
Routing Complexity of Faulty Networks

Omer Angel
∗

Department of Mathematics
University of British Columbia

Mathematics Road Vancouver, B.C. V6T 1Z2
Canada

angel@math.ubc.ca

Itai Benjamini
Department of Mathematics

The Weizmann Institute of Science
Rehovot 76100 Israel

itai.benjamini@weizmann.ac.il

Eran Ofek
Department of CS and applied Math.
The Weizmann Institute of Science

Rehovot 76100 Israel

eran.ofek@weizmann.ac.il

Udi Wieder
Department of CS and applied Math.
The Weizmann Institute of Science

Rehovot 76100 Israel

udi.wieder@weizmann.ac.il

ABSTRACT
One of the fundamental problems in distributed computing
is how to efficiently perform routing in a faulty network in
which each link fails with some probability. This paper in-
vestigates how big the failure probability can be, before the
capability to efficiently find a path in the network is lost.
Our main results show tight upper and lower bounds for
the failure probability which permits routing, both for the
hypercube and for the d−dimensional mesh. We use tools
from percolation theory to show that in the d−dimensional
mesh, once a giant component appears — efficient routing
is possible. A different behavior is observed when the hy-
percube is considered. In the hypercube there is a range
of failure probabilities in which short paths exist with high
probability, yet finding them must involve querying essen-
tially the entire network. Thus the routing complexity of
the hypercube shows an asymptotic phase transition. The
critical probability with respect to routing complexity lies
in a different location then that of the critical probability
with respect to connectivity. Finally we show that an oracle
access to links (as opposed to local routing) may reduce
significantly the complexity of the routing problem. We
demonstrate this fact by providing tight upper and lower
bounds for the complexity of routing in the random graph
Gn,p.

Categories and Subject Descriptors: G.3 [Probabil-
ity and Statistics]: Stochastic Processes; C.2.4 [Computer
Communication Networks]: Distributed Systems

General Terms: Algorithms, Reliability, Theory

∗Research done while at the Weizmann Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05,July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-59593-994-2/05/0007 ...$5.00.

Keywords: Routing, Fault Tolerance, Random Graphs,
Percolation.

1. INTRODUCTION
The goal of this paper is to investigate the effectiveness of

routing in faulty networks. Suppose that a network is repre-
sented by a graph G. Two kinds of fault models are common
in the theoretical literature: Worst case faults and random
faults which are our concern. In the random fault model it is
assumed that each component of the network fails with some
probability and independently of all other components. In
this paper we consider edge failures so we assume each edge
in G fails independently with some probability q = 1−p. An
edge that fails is called closed and a surviving edge is called
open. The graph induced by the open edges is denoted by
Gp. One can ask what is the probability that two nodes u
and v remain connected in Gp. This had been the focus of
much research concerning the existence of giant components
in such graphs, and the critical values of p for the existence
of those, cf. [1, 30, 20, 2, 23]. But in many applications the
fact that a path between u and v exists is not sufficient, one
wants to be able to find the path in a distributed manner.

It is known that if the topology of a graph has some ran-
domness, then the existence of short paths in a graph does
not guarantee the ability of efficiently finding them. For in-
stance a cycle with a random matching has a logarithmic
diameter [6], yet paths connecting a given pair of nodes can
not be found in less than

√
n time [21]. This phenomenon

is especially acute when considering ‘natural’ networks such
as the world wide web, social networks, P2P networks etc,
in which typically the network size is huge, the diameter of
the network is small and the challenge is to find short paths
within a time complexity that is comparable to the diameter.
Indeed, Kleinberg’s model of the small world phenomenon
[21, 22] is aimed at explaining the ability to find short paths
in social networks (and not merely their existence). In the
context of P2P, several randomized topologies were proposed
along with routing algorithms that find short paths in the
random graph cf. [5, 15, 26]. Variations of these routing
algorithms are able to find paths between nodes even when
nodes or links fail cf. [18, 29, 32]. While our findings do not

apply directly to these networks, we expect that our main
result regarding the hypercube would hold for them as well.
See Section 1.3 for more details.

In this paper we analyze the algorithmic complexity of
finding a path between nodes u, v in Gp as a function of the
failure probability. In particular, we seek to find the exact
values of p for which it is possible to perform routing in Gp

within time complexity that is comparable to the diameter.
One difficulty is that with positive probability u, v are in dis-
tinct components of Gp. We therefore restrict our attention
to the case where a giant component exists, and condition
on the event that u, v are connected.

