough to study the facial structure of the equipartition polytope for complete graphs,

although this implies working in a higher dimensional space (with more variables).

To remain in a lower dimensional space, we have to study the polytope given by the

convex hull of X (instead of XE). In this case, we may have to be satisfied to find valid

inequalities since the facet property is very dependent on the structure of the subgraph

G. However, valid inequalities for PEC(G) can be obtained from valid inequalities for

PEC(Kn).

Consider a valid inequality
∑
e∈E aexe ≤ a0 for PEC(Kn) and let G̃ be the subgraph of

Kn with edge set given by the support of the inequality and node set given by the nodes

incident to these edges. Then
∑
e∈H aexe ≤ a0 can also be proved to be valid for PEC(G)

if G̃ is subgraph of G. This means that the study of valid inequalities for the case of

complete graphs is useful to obtain valid inequalities for the case of incomplete graphs.

In some cases, a ”weak” valid inequality for PEC(Kn) can be a strong valid inequality for

PEC(G) (see the discussion on tree inequalities in Chapter 4).

For more general multicuts, where the facet property is difficult to prove, the argument

in the previous paragraph establishing the links between valid inequalities for the complete

graph problem and valid inequalities for a subgraph problem remains true. For this reason,

in Chapter 3, where we tackle more general graph partitioning problems, the results are

also given in terms of complete graphs.

96

3. Valid Inequalities for some Graph Partitioning
Problems

3.1 Introduction

In this chapter we investigate the polytopes associated to graph partitioning problems.

Some of these problems generalize the equipartition problem. It is natural then to try to use

the same structures that led to strong valid inequalities to the equipartition problem to derive

valid inequalities for these more general problems.

The graph partitioning problems considered in this chapter are defined as follows. We are

given an integer K and a graph G = (V,E) with weights wi associated to each node i in V .

A partition of G is feasible if the nodes in V are divided into K clusters such that the sum

of the weights of the nodes in each cluster k, for k = 1, . . . ,K, does not exceed the cluster

capacity Fk. There are costs cij associated to every edge (i, j) in E and costs hik associated to

every node i and every cluster k. The cost of a feasible partition is then obtained by adding

two terms. The first is computed by the sum of the hik for all pairs (i, k) such that node

i is in cluster k. The second is the sum of the cij such that nodes i and j are in different

clusters (or in the same cluster). The goal is to find a feasible partition of V that minimizes

(or maximizes) the cost function.

The equipartition problem of Chapter 2 is obtained from the general problem above by

fixing the number of clusters to two, the node costs to zero, the node weights are 1 and the

cluster capacities to dn2 e and bn2 c respectively.

In Johnson et al. (1991), the authors propose an algorithm based on column generation

for a graph partitioning problem. The subproblem to generate additional columns is a single

cluster problem in which we are asked to find a subset of nodes in the graph whose sum

of weights is bounded by the cluster capacity Fk = W and such that it minimizes a linear

cost function. The model used is a node-edge model slightly different from the one we have

97

discussed in Section 2.2 since the authors are interested in characterizing the edges that are

within the cluster instead of those that are in the cutset.

The polytope corresponding to the feasible solutions of the single cluster problem has been

studied in the latter paper. One of the inequalities introduced there has a tree as its support.

In the next section, we show that this tree inequality can be generalized by summing nonvalid

tree inequalities appropriately so as to generate a strong valid inequality. The support of this

new inequality is the union of the individual supports of the tree inequalities that participate

in the summation. This idea is similar to the one used in Chapter 2 to obtain the PBC

inequality from nonvalid cycle inequalities.

The results in Sections 3.3 and 3.4 have been obtained in a joint research project with R.

Weismantel, A. Martin, C. Ferreira and L. Wolsey.

In Section 3.3, we consider the (multicut) polytope corresponding to the convex hull of

(K,F) multicuts of a graph G. A (K,F) multicut of a graph G is a multicut that partitions

G into K clusters of size at most F . In this case, the cluster capacity constraints are simply

cardinality constraints. Results concerning the dimension of the polytope are given. The

arguments used to show the validity of inequalities for the equicut polytope are extended to

the case of multicuts and permit us to derive inequalities that define facets for the multicut

polytope. We also discuss the possibility of obtaining strong inequalities by lifting valid

inequalities whose support graphs are cycles covering multiple clusters.

Section 3.4 is devoted to the study of valid inequalities for the convex hull of the incidence

vectors of (K,W) multicuts of a graph G. A (K,W) multicut of a graph G is a multicut that

partitions the graph into K clusters within which the sum of the node weights is bounded

by W . The node weights are assumed to take arbitrary positive values and, in general, we

are not able to compute the dimension of the polytope. However, we give valid inequalities

that essentially have the same supports as the inequalities for the polytope of Section 3.3. An

additional inequality is introduced which we call the knapsack tree inequality. We shall see

98

in Chapter 4 that these inequalities have been crucial for solving some test problems in our

computational experiments.

In Sections 3.3 and 3.4, we have used the edge model discussed in Section 2.2. The results

are given in terms of complete graphs and can be extended to incomplete graphs as we have

pointed out in Section 2.7.

99

3.2 The Single Cluster Problem

Consider the graph partitioning problem as defined in the previous section and suppose

that a cluster k of the partition is fixed. In the single cluster problem, we look for a node set

that satisfies the capacity (knapsack) constraint of cluster k and that optimizes a linear cost

function. An Integer Programming formulation for this problem is given below.

Given a graph G = (V,E), for all ij ∈ E let the edge variable zij be 1 if nodes i and j are

both in the cluster and 0 otherwise. For all i ∈ V , define the node variable yi which takes the

value 1 if i is in the cluster and 0 otherwise. Let B be the capacity of the fixed cluster k and

wi the weight of node i for each i ∈ V . The single cluster problem is formulated as follows:

max
∑
i∈V

hiyi +
∑
e∈E

ceze

Subject to zij ≤ yi , zij ≤ yj ∀ (i, j) ∈ E (1)

yi + yj − zij ≤ 1 ∀ (i, j) ∈ E (2)∑
u∈V

wiyi ≤ B (3)

yi ∈ {0, 1} ∀ i ∈ V
zij ∈ {0, 1} ∀ (i, j) ∈ E (4)

The (0, 1) integer solutions of the system above are the incidence vectors of the feasible

solutions to the single cluster problem. This model is very similar to the node-edge model

discussed in Section 2.2. Note however that the edge variables here indicate which edges are

within the cluster and not those that are in the cutset.

Denote by PCL (single cluster polytope) the convex hull of the integer points satisfying

inequalities (1) to (4) and by PKn the convex hull of the (0, 1) integer points describing the

knapsack polytope defined by inequality (3).

The single cluster polytope PCL is studied in Johnson et al. (1991). It appears in the

optimization of the subproblems in a column generation algorithm for a graph partitioning

problem originally used to describe a compiler design problem (see reference for details). The

100

authors proposed to solve this problem by a cutting plane algorithm and introduced some

strong valid inequalities that we have generalized

Before presenting the inequalities given in Johnson et al. (1991) a few more definitions are

introduced.

A subset S of V is said to be independent for PKn if
∑
i∈S wi ≤ B (in this case yS , the

incidence vector of S, is in PKn); otherwise (yS /∈ PKn) S is said to be dependent or to be a

cover. A dependent set (or a cover) is minimal if all its subsets are independent.

Theorem 3.1 (Johnson et al., 1991)

Let S be a dependent set for PKn and let T be a tree spanning the nodes in S. For each i ∈ S,

let di be the degree of node i in T . Then, the tree inequality

ω(T)(z, y) =
∑
e∈T

ze −
∑
i∈S

(di − 1)yi ≤ 0 (5)

is valid for PCL(G).

When S \ {i} is an independent set for every end node i of T , inequality (5) defines a facet

of the polytope PCL(GS), where GS = (S,E(S)) is the subgraph induced by S in G.

An immediate corollary is obtained when the tree in inequality (5) is a star.

Corollary 3.2 (Johnson et al., 1991)

Let S be a dependent set for PKn and T the set of edges of a star spanning S and centered at

a node i. Then, the star inequality

∑
e∈T

ze − (|S| − 2)yi ≤ 0 (6)

is valid for PCL(G).

The next lemma ensures the validity of inequality (5) and characterizes the points that

lie on the face it defines on PCL. We point out to the similarities between this lemma and

Lemma 2.14 of Section 2.5.

101

Lemma 3.3 Let G = (V,E) be a graph, T a tree in G and ω(T)(z, y) ≤ 0 its corresponding

inequality. Given a feasible solution (z, y) of PCL, let A be the subset of nodes in V defined

as: A = {u ∈ V (T) : yu = 1}. If c(A) is the number of connected components induced by A

in T and δT (A) is the cutset of A in (V (T), T), then ω(T)(z, y) = c(A)− |δT (A)|.

Proof: We compute:

ω(T)(z, y) =
∑

(ij)∈T
zij +

∑
u∈V (T)

(1− du)yu

=
∑
i,j∈A

zij +
∑
u∈A

(1− du)

=
∑
i,j∈A

zij + |A| −
∑
u∈A

du

The first summation corresponds to the number of edges in the forest induced by A in T ,

therefore:
∑
i,j∈A zij = |A| − c(A). In the second summation each edge joining two nodes i

and j in A is counted twice (in di and dj) and the edges going from A to V (T) \A (those in

δT (A)) appear only once. This yields:
∑
u∈A du = 2(|A| − c(A)) + |δT (A)|.

Therefore:
ω(T)(z, y) = |A| − c(A)− 2|A|+ 2c(A)− |δT (A)|

= c(A)− |δT (A)|
2

From the lemma above, if S ⊆ V is a feasible cluster in G and A = S ∩V (T), the incidence

vector of S is a root of (5) if c(A) = |δT (A)|. This means that each of the subtrees in the

forest induced by A in T can be disconnected from the remaining nodes of T by removing a

single edge. Moreover, the nodes in V (T) \ A are all contained in a single subtree. The tree

obtained by contracting the nodes of A that are in a same subtree and by contracting the

nodes of (V (T) \A) is a star (see Figure 3.1).

Clearly, c(A) is always less than or equal to |δT (A)| except if A = V (T) in which case c(A) =

1 and |δT (A)| = 0. Therefore, inequality (5) is valid for PCL if and only if
∑
u∈V (T)wu > B,

that is, V (T) is a dependent set for PKn. A similar argument has been used in Chapter

102

nodes in A

nodes in V (T) \ A

Figure 3.1:

2 to prove that the cycle inequality is valid for the equipartition polytope. When suitable

conditions are satisfied, the sum of nonvalid cycle inequalities also gives rise to strong valid

inequalities for the equipartition polytope, namely the PBC inequalities. We now apply the

same idea to find inequalities for PCL that come from the sum of nonvalid tree inequalities.

Let Υ be a collection of trees ((V (T1), T1), . . . , (V (Tt), Tt) of a graph G satisfying the

following property: if u ∈ V (Ti) ∩ V (Tj) for some i, j ∈ {1, . . . , t}, then u ∈ V (Tk) ∩ V (T`)

for all k, l ∈ {1, . . . , t}.

For each tree Ti of Υ, we can define the tree inequality as before, i.e., ω(Ti)(z, y) ≤ 0. The

tree combination inequality for Υ is given by the sum of these inequalities, that is:

ω(Υ)(z, y) =
∑
Ti∈Υ

ω(Ti)(z, y) ≤ 0 (7)

Consider the subgraph of G formed by the edges and nodes in Υ. Let N be defined as

the set of nodes that are common to all trees in Υ. If the nodes in N are removed from this

subgraph, what remains is a forest of subtrees. Let (S1, S2, . . .) be the ordered set of these

subtrees where q1 ≥ q2 ≥ . . . and qi =
∑
u∈Si wu. We define Q =

∑t−1
i=1 qi. In Figure 3.2 it is

shown the support of a tree combination inequality for which t = 3 and Q = 6.

Theorem 3.4 Let Υ be a tree combination in G = (V,E) such that V (Υ) = ∪ti=1V (Ti).

Suppose that
∑
u∈V (Υ)wu = B +W , where W ≥ 0. Then, inequality (7) is valid for PCL(G)

if and only if Q < W .

103

T1

T2

T3

Figure 3.2:

Proof: Necessity: Suppose that Q ≥ W . This implies that there exists a set Λ of λ ≤ t − 1

subtrees such that the sum of the node weights for all subtrees in Λ is greater than or equal

to W .

Define S to be the set of all nodes of V (Υ) that are not in V (Λ) (= { nodes of subtrees in

Λ }). The incidence vector (zS , yS) of S can be easily checked to be in PCL(G).

From Lemma 3.3, ω(Ti)(zS , yS) = c(S ∩V (Ti))−|δT (S ∩V (Ti))|. However, |δT (S ∩V (Ti))|
can be computed as c(S∩V (Ti))+c(V (Ti)\S)−1 which yields ω(Ti)(zS , yS) = 1−c(V (Ti)\S).

Thus,

ω(Υ)(zS , yS) =
t∑
i=1

ω(Ti)(zS , yS)

=
t∑
i=1

(1− c(V (Ti) \ S))

= t−
t∑
i=1

c(V (Ti) \ S)

= t− λ
≥ t− (t− 1) ≥ 1

The left-hand side of inequality (7) is positive for this feasible solution and therefore the

inequality is not valid. Necessity is proved.

104

Sufficiency: We assume that (7) is not valid and we end up with the conclusion that Q must

be greater than or equal to W . For this, let S be a subset of V such that (zS , yS) violates

(7), that is:

ω(Υ)(zS , yS) = t−
t∑
i=1

c(V (Ti) \ S) ≥ 1

which implies that:
t∑
i=1

c(V (Ti) \ S) ≤ t− 1

Now, since (zS , yS) violates (7), there exists at least one tree in Υ, say Tj , such that

ω(Tj)(zS , yS) = 1. This implies that all nodes in V (Tj) and, consequently, all nodes in

N are in S. Thus, from the last expression above, we can conclude that there are at most

t− 1 subtrees in Υ (obtained by removing the nodes in N) that do not contain nodes in S.

If Q < W , the previous observation implies that
∑
u∈S wu > B and, therefore, S cannot be

a feasible cluster. We conclude that, if (7) is not valid, then Q ≥ W and this completes the

proof. 2

It is hard to find necessary and sufficient conditions for inequality (7) to be facet defining

for PCL, specially when the nodes weights are taken arbitrarily. Nevertheless, we have found

one case for which facet defining inequalities can be obtained by combining nonvalid tree

inequalities. This case is described below.

Suppose that the knapsack constraint in the system defining PCL is replaced by a cardinality

constraint of the type
∑
i∈V yi ≤ B (this amounts to setting all node weights to 1). Suppose

that Υ is a collection of two trees T1 and T2 that have one node vc in common (N = {vc})
and the degree of any node i in trees T1 and T2 is not greater than 2. In this case, each of

the trees of the combination reduces to a path and the support graph of the tree combination

inequality looks like a cross centered at node vc (see Figure 3.3).

Removing node vc from the support graph, what remains is a forest composed of 4 paths.

Let (V (P1), P1), . . . , (V (P4), P4) be those paths, q1 ≥ q2 ≥ q3 ≥ q4 (qi = |V (Pi)|) and

105

P1

P2

P3

P4

q1=4

q3=3

q4=3

q2=4
vc

Figure 3.3:

vi1, . . . , v
i
qi denote the nodes of V (Pi). Moreover, define pj to be the minimum of qk + q` for

k and ` in {1, 2, 3, 4} \ {j}. The tree combination inequality corresponds to:

∑
e∈P1∪P2∪P3∪P4

ze − 2yvc −
4∑
i=1

qj−1∑
j=1

yvij
≤ 0 (8)

The following result can be proved.

Theorem 3.5 Let Υ be cross centered at a node vc and spanning the graph G = (V,E).

Suppose that q2 + q3 + q4 ≥ B and |V (Υ)| = B + W . Then, for B > W ≥ 3, the following

holds:

(i) Inequality (8) is valid for PCL(G).

(ii) Inequality (8) is facet defining for PCL(G) if and only if qj+pj = B for all j = 1, 2, 3, 4.

The following remarks concern Theorem 3.5. Since q2+q3+q4 ≥ B and q1+q2+q3+q4+1 =

B+W , we have that W ≥ q1 + 1. Therefore, for W = 1, we must have q1 = q2 = q3 = q4 = 0

and there is no tree combination. On the other hand, if W = 2, we must have q1 = q2 = q3 =

q4 = 1 which implies B = 3. In this case, the tree combination inequality is dominated by

106

the four possible different star inequalities (see Corollary 3.2) centered at node vc. Note also

that, when (8) is facet defining for PCL, we have that q1 +p1 = q2 +p2 = B, p1 = p2 = q3 +q4

and q1 + q2 + q3 + q4 + 1 = B +W . This implies that q1 = q2 = W − 1.

The results in this section illustrate how to apply the ideas developed in Chapter 2 to derive

valid inequalities for PCL. These inequalities can define facets for PCL as it is the case in

Theorem 3.5. In the next section we investigate again the possibility of using some of the

ideas of Chapter 2 to obtain valid and facet defining inequalities for polyhedra related to

graph partitioning problems.

107

3.3 The Graph Partitioning Problem with Cardinality Ca-

pacity Constraints

In this section we consider the problem of partitioning the nodes of a graph G = (V,E)

into at most K subsets of size bounded by a constant F . Such a partition is called a (K,F)

partition of V and the corresponding cutset (the set of edges joining two nodes in different

clusters of the partition) is called a (K,F) multicut.

The (K,F) partition polytope denoted by PK,FMC (G) is the convex hull of incidence vectors

of (K,F) multicuts in G. Properties of the polytope PK,FMC (G) are discussed below. We start

by computing the dimension of the polytope and then we consider the possibility of using

facet defining inequalities of the equipartition polytope (PEC(G)) to derive facet defining

inequalities for PK,FMC (G). We show that inequalities having cycles, PBCs and suspended trees

(see Chapter 2) as support graphs define facets for PEC(G) when the supports form covers

for a single cluster of the partition. For r ≥ 2, we show that when a cycle covers r−1 clusters

of the partition the natural extension of the usual cycle inequality given by x(C) ≥ r can be

lifted in many different ways to generate stronger inequalities.

The dimension of PK,FMC (Kn) is given in the following result:

Theorem 3.6 Consider the complete graph Kn = (V,E) with |V | = n ≥ 2.Then,

(i) If K ≥ 2, F ≥ 2 and n ≤ KF − 2, then PK,FMC (Kn) is full-dimensional.

(ii) If n = KF − 1, then dim(PK,FMC (Kn)) = |E| − 1 and PK,FMC (Kn) ⊂ {x ∈ IR|E| : x(E) =
K(K−1)

2 F 2 − (K − 1)F}.

(iii) If n = KF , then dim(PK,FMC (Kn)) = |E| − n and PK,FMC (Kn) ⊂ {x ∈ IR|E| : x(δ(v)) =

(K − 1)F , ∀ v ∈ V }.

Proof: (i) : Assume that PK,FMC (Kn) ⊂ {x ∈ IR|E| : πx = π0}. If we prove that πe = π0 = 0

for all edges e ∈ E, we are done.

108

case (i.1) : 2 ≤ n ≤ KF − 2, K ≥ 3 and F ≥ 3.

For n = 2 the proof is trivial. So, assume that n ≥ 3. Let:

• w 6= u 6= v ∈ V ;

• T1 and T2 be two disjoint node subsets in V \ {w, u, v} such that |T1| = |T2| = min{F −
2, bn−3

2 c} if n ≥ 5 and T1 = T2 = ∅ otherwise.

• L1, . . . , LK−2 be K−2 disjoint subsets in V \({w, u, v}∪T1∪T2) such that
∑K−2
i=1 |Li| =

n− 2|T1| − 3 and |Li| ≤ F for all i = 1, . . . ,K − 2.

One can see that the number of nodes contained in clusters L1, . . . , LK−2 is n− 2F + 1 if

F − 2 ≤ bn−3
2 c, and otherwise it is 1 for n even or 0 for n odd. In any case, it is clear that

these nodes can be distributed among the K − 2 subsets without violating their capacities.

Consider the following feasible (K,F) partitions:

δ1 = δ({w, u} ∪ T1, {v} ∪ T2, L1, . . . , LK−2)

δ2 = δ({w, v} ∪ T1, {u} ∪ T2, L1, . . . , LK−2)

δ3 = δ({w, u} ∪ T2, {v} ∪ T1, L1, . . . , LK−2)

δ4 = δ({w, v} ∪ T2, {u} ∪ T1, L1, . . . , LK−2)

Comparing the expressions obtained for πx for the four incidence vectors of the (K,F) mul-

ticuts above we get:

πwu = πwv

Since (u, v, w) can be any triple of nodes in V , we conclude that:

πe = α ∀ e ∈ E

Suppose that n = qF + r, where r ≤ F −1. If r < F −1, then there exists a feasible (K,F)

partition of V with q clusters containing F nodes, one cluster containing r nodes and the

remaining clusters are empty. When r < F −1, another feasible partition has q−1 clusters of

size F , one cluster of size F −1, one cluster of size r+1 and all remaining clusters are empty.

The cutsets of these two partitions are of different sizes and, because the edge coefficients

109

have been proved to be all equal to α, the comparison between the expressions of πx for these

two different solutions leads to the conclusion that:

(F − r − 1)α = 0 ⇒ α = 0 ⇒ π0 = 0

and this completes the proof for when r < F − 1.

On the other hand, if r = F − 1, one can apply the same rationale as above for the two

following feasible solutions. The first one contains q clusters of size F , one cluster of size

F − 1 and all other clusters are empty. The second solution contains q clusters of size F ,

one cluster of size F − 2, one cluster containing a single node and all remaining clusters are

empty. The difference between the size of the cutsets corresponding to these two solutions is

F − 2, which implies again that α = π0 = 0 and the proof is complete for the case (i.1).

case (i.2) : F = 2, K ≥ 2 and 2 ≤ n ≤ 2K − 2.

The proof for n = 2 is trivial and we assume that n = 2q + r ≥ 3 with r ∈ {0, 1}.
For r = 0 (n is even), let u and v be two nodes in V and (L1, . . . , Lq, Lq+1, . . . , LK) and

(S1, . . . , Sq, Sq+1, . . . , SK) be two feasible partitions such that:

• Li = Si ⊂ V \ {u, v} and |Li| = 2 for all i = 1, . . . , q − 1;

• Li = Si = ∅ for all i = (q + 2), . . . ,K;

• Lq = {u, v} and Lq+1 = ∅;

• Sq = {u} and Sq+1 = {v}

Comparing the expressions of πx for the incidence vectors of the two (K,F) multicuts defined

above yields:

πe = π0 = 0 ∀ e ∈ E

A proof still has to be given for the case r = 1 (n odd). For this, let u, v and w be

three nodes in V and consider the two feasible partitions (L1, . . . , Lq, Lq+1, . . . , LK) and

(S1, . . . , Sq, Sq+1, . . . , SK) such that:

110

• Li = Si ⊂ V \ {u, v} and |Li| = 2 for all i = 1, . . . , q − 1;

• Li = Si = ∅ for all i = (q + 2), . . . ,K;

• Lq = {u, v} and Lq+1 = {w};

• Sq = {v} and Sq+1 = {u,w}

Since w, u, v were chosen arbitrarily, the comparison between the values of πx for the incidence

vectors of such partitions leads to the conclusion that:

πe = α ∀ e ∈ E

Since n = 2q + 1 ≤ 2K − 2 we conclude that q ≤ K − 2. Therefore, there exists a feasible

solution where q − 1 clusters have 2 nodes, three clusters have 1 node and all other clusters

are empty. Note that the two solutions presented before have q clusters of size 2, one cluster

of size one and all other clusters are empty. Thus, there are cutsets of different sizes and,

because the coefficients of π all take the same value, this implies that:

πe = π0 = 0 ∀ e ∈ E

which completes the proof of (i.2).

case (i.3) : K = 2, F ≥ 3 and 2 ≤ n ≤ 2F − 2.

The proof for n = 2 is trivial and therefore we assume that n ≥ 3. Consider the following

sets:

• L1 with |L1| = dn2 e − 1, v ∈ L1 and u /∈ L1;

• L2 with |L2| = bn2 c, w ∈ L2 and u /∈ L2;

• L1 ∩ L2 = ∅;

• S1 = (L1 \ {v}) ∪ {w};

• S2 = (L2 \ {w}) ∪ {v};

111

The following multicuts are feasible:

δ1 = δ({u} ∪ L1, L2)

δ2 = δ({u} ∪ L2, L1)

δ3 = δ({u} ∪ S1, S2)

δ4 = δ({u} ∪ S2, S1)

Because πxδ1 = πxδ2 = πxδ3 = πxδ4 , we conclude that:

πuv = πuw

And since u, v and w can be chosen arbitrarily:

πe = α ∀ e ∈ E

The multicut given by δ({u,w} ∪ L1, L2 \ {w}) can be easily verified to be feasible and its

size differs from that of δ1. Because we have concluded that all coefficients in vector π have

the same value α, this implies that:

πe = π0 = α = 0 ∀ e ∈ E

Hence (i.3) is proved which completes the proof of (i).

(ii) : Assume that PK,FMC (Kn) ⊂ {x ∈ IR|E| : πx = π0}. If we prove that πx = π0 is a scalar

multiple of x(E) = K(K−1)
2 F 2 − (K − 1)F , we are done.

Let u be a node in V , (L1, . . . , LK−2, LK−1, LK) and (S1, . . . , SK−2, SK−1, SK) be two

feasible partitions of V where:

• Li = Si and |Li| = F for all i = 1, . . . ,K − 2

• LK−1 = SK−1 \ {u} and |LK−1| = F

• LK ∪ {u} = SK and |LK | = F − 1

Comparing the expressions of πx for the incidence vectors of the two (K,F) multicuts defined

above yields: ∑
z∈LK

πuz =
∑

z∈SK−1

πuz

112

Suppose that w is a node in LK and v is a node in SK−1. The following two partitions are

also feasible: (L1, . . . , LK−2, (LK−1 \{v})∪{w}, (LK \{w})∪{v}) and (S1, . . . , SK−2, (SK−1 \
{v}) ∪ {w}, (SK \ {w}) ∪ {v}). Comparing the expressions of πx for the incidence vectors of

these two multicuts gives:

∑
z∈LK

πuz − πuw + πuv =
∑

z∈SK−1

πuz − πuv + πuw

Subtracting this equation from the one obtained above yields:

πuv = πuw

Again, since u, v and w can be chosen arbitrarily, we conclude that πe = α for all e ∈ E.

In every feasible partition of V there are K − 1 clusters with maximum size F and one

cluster with F − 1 nodes. Thus, the total number of edges in a (K,F) multicut is given by

β = K(K−1)
2 F 2 − (K − 1)F . So, we conclude that π0 = βα and the proof of (ii) is complete.

(iii) : All feasible solutions here have the K clusters filled up to their maximum capacities,

i.e., the size of any cluster in a feasible solution is always F . This implies that the number of

edges leaving a node u of V in a feasible solution is given by (K − 1)F and the hyperplane

defined by the equation x(δ(v)) = (K − 1)F contains the polytope PK,FMC (Kn). There are n

such hyperplanes and therefore dim(PK,FMC (Kn)) ≤ |E| − n. The result in (iii) holds if we can

exhibit a set of |E| − n+ 1 affine independent points in PK,FMC (Kn).

Pick one node u ∈ V and let Kn−1 denote the complete graph obtained from Kn by

removing node u from V and all its incident edges from E. From the result in (ii), the size of

any maximal set of affine independent points in the polytope PK,FMC (Kn−1) is (KF−1)(KF−2)
2 .

Let X be one such set.

If we add node u to the unique set containing F −1 nodes in all partitions corresponding to

incidence vectors in X, the partitions thus obtained are feasible for the problem with n = KF .

Moreover, the incidence vectors of these (K,F) multicuts remain affinely independent.

113

The size of this set is:

(KF−1)(KF−2)
2 = (KF−1)(KF)

2 − (KF − 1)

= |E| −KF + 1

= |E| − n+ 1

Therefore, this is a maximal affine independent set and the proof is complete. 2

The next theorem shows how a facet defining inequality for PK,FMC (Kn) is inherited by

PK,FMC (Kn−1). That is, we give some necessary conditions for when the facet property remains

if a single node is removed from Kn.

Theorem 3.7 Let Kn−1 = (Vn−1, En−1) denote the complete complete subgraph induced

in Kn by the nodes in Vn \ {u}. Suppose that PK,FMC (Kn) and PK,FMC (Kn−1) are both full-

dimensional. Let π and x be two vectors in IR|E|−n, xu and 0 be two vectors in IRn and

assume that the components of xu correspond to the edges in δ(u). Moreover, suppose that

(π,0)(x, xu) ≤ π0 is a facet defining inequality for PK,FMC (Kn) and that πx ≤ π0 is valid with

respect to PK,FMC (Kn−1). Then, πx ≤ π0 is facet defining for PK,FMC (Kn−1).

Proof: Suppose the contrary, i.e., πx ≤ π0 is not facet defining for PK,FMC (Kn−1). This implies

that there exists a vector a ∈ IR|E|−n and a scalar b ∈ IR such that: ax ≤ b is valid for

PK,FMC (Kn−1), {x ∈ PK,FMC (Kn−1) : πx = π0} ⊂ {x ∈ PK,FMC (Kn−1) : ax = b} and there exists

no scalar λ such that (π, π0) = λ(a, b) (note that the polytopes are full-dimensional). Define

Fπ and Fa as follows:

Fπ = {(x, xu) ∈ PK,FMC (Kn) : (π,0)(x, xu) = π0}
Fa = {(x, xu) ∈ PK,FMC (Kn) : (a,0)(x, xu) = b}

By assumption, there exists no scalar λ such that (π,0, π0) = λ(a,0, b) and, since

(π,0)(x, xu) ≤ π0 is facet defining for PK,FMC (Kn), there exists a (0, 1) vector (x, xu) in

PK,FMC (Kn) such that (x, xu) ∈ Fπ and (x, xu) /∈ Fa (otherwise dim(Fπ) ≤ |E| − 2 and Fπ

cannot be a facet).

114

Now, (x, xu) is the incidence vector of a feasible partitioning of Kn. The partitioning

obtained by the removal of node u from Kn is clearly feasible for Kn−1 and x is the incidence

vector of the multicut corresponding to such partition. Therefore,

(π, 0)(x, xu) = πx = π0

and

(a, 0)(x, xu) = ax 6= b

This contradicts our initial assumption that {x ∈ PK,FMC (Kn−1) : πx = π0} ⊂ {x ∈
PK,FMC (Kn−1) : ax = b} and this concludes the proof. 2

In the theorem below we show that facet defining inequalities from the equipartition poly-

tope can be used to derive facets for the (K,F) partition polytope for the complete graph on

KF − 2 nodes. If the conditions in Theorem 3.7 hold, these inequalities remain facet defining

for the (K,F) partition polytope defined on complete graphs of smaller size.

Theorem 3.8 Let K2F be a complete subgraph of Kn = (V,E) with n = KF − 2. Let π and

x be two vectors in IRF (2F−1), x̃ and 0 be two vectors in IR|E|−F (2F−1) and the components

of vectors x and x̃ correspond to the edges in K2F and in Kn − K2F respectively. Suppose

that πx ≥ π0 is a facet defining inequality of PEC(K2F) (the equipartition polytope defined

on K2F) and that (π,0)(x, x̃) ≥ π0 is valid for PK,FMC (Kn). If K ≥ 4, F ≥ 3 and the support

graph of πx ≥ π0 contains no more than 2F − 1 nodes, then (π,0)(x, x̃) ≥ π0 is facet defining

for PK,FMC (Kn).

Proof: Define Gπ = (Vπ, Eπ) to be the support graph of the inequality πx ≥ π0.

Suppose that {(x, x̃) ∈ PK,FMC (Kn) : (π,0)(x, x̃) = π0} ⊂ {(x, x̃) ∈ PK,FMC (Kn) : a(x, x̃) =

b}. From Theorem 3.6, PK,FMC (Kn) is a full-dimensional polytope and, therefore, if we prove

that (a, b) is a scalar multiple of ((π,0), π0) we are done.

Let z be a node in V (K2F) \ Vπ and (L1, L2 ∪ {z}) be an equipartition of the nodes in

K2F such that xδ(L1) ∈ IRF (2F−1) satisfies πx ≥ π0 at equality. Let w, u and v be three

115

distinct nodes in V \ V (K2F) and define the partition (L3, . . . , LK−1, LK) of the nodes in

V \ (L1 ∪ L2 ∪ {w, u, v}) such that:

• |Li| = F for all i = 3, . . . ,K − 3

• |LK−1| = |LK | = F − 2

• z ∈ LK

The multicuts described below are (K,F) multicuts that satisfy (π, 0)(x, x̃) = π0:

δ(L1, L2, . . . , LK−1 ∪ {w, u}, LK ∪ {v})
δ(L1, L2, . . . , LK−1 ∪ {w, v}, LK ∪ {u})
δ(L1, L2, . . . , LK−1 ∪ {u}, LK ∪ {w, v})
δ(L1, L2, . . . , LK−1 ∪ {v}, LK ∪ {w, u})

Comparing the expressions of (a, ã)(x, x̃) for the incidence vectors of the multicuts above we

obtain that awu = awv.

Note that Vπ ⊂ V (K2F) and, therefore, K2F can be defined in different ways depending on

the nodes of V \ Vπ taken to be in V (K2F). This implies that, in fact, the nodes u, v and w

in the previous result can be taken arbitrarily in V \ Vπ which leads to the conclusion that:

auv = γ ∀ u and v ∈ V \ Vπ, u 6= v

Consider the two following multicuts satisfying (π,0)(x, x̃) = π0:

δ(L1, L2 ∪ {z}, . . . , LK−1 ∪ {w, u}, LK ∪ {v} \ {z})
δ(L1, L2 ∪ {z}, . . . , LK−1 ∪ {w}, LK ∪ {u, v} \ {z})

Comparing the expressions of a(x, x̃) for these two vectors we get that

auv = γ = 0 ∀ u and v ∈ V \ Vπ, u 6= v

So far, we proved that the coefficients of vector a for edges not containing nodes in Vπ are

all null. We still have to find relations involving: (i) edges that have one endnode in Vπ and

the other endnode not in Vπ and (ii) edges that have both endnodes in Vπ.

116

From the remark following Theorem 2.3 in Chapter 2, if K2F−1 is the complete subgraph

of K2F obtained by removing any node from V (K2F), then πx ≤ π0 is facet defining for

PEC(K2F−1).

Let X be a maximal set of affinely independent points in PEC(K2F−1). Any incidence

vector of an equicut in X can be extended to an incidence vector of a (K,F) multicut of

Kn. For this, let (L3, . . . , LK) be any feasible (K − 2, F) partition of V \ V (K2F−1). If L1

and L2 are the two sets in the equipartition of K2F−1 defined by any incidence vector in

X, (L1, L2, L3, . . . , LK) is a feasible (K,F) partition of Kn. The incidence vectors of these

(K,F) multicuts can be used (as in the proof that πx ≥ π0 is facet defining for PEC(K2F−1))

to prove that:

ae = α1πe + α2 ∀ e ∈ Eπ

and

ae = α2 ∀ e ∈ E(K2F−1) \ Eπ

where α1 ∈ IR+ and α2 ∈ IR.

If |Vπ| ≤ 2F −2, then there exists at least one edge e ∈ E(K2F−1)\Eπ and, from the results

obtained so far, ae is zero. Therefore, in this case, α2 is zero and the proof is complete.

Suppose then that |Vπ| = 2F − 1 and u is the node in V \ Vπ that is added to Vπ to form

the set V (K2F). We can use similar arguments as before, to prove that:

ae = αu ∀ e ∈ E(K2F) \ Eπ

The notation αu is used here to indicate that this result can be proved whatever is the node

u assigned to K2F . However, we still have no proof that the constants αu are the same for all

possible choices of u. Below we prove that αu is indeed zero for any node u.

The set Vπ can be partitioned into two sets L1 and L2 such that |L1| = F and |L2| =

F − 1 and such that πxδ(L1) = π0. Define the partition (L3, . . . , LK−1, LK) of the nodes in

V \ (L1 ∪ L2) such that:

117

• |Li| = F for all i = 3, . . . ,K − 3

• |LK−1| = |LK | = F − 1

The multicuts described below are (K,F) multicuts that satisfy (π,0)(x, x̃) = π0:

δ(L1, L2 ∪ {u}, . . . , LK−1, LK)

δ(L1, L2, . . . , LK−1, LK ∪ {u})

Comparing the expressions of (a, ã)(x, x̃) for the incidence vectors of the multicuts above we

obtain that ∑
z∈LK

auz =
∑
z∈L2

auz

which implies that:

(F − 1)αu = 0 ⇒ αu = 0

and this completes the proof. 2

It is possible to give a proof of Theorem 3.8 with K = 3 and |Vπ| ≤ 2F − 2 using similar

arguments as above.

The results of Chapter 2 can now be extended to the (K,F) partition polytope. If K and

F are taken appropriately, it is easy to check the validity of cycle, PBC and suspended tree

inequalities when supports are covers for a single cluster of Kn = KKF−2 and from Theorem

3.8 these inequalities must define facets of PK,FMC (Kn). Examples of the support graphs of

such inequalities are shown in Figure 3.4 below, where we assume that: n = 38, K = 4 and

F = 10. Note also that Theorem 3.7 can be used to prove that these inequalities still remain

facet defining when the graph looses some of its nodes.

Now we address the following question. The cycle inequality defines a facet of the (K,F)

polytope if the nodes of the cycle form a minimal cover of a single cluster of a feasible

partition. If we take a cycle (V (C), C) with |V (C)| = 2F + 1, then the inequality x(C) ≥ 3

is trivially valid. More generally, we are given a cycle C that is a minimal (r − 1)-cover (i.e.,

|V (C)| = (r − 1)F + 1) and the valid inequality:

x(C) ≥ r (9)

118

2

22

2

(b) suspended tree(a) cycle

(c) PBC

Figure 3.4:

We would like to know how strong such an inequality is.

Consider the example of Figure 3.5 below, where r = F = 6, and assume that n and K are

large enough so that the cycle shown is a subgraph of Kn. Inequality (9) becomes x(C) ≥ 6.

Given a (K,F) partition of Kn, a set of consecutive nodes in the cycle that are assigned to

a same cluster and which is maximal with respect to this property is called a sector. In this

example, any feasible solution defines at least 6 sectors in the cycle. Clearly, the multicuts

that satisfy x(C) = 6 are those that partition the nodes in C into 6 sectors.

We claim that all these multicuts contain the edge (2, 11). To see this, assume that edge

(2, 11) is not in a multicut. Then nodes 2 and 11 are in the same cluster (x2,11 = 0), but

since these nodes are too far apart, they cannot be in the same sector of any (K,F) multicut,

which implies that at least 7 sectors are defined by the solution. Therefore, we can lift the

coefficient of edge (2, 11) to one and the new inequality becomes x(C) + x2,11 ≥ 7.

119

1 2 3
4 5

6

7

8

9

10

11

12
13141516171819

20
21

22

23

24

25

26
27

28
29 30 31

Figure 3.5:

All points satisfying the new inequality at equality are either the ones that already satisfied

x(C) = 6 or the incidence vectors of (K,F) partitions that define 7 sectors in the cycle and

such that nodes 2 and 11 are in different sectors of nodes belonging to a same cluster. Figure

3.6 shows the support graph of the new inequality.

We want to derive a general procedure for lifting the coefficients of chords of the cycle

(V (C), C). For this, we introduce some additional notation. Let S denote the set of all

chords of C not yet tested for lifting and S the set of all chords of C that have been lifted.

Given a chord (i, j) in S, let Pij denote the shortest path from node i to node j in the graph

(V (C), C ∪ S) and Cij be the cycle formed by the edges in {(i, j)} ∪ Pij .

The lifting procedure works as follows. It initializes the set S with all the chords of C

and the set S as empty. Then, it seeks an edge (i, j) in S for which |Cij | ≥ F + 1. If no such

edge exists, the procedure stops. Otherwise, the procedure continues for another iteration

after the following updates have been executed: (i) the coefficient of (i, j) is lifted from zero

to one; (ii) the RHS of the current inequality is incremented by one; (iii) edge (i, j) is inserted

120

1 2 3
4 5

6

7

8

9

10

11

12
13141516171819

20
21

22

23

24

25

26
27

28
29 30 31

Figure 3.6:

in the set S and (iv) edge (i, j) is removed from the set S.

Theorem 3.9 justifies the operations that are carried out in the lifting procedure.

Theorem 3.9 Let (V (C), C) be a cycle of Kn such that |C| = (r−1)F +1. Suppose that at a

some iteration of the lifting procedure, the current inequality is given by x(C) + x(S) ≥ r+ s,

where s is the size of set S. If (i, j) is an edge in S and |Cij | ≥ F + 1, then the inequality

x(C) + x(S) + xij ≥ r + s + 1 is valid for PK,FMC (Kn) and, moreover, {x ∈ PK,FMC (Kn) :

x(C) + x(S) = r + s} ⊂ {x ∈ PK,FMC (Kn) : x(C) + x(S) + xij = r + s+ 1}

Proof: Define:

• F` = {x ∈ PK,FMC (Kn) : x(C) + x(S) = r + s}

• F`+1 = {x ∈ PK,FMC (Kn) : x(C) + x(S) + xij = r + s+ 1}

Let us compute α = min{x(C) + x(S) : x ∈ P}, where P = {x ∈ PK,FMC (Kn) : xij = 0}.

121

Let δ be the cutset of a feasible partition of Kn in which the nodes i and j are in the same

cluster. Thus, if xδ is the incidence vector of this cutset, we have that xδ is in P . Define q to

be the number of sectors defined in C by the cutset δ and p be the number of clusters having

nodes in V (C). For i varying from 1 to p, denote by qi the number of sectors whose nodes are

in the i-th cluster that has a nonempty intersection with C in the partition δ. By definition,

the following relations hold:
∑p
i=1 qi = q, p ≥ r and xδ(C) = q.

Now, we know that all the chords in S have been added by the lifting procedure. So,

consider any subset of V (C) with at most F nodes and which defines t different sectors in C.

The number of chords with both endnodes in these t sectors is at most t− 1 (otherwise there

will be a cycle with less than F nodes in the subgraph (V (C), C ∪ S)).

Let β be the number of chords in S whose endnodes are in two sectors in C of a same

cluster of the partition with cutset δ. These are the chords of S that are not in the cutset δ.

Therefore, a lower bound for xδ(C) + xδ(S) is computed by taking β at its maximum value

βmax, that is:

xδ(C) + xδ(S) = q + s− β ≥ q + s− βmax

Since edge (i, j) is not in S, βmax is computed as
∑p
i=1(qi − 1)− 1. Thus,

xδ(C) + xδ(S) ≥ q + s− βmax

= q + s− (
p∑
i=1

(qi − 1)− 1)

= p+ s+ 1

Because p ≥ r, we conclude that xδ(C) + xδ(S) ≥ r + s + 1. Finally, since the multicut δ is

taken arbitrarily so that xδij = 0, the following holds:

min{x(C) + x(S) : x ∈ P} ≥ r + s+ 1

⇓

α ≥ r + s+ 1

122

1 2 3
4

5
6

7

8

9

10

11

12
13141516171819

20
21

22

23

24

25

26

31

27
28

29 30

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6
Cluster 1

Therefore, x(C)+x(S)+xij ≥ r+ s+1 is valid for PK,FMC (Kn) and there exists no x ∈ F` such

that xij = 0. Since every point with xij = 1 is trivially in F`+1, we conclude that F` ⊂ F`+1.

2

Usually, if the cycle Cij is of size F or smaller, the chord (i, j) cannot be lifted. This is

always true if all the edges in Cij except (i, j) are in the original cycle C. In this case, the

nodes of V (C) can be easily partitioned into r sectors such that all nodes in Cij are contained

in the same sector. Thus, the incidence vector of this multicut satisfies x(C) = r and it also

satisfies x(C) + x(S) = r + s. For instance, in the example in Figure 3.5, the chord (1, 6)

cannot be lifted because, as it is illustrated in Figure 3.7, there exists a solution satisfying

x(C) = 6 and not cutting (1, 6).

Figure 3.7:

Another situation in which the chord cannot be lifted is when Cij is of size at most F and

it contains exactly one chord e that was previously lifted. If this is the case, one can show

that there exists a (K,F) partition of Kn such that the cycle C is partitioned into r + 1

123

1 2 3
4 5

6

7

8

9

10

11

12
13141516171819

20

21
22

23

24

25

26
27

28
29 30 31

Cluster 1

Cluster 2

Cluster 6

Cluster 5

Cluster 3

Cluster 4 Cluster 1

sectors where the nodes of Cij are contained in two different sectors of a same cluster and

the other sectors are each in a different cluster. Thus, the incidence vector of this multicut

satisfies x(C) = r + 1 and x(S) = s− 1 (e is not cut). This can be seen in Figure 3.8 where

we consider the possibility of lifting the chord (4, 13) after lifting edge (2, 11) in Figure 3.6.

Figure 3.8:

When Cij is of size at most F and it contains at least two chords that have been previously

lifted, it may be the case that the lifting for edge (i, j) is possible. To see this, consider the

following example. Suppose that we start with the inequality with support graph shown in

Figure 3.5 and that the chords (2, 11) and (12, 22) have been the first two chords lifted. Edge

(1, 23) will not be a candidate for lifting in the next iteration of our lifting procedure because

the cycle Cij = {(1, 2), (2, 11), (11, 12), (12, 22), (22, 23), (23, 1)} has size F = 6. However,

looking more carefully at this example, we conclude that x(C)+x(S) is greater than or equal

to 9 whenever x1,23 is not cut and, therefore, (1, 23) should be considered for lifting.

Thus, we have seen that the multicover cycle inequality x(C) ≥ r can be strengthened

by lifting some chords in C. For this, one can use the lifting procedure suggested above.

However, as we have just shown, it is possible that the inequality produced by the procedure

124

can be further strengthened but, for this, a different lifting strategy has to be devised.

In the next section we investigate the multicut polyhedron when the nodes have weights

and the cardinality constraints are replaced by knapsack constraints.

125

3.4 The Graph Partitioning Problem with Knapsack Capac-

ity Constraints

Consider the graph G = (V,E) and assume that there is a weight wi associated to every

node i in V . We are interested in the partitions of V into K subsets with weight capacity

given by a constant W , i.e., the sum of the node weights in each cluster is at most W .

Analogously to the previous section, let us call such a partition a (K,W) partition of V and

the corresponding cutset a (K,W) multicut of G.

Define PK,WMC (G) to be the convex hull of incidence vectors of (K,W) multicuts in G.

The dimension of the (K,W) multicut polytope depends on the node weights and on the

cluster capacity W . So, no general result concerning the dimension of PK,WMC (G) is given.

Nevertheless, it is possible to obtain valid inequalities for this polytope with supports given

by cycles, suspended trees, PBCs and multicover cycles (as in Section 3.3).

The next theorem gives the conditions for a suspended tree inequality to be valid with

respect to PK,WMC (G).

Theorem 3.10 Let (V (T), T) be a suspended tree in G with apex at node u0 and satisfying

W < wu0 +
∑
u∈V (T)wu < 2W . Then, the suspended tree inequality

ω(T, u0)x ≥ 2

is valid with respect to PK,WMC (G), where ω(T, u0) is defined as in inequality (5) of Section 2.5.

Note that if the tree T is a path the inequality in Theorem 3.10 reduces to a cycle inequality.

The proof is omitted since it is very similar to that of Proposition 2.15 of Section 2.5.

Let C = ((V (C1), C1), (V (C2), C2), . . . , (V (Cr), Cr)) be a PBC in G and N , with |N | = t,

be the set of nodes that are common to all cycles in C. As in Section 2.4, we can define

((V (Pij), Pij) to be the path in cycle Cj joining the nodes si and si+1 (indices are taken

126

modulo t). But here we generalize the definition of the qij to allow for the node weights:

qij =
∑

u∈V (Pij)

wu − wsi − wsi+1

The value of Q is still defined as the sum of the largest (r − 1) values of the qij . Theorem

3.11 gives the conditions for a PBC inequality to be valid with respect to PK,WMC (G).