Our findings present a complex picture. We show that for
some graphs, as the d−dimensional mesh, efficient routing
is always possible, i.e. it is easy to find with high probabil-
ity short paths between nodes within the giant component
(whenever it exists). However, for other graphs, such as the
hypercube, efficient routing is possible only for some fail-
ure probabilities. In other words, there is a range of failure
probabilities for which with high probability a giant compo-
nent exists, the diameter of the giant component is small,
yet in order to find a path between nodes it is necessary to
probe a large portion of the graph. We provide tight upper
and lower bounds on the routing complexity, indicating the
exact location of the transition.

1.1 The Model

Definition 1. Given a graph Gp and two vertices u, v, a
routing algorithm is an algorithm that is allowed to probe
whether an edge exists in Gp, and outputs a path between
u, v if such exists. A routing algorithm is said to be local,
if the first edge it probes is adjacent to u and subsequently it
probes only edges to (an end point of) which it has already
established a path from u.

Local algorithms aim to capture the realistic constraints
of routing in a network. If each node is a server in a network
and u wishes to send a message to v then u must find a path
to v while probing edges it has already reached. In Section 5
we show that a local router may require exponentially more
probes than a non local one, thus the distinction between
the two kinds of algorithms is necessary. A non local routing
algorithm may be referred to as an oracle routing algorithm.
Denote by {u ∼ v} the event that u is indeed connected to
v.

Definition 2. Given a graph G, probability p and a rout-
ing algorithm A, the routing complexity of A denoted by
comp(A), with respect to the nodes u, v, is the random vari-
able that counts the queries A makes (i.e. edges probed) to
find a path between u, v in Gp, conditioned on {u ∼ v}.

The routing complexity measures how many probes are
needed to route a message from u to v in Gp, assuming this
routing is possible. We do not consider here any compu-
tations that the algorithm performs. As indicated above,
the question is most interesting when Pr[u ∼ v] is bounded
away from zero, and indeed we limit our discussion to this
case. A simple upperbound on the routing complexity could
be achieved by performing a BFS search on Gp. In terms
of the routing complexity this is tantamount to probing the
entire graph. However there may exist algorithms which
achieve a much smaller routing complexity. In particular,

if the diameter of G is small, we are interested in finding a
routing algorithm with a complexity that is comparable to
the actual distance between the nodes, or show that none
exists.

We stress that the routing complexity measures the com-
plexity of finding a path between two specified vertices, and
not the complexity of finding a full blown routing scheme be-
tween all nodes. In this sense small routing complexity may
be seen as the minimal requirement of fault tolerance in net-
works. We also assume that nodes have no prior knowledge
on the faults. In reality, nodes may have some information
on the status of links in the network, making the task of
finding a path easier. In some sense we model the problem
of finding a path ‘from scratch’.

In this paper we focus on analyzing the hypercube and the
d−dimensional mesh, which are probably the most widely
investigated topologies in this context.

1.2 Related Work
Denote by Hn,p the n−dimensional hypercube, when each

edge is deleted with probability 1−p and survives with prob-
ability p. Random subgraphs of the hypercube had been
the focus of much research. It is known (see eg. [11]) that if
p < 1

2
then with high probability Hn,p is not connected and

if p > 1
2

then with high probability Hn,p is connected. A
classic result by Ajtai, Komlos and Szemeredi [1] states that
if p ≥ n−1(1 + ε) for any fixed ε > 0 then with high proba-
bility1 Hn,p contains a giant component (i.e. a component
with Θ(2n) nodes), while if ε < 0 then w.h.p a giant compo-
nent will not exist. This result was sharpened by Bollobás
et al in [7] and then by Borgs et al in [8].

A related notion to routing complexity is that of emula-
tion. Roughly speaking, network A emulates network B if A
can perform any computation B performs with a constant
slowdown. When the emulating network is a random sub-
graph the notion of emulation implies not only that short
paths could be found but also that they do not create bottle-
necks in the computation. Hastad et al [16, 17] considered
node failures, and showed that if p is a constant close enough
to 1, then Hn,p could emulate Hn with a small slowdown.
Cole et al [10] proved that a faulty butterfly network can
perform efficient permutation routing even if each node or
edge fails with some constant probability. Emulation un-
der worst case faults were considered by Leighton et al [24].
In particular these results imply that if the failure proba-
bility is small enough then it is possible to find paths effi-
ciently between nodes in the giant component. On the other
hand Angel and Benjamini [3] showed that if p < 1√

n
then

the hypercube could not be embedded in its giant compo-
nent with constant distortion. This result suggests that for
1
n

< p < 1√
n

even though a giant component exists, w.h.p

it defines a metric that is (significantly) different from that
of the hypercube.