Theorem 3.11 Let (V (C), C) be a PBC subgraph of G with r cycles. Assume that W <∑
u∈V (C)wu < 2W . If

∑
u∈V (C)wu−Q > W , then the PBC inequality

∑
e∈C aexe ≥ 2r is valid

for PK,WMC (G), where the coefficients ae are computed as in inequality (3) of Section 2.4.

Again we omit the proof since it follows the same steps as in the proof of Theorem 2.7 of

Section 2.4.

If C is a cycle in G with |C| > (r − 1)W , then the multicover cycle inequality x(C) ≥ r

is valid for PK,WMC (G). The lifting procedure described in Section 3.3 can be used here. As

before, let S denote the set of chords already taken by the procedure. Given a chord (i, j)

not in S, Cij is the cycle formed by (i, j) and the edges in the path from i to j in C ∪ S
whose sum of node weights is mimimum. The chords chosen to be lifted are those such that∑
u∈Cij wu > W . The proof that these chords can be lifted is as in Theorem 3.9.

In the inequalities presented so far, the role played by the node weights is restricted to

the fact that the support graph should form a cover (or some generalization of a cover) for

the clusters in the partition. In the valid inequality given in Theorem 3.12 below, the node

weights are considered in a somewhat different way. For this, valid inequalities for PK,WMC (G)

are derived from valid inequalities for the knapsack polytope defined by the cluster capacity

constraint. The support of such an inequality is a tree that spans the nodes whose coefficients

are positive in the original knapsack inequality.

Theorem 3.12 Let PKn be the knapsack polytope defined by the cluster capacity constraint

of the graph partitioning problem, that is:

PKn = {y ∈ IBn+ :
∑
u∈V

wuyu ≤W}

127

9

8

76

54

32

1
w

1
= 2

w2 = 3 w
3
= 3

w
4
= 3 w

5
= 3

w
6
= 3 w

7
= 3

w
8
= 3

w
9
= 3

1

2

4 3

1

1

1

2

Suppose that πy ≤ π0 is a valid inequality for PKn and let V (π) be the set of nodes u such

that πu 6= 0. Moreover, let T be a tree in G rooted at a node r that spans all nodes in V (π).

Let P (u) denote the path in T from r to u. Then,

∑
u∈V (T)

πu(1−
∑

e∈P (u)

xe) ≤ π0 (10)

is valid for PK,WMC (G).

Inequality (10) is called the knapsack tree inequality. Let S(e) denote the subtree of T not

containing the root and obtained from T by removing e. Inequality (10) can be written as:

∑
e∈T

aexe ≥
∑

u∈V (T)

πu − π0 (11)

where ae =
∑
u∈V (S(e)) πu.

Before giving to the proof of Theorem 3.12, consider the following example. Suppose that

W = 8 and that T is the tree rooted at node 1 as shown in Figure 3.9. The node weights

are given by: w1 = 2 and w2 = . . . = w9 = 3. The inequality
∑9
u=1 xu ≤ 3 is valid for the

knapsack polytope PKn = {y ∈ IBn+ :
∑
u∈V wuyu ≤ W}. The corresponding knapsack tree

inequality is then:

1 + (1− x13 − x23) + (1− x13) + (1− x15 − x45) + (1− x15) + (1− x16)+

+(1− x16 − x67) + (1− x16 − x67 − x78) + (1− x16 − x67 − x79) ≥ 3

Figure 3.9:

128

Proof of Theorem 3.12: Suppose that there exists a vector x? in PK,WMC (G) not satisfying

inequality (10). Let S be the node set given by {u ∈ V (T) :
∑
e∈P (u) x

?
e = 0}. Therefore,

the root node r is in S. Since 1−∑e∈P (u) x
?
e ≤ 0 for nodes u in V (T) \ S, we have that:

∑
u∈S

πu(1−
∑

e∈P (u)

x?e) ≥
∑

u∈V (T)

πu(1−
∑

e∈P (u)

x?e)

or ∑
u∈S

πu ≥
∑

u∈V (T)

πu(1−
∑

e∈P (u)

x?e)

Because x? violates (10), the last inequality implies that:

∑
u∈S

πu > π0

The nodes in S are all in the same cluster. Thus, the incidence vector of S must be in PKn.

But, this contradicts the fact that πy ≤ π0 is valid for PKn. 2

Given any feasible partition of G, let S be the set of nodes in T defined as in the previous

proof. The incidence vector of the corresponding multicut lies on the face defined by inequality

(10) in PK,WMC (G) if the sum of the πu values for u ∈ S is equal to π0. This implies that, in

any solution satisfying (10) at equality, the path from the root to any node in T is cut exactly

once.

Below we investigate how to strengthen the knapsack tree inequality. One obvious situation

in which a strengthening is possible is when a coefficient ae for some edge e in T is larger

than
∑
u∈T πu − π0. Clearly, ae can be reduced to at least the same value as the right-hand

side of inequality (10) since no point in the face defined by the knapsack tree inequality can

cut edge e.

Now suppose that avw is larger than π0 for some edge (v, w) in T . Let Tv and Tw be the

two trees obtained from T when egde (v, w) is removed. Assume, without loss in generality,

that v and the root node r are in Tv and w is in Tw. Let `v and `w be lower bounds for∑
e∈Tv aexe and

∑
e∈Tw aexe respectively. Clearly, any solution over the PK,WMC (G) polytope

cutting edge (v, w) satisfies
∑
e∈T aexe ≥ avw + `v + `w. If αvw is defined to be equal to

129

avw + `v + `w − (
∑
u∈T πu− π0), then the coefficient of (v, w) can be reduced of max{αvw, 0}.

Simple values for the lower bounds `v and `w can be obtained as follows.

The inequality
∑
u∈V (Tv) πu ≤ π0 is trivially valid for PKn because V (Tv) ⊂ V (T). The

knapsack tree inequality corresponding to tree Tv is given by
∑
e∈Tv a

v
exe ≥

∑
u∈V (Tv) πu−π0.

The coefficients ave are given by:

ave =

 ae if e /∈ P (v)

ae −
∑
u∈V (Tw) πu if e ∈ P (v)

From the expression above, ave ≤ ae for all e in Tv. So, for any vector x in PK,WMC (G), we have

that: ∑
e∈T

aexe ≥
∑
e∈Tv

aexe ≥
∑

u∈V (Tv)

πu − π0 (12)

Thus, `v can be taken as
∑
u∈V (Tv) πu − π0.

Analogously, the inequality
∑
u∈V (Tw) πu ≤ π0 is trivially valid for PKn. The knapsack tree

inequality corresponding to tree Tw, when w is taken as the root, is given by
∑
e∈Tw a

w
e xe ≥∑

u∈V (Tw) πu − π0 where awe = ae for all e in Tw. Thus, `w can be taken as
∑
u∈V (Tw) πu − π0.

With the values of `v and `w given as before, we have:

αvw = avw + (
∑

u∈V (Tv)

πu − π0) + (
∑

u∈V (Tw)

πu − π0)− (
∑

u∈V (T)

πu − π0)

or

αvw = avw − π0 > 0

Thus, after lifting, the coefficient of edge (v, w) is π0.

As an example, consider again the knapsack tree inequality with support given by Figure

3.9. Edge (1, 6) has a coefficient of 4 which is larger than π0 (= 3). The knapsack tree

inequality corresponding to Tv is given by

x23 + x45 + 2x13 + 2x15 ≥ 2

130

9

8

76

54

32

1
1

2 1

1

1

2 2 2

and the one corresponding to Tw by

x78 + x89 + 3x67 ≥ 1

Therefore, any solution cutting edge (1, 6) satisfies
∑
e∈T aexe ≥ 4 + 2 + 1 = 7 and α16 =

7− 6 = 1. This implies that the coefficient of edge (1, 6) can be reduced to 3 (= π0).

The liftings discussed above are resumed in the following proposition.

Proposition 3.13 Let
∑
e∈T aexe ≥

∑
u∈V (T) πu − π0 be a valid knapsack tree inequality

defined as in Theorem 3.12. Suppose that Fa is the face of PK,WMC (G) whose points satisfy∑
e∈T aexe =

∑
u∈V (T) πu − π0. Then, the inequality

∑
e∈T ãexe ≥

∑
u∈V (T) πu − π0, with ãe

computed as the minimum among {ae, π0,
∑
u∈V (T) πu − π0}, is also valid for PK,WMC (G) and

the face it defines in this polytope contains Fa.

The liftings suggested in Proposition 3.13 may not be maximal. Too see this, consider

again the example of Figure 3.9 and suppose that edge (1, 6) is cut. We would like to know

what is the minimum value of
∑
e∈T\{(1,6)} aexe when x is a feasible vector satisfying x16 = 1.

By inspection, one can see that this minimum is attained by cutting edges (2, 3), (4, 5), (7, 8)

and (7, 9) which gives a value of 4. Thus, min{∑e∈T aexe : x16 = 1} = 8 and the coefficient

of (1, 6) can be reduced by 2. Arguing in the same way, the coefficient of edge (6, 7) can also

be reduced by 2. The new support graph is shown in Figure 3.10.

Figure 3.10:

Unfortunatetly, to compute these maximal liftings we have to solve knapsack problems to

optimality and this is known to be a NP-hard problem.

131

4. Separation Routines and Computational
Results for Graph Partitioning Problems

4.1 Introduction

In the last two chapters we have presented classes of strong valid inequalities for the

equipartition polytope, and for the polytopes of the more general graph partitioning prob-

lem. Efficient algorithms for identifying violated inequalities in these classes have to be

developed if one wants to use them in a cutting plane framework. An algorithm designed

to find violated inequalities in a given class of valid inequalities is a separation routine for

that class.

In this chapter we develop separation routines for some classes of valid inequalities

introduced in Chapters 2 and 3. For the development of the separation routines, we have

considered the graph partitioning problem with knapsack capacity constraints (Section

3.4). This is a natural choice since this probem generalizes the equipartition problem

(Chapter 2) and the graph partitioning problem with cardinality capacity constraints

(Section 3.3).

We then discuss the insertion of these separation routines in a branch-and-cut code

developed by Ferreira, Martin and Weismantel (1992), and the numerical experiments

that have been carried out in collaboration with the developers of the code.

The material of the chapter is organized as follows.

In Section 4.2, separation routines are given for the cycle and the PBC inequalities

introduced in Chapter 2. A third separation routine, which seeks violated inequalities

with support graphs given by trees, is then presented. Although tree inequalities usually

do not define facets they are easily seen to be valid and may be strong if the graph under

132

consideration is very sparse. For completeness, the separation routine for the knapsack

tree inequalities developed by Ferreira, Martin and Weismantel (1993) is also discussed.

The separation problems for the cycle and the tree inequalities are NP-hard. For both

cases this can be shown using a ”proof by restriction” (see Garey and Johnson, 1979).

For cycles the transformation is from the Traveling Salesman Problem, while for trees the

transformation is from the Steiner Tree Problem. The separation problem for the PBC

inequalities is probably also NP-hard. Therefore, the separation routines presented here

are heuristic algorithms. This implies that, for a given a class of valid inequalities, our

separation routine may end up with an inequality that is not the most violated one in

that class. It is also possible that the routine fails to produce a violated inequality even

when one exists.

In Section 4.3 we focus our attention on a small number of selected implementation de-

tails of the branch-and-cut code which are necessary for the analysis of the computational

results. Section 4.4 is devoted to the description of the different classes of problems chosen

for numerical testing of the code. In Section 4.5, we describe the numerical experiments

that have been carried out and discuss the results that have been obtained.

133

4.2 Separation Routines

The separation routines for the cycle, the PBC, the tree and the knapsack tree inequal-

ities are now discussed. Suppose that S is the set of feasible solutions of the problem we

want to solve and conv(S) is the convex hull of S (which can be one of the polytopes

introduced in Chapters 2 and 3). The separation routines have as input the fractional

solution, say x?, of the current linear relaxation of conv(S). The separation routine for

a given class F of valid inequalities is an algorithm that checks if there is an inequality

πx ≥ π0 in F which is not satisfied by x?. If such an inequality is found, then we add it

to the linear relaxation.

For the first separation routine πx ≥ π0 is the cycle inequality x(C) ≥ 2 discussed in

Chapters 2 and 3. The second separation routine is designed to look for violated PBC

inequalities (Chapters 2 and 3) where the PBC support graph is made of two cycles C1

and C2. In this case πx ≥ π0 can be written as x(C1) + x(C2) ≥ 4. Finally, the third

separation routine looks for violated inequalities of the type x(T) ≥ 1 where T is a tree

whose nodes form a cover for any of the clusters in the partition. This last inequality was

not discussed in the previous chapters but it can be trivially checked to be valid for the

polytopes considered here.

For the descriptions of the algorithms below, we consider that a graph G = (V,E) is

given and that a weight wu is assigned to each node u ∈ V . The current fractional solution

is given by x? and the maximum of the cluster capacities is given by W . Thus we can

define the polytope PK,WMC (G) from Chapter 3 and, as we mentioned there, this includes

the equipartition polytope.

Throughout this section, the following representation is used for the edges in E. If

an edge belongs to some tree (or some forest) that we want to characterize, then it is

represented by a thick grey line. When the tree (forest) is rooted, the root node (nodes)

is (are) represented by a square(s). If an edge is in the support of the current inequality,

134

it is represented by a thick black line. The remaining edges of the graph are represented

by thin black lines.

The basic object we deal with in each inequality is a set of nodes V ′ ⊆ V with∑
u∈V ′ wu > W called a cover. We shall speak of a cover cycle (or tree) to mean that the

sum of the weights of the nodes in the cycle (tree) is larger than W .

Given a subgraph G′ = (V ′, E′) of G, we define the length of G′ as the sum of the x?

variables associated to the edges in E′ and, analogously, the weight of G′ as the sum of

weights of the nodes in V ′. If G′′ is another subgraph of G, we say that G′ is heavier than

G′′ if the weight of G′ is larger than that of G′′. According to the preceding paragraph,

G′ is said to be a cover if its weight is larger than W .

135

4.2.1 Separation routine for the Cycle Inequalities

This routine looks for a cover cycle C in G such that
∑
e∈C x

?
e < 2. Clearly if such a

cycle is found, then a violated cycle inequality is available.

The routine is executed once for every node r of V for which the degree of r is larger

than one. The node r is called the root node or just root for simplicity. The idea is that,

at the output, the cycle will contain the root. Below, we describe the basic steps that

finds the cycle C for a given root r.

In the first step of the separation routine, we construct a spanning tree T (r) rooted

at r which contains only two edges that are incident with r. For this, we use a greedy

strategy very similar to Prim’s algorithm. The tree T (r) is initialized with the two least

cost edges (in terms of the x? variables) leaving r. At each iteration, a new node v is

added to T (r) such that x?uv
wv

is minimum among all possible edges (u, v) where u is in the

current tree T (r) and v is not in it. This construction implies that there are two subtrees

in T (r) hanging from r.

To illustrate the algorithm, consider the graph shown in Figure 4.1 below. Assume that

an equipartition problem is defined for this graph and, therefore, we have: wu = 1 for all

u in V , n = 31 and W = dn2 e = 16. Figure 4.1 shows a possible tree rooted at node 19.

In the second step of the routine, we try to find an edge which, together with some

edges in T (r), forms a cycle containing r. Thus, we consider the edges having each endnode

in one of the different subtrees that hang from r. These are the edges that induce cycles

in T (r) containing the root r.

Only edges inducing cycles with length less than two are of interest since they can

potentially lead to a violated inequality. If one such edge is available and it induces a cycle

C in T (r) satisfying
∑
u∈C wu > W , then a violated cycle inequality is found. When many

edges correspond to violated cycle inequalities, define eI to be the edge corresponding to

136

22

3

4

6

7

8

9

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

5

1

2

3

4

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

1

10

20

Figure 4.1:

the cycle of smallest weight. On the contrary, if there are edges inducing cycles with

length less than two but none of them is a cover, then let eI be the edge inducing the

heaviest such cycle.

After this second step, either a violated cycle inequality is at hand or the heaviest cycle

found does not constitute a cover. In the first case, we go to the lifting step to be described

below. Otherwise, a third step has to be executed to produce a new cycle heavier than

the present cycle. This step is repeated until the current cycle becomes a cover and has

length less than 2 or until all the cycles that we can find have length at least 2.

To illustrate the operations that are executed in this third step, we continue with the

example of Figure 4.1. For this, suppose that edge 40 is the edge eI as defined above. The

cycle induced by eI in T (r) = T (19) is shown in Figure 4.2 and has weight 12. We still

137

1

2

3

4

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

5

1

2

3

4

6

7

8

9

10

12

13

14
15

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

11

do not have a cover and a new cycle has to be constructed with weight greater than 12.

Figure 4.2:

Let C be the current cycle. For each edge eD of C not incident with r, a new tree

T (r, eD) is obtained by removing eD from T (r) and adding eI to it. Note that the degree

of r in the new tree remains equals to two since eD is not incident to r. The edges joining

two nodes in the different subtrees hanging from r in T (r, eD) are considered. Together

with some edges in the tree, each of these edges forms a cycle containing the root node. If

there exists at least one such edge for which the induced cycle is a cover of length less than

two, then let e′I be the one for which the cycle weight is minimized. Otherwise, assume

that no edge induces a cover cycle. Then, e′I is the edge corresponding to the cycle of

maximum weight whose length is less than two (note that there must be at least one such

cycle since C is the cycle induced by eD in T (r, eD)). Denote by C(eD) the cycle induced

in T (r, eD) by the edge e′I .

138

Consider the set L of edges whose induced cycles are covers. If L is not empty, define

e?D to be the edge that minimizes the weight of C(eD) among all edges in L. Otherwise,

if L is empty, define e?D to be the edge that maximizes the weight of C(eD). Let e?I be the

unique edge in C(e?D) \ T (r, e?D).

We go to the lifting step if C(e?D) is a cover cycle since, in this case, a violated cycle

inequality is available. If C(e?D) is not a cover but it is heavier than C, then the following

updates take place: T is modified by adding eI and removing e?D, C is replaced by C(e?D)

and eI is replaced by e?I . In the last case, the inequality associated to the new cycle C is

not valid and the third step is repeated. The routine stops and no cycle inequality (for

the root node r) is produced when C(e?D) has the same weight as C.

Consider the example of Figures 4.1 and 4.2 and suppose that e?D is the edge 26. The

tree T (r, eD) = T (19, 26) is obtained from the tree T (19) (Figure 4.1) by removing edge 26

and adding edge 40 since eI = 40 (see Figure 4.2) and is shown in Figure 4.3. Assuming

that edge 13 induces a cycle of length less than two in T (19, 26), no additional iteration

is necessary to find a heavier cycle since this one has size 17 and is a cover.

Actually, edge eI can be chosen such that one of its endnodes is the root node r. In

other words, we do not have to restrict the set of candidate edges for inducing cycles to

the ones having endnodes in the different subtrees of T (r). Clearly, any edge not in T (r)

but with r as an endnode also induces a cycle in T (r) that contains r. To see this, consider

the example of Figure 4.1 where the root is now defined as being node 2. Because one of

the subtrees only contains node 1 and the degree of that node is one, the routine fails to

build the very first cycle if the original set of candidate edges is maintained as before.

Assume then that edges not in T (r) and incident with the root are accepted in the set

of candidate edges to form cycles. If eI is one such edge, it is clear that the edge joining

r to the subtree containing the other endnode of eI is the only edge in the current cycle

that can be deleted from the T (r). The reason is that this edge has to be deleted so as to

139

22

1

7

8
9

10

11

12

13

14

15

16

17

18

19

20
21

23

25

26

27
28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

5

1

2

3

4

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

6

4

3

224

Figure 4.3:

keep the degree of r equal to 2 in the new tree. Such a situation is illustrated in Figure

4.4 where the graph of Figure 4.1 is considered but node 2 is now defined to be the root.

Edge 2 (eI) induces a cycle of weight 11 and edge 3 (eD) must be removed (otherwise the

degree of node 2 in the new tree will be larger than 2).

Once a violated cycle inequality is available, we go to a fourth step where we try to

strengthen the inequalities by lifting. After the three first steps have been completed, the

routine may end up with a cycle C corresponding to a violated cycle inequality for which∑
u∈C wu > W +α with α > 0. Let (z, v) be a chord of C. There are two simple paths in

C going from z to v. Suppose that Pzv is the path for which the sum of the node weights

is minimum and let β be given by
∑
u∈Pvz wu. If α − β > 0, the inequality can be lifted

in such a way that the support of the new inequality is the cycle C ′ arising from C by

removing the edges in Pzv and adding the chord (z, v). This operation is repeated until

140

22

1

7

8
9

10

11

12

13

14

15

16

17

18

19

20
21

23

25

26

27
28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

5

1

2

3

4

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

6

4

3

224

Figure 4.4:

no more chords are available for lifting.

Another improvement added to the routine goes as follows. Consider the example in

Figure 4.4. As we have seen before, edge 3 is the unique edge that can be removed from

the current cycle. At this point, the routine gets stuck since no cycle can be found whose

weight is larger than 11 (the weight of the current cycle). When this is the case, the

routine starts looking for more general subgraphs in G which are called ears.

An ear is defined constructively as follows:

(i) a cycle is an ear;

(ii) Let (V (Ea), Ea) be an ear in G and (V (Pij), Pij) be a path in G such that V (Ea)∩
V (Pij) = {i, j} and Ea ∩ Pij = ∅. Then (V (Ea ∪ Pij), Ea ∪ Pij) is an ear in G.

141

From the definition above, one can see that an ear is at least a 2-connected graph. Thus,

if
∑
u∈V (Ea)wu > W , the inequality x(Ea) ≥ 2 is valid for the polytopes we consider here.

In general, such an inequality is not facet defining and its strength increases as the graph

becomes sparser.

During the execution of the separation routine, suppose that a cycle is available at the

end of the third step for which the corresponding inequality is not valid. We use this cycle

as the initial ear and at each succeeding iteration a new ear is created by appending a path

to the current one. Since the weight of the ear increases at each iteration, we continue

iterating until a cover is found.

The path Pij that is added to the current ear at each iteration is found in the following

way. Let (V (Ea), Ea) be the current ear. Consider the nodes in V (Ea) as roots and con-

struct the rooted spanning forest T (V (Ea)) in the same way we did before for tree T (r). In

the case of Figure 4.4, the current ear is the cycle with nodes 2, 3, 4, 5, 12, 13, 14, 18, 17, 9, 8

and Figure 4.5 shows a possible configuration for T (V (Ea)).

Consider an edge eI not in T (V (Ea))∪Ea with one endnode in one subtree of the forest

and the other endnode in a different subtree (or in a root node). Together with a subset

of edges in T (V (Ea)), eI forms a path P (eI) that can be added to the current ear so as to

obtain a new one. Only the ears that are supports of violated inequalities are of interest

and, therefore, only the edges eI such that x(Ea) + x(P (eI)) < 2 are taken into account.

The strategy used here to construct the new ear is the same used as that for the cycles in

the sense that: if there are new ears that are covers then the one with the smallest weight

is taken, otherwise no possible new ear is a cover and the heaviest one is taken.

142

22

1

7

10

11

15

16

20

21

23

25

26

27
28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

1

2

3

4

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

6

24

19 14 5

12

18

17

8

3

4

9
2

13

Figure 4.5:

4.2.2 Separation Routine for the PBC Inequalities

As mentioned before, this routine looks for PBCs in G composed of 2 cycles. Thus,

the PBC inequalities generated are of the type x(C1) + x(C2) ≥ 4 and the edges in the

support can be classified into two sets according to their coefficients. We define a 2-path

as a maximal set of consecutive edges in C1 that are also in C2. The paths obtained in

C1 and C2 by removing all the edges that are in 2-paths are called 1-paths. Clearly, the

coefficients in the PBC inequality are 2 for edges in 2-paths, 1 for edges in 1-paths and 0

otherwise.

From the definitions of Chapter 2 and 3, Q is the maximum of the sum of the

node weights among all 1-paths. The validity of the PBC inequality is achieved when∑
u∈V (C1∪C2)wu > W +Q. Note that, when C1 and C2 coincide, Q = 0 and the validity

of the inequality implies that C1 (or C2) is a cover cycle.

143

The routine starts with a cycle C1 = C2 satisfying x?(C1) = x?(C2) < 2 − ε where

ε is a small positive number (taken as .20 in our experiments). Usually the inequality

x(C1)+x(C2) = 2x(C1) ≥ 4 is not valid because C1 is not a cover. The idea of the routine

is to keep the cycle C1 unchanged, while cycle C2 is changed so as to achieve validity of

the PBC inequality. Thus, suppose that two nodes u and v in V (C1) are in a same 2-path

Puv of the current PBC and that there exists a path P̃uv with no edges in C1∪C2 and such

that x(C1)+x(C2)−x(Puv)+x(P̃uv) < 4. Then, C2 can be updated with C2∪P̃uv \Puv. In

fact, this change is allowed provided that the variation in the value of
∑
u∈V (C1∪C2)wu−Q

is nonnegative. This point will be addressed later.

We now discuss steps of the routine in more detail. The routine is run for every node in

G with degree at least 3. These nodes form the set of possible roots. Once the root node

r is fixed, the first step involves the construction of the initial cycle C1 and for this we

make use of the algorithm described in the previous subsection. At this stage, Q is zero.

The second step constructs the first block of the PBC. We want the first block to be

nondegenerate and to have the root r as one of its ends. This is the reason why we only

select nodes with degree larger than 2 to be the root node.

So let T (r) be the last spanning tree coming from the cycle routine. For all nodes u

adjacent to r in the subgraph (V,E\T (r)), compute the value of x?uv plus the length of the

path going from u to r in T (r). Let v be the node for which the minimum of such values

is achieved. Denote by w the first node visited in the cycle C1 when we go from node

v to node r using the edges in T (r). Moreover, let P (r, w) denote the path of minimum

weight in C1 that goes from r to w. We update cycle C2 by removing the edges in P (r, w),

adding edge (rv) and adding the edges in the path going from v to t in T (r).

We now illustrate the construction of the first block of the PBC. In Figure 4.1, suppose

that node 19 is the root and that the cycle separation routine has found the cycle shown

in Figure 4.6, where we also indicate the edges that are in the last tree found in the cycle

144

22

1

7

10

11

15

16

20

21

23

25

26

27
28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

1

2

3

4

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

6

19

12

514

18 13

17

4

3

28

9
24

separation routine. According to the notation in the preceding paragraph, if v is node 28,

then w is node 22 and, since the node weights are all equal to one, P (r, w) is formed by

the edges 31, 33 and 34. Figure 4.7 shows the new PBC obtained in this way. It satisfies∑
u∈V (C1∪C2)wu = 15 and Q = 2. In the new inequality, the coefficients of the edges in the

first block are 1, while those of the edges in the unique 2-path of the PBC are 2 (indicated

in Figure 4.7 by the double thick black lines).

Figure 4.6:

The routine stops if it fails to produce the first block. Otherwise, if the current PBC is

not the support of a valid inequality, a third step is executed that adds new blocks to

the PBC. New blocks are added as many times as necessary until a valid PBC inequality

is found. Figure 4.7 is used to show how a new block is constructed.

145

22

1

7

10

11

15

16

20
21

23

25

26

27

28

29

30

31 32

33
34

35

36

37

38

39

40

42

4344

45

46

47

48

49

50

1

2

3

4

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

6

19

12

514

18 13

17

4

3

28

9
24

41

Figure 4.7:

We first find a rooted spanning forest T of G such that all nodes of the PBC are roots

and those that are not in any 2-path form singletons in T (for instance, node 20 in Figure

4.7). Forest T is constructed by the usual greedy strategy.

Secondly, we find the set S of edges which are candidates to be in a 1-path of the new

PBC. In principle, e is a candidate edge if there is a 2-path in the current PBC containing

two nodes u and v such that there exists a path from u to v in the subgraph (V, T ∪ {e}).
Thus, an edge e satisfying one of the conditions below is discarded S:

• both endnodes of e are in the current PBC. Example: edges 15, 44 and 49 in Figure

4.7.

• both endnodes of e are in the same subtree of T . Example: edges 43, 45 and 46 in

Figure 4.7.

146

• the endnodes of e are in different subtrees of T but these subtrees have the same

root node. Example: edge 47 in Figure 4.7.

• the endnodes of e are in different subtrees of T with different roots but the roots

are in different 2-paths of the current PBC. Example: edge 21 in Figure 4.8.

• one endnode of e is internal to some 1-path of the current PBC. Example: edges 24

and 44 in Figure 4.7.

• one endnode of e is the root of the subtree that contains the other endnode. Example:

edge 11 in Figure 4.7.

Note that, if e satisfies one of the last five conditions above, then e cannot be used to form

a 1-path of a new PBC. This remains true if e satisfies the first of these conditions and

e is not a chord of a 2-path in the current PBC. When e is a chord of a 2-path, it could

be used to form a 1-path of the new PBC but these edges are preserved to be used in the

lifting step.

In Figure 4.7, considering the conditions stated above, S is contained in the set of edges

given by {2, 5, 9, 21, 27, 28, 29, 30, 38}. The current PBC satisfies
∑
u∈V (C1∪C2)wu = 15

and Q = 2. Therefore ∑
u∈V (C1∪C2)

wu −Q = 13 < W = 16

and, if the value of Q remains unchanged, the weight of the PBC must be increased to

19 to have a valid inequality (recall that the node weights and the cluster capacity are

integers). Suppose that edge 30 is used to form a new block in the PBC. Two 1-paths are

created: the path with edges (30, 26, 17) and the path with edges (16, 25, 50, 42, 41, 40).

The new PBC has weight 17 and Q is 5. The value of
∑
u∈V (C1∪C2)wu−Q decreases by one

unity comparing to the previous PBC. In some sense, we have moved away from validity

since this value has to be larger than W in a valid PBC inequality. Thus, the edges for

which the difference between the new PBC weight and Q decreases are also removed from

S. In the example of Figure 4.7, edge 30 is the only such edge.

147

Every edge e in S, together with some edges of the forest T , constitutes a path P (e)

joining two nodes u and v that are in a same 2-path of the PBC. Define P (u, v) to

be the set of edges between nodes u and v in this 2-path. If S is empty, the routine

does not produce any violated inequality. Otherwise, let e? be the edge that minimizes

α(e) = x(C1) + x(C2) + x(P (e)) − x(P (u, v)) for all edges e in S. If α(e?) is less than

4, then the new PBC is accepted, and otherwise the routine fails to produce a violated

inequality.

In the example of Figure 4.7, suppose that edge 27 corresponds to e?. The new PBC

is shown in Figure 4.8. It has weight 18 and Q is 3. Therefore, validity is not reached

and we have to go for another iteration. With the spanning forest shown in Figure 4.8,

edge 29 can be seen to be in S. Suppose that edge 29 is selected to form the new PBC

shown in Figure 4.9 and which has weight 20. Now, since Q = 3, validity is reached and

a violated PBC inequality is available.

Two different types of lifting have been implemented in the fourth step of the sepa-

ration routine. In the first, assume that
∑
u∈V (C1∪C2)wu > W +Q+ α for some number

α > 0. Let (z, v) be a chord of a 2-path in the current PBC and P (z, v) be the edges

between z and v in this 2-path. If
∑
u∈P (z,v)wu − α ≥ 0, then both cycles C1 and C2 are

changed by removing the edges in P (z, v) and adding the edge (z, v).

In the second lifting, we also deal with chords of 2-paths in the PBC. However, in

contrast with the first case, the resulting PBC contains the same nodes as the previous

one. Let (z, v) and P (z, v) be defined as before. If
∑
u∈P (z,v)wu ≤ Q, edge (z, v) can be

used to create a new block in the PBC. For this, we keep cycle C1 unchanged and we

change cycle C2 by removing the edges in P (z, v) and adding edge (z, v). In the example

of Figure 4.9, edge 15 is a chord that allows us to make such a lifting.

Other liftings exist that have not been implemented. These liftings involve the change of

one or more existing blocks of the PBC. As an illustration, consider again the example in

148

22

1

7

10

11

15

16

20

21

23

24

26

27

28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

1

2

3

4

6

7

8

9

10

11

12

1415

16

17

18

19

21

22

23

24

25

5

26

27

28

29

30

31

6

19 14

12

3

4

13

17

18

5

228

9

25

20

Figure 4.8:

Figure 4.9. The coefficients of edges 35, 44 and 48 in the current inequality are respectively

1, 0 and 2. This inequality can be easily seen to be dominated by the inequality where

these coefficients are changed to 0, 1 and 1 respectively, while the coefficients of the

remaining variables remain unchanged.

149

22

1

7

10

11

1520

21

23

24

25

26

27
28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

1

2

3

4

6

7

8

9

10

11

12

1415

16

17

18

19

21

22

23

24

25

5

26

27

28

29

30

31

6

19 14

12

3

4

13

17

18

5

28

9

16

2

20

Figure 4.9:

4.2.3 Separation Routine for the Tree Inequalities

The goal here is to find a violated inequality of the type x(T) ≥ 1 where T is a tree

such that
∑
u∈V (T)wu > W , that is, T is a cover. A node r is fixed to be the root of T

and the routine stops after a node has been added to the current tree T such that it forms

a cover. The selection of the next node coming to T at each iteration is made in the usual

greedy way.

Unless the graph G is very sparse, the inequality x(T) ≥ 1 rarely defines a facet for the

polytopes considered here. An alternative to strengthen the inequality is now discussed.

Start by multiplying the whole inequality by 2. This gives 2x(T) ≥ 2. Consider an

edge (u, v) /∈ T and such that u and v are in different subtrees of T (remember that T

is rooted at node r). Let C be the cycle induced in T by e. It can be easily seen that

150

1

6

7

8

9

11

12

13

14

15

16

17

20
21

22

23

26

27

28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

5

1

2

3

4

6

7

8

9

10

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

1119

18

24

4

3

2

10

25

the inequality 2x(T \C) + x(C) ≥ 2 is valid and that all points satisfying 2x(T) = 2 also

satisfy 2x(T \ C) + x(C) = 2, although the inverse is not true.

To illustrate the contents of the paragraph above, consider the example of Figure 4.10

where the tree T rooted at node 18 is shown. Edge 37 is not in T and together with edges

17, 19, 26, 29, 36 and 38 it forms the cycle C. Any solution satisfying 2x(T) = 2 and not

intersecting an edge of T \C also satisfies 2x(T \C) +x(C) = 2. If the solution intersects

an edge in T ∩ C, then edge 37 must be intersected.

Figure 4.10:

The routine continues by transforming all nodes in V (C) into root nodes and removing

all edges in C from T . By doing this, T becomes a forest. There are tree types of root

nodes in forest T :

• those that are singletons (nodes 23, 24, 25, 26 and 17 in Figure 4.10).

151

• those that are roots of a single subtree of T (node 9 in Figure 4.10).

• those that are roots of multiple subtrees of T (node 18 in Figure 4.10).

This is typically the situation at the beginning of a new iteration of the algorithm. At

each iteration, we try to obtain a stronger inequality by finding a cycle C in the forest

T that contains one of the root nodes. In terms of the inequality, this corresponds to

reducing the coefficients of the edges in C ∩T from 2 to 1 and to increasing the coefficient

of the edge that induces the cycle from 0 to 1. It is an easy task to prove that the resulting

inequality is valid and that the face it defines in the polytope contains the face defined

by the preceding inequality. The nodes in C become roots and the routine goes for a new

iteration. This is repeated until no further cycle is found.

In the example of Figure 4.10, edge 44 creates a new cycle and the nodes in this cycle

(19, 28 and 27) become roots of the new tree T . This operation is shown in Figure 4.11.

Assume that ru and rv are respectively the roots of the subtrees containing nodes u and

v where the edge (u, v) is in E\T . If the edge (ru, rv) is in the support graph of the current

inequality, then let C be the cycle induced by (u, v) and (ru, vv) in T . Consider the new

inequality obtained from the current one by increasing the coefficient of edge (u, v) from 0

to 1, decreasing the coefficients of edge (ru, rv) from 1 to 0 and decreasing the coefficient

of the remaining edges of C from 2 to 1. This inequality can be easily seen to be valid

and stronger than the original one. For instance, consider the example of Figure 4.11. If

(u, v) is the edge 25, then (ru, rv) is the edge 49. The support graph of the new inequality

is represented in Figure 4.12.

The liftings given so far only involve nonforest edges that join different subtrees. After

some iterations, no more such liftings are possible. This is the case in Figure 4.12 where

there is only one subtree in T (the one rooted at node 18) that is not a singleton. Further

lifting is still possible using the procedure explained below.

152

1

2

6

7

8

11

12

13

14

15

16

17

20
21

22

23

27

28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

5

1

2

3

4

6

7

8

9

10

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

1119

18

25

24

4

3

26

10

9

Figure 4.11:

First visit all root nodes which do not form singletons and mark those that are roots

of a single subtree. In Figure 4.12 only node 18 is marked. For each marked node r

and starting from the edge incident with r, the edges of the corresponding subtree are

traversed. For every edge that is traversed, the endnode not in the root set becomes a

root. This is repeated until one of the new root nodes has degree larger than 2 in T . The

idea is to alternate a lifting phase with an expansion phase that enlarges the set of root

nodes. We continue with the example of Figure 4.12 to see how this works.

In Figure 4.12, the subtree rooted at node 18 is traversed. The first edge traversed is

the edge 21 and node 13 becomes a root. The next edge traversed is edge 14 and node 10

becomes a root. Since node 10 has degree 3 in T the routine stops expanding the set of

root nodes. The lifting phase uses edge 6 as in Figure 4.13 (the coefficients of the edges

4, 5, 9 and 18 decrease to 1 and the one of edge 6 increases to 1). Since no further lifting

153

1

2

6

7

8

9

10

11

12

13

14

15

16

17

20

21

22

23

27

28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

5

1

2

3

4

6

7

8

9

10

12

13

14
15

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

1119

18

25

24

4

3

26

Figure 4.12:

is found, the routine switches to the expansion of the set of roots. However, since all root

nodes are singletons, no expansion is possible and, in this is the case, the routine stops.

Unfortunately, the routine does not capture some other type of liftings. For example,

if a solution is on the face defined by the support graph represented in Figure 4.13 and it

cuts only edge 21, then edges 15 and 13 are cut. On the other hand, if the solution cuts

only edge 14, then either edge 13 or edge 15 is cut. Consequently, a stronger inequality

can be obtained from the current one by changing the coefficients of edges 21, 14, 15 and

13 respectively from 2, 2, 2 and 0 to 0, 1, 1 and 1, while keeping the coefficients of the

remaining variables unchanged. This new inequality can be proved to be facet defining

for the equipartition polytope of the graph shown in Figure 4.13.

154

1

2

6

7

9

10

11

12

13

14

15

16

17

20
21

22

23

27

28

29

30

31 32

33
34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

5

1

2

3

4

6

7

8

9

10

12

13

1415

16

17

18

19

20

21

22

23

24

25

5

26

27

28

29

30

31

1119

18

25

24

4

3

26

8

Figure 4.13:

4.2.4 Separation Routine for the Knapsack Tree Inequalities

We now describe the separation routine that has been implemented by Ferreira, Martin

and Weismantel (1993) to identify violated knapsack tree inequalities.

Let (V (T), T) be a tree in G rooted at node r and consider the knapsack polytope PKn

given by:

PKn = {y ∈ IBn+ :
∑
u∈V

wuyu ≤W}

If πy ≤ π0 is a valid inequality for PKn such that V (π) = {u ∈ V : πu > 0} and

V (π) ⊆ V (T), then the knapsack tree inequality is written as:∑
u∈V (π)

πu(1−
∑

e∈P (u)

xe) ≤ π0

where P (u) is the path in T that joins node u to the root node r for all u ∈ V (π). Given a

fractional solution x?, it is easy to see that, if the nodes u in T such that
∑
e∈P (u) x

?
e ≥ 1

155

are removed from T , then the new knapsack tree inequality is still valid and its violation

is larger than the violation of the starting inequality.

Thus, our separation routine is divided into two main steps. In the first step, we try

to find a good choice for the tree T and, in the second step, we look for the coefficients

πu for the nodes u ∈ T which give rise to a valid knapsack tree inequality that is violated.

The choice of a good tree T depends on the root node and, since every node in turn is

considered as the root, the separation routine repeats these two steps n times.

Let us consider initially the problem of finding a good choice for tree T and, for this,

suppose that a node r has been fixed to be the root. A tree is considered to be a good

choice if we are likely to find a knapsack tree inequality that has this tree as its support.

We have seen that the smaller the values of the terms 1 −∑e∈P (u) xe, the higher is the

violation (if so) of the inequality. Now with edge distances xe,
∑
e∈P (u) xe is the distance

in the tree from the root r to node u. Therefore, it is reasonable to construct a tree T

rooted at r such that, the distance from r to any other node in T is minimum. So, the

separation routine starts by constructing the shortest path tree and, for this, Dijkstra’s

algorithm is used.

As discussed earlier, any node in T whose distance to r is at least 1 can be deleted from

T since this will increase the chance of finding a violated inequality. After doing these

node deletions, the separation routines goes to the second step in which the coefficients

πu in the knapsack tree inequality are computed.

Initially, define variables yu for all u ∈ V (T) as follows:

yu =

 1 if u and r are in the same cluster

0 otherwise

Now, the knapsack polytope PKn is given by PKn = {y ∈ IB|V (T)| :
∑
u∈V (T)wuyu ≤W}.

156

By construction of the tree T , we have that 0 ≤∑e∈P (u) x
?
e ≤ 1 for all u ∈ V (T). Thus, a

fractional point y? ∈ IB|V (T)| can be defined with components given by y?u = 1−∑e∈P (u) x
?
e,

which clearly satisfy 0 ≤ y?u ≤ 1. Finally, using the separation routines for the knapsack

polytope, it can be checked if there is an inequality µy ≤ µ0 valid with respect to PKn

such that µy? > µ0. If this is the case, we are done because, by taken π = µ and π0 = µ0,

a violated knapsack tree inequality for PK,WMC (G) is obtained since:

∑
u∈V (T)

µuy
?
u > µ0 ⇔

∑
u∈V (T)

πuy
?
u > π0 ⇔

∑
u∈V (T)

πu(1−
∑

e∈P (u)

x?e) > π0

The second step of the separation routine terminates by tightening the inequality∑
u∈V (T) πu(1−

∑
e∈P (u) x

?
e) ≤ π0 as described in Proposition 3.13.

The number of knapsack tree inequalities generated for a given root node depends on

the number of violated inequalities that are found for the knapsack polytope PKn.

Computational Complexity of the Separation Routines

The main purpose of implementing these separation routines was to test the strength of

the inequalities introduced in the thesis. There was no major concern about the efficiency

of the routines in terms of computational complexity. Nevertheless, a brief discussion

about the complexity of the separation routines we have implemented is presented below.

In the analysis that follows m is the size of the edge set E and n is the size of the node

set V .

Consider initially the cycle separation routine and the step of the routine in which a

heavier cycle is obtained. For a fixed edge eD in the current cycle C, a new tree T (r, eD)

is defined. To find the best cycle induced in T (r, eD) (in the sense described in Subsection

4.2.1), all edges in E \T (r, eD) have to be tested which gives a complexity of O(m). These

157

operations are repeated for all edges eD in C and the maximum size of C is n, then the

overall complexity of this step is O(mn).

The difficulty here is to determine how many times a new cycle has to be obtained in

the worst case. If the node weights and the capacity W are all positive integers a trivial

bound for this value is W because the weight of C strictly increases from one iteration to

another (otherwise the routine stops). Therefore, in the worst case, the complexity of the

routine is O(Wmn2) since this step can be seen to dominate the remaining steps of the

algorithm and it is repeated once for each root node. Tests run for some examples of our

sample indicate that the number of new cycles generated is usually small (less than 10)

and independent of the size of the graph. So, the expected CPU time of the cycle routine

is O(mn2).

It can be observed that this complexity also holds for the PBC separation routine. At

most n new blocks can be created by the algorithm because the number of such blocks is

bounded by the number of edges in the initial cycle C1. The same argument also shows that

the number of liftings is bounded by n. The creation of a new block and the lifting involve

the visiting of all edges in the graph and therefore a complexity of O(nm) is achieved for

every root node fixed in V . Therefore, the complexity of these steps are dominated by

the complexity of constructing the initial cycle C1 which, as discussed above, is O(Wmn).

When the routine is executed for all root nodes, the complexity goes to O(Wmn2) as

before.

In the tree separation routine, there are two phases: the lifting phase and the root

set expansion phase. Every lifting phase is O(m) because it implies the visiting of all

edges not in the current support graph. The number of lifting phases that are executed is

bounded by the number of expansion phases that are executed. In the worst case, every

expansion phase adds a new node to the set of roots and this yields a complexity of O(mn)

for every choice of the initial root. Thus, the overall complexity of the routine is O(mn2).

158

4.3 About the Branch-and-Cut Code

The branch-and-cut code we have used was designed and implemented by Ferreira,

Martin and Weismantel (1992). Their code, called CLOP (for CLustering OPtimization),

has been made available to us and is particularly interesting for our purposes since it

provides an easy way to insert new separation routines. This has given us the possibility

both to test the strength of various families of valid inequalities, and to evaluate the

performance of our separation routines.

Therefore, our contribution has been to add to CLOP the implementations of the sep-

aration routines for cycle, PBC and tree inequalities as described in Section 4.2. CLOP

is written in C and runs on Sun Sparc Workstations. The Linear Programming package

used is CPLEX (1990).

The goal of this section is to give a few details about CLOP that will be helpful in

analysing the computational results. A detailed discussion about the CLOP code and the

implementation issues will appear in forthcoming work of Ferreira, Martin and Weisman-

tel.

Problem Formulation

As discussed in Chapter 2 the node-edge model is a suitable formulation of the graph

partitioning problem for computational purposes. This model, given in Section 1.3 and

reproduced below, is used in CLOP.

Variables:

xuv =


1 if edge (u, v) is in the multicut defined by the partition

(that is, nodes u and v are in different clusters)

0 otherwise

and

yku =

 1 if node u belongs to the k-th cluster of the partition

0 otherwise

159

IP formulation:

min
∑
e∈E

cexe

Subject to
∑
u∈V

wuy
k
u ≤ Fk ∀ k ∈ {1, . . . ,K} (I)

K∑
k=1

yku = 1 ∀ u ∈ V (II)

yku + y`v − xuv ≤ 1 ∀ k 6= ` ∈ {1, . . . ,K}
∀ (u, v) ∈ E (III)

yku + ykv + xuv ≤ 2 ∀ k ∈ {1, . . . ,K}
∀ (u, v) ∈ E (IV)

yku ∈ {0, 1} ∀ u ∈ V , ∀ k ∈ {1, . . . ,K} (V)

xuv ∈ {0, 1} ∀ (u, v) ∈ E (VI)

Constraints (III) and (IV) are initially omitted from the formulation. For nonnega-

tive edge costs, constraints (IV) can be eliminated from the formulation since we have

a minimization problem. Constraints (III) are added as they are needed by means of a

polynomial time separation routine. The idea is to avoid unnecessarily large LPs. In

fact, constraints (III) can be strengthened and the inequalities that are added in CLOP

are not of the form appearing in the formulation above. Instead, they are added in the

strengthened form given below:

∑
k∈S

yku +
∑
k 6∈S

ykv − xuv ≤ 1

where S ⊂ {1, . . . ,K}.

The program offers the possibility of choosing different strategies for separating valid in-

equalities. Separation routines are available for several classes of valid inequalities. Besides

the separation routines for cycle, PBC and tree inequalities that we have implemented,

other separation routines are available such as the ones for knapsack tree and star inequal-

ities which have been implemented by Ferreira, Martin and Weismantel (1993). The star

inequality is a particular case of the knapsack tree inequalities which we describe briefly

in the next paragraph.