Let Md
p be a d-dimensional mesh with Md nodes, in which

each edge is deleted with probability 1− p. It is known that
for each d there exists a critical probability pd

c such that
if p < pd

c then w.h.p. there will not be a giant component
in Md

p , and if p > pd
c then w.h.p. Md

p will contain a giant
component. The exact values of the critical probabilities
are not always known. It is known that p2

c = 1
2

and that

1Throughout this paper, the term ‘with high probability’
means with probability that tends to 1 as n →∞.

pd
c = (1 + o(1))/2d and is decreasing in d. See the book by

Grimmett [12] and the references therein. Kaklamanis et
al [19] showed that if p is large enough then M2

p can emulate

Md with O(log n) slowdown. Mathies [27] extended this re-
sult for any p > p2

c = 1
2
. These results do not imply an

efficient routing algorithm. Naor and Wieder [28] used pla-
nar duality to prove that efficient routing is possible in M2

p

whenever p > 1
2
. Cole et al [9] proved that a two dimen-

sional array can tolerate a constant fraction of worst case
faults and still emulate the non faulty array with a constant
slowdown.

1.3 Summary of Results
Recall that Hn,p denotes a random subgraph of the n-

dimensional hypercube obtained by selecting each edge in-
dependently with probability p. As mentioned, it is known
that when p > (1+ε)n−1 with high probability a giant com-
ponent exists ([1]). Furthermore, it is implicit in the proof
that the diameter of the component is polynomial in n. If
however p ≤ n−1(1−ε) then the size of the largest connected
component is o(2n) w.h.p. This suggests that efficient rout-
ing in the giant component of Hn,p might be possible for any
p ≥ n−1(1 + ε). Our work shows that this is not the case:
there is a threshold for efficient routing that lies in a dif-
ferent location. The following theorem provides a complete
characterization of the routing complexity as a function of
the failure probability:

Theorem 3. For a fixed α, let p = n−α.

(i) Let α > 1/2 + β for β > 0. For every pair of vertices
u and v any local routing algorithm in the hypercube

Hn,p makes at least 2Ω(nβ) queries w.h.p..

(ii) There is a local routing algorithm A on the hyper-
cube such that the following holds: For any α < 1/2
there exists k = k(α) so that for any two vertices,
comp(A) < nk with probability 1 − exp(−cn1−α) for
some constant c > 0.

Thus for p = n−α for 1
2

< α < 1, an intriguing phe-
nomenon occurs: the giant component of Hn,p shares some
structural properties of Hn, in particular it has diameter
poly(n) (w.h.p.), and has roughly the same expansion of
Hn, yet the ability to find short paths is lost. Angel and
Benjamini proved in [3] that for these failure probabilities
Hn could not be embedded in Hn,p with constant distor-
tion, so the result of Part (i) is not entirely surprising, yet
the techniques we use are different then that of [3]. Part (i)
is proven by showing that if p is small enough then a ball
centered at v is likely to look more or less like a tree rooted
at v, which contains closed edges. Now, in order to reach v
from u it is necessary to find a leaf which is connected to v
via an open path, an event which is proven to be rare. Our
technique is general enough to be used on other families of
graphs.

It is proven in [3] that if α < 1/2 then there is an embed-
ding of Hn in Hn,p with constant distortion. This embed-
ding is used to derive the matching upperbound of part (ii).
Note that the algorithm of (ii) does not depend on α, and
only its efficiency changes. Therefore if α = 0, i.e. there are
no faults, then the algorithm reduces to a greedy algorithm
which routes along the hypercube’s shortest paths.

Many popular P2P topologies share some structural simi-
larities with the hypercube cf. [32, 5, 31]. We did not prove

that Theorem 3 holds for these topologies, yet it is reason-
able to assume that that this is the case. If so, then Theorem
3 implies that if the network suffers many faults, flooding
and gossiping techniques would remain efficient means to lo-
cate data (in terms of latency) while the routing algorithms
based on exact search fail.

The phenomenon described in Theorem 3 does not occur
in all graphs. Recall that Md

p denotes a d-dimensional mesh

with Md nodes, in which each edge is deleted with proba-
bility 1− p.