160

Consider the set N(v) of nodes adjacent to a given node v in graph G and suppose that∑
u∈N(v)wu+wv > W (v and its adjacent nodes form a cover). The simple tree inequality∑
e∈T xe ≥ 1, where T = δ(v), is valid but it is possible to strengthen this inequality in the

following way. Let N ′(v) be the largest set in N(v) whose nodes fit together with v in a

cluster. Then, a stronger inequality is obtained by increasing the current right-hand side

to |N(v) \ N ′(v)|. Sometimes, additional changes are possible that makes the inequality

stronger. In these changes, either an edge is removed from the star, or both the coefficient

of an edge and the right-hand side of the inequality are increased by the same amount.

A separation routine has been implemented in CLOP (Weismantel, 1993) that looks for

violated star inequalities.

Upper Bounds

As the branch-and-cut algorithm runs, the lower bound for the optimal integer solution

provided by the current optimal fractional solution increases. Heuristics for obtaining

good upper bounds for the optimal integer solution are also available. The idea of these

heuristics is to find a feasible solution for the problem from the information provided by

the current LP (fractional) solution. The existence of a good upper bounds allows us to

fix some variables to their integer values (see Nemhauser and Wolsey, 1988) which, in

turn, may allow us to terminate the computation earlier. This is the case, for instance,

when we have an integer cost function and the difference between the lower and the upper

bounds is less than one.

Two such heuristics are available in CLOP. The first heuristic (Ferreira, 1993) uses only

the information provided by the edge variables to generate an upper bound. We call it

the EDGE heuristic and it works as follows.

Suppose that x? is the current LP fractional solution. The rationale behind the EDGE

heuristic is based upon the fact that, if x?ij is close to 0, the nodes i and j will probably

be together in a same cluster of the partition. Thus, given a positive (small) value ε,

let E′ be the set of edges in E satisfying x?e < ε. Consider now the problem of finding

161

a minimum cost forest T in (V,E′) such that: (i) the number of components in T is

at most K (the size of a feasible partition) and (ii) the sum of the node weights in

each component in T is at most W (the cluster capacities). Clearly, any solution of this

problem immediately converts into a solution of the graph partitioning problem by making

a one-to-one correspondence between the components of the forest and the clusters in the

partition.

Therefore, a modified version of Kruskal’s algorithm for the minimum spanning tree

problem is used to find the forest T . The aim of these modifications is to avoid the

creation of components for which the sum of the node weights is larger than W . This

modified version of Kruskal’s algorithm may terminate with a forest that has more than

K components. If the forest has at most K components, a feasible solution for the graph

partitioning problem is available. On the other hand, if the number of components in

T exceeds K, then the EDGE heuristic looks for a feasible solution for the bin packing

problem in which the components in T are interpreted as items that have to be packed

into bins (cluster) of size W . If a solution is found for the bin packing problem with cost at

most K, then a feasible solution for the partitioning problem is available. Otherwise, the

heuristic fails to produce a feasible partition of G and is unable to give an upper bound.

The second heuristic (Martin, 1993) uses the node variable information to find an upper

bound and it is called the RANDOM heuristic. It is based upon a heuristic for the

Unconstrained Global Routing Problem in VLSI design (see Lengauer, 1990). Since we

have the equality constraints
∑K
k=1 y

k
u = 1 in our model, we can interpret the yku variables

as a probability distribution for node u. For instance, for an equipartition problem,

suppose that we have a fractional solution such that y1
u = .6 and y2

u = .4. In this case, we

assume that node u has 60% probability of being in cluster 1 and 40% of being in cluster

2.

The heuristic simulates a series of experiments in which the nodes are assigned to the

clusters according to these probability distributions and, among the solutions produced by

162

the experiments, it picks the feasible solution of minimum cost as the upper bound. At the

beginning of an experiment, the n nodes of the graph are unassigned and the experiment

consists in executing n iterations in the following way. First choose an unassigned node u

in the graph and assign it to a cluster k with probability yku. If the capacity remaining in

cluster k is less than wu, then a new trial has to be made for node u since this assignment

is not possible. In the new trial, the probability distribution is adjusted so as to prevent

node u from going to cluster k again. These operations are repeated until either there are

no more clusters available in which u fits and the experiment is aborted, or a cluster is

found that can accept node u and a new iteration executed.

Parameters

The maximum number of cuts added at each iteration is passed to the program as

parameter. In tests we have carried out, this parameter has been set to 1000. In the

current version of the code, this parameter has to be taken into account when choosing

the order in which we separate the inequalities. For instance, suppose that the separation

routines for cycles, trees and PBCs, in that order, have been chosen for generating violated

inequalities in a given run. If the number of violated cycle and tree inequalities found in

an iteration is larger than 1000, then no violated PBC inequality will be added in this

iteration, even if one exists that can be found with the separation routine.

A second parameter passed to the program is the CPU time limit which works as follows.

Suppose that the CPU time limit is set to 120 minutes. After the execution of every LP,

the program checks if the CPU time of the run exceeds 120 minutes and, if this is the

case, it stops. Note that, in that way, it is possible that the total CPU time of a given run

passes the limit. In fact, the idea is to avoid CPU times that are too large, but is also to

have the information provided by the LP relaxation that is being solved when the time

limit expires.

Three other parameters are used in the program to decide when and how to branch in

the enumeration tree. These parameters are used to evaluate the lower bound improve-

163

ment (LP progress) during the execution and if the latter is not considered to be large

enough, the program selects a variable for branching. The current version of the code

gives preference to branch on edge variables. A new branch is made if the LP progress

after 10 (first parameter) iterations is less than 0.10 (second parameter) and the largest

violation ratio among the cuts found by the separation routines in the last iteration is at

most 0.05 (third parameter). Given a fractional solution x? and an inequality πx ≤ π0,

the violation ratio is computed as |π0−πx?
π0
| if π0 is not null and, otherwise, it is computed

as π0 − πx?.

Pool of Inequalities

The program keeps track of a pool of inequalities. Some inequalities that have been

generated previously in the algorithm are stored in the pool. An inequality generated in

an iteration can be dropped from the LP relaxation in some other iteration and, after

that, become violated again. The pool of inequalities provides a cheap way of searching

for violated inequalities since one can check very rapidly if a given inequality is violated.

164

4.4 Problem Instances

The algorithm has been tested on three different classes of problem. The characteristics

of the test graphs are now discussed.

The Class of Mesh Problems

The first type of problem arises in finite element computations. This problem is de-

scribed in more detail in the next chapter. For the present, we restrict ourselves to the

following brief description of the problem.

Suppose that a planar region is given and that this region is partitioned into smaller

pieces called the elements. Typically the elements are rectangles or triangles. The set of

elements defines a mesh. There is a set of variables associated to every element and if

two elements touch each other then they have variables in common. A system of linear

equations is defined over these variables. Assume that K processors are available to solve

this system. It is well-known that the amount of communication and the workload balance

among the processors are crucial for the performance of parallel algorithms.

Assume that two elements touch each other only if they have a side in common and

that the number of variables associated with one element is given by a constant. The

first assumption is usually not true but, as we will see in the next chapter, it leads to a

reasonable relaxation of the problem. So, take any partition of the mesh into K subsets

of elements and assign each of these subsets to the different processors. The workload at

each processor depends essentially on the number of elements (variables) it has to deal

with, and the communication cost depends on the number of variables shared by elements

in different sets of the partition.

Consider the dual graph GM of a planar mesh M . Let G = (V,E) be the partial

subgraph of GM induced by the nodes that correspond to an element of M (for more

details see Chapter 5). Suppose that all edge costs are set to one. From what was stated

in the previous paragraph, solving the mesh partitioning problem is equivalent to solving

165

the graph partitioning problem in G where the number of sets in the partition is K and

the size of each of these sets is bounded by d |V |K e. When K = 2, the mesh partitioning

problem gives rise to a graph equipartition problem.

Another problem that can be defined on the graph G associated to a finite element mesh

is the cutwidth problem. In Chapter 5, we will see that orderings with small cutwidth in

G provide good solutions for the Frontwidth Reduction Problem of finite element meshes.

The heuristic we propose in Chapter 5 for the cutwidth problem in G hierarchically solves

equipartition problems in graphs obtained from G by contracting some of its edges.

Since the elements are rectangles or triangles in the meshes considered in our tests,

the maximum degree of a node in the resulting graphs (unless some edges have been

contracted) never exceeds 4. The graphs are usually sparse with density of about 2.5 on

average and the graphs are 2-connected.

Note that the mesh problems are essentially graph partitioning problems with cardinal-

ity capacity constraints (see Section 3.3).

The Class of Compiler Design Problems

The second class of problems arise from compiler design problems (see, Johnson et al.,

1992). Here the nodes are in one-to-one correspondence with the routines of a compiler,

and the node weights represent the amount of memory used to store each routine. If two

routines communicate with each other, there is an edge between the two corresponding

nodes and a positive cost is associated to that edge. This is the cost of communication

between the two routines if they are not in the same page of memory (the cost is assumed

to be zero otherwise). So, the problem is to find a partition of the routines (nodes) into

pages of memory (clusters) so that the total communication cost is minimized.

The node weights for graphs arising from compiler design problems vary considerably.

In the instances of Johnson et al., there are typically two nodes of large weight and the

166

remaining nodes have small weights. None of the graphs are 2-connected and most of their

edges are incident with one of the two nodes of large weight. The density of the graphs

tested ranges from 1.56 to 3.07. No special structure is apparent in the edge costs.

The compiler design problems are then modeled as graph partitioning problems with

knapsack cardinality constraints (see Section 3.4).

The Class of VLSI Design Problems

The third class of problems arises in VLSI placement design (Weismantel, 1992). Each

node of the graph corresponds to a chip in the circuit and its weight is given by the

area of the chip. An edge is placed between two nodes (chips) if the two chips are in a

same net of the circuit. Its cost is given by the number of such nets. The circuit area

is divided into small rectangles. Thus, the problem is to assign the chips (nodes) to the

rectangles (clusters) such that the number of times the nets have to cross the boundary of

the rectangles (sum of edge weights) is minimized. An assignment (partition) is feasible

only if, for every rectangle (cluster), the sum of the chip areas (node weights) assigned to

the rectangle does not exceed the rectangle area (cluster capacity).

The edge costs can be defined differently leading to different cost functions. For a

detailed discussion on this topic, we refer to Weismantel (1992).

The variance in the node weights for the graphs arising from VLSI placement design

is usually small. In fact the node weights typically take three to four different possible

values. The graphs are a little denser than in the compiler design problems but are still

sparse. Densities vary from 1.68 to 3.03. The edge costs also vary considerably and

typically assume one of five different values. The graphs can be disconnected.

Like the compiler design problems, the VLSI design problems are modeled as graph

partitioning problems with knapsack cardinality constraints.

167

The Test Problems

The following notation is used to identify the problem instances:

name.n.K.m

where: name is either mesh, or cb450 or vlsi depending whether the problem belongs,

respectively, to the mesh, compiler design or VLSI design class; n (m) is the number

of nodes (edges) of the graph and K is the number of clusters allowed in the feasible

partitions.

The test problems from each of the three classes of problems are presented below.

Mesh Problems

The list of the six mesh problems on which our experiments have been carried out is

the following:

mesh.274.2.469 mesh.148.2.265 mesh.148.4.265

mesh.138.2.232 mesh.70.2.120 mesh.31.2.50

The mesh corresponding to problem mesh.274.2.469 is shown in Figure 4.14 (de Souza

et al., 1992). Denote by G274 the graph associated to that mesh. The graph of problem

mesh.138.2.232 is the induced subgraph ofG274 corresponding to the 138 leftmost elements

of the mesh in Figure 4.14, while the graph of problem mesh.70.2.120 is the subgraph

arising from the contraction of the 205 rightmost nodes of G274 into a single node. The

mesh corresponding to problems mesh.148.2.265 and mesh.148.4.265 is shown in Figure

4.15 and it is taken from Pina (1981). The graph of problem mesh.31.2.50 is the one

used in Section 4.2 to illustrate the execution of our separation routines (Figure 4.1). It

corresponds to a modification of a mesh also taken from the paper of Pina.

Note that, since all cluster capacities for mesh problems are equal to d |V |K e, and all node

weights are 1, all mesh instances except mesh.148.4.265, are graph equipartition problems.

168

Figure 4.14:

169

Figure 4.15:

170

613

10

14

29

5

28 71
26

27

8

21

24

1119

4
3

18 25 17

22

30

9

23

15 2

20

16

12

Compiler Design Problems

Six of the Compiler Design problems on which our experiments have been carried out

are listed below:

cb450.30.6.47 cb450.30.6.56 cb450.45.8.98

cb450.47.8.99 cb450.47.9.101 cb450.61.9.187

These examples have been taken from Johnson et al. (1991). Figure 4.16 shows the graph

for the problem cb450.30.6.47.

Figure 4.16:

In the compiler design problems, all cluster capacities (memory page sizes) are equal

to 450 (kilobytes). We have also modified the data for the smallest five of these problems

so as to convert them into bipartition problems. The capacities of the two clusters in the

bipartition versions of the problem have been adapted so that in a feasible solution the

weights of the two clusters are approximately the same. The aim is to have a ”weighted”

171

version of the equipartition problem. The problem instances generated in this way are

denoted by:

weq.30.6.47 weq.30.6.56 weq.45.8.98

weq.47.8.99 weq.47.9.101

The interest of studying such bipartition problems comes from the fact that, in practice

(see, for instance, Lengauer, 1990) solutions for partitioning problems are often given by

heuristics based upon a divide-and-conquer strategy that hierarchically split the graph

into two (balanced) parts. The point here is to test if our inequalities are more effective

in solving the bipartition problems arising from the above approach, or in solving the

original partition problem itself.

VLSI Design Problems

The list of the six VLSI problems used in our experiments is given below.

vlsi.166.4.504 vlsi.37.4.92 vlsi.38.4.105

vlsi.43.4.105 vlsi.48.4.81 vlsi.17.4.39

The data for these problems have been given to us by the developers of CLOP. Figure

4.17 shows the graph for the problem vlsi.48.4.81. The graphs in problems vlsi.37.4.92,

vlsi.38.4.105, vlsi.43.4.105 and vlsi.48.4.81 have been obtained by splitting the graph of

problem vlsi.166.4.504.

172

26

48

20

47

36
41

4

29

5

2140
11

27

45

46 19

42

43 18

30

1 9 6

12

13 3

2

15

14

83228

17

22

38

37

23

25

31

35

10

34

16
24

33

44

39

7

Figure 4.17:

173

4.5 Computational Results and Discussion

Below we present the computational results that have been obtained by CLOP.

In the tables with the computational results, the following notation is used to charac-

terize the different separation routines: P for the PBC inequalities; C for the cycle and

tree inequalities; K for the knapsack tree inequalities; S for the star inequalities and E

for the edge inequalities (see the comments following the model given in Section 4.4).

Two types of tables summarize the computational results for each of the three classes

of problems tested. The meanings of the columns in these tables are now explained. The

first type of table (Tables 4.1, 4.3 and 4.5 for mesh, compiler design and VLSI design,

respectively) contains general information about the runs. It has eight columns meaning:

Column 1 (Problem): the problem name;

Column 2 (Separation Strategy): The separation routines that have been selected during

the run (see the notation given in the beginning of this section);

Column 3 (LP value): the optimal value of the LP relaxation in the first node of the

enumeration tree;

Column 4 (% GAP): the percentage gap between the upper bound (found by heuristics

EDGE or RANDOM) and the optimal value of the LP relaxation in the first node

of the enumeration tree;

Column 5 (UB): the best upper bound found by the heuristic EDGE or RANDOM;

Column 6 (OPT): If known, the cost of an optimal solution or of a better upper bound

than the one computed by the heuristics EDGE and RANDOM. An asterisk appears

in this column if the problem was solved to optimality;

Column 7 (B & C Nodes): the number of nodes in the enumeration tree;

174

Column 8 (CPU time): the total CPU time in minutes. The numbers that appears in

parenthesis are the CPU times (in minutes) after the execution of the first node of

the enumeration tree, that is, before branching the first variable. If nothing appears,

then no branching has been done for the run.

The second type of table (Tables 4.2, 4.4 and 4.6 for mesh, compiler design and VLSI

design, respectively) gives detailed information about the number of inequalities generated

in each run as well the percentage of the overall CPU time spent in solving LPs and in

separating inequalities. The meanings of the columns in this type of table are:

Column 1 (Problem): the problem name;

Column 2 (C): Number of cycle and tree inequalities generated;

Column 3 (P): Number of PBC inequalities generated;

Column 4 (K): Number of knapsack tree inequalities generated;

Column 5 (S): Number of star inequalities generated;

Column 6 (E): Number of edge inequalities generated (see Section 4.3);

Column 7 (% LP): percentage of the CPU time spent in solving LPs;

Column 8 (% SEP): percentage of the CPU time spent in separation;

Mesh Problems

The computational results for the six mesh problems are summarized in Tables 4.1 and

4.2.

For all mesh problems, the upper bounds have been computed by the EDGE heuristic

(RANDOM was turned off) and the CPU time limit was fixed to 120 minutes. The decision

on which separation strategy to apply for a given problem was taken by running each

problem with different separation strategies for a few iterations. We kept the strategies

that we hoped would solve the problem within the time limit that had been fixed.

175

Three of the mesh problems tested have been solved to optimality: mesh.148.2.265,

mesh.70.2.120 and mesh.31.2.50. For problems mesh.274.2.469 and mesh.148.4.265 the

LP-value is far from the best upper bound available which, in turn, is also far from

the upper bounds computed by the heuristic EDGE. In the third unsolved problem,

mesh.138.2.232, the gap between the LP-value and the optimal solution (given in col-

umn titled OPT) is relatively small since, with this lower bound, we are able to prove

that any feasible solution with cost 8 is optimal (recall that the edge costs are all 1 for

mesh problems). The fractional solution available after the program passes the CPU time

limit was not structured enough to allow the EDGE heuristic to reduce the upper bound

from 8 to 9, which would have solved the problem.

Consider now the results in Tables 4.1 and 4.2 for the multiple runs of problems

mesh.148.2.265, mesh.70.2.120 and mesh.31.2.50. These problems have been solved to

optimality when only PBC inequalities or only knapsack tree inequalities have been added.

An exception for the PBC inequalities is the problem mesh.70.2.120 for which a single

fractional solution was chopped off by executing the cycle and tree separation routines.

We observe that the number of PBC inequalities (or PBC, cycle and tree inequalities in

problem mesh.70.2.120) is much smaller (from 2 to 8 times smaller) than the number of

knapsack tree inequalities that have been added to prove optimality. On the other hand,

the CPU time spent when the PBC inequalities are separated can be much larger than the

time spent when the knapsack tree inequalities are used (see problem mesh.148.2.265).

The ratio between the LP and the separation times is at least 4 for PBCs, while it does

not exceed 2 for the knapsack trees.

From the discussion above, it is reasonable to say that the PBC inequalities are im-

portant to define an optimal solution but that a faster separation routine is needed to

generate these inequalities.

Note that less than 20 minutes (using knapsack tree inequalities) were necessary to find

an optimal solution for the problem mesh.148.2.265. However, the problem of partitioning

176

the same mesh into 4 equal parts (mesh.148.4.265) is a rather difficult example for our

algorithm since, after more than 2 hours of CPU time, we are, at least in terms of the

best known upper bound, far from solving the problem.

177

.

178

.

179

Compiler Design Problems

Tables 4.3 and 4.4 give the results for the compiler problems and their bipartition

versions. For the original problem versions, the CPU time limit was set to 120 minutes

and, for the bipartition versions, this limit was set to 60 minutes. The upper bound

heuristics EDGE and RANDOM have been both turned on for all runs. The optimal

solutions for the original problem versions (column titled OPT in Table 4.3), where known,

are taken from Johnson et al. (1991).

In their original versions, 4 of the 6 problems have been solved to optimality and, among

these, for two of them (cb450.45.8.98 and cb450.47.8.99) the program went into a branching

phase. The two unsolved problems are: cb450.47.9.101 and cb450.61.9.187. For the first

of them, the algorithm explored 78 nodes of the enumeration tree and was unable to give

the optimal solution although the gap between the lower (LP) and upper bounds in the

first node of the enumeration tree was relatively small.

From Table 4.4, we notice that the number of PBC inequalities added during the exe-

cution of the algorithm is small when compared to the number of other inequalities. This

was expected for two reasons. First, in the compiler design problems, the graphs are

usually not 2-connected and most of their edges are incident to one of the two nodes of

large weight. Therefore, the chance of finding a PBC subgraph composed of two cycles

that is the support of a valid inequality is very small. The second reason is that, at each

iteration, our implementation of the PBC (and also of the cycle and tree) separation rou-

tine generates at most n inequalities, while the maximum number of knapsack tree and

star inequalities that is generated is much larger.

The results in Table 4.3 for the original and bipartition versions of the five smallest

compiler design problems indicate that, for these instances, a heuristic which hierar-

chically solves bipartition problems to optimality is not a good method to tackle the

original problem. In fact, except for problem cb450.47.9.101, we spent more time in solv-

ing the bipartition versions than the original problems. Even worse, we could not solve

180

problems weq.45.2.98 and weq.47.2.99, whereas their original versions cb450.45.8.98 and

cb450.47.9.99, respectively, have been both solved to optimality.

181

.

182

.

183

VLSI Design Problems

The results obtained for the third class of problems, namely the VLSI placement prob-

lems, are presented in Tables 4.5 and 4.6. The CPU time limit has been set to 60 minutes

for all problems except problem vlsi.166.4.504 where we double the time limit (120 min-

utes). All problems have been run with both the upper bound heuristics EDGE and

RANDOM active.

Only problem vlsi.37.4.92 has been solved at the first node of the enumeration tree. The

gap between the lower and upper bounds for the two unsolved problems, vlsi.166.4.504

and vlsi.48.4.81, is still very large.

Compared to the compiler design instances, the number of PBC inequalities generated

has increased but it is still small when compared to the number of other inequalities

generated.

184

.

185

.

186

Further Tests and Concluding Remarks

We also have tested the behavior of the algorithm when the cluster capacities become

larger. For this, three runs of problem eq.31.2.50 have been executed with the cluster

capacities of 16, 21, and 26, respectively. Moreover, four runs of problem cb450.30.6.47

have been executed with the cluster capacities of 450, 500, 450 and 1024. The results of

these tests, presented in Table 4.7, do not allow us to derive any reasonable conclusion. The

runs have been made with the separation routines of PBC, cycles, trees, knapsack trees,

stars and edges turned on, and with the upper bound heuristics EDGE and RANDOM

activated.

Both problems have been solved to optimality for all choices of cluster capacities. For

some cases, when the capacity grows, both the CPU time and the number of inequalities

increase. For other cases, the opposite behavior is observed, that is, the cluster capacities

increased but the CPU time and the number of inequalities decreased. Thus, we cannot

conclude that the performance of our branch-and-cut algorithm depends on the cluster

capacities, as is sometimes the case for other branch-and-cut algorithms designed for

capacitated problems (for instance, the Capacited Facility Location Problem studied in

Aardal, 1992).

187

.

188

As a general remark, we observe that the number of inequalities generated to find

an optimal solution in our test problems is very large. This is an indication that we

are missing important inequalities in the LP relaxations. The LP relaxations could be

improved by strengthening some of the valid inequalities already known. The knapsack

tree inequality seems to be an attractive inequality for strengthening. In fact, the addition

of the knapsack tree inequalities to our relaxations has been determinant for solving some

of the instances in our sample, which characterizes the importance of these inequalities

in tightening the formulations. But, possibly, we are not exploiting all the potential

of the knapsack tree inequality since there are examples where the lifting suggested in

Proposition 3.13 is weak.

Another alternative to obtain better LP relaxations is to improve the separation routines

used in the code to make them generate other valid inequalities. For instance, we are not

exploiting the whole class of PBC inequalities but only a subclass of it. Therefore, we

could change the PBC separation routine to make it look for more general violated PBC

inequalities.

We also point out to the fact that, up to now, in all the inequalities added by the program

(except the constraints (III) of the original model) the coefficients of the variables are

positive. In some sense, this means that we are working with the dominant of the polytope

PK,WMC (G) and so, we are not using some inequalities such as the triangle inequalities

(Barahona and Mahjoub, 1986) and the suspended tree inequalities of Chapter 2. Because

the edge costs are all nonnegative and there are no node costs in our examples, these

inequalities may not produce any significant change in the lower bounds (LP values), but

they may give more structure to the fractional solutions that will allow the upper bound

heuristics to work better.

Finally, a third alternative to improve the LP relaxations is to look for new classes of

strong valid inequalities for the graph partitioning polytopes.

189

5. The Frontwidth Reduction Problem in
Finite Elements Computations

5.1 Introduction

In this chapter we describe an application of the equipartition problem arising in Finite

Elements. Finite Elements is a numerical method used to approximate functions in a given

domain. Typically, the final step of such a method involves the solution of a system of

linear equations. The variables in this system represent the approximation of the function

at some points of the domain fixed a priori.

Several direct methods have been proposed to solve linear systems. The common goal

of the different methods is the reduction of the CPU and storage requirements during the

variable elimination process. In this chapter, we focus our attention to a method called

frontal (Irons, 1970) and, more precisely, we are interested in the frontwidth reduction

problem, that is, the combinatorial optimization problem that is solved in the preprocessing

phase of the frontal method.

In the next section we introduce briefly the finite element concept and some terminology

such as mesh, element and nodes. We show how the solution of a problem by finite elements

leads to a system of linear equations and we describe how this system is solved with the

frontal method.

To reduce the CPU time and the memory storage, the frontal method needs a prepro-

cessing phase in which one has to find a good ordering for the elements in the mesh. The

problem of finding such an ordering is called the frontwidth reduction problem (FRP). A

short literature review on the heuristics developed for solving the FRP is presented at the

end of Section 5.2.

190

In Section 5.3, a more formal definition of the frontwidth reduction problem is given.

We introduce a graph model for the mesh that allows us to reformulate the FRP as a

cutwidth problem.

A divide-and-conquer algorithm for the cutwidth problem is developed in Section 5.4.

This algorithm solves graph equipartition problems recursively and their solutions are

combined so as to obtain a good ordering for the cutwidth problem and, hopefully, for

FRP.

We have chosen a heuristic approach to solve the equipartition problems within the

main divide-and-conquer procedure for the cutwidth problem. Two main reasons are

at the origin of our decision. First, the intrinsic difficulty of the equipartition problem

which is NP-hard. Secondly, the graphs arising from finite element meshes are very large.

Therefore, Section 5.5 is devoted to the presentation of local search heuristics for graph

equipartition. In Subsection 5.5.1 we describe the deterministic heuristic of Kernighan

and Lin (1970). The next two subsections present the nondeterministic heuristics that

specialize the simulated annealing and stochastic evolution algorithms, respectively, to

the graph equipartition problem.

One of the key questions in a local search framework is the choice of a starting solution

for the algorithm. This point is addressed in Section 5.6 where we suggest two different

methods to generate an initial solution for equipartition.

We close the chapter with a discussion of the computational results obtained by our

divide-and-conquer algorithm for FRP. A small sample of two and three dimensional

meshes has been tested and the results are compared to those obtained by the Reverse

Cuthill-McKee algorithm that is a standard greedy algorithm. In most of the cases, the

improvements observed ranged from 25 to 50%.

191

For a thorough presentation of the finite element method, we refer to Zienckiewicz

and Morgan (1983) and Zienckiewicz and Taylor (1989). For direct methods for sparse

matrices, we refer to Pissanetsky (1984) and Duff et al. (1986).

Most of the material in this chapter appears in de Souza, Keunings, Wolsey and Zone

(1992).

192

5.2 The Finite Element Concept and the Frontal Method

The goal of this section is to give an insight into the context in which the combinatorial

problem of frontwidth reduction occurs. For this, a brief introduction to the finite element

concept is given and we show that the final step of the method involves the solution of a

system of linear equations. Then, we describe how to solve this system with the frontal

method, and we show that the efficiency of the method depends on our ability to find a

good solution to a combinatorial optimization problem called the Frontwidth Reduction

Problem (FRP). A short literature review on the heuristics that have been proposed for

solving the FRP closes this section.

5.2.1 The Finite Element Concept

To determine the solution of differential equations numerically it is necessary to develop

accurate function approximation methods. The finite element approach described below

is one such methods.

Given a function φ to be approximated in some region Ω bounded by a closed curve Γ,

the approximation function φ̃ can be written as:

φ̃ =
m∑
i=1

aiNi (1)

where the Ni’s are called the trial (shape or basis) functions and the ai’s are constants to

be computed.

Suppose that a physical phenomenon is governed by a linear differential equation in φ

in the region Ω bounded by the curve Γ. This differential equation can be written in the

quite general form below:

A(φ) = Lφ+ p = 0 in Ω (2)

where L is an appropriate linear differential operator and p is independent of φ. Usually,

boundary conditions have also to be satisfied and can be expressed in a general form as:

B(φ) =Mφ+ r = 0 on Γ (3)

193

where M is an appropriate linear differential operator and r is independent of φ.

Assume that a set (N1, N2, . . . , Nm) of trial functions has been chosen. To completely

characterize the approximation φ̃, the values of the constants ai for i ∈ {1, . . . ,m} must

also be determined. These values are computed by the weighted residual method. To

explain this method, we first define the errors RΩ and RΓ in the approximation. The

residual RΩ in the domain Ω is given by:

RΩ = A(φ̃)−A(φ) = A(φ̃) = Lφ̃+ p in Ω (4)

The residual RΓ on the boundary Γ is given by:

RΓ = B(φ̃)−B(φ) = B(φ̃) =Mφ̃+ r on Γ (5)

The weighted residual method is an attempt to reduce the sum of the residuals (errors)

in the domain and on the boundary in some overall manner. For this, we require that a

certain number k of integrals of the residual over Ω and Γ, weighted in different ways, be

zero, i.e.: ∫
Ω
WjRΩdΩ +

∫
Γ
W jRΓdΓ = 0 ∀j ∈ {1, . . . , k} (6)

Assume that the number of independent weight functions Wj is chosen to be equal to

the number of trial functions Ni (k = m). Substituting (1), (3) and (4) in the equations (6)

yields a linear system on m equations and m variables which can be written in matricial

form as:

IKa = q (7)

where

kji =
∫

Ω
WjLNidΩ +

∫
Γ
W jMNidΓ (8)

qj = −
∫

Ω
WjpdΩ−

∫
Γ
W jrdΓ (9)

The development given so far applies to any approximation method of the function φ.

In the sequel we specialize the above formulas to the case of the finite element method.

194

The finite element method to approximate φ in the bounded region Ω starts by parti-

tioning the region Ω into smaller regions Ωe called the elements. The set of all elements in

the partition defines a mesh on Ω. Each element Ωe has nodes on its boundary and possibly

in its interior. Clearly, a node can belong simultaneously to many different elements.

For each node i, a trial function Ni is defined in a piecewise manner such that it takes

a value zero on all elements of the mesh except those containing node i. With the Ni

functions defined as above, the definite integrals in (6), (8) and (9) can be computed by

summing the individual contributions of each element. For (8) and (9), this yields:

kji =
n∑
e=1

(
∫

Ωe
WjLNidΩ +

∫
Γe
W jMNidΓ)

=
n∑
e=1

kΩe
ji (10)

qj = −
n∑
e=1

(
∫

Ωe
WjpdΩ +

∫
Γe
W jrdΓ)

=
n∑
e=1

qΩe
j (11)

where n is the number of elements in the mesh and Γe denotes the portion of the boundary

of element Ωe that lies on Γ.

Let IKe be the m×m matrix associated to element Ωe whose coefficients are given by

the kΩe
ji values in (10). Note that these values are 0 if node i or node j are not in Ωe. We

have that matrix IK (see (7)) is given by the sum of the IKe matrices for e = 1, . . . , n, i.e.:

IK =
n∑
e=1

IKe (12)

Analogously, if qe is the vector with components given by the qΩe
j in (11), we have that:

q =
n∑
e=1

qe (13)

From (12) we can see that the element matrices IKe can be computed and added se-

quentially so as to obtain the global matrix IK. From (13), we can see that the same is

195

true for the element vectors qe and the vector q. This process is called the assembly of IK

and q and, at some iteration, an element is said to be assembled if its associated matrix

and its associated vector have already been summed.

In practice, the trial and weighting functions are chosen appropriately such that IK is

sparse and often it is a symmetric matrix. Thus, IK can be put into a band form. In such

a situation, the system IKa = q can be solved efficiently using a band method in which

the variable elimination begins only after the matrix IK has been fully assembled. An

alternative technique to solve the linear system is provided by the frontal method (Irons,

1970) in which the variable elimination starts before the summations in (12) and (13) have

been completed. The Frontal Method is presented below.

5.2.2 The Frontal Method

Suppose that the elements are assembled in the conventional order defined by the index

e ∈ {1, . . . , n}. Let Ck be the set of assembled elements at the k-th step. The node set is

partitioned into four subsets defined below:

• Sk1 = {i ∈M : Ei ⊆ Ck−1}
(set of nodes fully assembled and eliminated);

• Sk2 = {i ∈M : Ei ⊆ Ck and Ei 6⊂ Ck−1}
(set of nodes fully assembled but not eliminated);

• Sk3 = {i ∈M : Ck ∩ Ei 6= ∅ and Ei 6⊂ Ck}
(set of nodes partially assembled);

• Sk4 = {i ∈M : Ck ∩ Ei = ∅}
(set of nodes not assembled);

where M is the set of nodes in the mesh, E is the set of elements in the mesh and Ei is

the set of elements that contain node i.

196

Clearly, if Ωe is an element not in Ck, then kΩe
ij = 0 if either i, or j, or both, are in

Sk1 . This means that all rows and columns of IK corresponding to nodes in Sk1 are fully

assembled. Note also that kij = 0 if i ∈ (Sk1 ∪ Sk2) and j is in Sk4 , because, in this case,

Ei ∩ Ej = ∅.

The variables corresponding to nodes in Sk2 can be eliminated and this affects only the

submatrix associated to the nodes in Sk2 ∪Sk3 . This means that only this submatrix needs

to be available in memory at this stage for the elimination to be processed. In other

words, we must be able in step k to store a fk × fk submatrix where fk = |Sk2 | + |Sk3 | is
called the k-th frontwidth and Fk = Sk2 ∪ Sk3 is the k-th front.

Therefore, the memory storage necessary to run the frontal method until the matrix IK

has been completely assembled is proportional to f2, where f is computed as max{fk :

k = 1, . . . , n}. It can be proved that the CPU time needed to solve the linear system

IKa = q is also proportional to f2. Thus, the performance of the method is closely related

to our ability to keep the frontwidth small.

197

 1 4 6

 2 3 5

1 3 9 10

2 4 8 11

 5 6 7 12

(a)

The frontal method is applied to the simple mesh of Figure 5.1(a). In Figure 5.1(b),

the matrix IK associated to this mesh is represented at each step and the shaded area

corresponds to the submatrix that has to be available in memory for the elimination of

the variables in the set Sk2 . We assume that IK is symmetric and we denote the nonzero

elements in IK by an ’X’. The rows and columns have been permutated at each step for

the clarity of the presentation.

It can be seen from this figure that the elimination of a row (and column) corresponding

to a mesh node is processed as soon as all elements containing that node have been

assembled. To have small frontwidths, a node should stay as few steps as possible in the

front and this depends upon the order in which the elements are assembled. The problem

of finding the ordering to assemble the IKe matrices that minimizes the maximum of the

frontwidths is called the Frontwidth Reduction Problem (FRP). In the next sections of

this chapter we develop a heuristic to produce good solutions for the FRP. But, before,

we present a literature review on heuristic algorithms for the FRP.

Figure 5.1:

198

Figure 5.1:

199

5.2.3 Existing Heuristic Algorithms for FRP

Though the FRP is commonly cited in many works as a difficult problem, we did not

find any formal proof in the literature that it belongs to the class of NP-hard problems.

However, the difficulty of the problem and the necessity to find solutions to practical ap-

plications have pushed many authors to develop heuristics to obtain approximate solutions

for FRP. Some authors, like Sloan and Randolph (1983), have classified the heuristics into

direct and indirect.

Typically, an indirect heuristic has two phases. The first phase gives a solution to the

Bandwidth Problem (BP), that is, the problem of finding an ordering (labelling) of the

variables of the mesh which minimizes the bandwith. The bandwith of an ordering is the

maximum, taken over all elements in the mesh, of the difference between the largest and

the smallest variable labels.

The second phase of an indirect heuristic uses this new variable ordering to produce an

element ordering (solution for FRP). In this element ordering, the elements are labelled by

increasing order of the least label of their variables (given by the solution of the Bandwidth

Problem). The fundamental reason for this strategy is that the frontwidth obtained in

this way cannot be larger than the corresponding bandwidth (see, for instance, Sloan and

Randolph, 1983).

Because the indirect heuristics initially solve the BP, we include in our literature review

some of the heuristics proposed for this problem.

The most well-known heuristic for BP is due to Cuthill and McKee (1969). They use

a graph model to represent a mesh in which the mesh variables are in one-to-one corre-

spondence with the graph nodes. This model is sometimes called the node connectivity

graph. A greedy strategy based on the node degrees is then used to generate the variable

ordering.

200

Empirical observations of George (1971) originated in a new version of the heuristic

of Cuthill and McKee. In this version, an additional step is executed at the end of the

original algorithm that simply reverses the element ordering. It is reported that this often

produces better orderings than the original Cuthill-McKee algorithm. This heuristic is

known in the literature as the Reverse Cuthill-McKee algorithm.

Some shortcomings of the Cuthill-McKee algorithm for the BP have been pointed out

in Gibbs et al. (1976). There another greedy heuristic is proposed that uses more involved

graph concepts. The results reported show that the solutions are comparable in quality

to the ones obtained with the Reverse Cuthill-McKee algorithm. However, the CPU

times reported indicate that the algorithm of Gibbs et al. runs faster than the Reverse

Cuthill-McKee algorithm.

Examples of indirect heuristics for FRP are found in Razzaque (1980), Akin and Purdue

(1976) and Sloan and Randolph (1983).

Direct heuristics do not reorder the variables of the mesh and, therefore, do not have to

solve the BP. They work directly with the element labels but the main strategy remains

of greedy type. Some of these heuristics, as in Pina (1981), use the same graph model

described before. Others have a different graph model where the mesh elements are in

one-to-one correspondence with the graph nodes. This model is sometimes called the

element connectivity graph and has been used in Bykat (1977) and in Fenves and Law

(1983).

Another direct heuristic commonly used in practice is the Reverse Cuthill-McKee al-

gorithm. Although, this algorithm has been originally developed for the BP, it can be

applied to the element connectivity graph and, in this case, the algorithm generates an

element ordering which, hopefully, gives a good solution to the FRP. This heuristic has

been used in our computational experiments.

201

The literature on heuristics for the FRP and the BP is extensive. We do not go further

in there, but we point out that the existing heuristics are essentially based upon greedy

strategies.

202

5.3 Standard and Modified Frontwidth Problems

In the previous section we have seen that, to solve the linear system IKa = q efficiently,

the frontal method requires that the elements of the mesh are ordered appropriately. Such

an ordering can be obtained by solving the frontwidth reduction problem (FRP) which

is formally defined in this section. We propose to tackle a modified frontwidth problem

(FRP), which is related, though different, from the standard problem. As we shall see

below, this modified problem leads itself more readily to a solution by means of graph

theoretic concepts. The numerical results of Section 5.7 show that, in practice, a good

ordering for the modified problem is also a good ordering for the original problem.

We consider general, structured or unstructured finite element meshes in two or three

dimensions. For two-dimensional meshes, the elements have the shape of a rectangle or

of a triangle and the nodes are located at the corners and at the midsides of the elements

(and also in the center of gravity for rectangular elements). On the other hand, three-

dimensional meshes are composed of elements with the shape of a tetrahedron with the

nodes only at their corners. We shall assume for the sake of illustration that a single nodal

value (variable) is associated to each node of the mesh, in other words, we are interested

in computing the value of a single function φ at each node (for example, φ may represent

the temperature).

Throughout the remainder of this chapter, the terminology vertex is used to designate

a node of a graph. Our intention is to avoid any confusion between the nodes of a graph

and the nodes of a mesh.

Given an ordering of the elements of a mesh, the standard front Fi and the modified

front Hi are defined as follows:

203

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(a) (b) f
4
= 10 (c) h

4
= 2

Initialization: F ′0 ← φ. Set i← 1

Step 1: Fi ← F ′i−1 ∪ {all nodes of element i}.
Hi ← { sides common to one element with label ≤ i and

one with label > i}.
Set fi ← |Fi| and hi ← |Hi|.

Step 2: F ′i ← Fi \ {nodes only belonging to elements 1, . . . , i}.
Set i← i+ 1.

These definitions are illustrated in Figure 5.2, where we present a simple mesh composed

of 8-node rectangular elements. With the ordering shown, f4 = 10 while h4 = 2.

Figure 5.2:

The standard frontwidth problem FRP is to find an ordering of the elements minimizing

f = maxi fi. The modified frontwidth problem FRP tackled below is to find an ordering

minimizing h = maxi hi.

In order to tackle the modified frontwidth problem, we model the problem as follows.

Let us construct a graph G = (V,E) in which each vertex i ∈ V corresponds to an

element of the mesh, and two vertices are joined by an edge e = (i, j) ∈ E if the elements

204

v 1

v2

v3

v7

v8
v9

v4 v5

v 6
v6

v 1

v 3
v7

v8

v9

v5

v2

v4

v6

MESH GRAPH G=(V,E)

corresponding to vertices i and j have a side in common. Figure 5.3 illustrates this

definition for a simple mesh containing two holes. The number of elements is given by

n = |V |.

Figure 5.3:

For three dimensional meshes the approach is similar. Two vertices are joined by an

edge in G if they share a common two dimensional face. Meshes with elements of mixed

dimensions are not considered in this thesis. However the same graph model could be

used with the addition of edge weights which values depend on the dimension of the two

adjacent elements and of their common face. Such a graphical model has been used earlier

for element orderings (see Fenves and Law, 1983).

It is now possible to describe the modified frontwidth problem in graphical terms.

Given an ordering π of the vertices of V , let Ui = {j ∈ V : π(j) ≤ i}. We can now write

hi = |δ(Ui)| and h = minπ maxi |δ(Ui)|. We have thus formulated the modified frontwidth

problem as the cutwidth problem on graph G.

Therefore, solving FRP for a given mesh M is equivalent to solving the cutwidth

problem in the corresponding graph G, since any optimal vertex ordering in G immediately

translates into an optimal element ordering in M . However, we do not claim that an

optimal solution to FRP necessarily translates into an optimal solution to FRP. Indeed,

it can be far from optimal as it is illustrated by the example of Figure 5.4. The ordering

205

1

2

3

4

5

6

7 1 2

3 4

5 6

7

(a) Mesh (b) Front widt h (FRP) = 2

FRP) = 11Frontwidt h (

(c) Frontwidt h (F RP) = 3

(F RP) = 9Frontwidt h

indicated in Figure 5.4(b) is optimal for FRP , while the one of Figure 5.4(c) is optimal for

FRP. But, the (standard) frontwidth obtained with the optimal ordering of FRP is 22%

larger than the optimal value of the frontwidth for FRP. Despite this negative example,

the numerical results of Section 5.7 show that our alternative model is effective in practice.

Figure 5.4:

For what comes next, it is useful to think of an equipartition (U, V \ U) of a graph

G = (V,E) as a bicoloring of the vertices in V , i.e., all vertices in U have the same color

and all vertices not in U have also the same color but different from that of vertices in U .

206

l

5.4 A Divide-and-Conquer Heuristic Algorithm for FRP

In one way or another, the existing heuristics for FRP are based on a greedy strategy

in which the elements of the mesh are ordered sequentially and the next element chosen

at each iteration is the one that causes the smallest increase in the current frontwidth.

However, this strategy can produce solutions of very poor quality. To see this, consider

the example shown in Figure 5.5 and suppose that ` is the number of square elements in

the top row.

Figure 5.5:

If we apply the Cuthill-McKee (1969) algorithm to this mesh, the resulting ordering has

both standard and modified frontwidths of size O(`) since the heuristic labels all triangular

elements before it starts labelling the square elements. It is easy to see that an optimal

ordering has standard frontwidth of size 6 and modified frontwidth of size 4.

From this example, we see that greedy (local) heuristics cannot always work well in

solving FRP (FRP) because the modified (standard) frontwidth clearly depends on the

global structure of the graph (mesh).

This is the first observation that motivates the approach we use in the heuristic algo-

rithm for FRP that is described in this section.

207

The second observation comes from an attempt to find a good lower bound on the value

h of the optimal (modified) frontwidth based upon a more global view of the graph. Note

that h = minπ maxi |δ(Ui)| ≥ maxi minπ |δ(Ui)| ≥ minπ |δ(Ui)| for all i = 1, . . . , n. Taking

the view that i = bn2 c is a priori a choice that will give a strong bound, we have that

h ≥ minπ |δ(Ubn
2
c)|. However finding minπ |δ(Ubn

2
c)| is the problem of choosing a partition

π such that the (bn2 c)th cutset is minimized, and this is nothing but the Equipartition

problem with unit edge weights. Thus a solution to the Equipartition problem gives us

sets Vb = Ubn
2
c and Vg = V \ Ubn

2
c such that the vertices (elements) of Vb are numbered

1, . . . , bn2 c and those of Vg are numbered bn2 c + 1, . . . , n. Now it is natural to again use

equipartition to divide up Vb into two sets (Vb)b and (Vb)g so that the vertices of (Vb)b are

numbered 1, . . . , bn4 c and those of (Vb)g are numbered bn4 c+ 1, . . . , bn2 c,etc.

Thus we arrive naturally at the idea of a divide-and-conquer approach based on solving

n − 1 equipartition subproblems. The description of the algorithm is given below, while

Figures 5.6 and 5.7 give illustrative examples.

Let us assume that, in a typical subproblem, a given set of p unordered vertices of V has

been assigned the first p positions in the ordering, and a different set of n− q unordered

vertices has been assigned the last n−q positions. For this subproblem, we first construct

a new graph G′ = (V ′, E′) from G = (V,E) as follows.

If p > 0, V ′ contains a black pseudovertex b representing the first set of p vertices, and

if q < n, V ′ contains a grey pseudovertex g representing the latter set of n− q vertices. In

addition V ′contains the q− p unassigned (white) vertices of V . The edges in E′ and their

weights are defined as follows. Given a vertex j ∈ V ′\{b, g}, let Jb (respectively Jg) be the

subset of vertices represented by b (respectively g) adjacent to j inG. When Jb (repectively

Jg) is nonempty, the edge (b, j) ((g, j)) is in E with weight wbj = |Jb| (wgj = |Jg|). Let

E(b, g) ⊂ E be the set of edges going from vertices represented by b to vertices represented

by g. For E(b, g) nonempty, (b, g) is in E′ and its weight wbg = |E(b, g)|. The remaining

edges of E′ are the edges (i, j) ∈ E, where i and j ∈ V ′ \ {b, g}, and their weights are set

208

to one.

Once G′ = (V ′, E′) has been constructed, the equipartition subproblem finds a partition

(U ′, V ′ \ U ′), with b ∈ U ′ and g ∈ V ′ \ U ′, of the q − p + 2 vertices of G′ in which the

white vertices are distributed in a balanced way. The outcome is a decision that the white

vertices of U ′ will all precede the white vertices of V ′ \ U ′ in the final ordering.

The procedure then continues with the creation of two new subproblems. The first takes

b as the new black pseudovertex, V ′ \U ′ as the new grey pseudovertex and the vertices of

U ′ \ {b} are white. The second takes U ′ as the new black pseudovertex, g as the new grey

pseudovertex and the vertices of V ′ \ (U ′ ∪ {g}) are white.

We start the algorithm with G′ ← G, and all vertices colored white. The equipartition

procedure for a given subproblem terminates when the corresponding U ′ (or V ′ \U ′) con-

tains a single white vertex. The position of that white vertex is then uniquely determined:

it is assigned the first position after that of the black vertices (or the last position prior

to that of the grey vertices).

Figure 5.6 illustrates the above operations for a particular subproblem. Figure 5.6(a)

shows the graph of Figure 5.3 and the associated graph G′ = (V ′, E′) for the present

subproblem. Here, the unordered black vertices have been assigned positions {1, ..., 4}
from previous steps, while the white vertices have no assigned positions as yet. The

optimal equipartition of G′ = (V ′, E′) leads to U ′ = {b, v6, v9} and cutset δ(U ′) =

{(b, v5), (v9, v5), (v6, v7)}. It follows that, in the final ordering, vertices {v6, v9} will oc-

cupy positions {5, 6}, while {v5, v7, v8} are assigned positions {7, 8, 9}. Note, however,

that the actual internal ordering remains to be determined for both sets {v6, v9} and

{v5, v7, v8}. The two new subproblems originating from that of Figure 5.6(a) are shown in

Figures 5.6(b)-(c). In the first subproblem, vertices {v5, v7, v8} form the grey pseudover-

tex, and only the white nodes v6, v9 are unassigned. In the second subproblem, vertices

{v1, . . . , v4, v6, v9} form the black pseudovertex. Note that the edge (b, v5) has a weight of

2.

209

In Figure 5.7, we apply the complete DC algorithm to the mesh of Figure 5.3. Assuming

4-node quadrilateral elements and one scalar unkown per node, the resulting ordering

yields a frontwidth f = 6. This is a 33% improvement relative to the initial ordering of

Figure 5.3, for which f = 9.

210

Figure 5.7:

211

The use of equipartition of the element connectivity graph is not a novelty in the finite

element field. Williams (1990) has studied the Load Balancing problem for parallel mesh

computations. In the Load Balancing problem, one has to partition the vertices of the

graph into 2p subsets such as to minimize a given function g(.), where 2p is the number

of processors available. Each of the subsets in the partition corresponds to the portion of

the mesh that has to be treated by one of the processors. The objective function g(.) is

composed of two terms. The first penalizes unbalanced partitions in an attempt to reach

a uniformly distributed workload among the processors. The second term favours the

partitions that have few edges cut, since each of these edges somehow express the needs

for communication between two processors.

Williams proposed two methods that recursively apply equipartition to obtain the de-

sired 2p subsets. The first called orthogonal bissection is a simple method which cuts the

graph in two parts by a vertical line, then cut each half in two by an horizontal line, each

quarter in two by a vertical line and so on. This method is suitable for planar meshes and

the choice of the lines location depends on the coordinates of the elements. The second

method is more complicated and the successive equipartitions problems are solved using

the eigenvectors of a matrix related to the adjacency matrix of the graph.

VanderStraeten (1992) also considered the load balancing problem. In his work, which

finds some of its roots in this thesis, he used nondeterministic combinatorial optimization

techniques such as simulated annealing and stochastic evolution to partition the mesh into

2p parts.

We now describe three different heuristics used to solve the graph equipartition problem.

212

5.5 Heuristics for Minimum Weight Equipartition

The three heuristics we have used for the equipartition problems in the Divide-and-

Conquer algorithm are all neighborhood search techniques.

The first, due to Kernighan and Lin (1970), is deterministic. The other two, Simulated

Annealing and Stochastic Evolution, are stochastic. The first two heuristics are well-

known and a recent study of Johnson et al. (1989) contains extensive results comparing

the two algorithms for the equipartition problem. Our implementation is thus largely

based on their report, though the class of graphs we work on differs considerably. The

third approach, Stochastic Evolution, is more recent. The basic reference is Saab and Rao

(1990). Below we briefly describe the three heuristics and discuss the main implementation

issues. Although the heuristics are actually applied to the G′ graphs, we describe them

for a general graph G = (V,E).

We wish to partition the vertex set V into two sets of, say, blue and red vertices. Since

a partition is fully characterized by the set B of blue vertices, we use B to denote the

partition.

Associated with a given partition B is a set of neighbouring partitions N(B) and a cost

f(B). The way the neighborhood B is defined depends on the method chosen to perturb

B to obtain a new partition. The goal is to find a partition B? that minimizes the cost

function f .

All three heuristics used here contain a major loop, called a pass, consisting of a specified

number of iterations. At the beginning of each pass, an initial partition B is given. In

each iteration of the pass, one starts with the current partition B′ (which is equal to

B in the first iteration) and chooses a neighbour B̃. Then, depending on the value of

f(B′) − f(B̃), B̃ is either accepted, in which case the iteration terminates with B′ = B̃,

or B̃ is rejected and B′ remains unchanged. The best partition found by the algorithm

213

is updated at the end of the each iteration or after the pass. The actual definition of the

neighborhood depends on the chosen heuristics.

5.5.1 Kernighan and Lin (KL)

The neighborhood N(B) is the set of partitions obtainable from B by simultaneously

making one blue vertex red and vice-versa. Thus, taking the initial solution as an equipar-

tition ensures that all succeeding solutions are equipartitions. The objective function is

f(B) =
∑
e∈δ(B)we.

A pass consists of n
2 iterations, where n = |V |. The candidate partition B̃ is chosen as

the best possible neighbour of the current partition B′, subject to the additional constraint

that no vertex is moved that has already been transferred during the pass. The candidate is

always accepted, i.e., a pass iteration terminates with B′ = B̃. The pass finishes by taking

the best of the n
2 equipartitions that have been generated. If the chosen equipartition

improves the objective function, it is taken as the initial solution for a new pass; otherwise

the algorithm terminates.

Given the fact that in our graphs the vertex degree is at most 4, it is possible, using

appropriate data structures in the way suggested by Fiduccia and Matheyses (1982), to

implement the algorithm so that a pass takes O(n) operations. As reported by Johnson

et al. (1989), 3 to 5 passes are typically required for the algorithm to terminate.

The basic steps of the algorithm are given below.

Kernighan-Lin Heuristic:

Step 0: (initializations)

Generate an initial equipartition B and set:

B∗ ← B (B∗ is the best solution available)

Step 1: (Pass initializations)

improvement← FALSE;

214

B′ ← B∗ (B′ is the current partition)

Step 2: (Pass)

For t = 1 to n
2 do

{ Choose B̃ in the neighborhood of B′ }
· Find B̃ = B′ ∪ {vt} \ {ut}
minimizing the value of f(.) in N(B′) restricted

to ut ∈ B′ \ {u1, . . . , ut−1} and

to vt ∈ (V \B′) \ {v1, . . . , vt−1};
{ Acceptance of B̃: accepted with probability one }
· B′ ← B̃

{ Update of the best solution found }
· If f(B∗) > f(B′) then

B∗ ← B′;

improvement← TRUE;

end if

end for

Step 3: (Stopping criterion)

If improvement=TRUE then

go to Step 1;

return B∗;

stop.

end if

In the next two stochastic heuristics, a slightly different neighborhood is taken. Here

N(B) is the set of partitions obtained from B by changing the color of a single vertex.

The result is that B is not always an equipartition. To handle this, the objective function

is taken to be f(B) =
∑
e∈δ(B)we+α(2|B|−n)2 where the second term is used to penalize

unbalanced partitions and α is a parameter to be chosen. If either of the two algorithms

given below terminates with a partition that is not an equipartition, we convert it into

215

one using a greedy algorithm.

5.5.2 Simulated Annealing (SA)

After each pass, a parameter T known as the temperature is decreased. The pass

consists of a given number L of the following iterations. Given the current partition B′,

randomly choose one of the n neighbouring partitions B̃ ∈ N(B′). If the objective function

decreases, i.e., f(B̃) < f(B′), replace B′ by B̃. However, if f(B̃) ≥ f(B′), replace B′ by

B̃ with probability e−
f(B̃)−f(B′)

T , and otherwise B′ remains unchanged.

As T decreases from pass to pass, the probability of accepting a move to a worse

partition is higher early in the algorithm and eventually decreases almost to zero. Thus,

in some sense, simulated annealing first behaves somewhat randomly, but finishes with

behaviour close to that of a deterministic descent heuristic.

The algorithm involves four parameters: T0 (the initial temperature), L (the number of

iterations during each pass), r (the cooling parameter, with 0 < r < 1, that reduces T to

rT after each pass) and α (the penalty used in the objective function). In the experiments

described below we took T0 = 0.9, and the values suggested by Johnson et al. (1989) for

the other parameters: L = 16n, r = 0.9 and α = .05. Finally, the algorithm was stopped

after five successive passes in which the number of accepted changes was below 2% (the

algorithm is then said to be frozen).

Our implementation also included two other modifications suggested in Johnson et al.

(1989). To ensure that some vertex was not chosen L times during a pass, we imposed

that each vertex was chosen randomly and exactly once in the first n iterations. For the

remaining (L−n) iterations, the vertex was chosen as above. In addition, we implemented

a table look-up scheme for the costly calculation of the exponential e−
f(B̃)−f(B′)

T . For an

overview of simulated annealing, see Laarhoven and Aarts (1987).

The steps in the SA algorithm for equipartition are the following:

216

Simulated Annealing Heuristic:

Step 0: (initializations)

Generate an initial equipartition B and set:

B∗ ← B (B∗ is the best solution available)

B′ ← B (B′ is the current partition)

T ← T0 (initial temperature)

Step 1: (Pass)

For t = 1 to L do

{ Choose B̃ in the neighborhood of B′ }
· Pick u ∈ V randomly.

If u ∈ B′ then

B̃ ← B′ ∪ {u}
else B̃ ← B′ \ {u}
{ Acceptance of B̃ }
· B′ ← B̃ with probability given by:

min{1, e−
f(B̃)−f(B′)

T };
{ Update of the best solution found }
· If f(B∗) > f(B′) then B∗ ← B′;

end for

Step 2: (Parameters update)

· T ← ρT ;

update frozen { see text };
Step 3: (Stopping criterion)

If frozen=FALSE then go to step 1;

else If (B∗, V \B∗) is not an equipartition

then update (B∗, V \B∗) using a greedy

procedure to restore feasibility;

Return (B∗, V \B∗) and stop.

end if.

217

5.5.3 Stochastic Evolution (SE)

At each pass, we update an acceptance parameter p and a parameter ρ measuring

improvements of the solution. At the beginning, we define a randomly chosen sequence of

all the vertices {v1, v2, . . . , vn}. A pass consists of n iterations. The i-th iteration starts

with a partition B′ (for the first iteration of the first pass B′ is equal to a given partition

B). We then consider the neighbour B̃ obtained from B′ by changing the color of vi.

When f(B̃) ≤ f(B′), B′ is replaced by B̃ with probability one. If the candidate partition

B̃ is worse then B′, we replace B′ by B̃ with probability max{0, 1− f(B̃)−f(B′)
p }.

Otherwise, B′ remains unchanged for the next iteration. The equipartion coming out

from the n-th iteration is the starting solution for the next pass. If this solution is the

best found so far, ρ is decreased by a parameter R otherwise it is increased by one unity.

The parameter R can be seen as a credit that is given to the maximum number of

allowed pass iterations without finding any improvement. At the end of a pass, if no

improvement was found with respect to the solution with which the pass has been initiated,

the acceptance parameter p is increased to g(p) otherwise it is set back to the base (small)

value p0.

Note that when p increases, the probability of accepting a worse partition increases.

Thus, in contrast to simulated annealing, stochastic evolution will start off by only taking

descent steps, and only when no improvement is found will increase the probability of

accepting worse partitions so as to escape from a local optimum. Once an improvement

is found, it immediately switches back to deterministic descent mode.

The algorithm involves the parameters p0, R, α and an increasing function g(p). The al-

gorithm terminates when ρ = R, so the number of consecutive passes without improvement

is at least R. The values used in the implementation were: p0 = 0.2, R = max{20, n15} for

2D meshes and R = max{20, 4(dlog(n)e+1)} for 3D meshes, α = 0.05 and g(p) = 3
4(p+1).

218

With p0 and g(p) as above, p never exceeds 3 and g(p) is indeed an increasing function.

This can be seen by writing p with the recurrence formula (defined on g(p)) given by:

pi =
3
4

i

p0 + 3(1− 3
4

i

) = (
3
4
)pi−1 +

3
4

Thus, since the maximum degree of a vertex is 4 for the graphs treated here, the choices

for the value of p0 and the function g(.) will cause the rejection of all moves producing

an increase of at least 3 unities in f(.) and moves increasing f(.) of at most 3 unities but

leading to highly unbalanced partitions.

The basic steps of the SE procedure are presented below.

Stochastic evolution Heuristic:

Step 0: (initializations)

Generate an initial equipartition B and set:

B∗ ← B (B∗ is the best solution available)

B′ ← B (B′ is the current partition)

p← p0 (acceptance parameter is set to a small value)

ρ← 1 (is the counter of pass iterations)

Choose randomly a sequence S = {v1, . . . , vn} of vertices in V

Step 1: (Pass initialization)

f ′ ← f(B′);

Step 2: (Pass)

For t = 1 to nL do

{ Choose B̃ in the neighborhood of B′ }
· If vi /∈ B′ then

B̃ ← B′ ∪ {vi}
else B̃ ← B′ \ {vi}
{ Acceptance of B̃ }
· B′ ← B̃ with probability given by:

min{1,max{0, 1− f(B̃)−f(B′)
p }};

219

end for

Step 3: { Update of the best solution found }
If f(B′) < f(B∗)

then B∗ ← B′ and ρ← ρ−R
else ρ← ρ− 1 ;

Step 4: (Acceptance parameters update)

If f ′ < f(B′)

then p← g(p) { stochastic behavior is promoted }
else p← p0 { deterministic behavior is promoted } ;

Step 5: (Stopping criterion)

If ρ < R then go to step 1;

else

If (B∗, V \B∗) is not an equipartition

then update (B∗, V \B∗) using a greedy

procedure to restore feasibility;

Return (B∗, V \B∗) and stop.

end if.

220

5.6 Initial Solution for Equipartition

As mentioned above, all three heuristics need an initial partition for each of the equipar-

tition subproblems. Our first approach, denoted ICM , was to make use of the reverse

Cuthill-McKee ordering. For each equipartition problem with n′ vertices in the graph G′,

we take B to be the n′
2 vertices that appear first in the CM ordering.

Inspection of the resulting initial solutions led us to devise an alternative procedure,

denoted ISG. In order to describe it, we first introduce some standard graph theoretic

terminology.

Let G = (V,E) be a connected graph. The distance between two vertices in G is the

size of the shortest path connecting them. A diameter of G is a shortest path connecting

two vertices of maximal distance in G. A pseudo diameter is a path with size close to that

of the diameter.

The ISG starting heuristic is motivated by the idea that during the DC steps, the

partitions of the G′ graphs should, if possible, form connected subgraphs. This is often

not the case for the CM ordering.

The idea of the algorithm is simple. For a graph G′ = (V ′, E′), a pseudo diameter with

end vertices d1 and d2 is calculated using an algorithm from Gibbs, Poole and Stockmeyer

(1976). If pseudovertices b and g exist, they are used in place of d1 and d2. Starting from

the cut δ(U1) with U1 = {d1}, we successively add vertices to U1 where, at each step, the

vertex v to be added is chosen among the closest available vertices to d1 so as to maximize

the decrease in the cut size δ(U1 ∪ {v})− δ(U1). We stop when U1 forms an equipartition

of V ′. The same procedure is then repeated starting from d2, and the better of the two

partitions is chosen as initial solution.

221

5.7 Computational Results and Discussion

A computational study was conducted to test whether a global approach as exemplified

by the divide-and-conquer DC heuristic could produce significantly smaller frontwidths

than the reverse Cuthill-McKee (CM) approach. Two associated questions that arise

concern (i) the effectiveness of using the ordering obtained by minimizing the modified

frontwidth FRP to calculate the standard frontwidth FRP , and (ii) the relative effective-

ness with respect to solution quality and running time of the six different variants of the

DC algorithm, obtained by combining the three different equipartition heuristics KL,SE

and SA, and the two initial solution strategies ICM and ISG.

Each of the six variants is denoted here by an ordered pair (α, β) where α is the equipar-

tition heuristic and β is the initial solution strategy.

The reverse Cuthill-McKee algorithm has been programmed by A. Couniot and is based

upon the implementation given in George and Liu (1983).

The tests were carried out on a set of two and three dimensional meshes. The elements

of the 2D meshes consisted of six-node triangles and nine-node quadrilaterals, and those

of the 3D meshes were four-node tetrahedra. One scalar nodal value was assumed per

node. The name of each mesh indicates its dimension and number of elements. Meshes

2D274a, 2D562, 2D608, 2D666, 2D1699, 2D2175 and 3D3689 are shown in the Figure

5.8. Mesh 2D274b has the same structure as mesh 2D274a but the order in which the

elements are stored in the input file is different. In mesh 2D274a, the elements are in

the CM ordering, while in 2D274b the element ordering was optimized by hand. Mesh

2D210 discretizes fluid flow through a 4:1 abrupt contraction. Mesh 2D460 is a regular T-

shape. Mesh 2D805 discretizes fluid flow between a single triangular cam and a cylindrical

barrel. Mesh 2D918 is a minor modification of mesh 2D666. Meshes 2D664 and 2D2169

are refinements of mesh 2D274a, while mesh 3D973 was refined to obtain meshes 3D3689

(shown in Figure 5.8(g)) and 3D14392.

222

Figure 5.8:

223

Figure 5.8:

224

Results are shown in Table 5.1a-b, respectively for 2D and 3D meshes. Here, we give the

size of the meshes, the frontwidth FRP obtained with the reverse Cuthill-McKee heuristic

(except for meshes 2D274b and 2D918 for which the orderings have been improved ”by

hand”), the best frontwidth FRP obtained from the six variants of the Divide-and-Conquer

heuristic, and the percentage decrease (if any) relative to the CM solution. We see that

significant improvements of between 20% and 40% are obtained for about 3/4 of the

meshes. The more than 40% improvement levels obtained with the complex 3D meshes

are quite remarkable.

Below we discuss the results in more detail. First, we consider the two-dimensional

meshes, and the use of FRP to approximate FRP . In Table 5.2, we compare the values

of the standard frontwith FRP and the modified frontwidth FRP obtained with CM and

the three DC heuristics (using ICM to obtain the initial equipartitions).

We observe that the percentage reductions of FRP and FRP are close for each variant

of the DC algorithm. Our use of the modified frontwidth to derive an ordering of the

elements thus appears justified.

225

.

226

Let us now consider whether using the starting procedure ISG developed in Section 5.6

produces better results than the initial ordering ICM . We show in Table 5.3 the values

of FRP and the percentage reductions of the six DC variants. It appears that whatever

the equipartition heuristic used, neither ICM nor ISG dominates the other.

Table 5.3 also allows us to compare the equipartition heuristics KL, SA or SE. It ap-

pears that SE produces better solutions than SA, which in turn produces better solutions

than KL. Note that Table 5.1 was constructed from Table 5.3 by choosing the best of the

six results for each mesh.

A comparison of the DC heuristics should include considerations on CPU time and

robustness. In Table 5.4, we show typical timings as observed on a Data General Aviion

Server. The actual absolute importance of these timings can only be considered relative to

the overall gains obtained from a reduction in frontwidth. The latter depend on the type

of finite element problem (e.g. linear steady, nonlinear steady, transient) that one wishes

to solve with a particular mesh. It is clear, however, that the DC heuristic using KL is

an order of magnitude faster than the others. Also, DC using SE is generally faster than

DC using SA.

As SA and SE are stochastic algorithms, we ran the corresponding heuristics ten times

on the two problems 2D562 and 2D664 in order to assess their robustness. For problem

2D562, the values of FRP obtained with SA varied in the range [35, 49] with mean 40.1,

whereas with SE the range was [35, 43] with mean 35.8. The corresponding values for

2D664 were range [20, 25] and mean 23.4 for SA, and [20, 24] with mean 21.3 for SE. The

CPU times never varied by more than about 20%. Thus, if anything, SE appears to be

somewhat better, faster and more stable than SA.

227

.

228

Finally, we present the results obtained for three medium-to-large 3D meshes. Here

again the use of the modified frontwidth FRP appears to be justified by the results. In

Table 5.5 we present the values of the standard frontwidths obtained with CM and with

the six variants of the DC heuristic.

The CPU times for KL varied between 2 and 90 seconds, while for SE and SA they

varied between 0.5 and 40 minutes. The improvements with all six DC heuristics are

significant. We need, however, a larger mesh sample to distinguish between the different

variants using SE and SA.

In conclusion, the various DC heuristics proposed in this thesis produce significantly

smaller frontwidths than the reverse Cuthill-McKee algorithm for a variety of unstructured

2D and 3D meshes. Our results indicate that if one wants an ordering rapidly, one should

use the two DC variants (KL, ICM), (KL, ISG) based on the Kernighan-Lin algorithm.

On the other hand, if solution quality is of primary concern, one should apply the two DC

variants (SE, ICM), (SE, ISG) based on Stochastic Evolution. The results also suggest

that refinement of a mesh does not lead to deterioration in the quality of theDC heuristics

(e.g., meshes 2D274a, 2D664 and 2D2169 are successive refinements of one another; the

same comment holds for the 3D meshes used here).

229

.

230

To verify that important savings in CPU time are obtained in the frontal method with a

good element ordering, the following test has been carried out (Zone, 1993). Mesh 2D2169

has been used to discretize the flow of a polymeric fluid. This mesh has 47862 nodal

variables and the (standard) frontwidths found by the Reverse Cuthill-McKee algorithm

and the heuristic (KL, ICM) are 859 and 578, respectively. The CPU time necessary to

solve this problem by Finite Elements on a SG IRIS Workstation was 19144 seconds using

the Reverse Cuthill McKee ordering and 8028 seconds using the (KL, ICM) ordering.

Therefore, the problem has been solved 2.38 times faster with the ordering produced by

our heuristic. This result is close to the theoretical result that the CPU time is proportional

to the square of the frontwidth since(
859
578

)2

= 2.21 ≈ 19144
8028

= 2.38

231

v6

v5

v7

v8

v9

black: assigned to positions 1-4.
grey : no verti ces assigned

v5

v6

v9

v8

v7

U' V'\ U'

b

Out come:
v6,v9 i n posi t i ons 5,6

v5,v7,v8 i n posi t i ons 7- 9

(a)

SUBPROBLEM 1
Bl ack: assi gned t o posi ti ons 1- 4
Gr ey: assi gned to posi t i ons 7- 9

(b)
v9

v6

b g

SUBPROBLEM 2
Black: assi gned t o posi t i ons 1- 6
Grey: no ver t ic es assi gned

(c)
b

v5

v7

v8

2

Figure 5.6:

232

6. Conclusion

In this thesis we have studied three combinatorial optimization problems defined on

graphs: the equipartition problem, the clustering or graph partitioning problem with

capacity constraints and the cutwidth problem.

To tackle the equipartition problem we have chosen an exact approach based upon a cut-

ting plane algorithm. Thus, we have investigated the facial structure of the equipartition

polytope. We have introduced new classes of facet defining inequalities for this polytope.

Two of them, namely the classes of PBC and suspended tree inequalities, generalize the

cycle inequalities given in Conforti et al. (1990). We have found three other inequalities

that define facets whose support graphs are composed of two connected components: a

suspended tree and a complete odd subgraph on 3, 5 and 7 nodes, respectively. The com-

putation of the coefficients of the variables in these inequalities is well defined for edges in

the suspended tree component, but is more involved for edges in the second component.

However, this suggests that the class of suspended tree inequalities can be further enlarged

to a class of facet defining inequalities with supports given by two connected components

as described above. We have shown how to transform all these inequalities to generate

new classes of facet defining inequalities for the cut polytope.

We also present some results that suggest that the classes of PBC and suspended tree

inequalities can probably be viewed as subclasses of a larger class of inequalities. We

could not completely determine the necessary and sufficient conditions for an inequality

in this large class to be valid for the equipartition polytope. But, since we have been

able to find examples of such inequalities in which they define facets of the polytope, we

believe that further investigations in this direction could be useful for better describing

the equipartition polytope.

The exact approach based on cutting planes is taken again to tackle three different

versions of the graph partitioning problem we considered. These problems are: the single

232

cluster problem, the graph partitioning problem with cardinality constraints and the graph

partitioning problem with capacity constraints.

For the single cluster polytope, we generalize the class of tree inequalities given in

Johnson et al. (1991). For this, we use arguments very similar to those that allowed us

to generalize cycles with PBCs in the equipartition case.

For the graph partitioning problem with cardinality capacity constraints, we consider

the case of equal cluster capacities. We give results on the dimension of the polytope and

on facet defining inequalities. The arguments given in the equipartition case are repeated

here to prove that inequalities with supports given by PBC, cycles and suspended trees

define facets of the polytope. In each case the nodes of the supports of the inequalities

form a cover (or some extension of a cover) for a single cluster. We have studied another

inequality whose support is a cycle that covers multiple clusters. A procedure is given to

strengthen this inequality which explores the chords of the cycle.

The third polytope we have studied is that of the graph partitioning problem where

the cluster capacity constraints are given by knapsack constraints. Again, the clusters all

have equal capacities. Valid inequalities are given whose supports derive from those of the

inequalities introduced for the cardinality case. Another inequality has been presented,

called the knapsack tree inequality, which is generated from valid inequalities for the

knapsack polytope defined by the cluster capacity constraints.

The strength of the inequalities introduced for the equipartition and the graph parti-

tioning polytopes has been tested computationally. For this we have designed and imple-

mented heuristic separation routines for three classes of inequalities: the PBC, the cycle

and the tree inequalities. The separation routine for PBC inequalities is able to identify

violated inequalities only in a subclass of the entire class of PBC inequalities. These

routines have been added to a branch-and-cut code called CLOP.

233

Three classes of problems have been used in our tests: mesh problems, compiler design

problems and VLSI design problems. The mesh problems come from ordering and decom-

position problems of Finite Elements meshes. The sample is composed of 23 instances (6

mesh, 11 compiler design and 6 VLSI design problems).

For the mesh and specially for the VLSI design problems, the sizes of the instances on

which we have run the code are, up to now, of very small size compared to the instances

arising in practice. The largest problems we have solved in each class are: (i) an equipar-

tition problem on a graph with 148 nodes and 265 edges in the mesh class; (ii) a graph

partitioning problem on a graph with 47 nodes and 99 edges (8 clusters) in the compiler

design class and (iii) a graph partitioning problem on a graph with 43 nodes and 105 edges

(4 clusters) in the VLSI design class.

Although we have been able to solve most of the instances in our sample, the number

of inequalities generated to prove optimality is large and the CPU times are important

considering the small sizes of the instances we have tested. The PBC and knapsack tree

inequalities appeared as the most effective inequalities for tightening the formulation.

The results indicate that, for mesh problems, the PBC inequalities contribute signifi-

cantly to improve the LP relaxations. Since the PBCs are at least 2-connected subgraphs,

the PBC inequalities are difficult to separate in very sparse graphs such as those in the

classes of compiler and VLSI design problems. This could explain why the PBC in-

equalities have not been of much use in solving problems in these two latter classes. The

separation routine that we have implemented for PBCs suffers from two major drawbacks.

The first is that it is too time consuming and the second is that it can only separate a sub-

class of the PBC inequalities. Therefore, it would be interesting to improve the separation

routine so as to overcome these problems.

We have observed that the knapsack tree inequalities are crucial to solve partitioning

problems on very sparse graphs with arbitrary (positive) node weights. However, the

234

number of these inequalities that is usually generated to prove optimality is large. We

know that, in practice, the changes we have introduced to strengthen the knapsack tree

inequalities are sometimes not sufficient to generate a violated inequality that cuts off a

fractional point. Other strengthenings we have discussed in Chapter 3, though expensive

in terms of processing time, should be added to the separation routine for knapsack tree

inequalities.

The results we have obtained by varying the cluster capacities are inconclusive. It

would be interesting to study the case when we have different cluster capacities and to

make more tests for the case when the cluster capacities are equal, but large enough to

allow a great number of feasible solutions.

It is clear from our computational experiments that we are still at a significant dis-

tance away from solving real world instances of graph partitioning problems with our

branch-and-cut code. Several important valid inequalities are still missing and much

more theoretical effort has to be made in finding new strong valid inequalities.

The cutwidth problem has been considered here as a relaxation of the frontwidth re-

duction problem (FRP) of Finite Elements meshes. We have shown how to formulate

the FRP as a cutwidth problem and the graphs arising in this model are usually of very

large size. Consequently, the Integer Programming formulation of the problem has a huge

number of variables and this has discouraged us from any attempt to apply the cutting

plane approach to tackle the cutwidth problem.

Thus, we have decided to use a heuristic method based upon a divide-and-conquer strat-

egy in which equipartition subproblems are solved repeatedly. The algorithm resulting

from this strategy is called the DC algorithm. Our goal was to produce better solutions

to the FRP than those produced by the classical greedy algorithms. Different variants

of the DC algorithm have been implemented. Each of these variants is characterised by

the local search algorithm that is used to solve the equipartition subproblems and by the

solution with which the local search starts.

235

Three heuristics have been implemented that solve equipartition problems. The first is

the classical deterministic heuristic of Kernighan and Lin (KL) and the two others, namely

the Simulated Annealing (SA) and Stochastic Evolution (SE) heuristics, are nondetermin-

istic. Two different starting solutions have been tried in our computational experiments.

The first, denoted by ICM, uses directly the ordering generated by the classical Reverse

Cuthill-McKee algorithm, while the second, denoted by ISG, is produced by an algo-

rithm we proposed in Section 5.6. By combining each local search heuristic with each of

the two starting solution algorithms, we have six different variants of the DC algorithm:

(KL,ICM), (KL,ISG), (SA,ICM), (SA,ISG), (SE,ICM) and (SE,ISG).

These variants of the DC algorithm have been tested on a sample composed of 13 two-

dimensional meshes and 3 three-dimensional meshes. The largest of the two-dimensional

meshes had 2175 elements and the largest of the three-dimensional meshes had 14392 ele-

ments. The results obtained with our DC algorithm have been compared to those produced

by the standard Reverse Cuthill-McKee algorithm. Relative improvements in frontwidth

are in the range 25-50% in most cases, which represents a significant 2-4 speedup of the

Finite Element solver phase. Our results indicate that if one wants an ordering rapidly,

one should use the two DC variants (KL,ICM) and (KL,ISG) based on the Kernighan and

Lin heuristic for equipartition. On the other hand, if solution quality is of primary con-

cern, one should apply the two DC variants (SE,ICM) and (SE,ISG) based on Stochastic

Evolution. No conclusive results were obtained that allow us to conclude that one of the

two starting solutions is better than the other.

For a Finite Element problem on a mesh containing 2169 elements and 47682 variables,

we observed a saving of approximately 3 hours out of 5.5 hours in computation on a SG

IRIS Workstation when the (KL,ICM) ordering is used instead of the Reverse Cuthill-

McKee ordering.

The DC algorithm was used here for solving the cutwidth problem on a very special

class of graphs arising from Finite Elements meshes. We have not verified if our algorithm

236

is effective in solving cutwidth problems for more general graphs. For the graphs we have

treated, it was possible to devise routines to generate potentially good starting solutions

that we believe had improved considerably the performance of the local search heuristics.

Another relevant property of these graphs is that the nodes have degrees bounded by a

small constant, and important savings in processing time can be achieved by exploiting

this fact. These are two points to be taken into account if one is considering to apply the

DC algorithm for other classes of graphs.

237

References

K. Aardal (1992). On the Solution of One and Two-Level Capacitated Facility Location

Problem by the Cutting Plane Approach, Doctoral Thesis, Université Catholique de

Louvain, Louvain-la-Neuve, Belgium.

E.H. Aghezzaf (1992). Optimal Constrained Rooted Subtrees and Partitioning Problems

on Tree Graphs, Doctoral Thesis, Université Catholique de Louvain, Louvain-la-

Neuve, Belgium.

J.E. Akin and R.M. Purdue (1976). Element Resequencing for Frontal Solutions, in

The Mathematics of Finite Elements and Applications II MAFELAP 1975, J.R.

Whiteman editor, Academic Press.

G. Andreatta, A. Basso, A. Caumo, and L. Deserti (1989). Un Problema di ”Min-

Cutwidth” Generalizzato e sue Applicazioni ad un FMS, paper presented at Giornate

di Lavoro A.I.R.O., Udine, Italy.

C. Arbib (1988). A Polynomial Algorithm for Line-Graph Partitioning, Information Pro-

cessing Letters 26, 223-230.

F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt (1988). An Application of Combi-

natorial Optimization to Statistical Physics and Circuit Layout Design, Operations

Research 36, 493-513.

F. Barahona, M. Grötschel, and A.R. Mahjoub (1985).Facets of the Bipartite Subgraph

Polytope, Mathematics of Operations Research 10, 340-358.

F. Barahona and E. Maccioni (1982). On the Exact Ground States of Three-Dimensional

Ising Spin Glasses, Journal Phys A15, L611-L615.

238

F. Barahona and A.R. Mahjoub (1986). On the Cut Polytope, Mathematical Program-

ming 36, 157-173.

E.R. Barnes (1982). An Algorithm for Partitioning the nodes of a Graph, SIAM J. Alg.

Disc. Meth. 3(4), 541-550.

J.A. Bondy and U.S.R. Murty (1976). Graph Theory with Applications, Macmillan.

E. Boros and P.L. Hammer (1993). Cut Polytopes, Boolean Quadric Polytopes and Non-

negative Quadratic Pseudo-Boolean Functions, Mathematics of Operations Research

18, 245-253.

T.N. Bui and A. Peck (1992). Partitioning Planar Graphs, SIAM J. Computing 21(2),

203-215.

A. Bykat (1977). A Note on an Element Ordering Scheme, Int. J. Num. Meth. Eng. 11,

194-198.

S. Chopra (1991). The Graph Partition Polytope on Series Parallel and 4-Wheel Free

Graphs, Kellogg Graduate School of Management, Northwestern University, Preprint.

S. Chopra and M.R. Rao (1989a). The Partition Problem I: Formulations, Dimensions

and Basic Facets, Working Paper No. 89-27, Stern School of Business, New York

University.

S. Chopra and M.R. Rao (1989b). The Partition Problem II: Valid Inequalities and

Facets, Working Paper No. 89-26, Stern School of Business, New York University.

S. Chopra and M.R. Rao. Facets of the K-Partition Polytope, Stern School of Business,

New York University, Preprint.

M. Conforti, M. Rao, and A. Sassano (1990a). The Equipartition Polytope I, Mathemat-

ical Programming 49, 49-70.

239

M. Conforti, M. Rao, and A. Sassano (1990b), The Equipartition Polytope II, Mathe-

matical Programming 49, 71-90.

CPLEX Optimization, INC. (1990). Using the CPLEX Linear Optimizer.

H.P. Crowder, E.L. Johnson, and M.W. Padberg (1983). Solving Large-Scale Zero-One

Linear Programming Problems Operations Research 31, 803-834.

E. Cuthill and J. McKee (1969). Reducing Bandwith of Sparse Symmetric Matrices, in

Proceedings of the ACM National Conference, Association of Computer Machinery,

New York, pp. 157-172.

C. De Simone (1990). Lifting facets of the cut polytope, Operations Research Letters 9,

341-344.

C. De Simone, M. Deza, and M. Laurent (1989). Collapsing and Lifting for the Cut Cone,

Report No. 265, IASI-CNR, Roma.

C.C. de Souza, R. Keunings, L.A. Wolsey, and O. Zone (1992). A New Approach to

Minimising the Frontwidth in Finite Element Calculations, CORE Discussion Paper

No. 9255, Université Catholique de Louvain, Louvain-la-Neuve, Belgium. To appear

in Computer Methods in Applied Mechanics and Engineering.

C.C de Souza and M. Laurent (1991). Some New Classes of Facets for the Equicut

Polytope, CORE Discussion Paper No. 9157, Université Catholique de Louvain,

Louvain-la-Neuve, Belgium.

M. Deza, F. Fukuda, and M. Laurent (1989). The Inequicut Cone, Report No.89-04,

GSSM, The University of Tsukuba, Tokyo.

240

M. Deza, V.P. Grishukhin, and M. Laurent (1991). The Symmetries of the Cut Polytope

and Some Relatives, in P. Gritzman and B. Sturmfels, editors, Applied Geometry

And Discrete Mathematics, The Victor Klee Festschrift, volume 4 of DIMACS series

in Discrete Mathematics and Theoretical Computer Science, pp. 205-220.

M. Deza, M. Grötschel, and M. Laurent (1991). Complete Descriptions or Small Multicut

Polytopes, in P. Gritzman and B. Sturmfels, editors, Applied geometry And Discrete

Mathematics, The Victor Klee Festschrift, volume 4 of DIMACS series in Discrete

Mathematics and Theoretical Computer Science, pp. 221- 252.

M. Deza, M. Grötschel, and M. Laurent (1992). Clique Web Facets for Multicut Poly-

topes, Mathematics of Operations Research 17(3).

M. Deza and M. Laurent (1989). The Even and Odd Cut Polytopes, Research Report

B-231, Tokyo Institute of Technology.

M. Deza and M. Laurent (1992a). Facets for the Cut Cone I, Mathematical Programming

56(2), 121-160.

M. Deza and M. Laurent (1992b). Facets for the Cut Cone II, Mathematical Programming

56(2), 161-188.

M. Deza and M. Laurent (1992c). New Results on Facets of the Cut Cone, Journal of

Combinatories 8, 125-142.

M. Deza and M. Laurent (1992d). Applications of Cut Polyedra, Report BS-R9221, Cen-

trum voor Wiskunde en Informatica, Department of Operations Research, Statistics

and System Theory, Amsterdam.

M. Deza, M. Laurent, and S. Poljak (1992). The Cut Cone III: On the Role of Triangle

Facets, Graphs and Combinatories 8, 125-142.

241

D. Dovlev and H. Trickey (1982). Embedding a Tree on a Line, IBM Technical Report

RJ3368, San José, California.

Duff, Erisman, and Reid (1986). Direct Methods for Spare Matrices, Oxford Science

Publications.

J. Falkner, F. Rendl, and H. Wolkowicz (1992). A Computational Study of Graph Parti-

tioning, Report 228, Technische Universität Graz, Austria.

S.J. Fenves and K.H. Law (1983). A Two-Step Approach to Finite Element Ordering,

Int. J. Num. Meth. Eng. 19, 891-911.

T. Feo, O. Goldschmidt, and M. Khellaf (1992). One-half approximation algorithms for

the K-partition problem, Operations Research 40, Supp., No. 1, S-170-S-173.

C. Ferreira (1993). Private communication.

C. Ferreira, A. Martin, and R. Weismantel (1992). CLOP: A Branch-and-Cut Code for

Clustering Optimisation, unpublished manuscript.

C. Ferreira, A. Martin, and R. Weismantel (1993). Private communication.

C.M. Fiduccia and R.M. Mattheyses (1982). A Linear Time Heuristic for Improving

Network Partitionings, in Proceedings of the 19th Design Automation Conference,

Las Vegas, 175-181.

M.R. Garey and D.S. Johnson (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman.

A. George (1971). Computer Implementation of the Finite Element Method, STAN-CS-

71-208, Computer Science Department, Stanford, CA.

A. George and J.W.H. Liu (1983), Computer Solution of Large Sparse Positive Definite

Systems, Prentice-Hall Series in Computational Mathematics, Prentice-Hall.

242

A.M.H. Gerards (1985). Testing the Odd Bycicle Wheel Inequalities for the Bipartite

Subgraph Polytope, Mathematics of Operations Research, 10, 359-360.

N.E. Gibbs, W.G. Poole, and P.K. Stockmeyer (1976). An Algorithm for Reducing the

Bandwith and Profile of a Sparse Matrix, SIAM J. Numerical Analysis, Vol.13, No.

2, 236-250.

F. Glover and M. Laguna (1992). Tabu Search, in Modern Heuristic Techniques for

Combinatorial Problems, Blackwell Publishing.

R.E. Gomory (1958). Outline of an Algorithm for Integer Solutions to Linear Programs,

Bull. of the American Math. Society 64, 275-278.

M. Grötschel, M. Jünger, and G. Reinelt (1984). A Cutting Plane Algorithm for the

Linear Ordering Problem, Operations Research 32, 1195-1220.

M. Grötschel, L. Lovasz, and A. Schrijver (1981). The ellipsoid Method and Its Conse-

quences in Combinatorial Optimization, Combinatorica 1, 169-197.

M. Grötschel, C.L. Monma, and M. Stoer (1992). Computational Results with a Cutting

Plane Algorithm for Designing Communication Networks with Low Connectivity

Constraints, Operations Research 40, 309-330.

M. Grötschel and W.R. Pulleyblank (1981). Weakly Bipartite Graphs and the Max-Cut

Problem, Operations Research Letters 1, 23-77.

M. Grötschel and Y. Wakabayashi (1987). Compositions of Facets of the Clique Parti-

tioning Polytope, Report No. 18, Institut für Mathematik, Universität Augsburg.

M. Grötschel and Y. Wakabayashi (1989). A Cutting Plane Algorithm for a Clustering

Problem, Mathematical Programming 45, 59-96.

M. Grötschel and Y. Wakabayashi (1990). Facets of the Clique Partitioning Polytope,

Mathematical Programming 47, 367-387.

243

F. Hadlock (1985). Finding a Maximum Cut of Planar Graph in Polynomial Time, SIAM

Journal of Computing 4, 221-225.

D.S. Hochbaum and D.B. Shmoys (1985). An O(|V 2|) Algorithm for the Planar 3-Cut

Problem, SIAM J. Alg. Disc. Meth. 6, 707-712.

B.M. Irons (1970). A Frontal Solution Program for Finite Element Analysis, Int. J. Num.

Meth. Eng. 2, 5-32.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon (1989). Optimization by

Simulated Annealing: An Experimental Evaluation: Part I, Graph Partitioning,

Operations Research Vol.37, No. 6, 865-892.

D.S. Johnson, A. Mehrotra, and G.L. Nemhauser (1991). Min-Cut Clustering, Research

Report COC-91-10, Georgia Institute of Technology.

W. Kernighan and S. Lin (1970). An Efficient Heuristic Procedure for Partitioning

Graphs, Bell Systems Technical Journal 49(2), 291-307.

S. Kirkpatrick, C.D. Gellat, and M.P. Vecchi (1982). Optimization by Simulated Annel-

ing, IBM Research Report RC 9359.

P.J.M. van Laarhoven and E.H.L Aarts (1987). Simulated Annealing: Theory and Ap-

plications, D. Reidel Publishing Company.

T. Lengauer (1990). Combinatorial Algorithms for Integrated Circuit Layout, John Wiley

& Sons.

T. Liebling and P. Vaca (1991). Un Algorithme Polynomial Pour le Problème de l’Equi-

partition Dans un Arbre, preprint.

A. Martin (1993). Private communication.

244

B. Mohar and S. Poljak (1992). Eingenvalues in Combinatorial Optimization, Preprint

Series vol. 30, Department of Mathematics, University of Ljubljana, Slovenia.

G.L. Nemhauser and L.A. Wolsey (1988). Integer and combinatorial Optimization, John

Wiley & Sons.

M.W. Padberg (1989). The Boolean Quadratic Polytope: Some Characteristics, Facets

and Relatives, Mathematical Programming 45, 139-172.

M.W. Padberg and M. Grötschel (1985). Polyhedral Computations, in Lawler, Lenstra

et al., pp. 307-360.

M.W. Padberg and G. Rinaldi (1987). Optimization of a 532-City Traveling Salesman

Problem by Branch and Cut, Operations Research Lettres 6, 1-8.

H. Pina (1981). An Algorithm for Frontwidth Reduction, Int. J. Num. Meth. Eng. 17,

1539-1546.

S. Pissanetsky (1984). Sparse Matrix Technology, Academic Press.

S. Poljak and F. Rendl (1991). Solving the Max-Cut Problem Using Eingenvalues, Report

No. 199, Technische Universität Graz, Austria.

A. Razzaque (1980). Automatic Reduction of Frontwidth for Finite Element Analysis,

Int. J. Num. Meth. Eng. 15, 1315-1324.

F. Rendl and H. Wolkowicz (1991). Applications of Parametric Programming and Ein-

genvalue Maximization to the Quadratic Assignment Problem, Technical Report,

University of Waterloo

Y.G. Saab and V.B. Rao (1991). Combinatorial Optimization by Stochastic Evolution,

IEEE Transactions on Computer-Aided Design, Vol.. 10, No. 4, 525-535.

245

S.W. Sloan and M.F. Randolph (1983). Automatic Element Reordering for Finite Element

Analysis with Frontal Solution Schemes, Int. J. Num. Meth. Eng. 19, 1153-1181.

D. Vanderstraeten (1992). Génération Automatique d’une Décomposition de Domaine

pour le Calcul par Eéments Finis sur Ordinateur Parallèle, Mémoire d’Ingénieur,

Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

D. Vanderstraeten and R. Keunings (1993). Optimized Partitioning of Unstructured

Finite Element Meshes, Technical Report 93.32, Centre for Systems Engineering and

Applied Mechanics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

R. Weismantel (1993). Plazieren von Zellen: Theorie and Lösung eines quadratischen

0-1 Optimierungsproblem, Technical Report TR 92-3, Konrad-Zuse-Zentrum für

Informationstechnik, Berlin.

R. Weismantel (1993). Private communication.

R.D. Williams (1990). Performance of Dynamic Load Balancing Algorithms for Unstruc-

tured Mesh Calculations, Report C3P913, California Institute of Technology.

M. Yannakakis (1985). A Polynomial Algorithm for the Min-Cut Linear Arrangement of

Trees, Journal of the ACM 32(4), 950-988.

O.C. Zienckiewicz and Morgan (1983). Finite Elements and Approximation, John Wiley

& Sons.

O.C. Zienkiewicz and R.L.T. Taylor (1989). The Finite Element Method, 2 Vols., Mc

Graw-Hill.

O. Zone (1993). Private communication.

246

NOTATION

G = (V,E): graph with node set V and edge set E;

Kn: the complete graph on n nodes;

V (S): the set of nodes spanned by the edges in S;

δ(S): the set of edges with one endnode in S and the other endnode not in S;

|S|: the number of elements in the set S;

dxe: the smallest integer number larger than x ∈ IR;

bxc: the largest integer number smaller than x ∈ IR;

conv(S): convex hull of the points in the set S;

aff(S): affine hull of the points in the set S;

dim(S): dimension of the set S;

IR|S|: set of |S|-dimensional real vectors whose components are indexed by the elements

in the set S;

ZZ|S|: set of |S|-dimensional integer vectors whose components are indexed by the elements

in the set S;

IB|S|: set of |S|-dimensional 0-1 vectors whose components are indexed by the elements

in the set S;

x(S):
∑
i∈S

xi;

PC(G): polytope describing the convex hull of the incidence vectors of cuts in the graph

G;

PEC(G): polytope describing the convex hull of the incidence vectors of equicuts in the

graph G;

247

PK,FMC (G): polytope describing the convex hull of the incidence vectors of (K,F) multicuts

in the graph G, that is, the multicuts corresponding to the partitions of G into K

clusters of size at most F ;

PK,WMC (G): polytope describing the convex hull of the incidence vectors of (K,W) mul-

ticuts in the graph G, that is, the multicuts corresponding to the partitions of G

into K clusters such that the sum of the node weights within each cluster does not

exceed W ;

LP: Linear Program;

IP: Integer Program;

0-1 IP: Integer Program in which all variables assume values in {0, 1};

FCPA: fractional cutting plane algorithm;

PBC: path-block cycle;

Q: see definitions in pages 47, 89, 103 and 127.

Qk: see definitions in page 59.

B & C: branch-and-cut;

CLOP: (CLustering OPtimization) the branch-and-cut code used in Chapter 4;

FRP : frontwidth reduction problem;

FRP : modified frontwidth reduction problem;

DC: Divide-and-Conquer algorithm for the FRP ;

CM: Cuthill-McKee algorithm for the FRP ;

KL: Kernighan and Lin heuristic for the FRP ;

SA: Simulated Annealing heuristic for the FRP ;

SE: Stochastic Evolution heuristic for the FRP ;

248