Theorem 4. Let u, v be two vertices at distance n in Md.
There exists a local routing algorithm in Md

p so that if p > pd
c

then the expected routing complexity is O(n).

Thus in the mesh when p is large enough so that a gi-
ant component appears it is possible to find paths between
two vertices in time comparable to the distance between the
nodes. It is important to note that if we allow p to be close
enough to 1 then Theorem 4 is fairly easy prove. The main
difficulty is proving that the Theorem’s statement is cor-
rect for any p > pd

c , this involves some deep results from
Percolation Theory.

The previous two theorems assumed the routing algo-
rithms are local, i.e. they are only allowed to probe edges
for which they have already established a path. What if we
remove the locality assumption and allow the routing algo-
rithm to probe any edge in the graph? we call this model
oracle routing. On first glance it might seem as if oracle
routing may not change considerably the routing complex-
ity. Yet, in Section 5 we show a graph in which there is
an exponential gap between the routing complexity with re-
spect to oracle routing and that of local routing. We also
provide tight upper and lower bounds for routing in Gn,p

and show that in this natural model, oracle routing outper-
forms local routing.

In the next section a lemma which provides a lower bound
for routing complexity in a general scenario is proved. In
Sections 3 and 4 we prove our results for the hypercube
and the mesh respectively. Section 5 concerns the oracle
routing model. Finally Section 6 discusses some related open
problems.

2. THE LOWER BOUND LEMMA
In this Section we prove a lemma which is instrumental

in proving hardness of local routing on various graphs. The
basic intuition could be seen through the following example:
Consider a graph in which there are exactly d edge disjoint
paths of length 2 between nodes u, v. Now assume each edge
remains open with probability 1√

d
. We expect that both u

and v would be connected to about
√

d open edges, thus by
the birthday paradox w.h.p there would be an open path of
length 2 between the nodes. Assuming such a path exists, it
is easy to see that Ω(d) edges should be probed w.h.p before
one of these paths is found.

This intuition could be generalized as follows: If S is a
subset of the nodes, and v ∈ S while u 6∈ S, then a path
from u to v must at some point find an edge in the cut (S, S̄)
which is connected to v. If the probability that an edge in
the cut is connected to v via the set S is low enough, then
many such edges should be probed before a path is found.

More formally: for a set S and vertices u ∈ V, v ∈ S we
write {(u ∼ v) ∈ S} for the event that u is connected to
v by an open path in the set S. Similarly {(u ∼ e) ∈ S}
denotes the event that u is connected to an end point of the
edge e via a path in the set S.

Lemma 5. Let V = S ∪ S̄ be a partition of the vertex set
of a graph and v ∈ S be a vertex. Assume for any edge e
crossing the cut (S, S̄) we have Pr[(v ∼ e) ∈ S] ≤ η, and let
X be the number of queries made by a local routing algorithm
from u to v (given that u ∼ v), then

Pr[X < t] ≤ tη + Pr[(u ∼ v) ∈ S]

Pr[(u ∼ v)]
. (1)

If u ∈ S̄ then the numerator becomes tη.

We stress that u need not be in S̄. The lemma applies
also for the case that u ∈ S and this will be used (e.g. the
proof of Theorem 3).

Proof. It is more convenient to let X denote the total
number of queries made by the algorithm without it be-
ing conditioned on (u ∼ v) (as opposed to its definition
in the lemma). The conditioning could be added (later)
by using the simple inequality Pr[X < t | (u ∼ v)] ≤
Pr[X < t]/ Pr[u ∼ v]. So it is sufficient to show that
Pr[X < t] ≤ tη + Pr[u ∼ v ∈ S]. First we use the following
inequality:

Pr[X < t] ≤ Pr[(X < t) ∩ {(u ∼ v) ∈ S}]+Pr[(u ∼ v) ∈ S]

It remains to show that Pr[(X < t) ∩ ((u ∼ v) ∈ S)] ≤ ηt.

If indeed {(u ∼ v) ∈ S}, which is always the case if u ∈ S̄,
then all paths from u to v must cross the cut (S, S). Thus
an algorithm which outputs a path from u to v must find
a path in S from some edge of the cut to v. A cut edge is
called successful if indeed it is the origin of an open path to
v. It is sufficient to bound the number of cut edges which
should be queried by the algorithm, until a successful edge
is found. By assumption, a priori, the probability of each
edge to be successful is at most η. If the event of an edge
being successful had been independent of other edges, then
the process of finding a successful edge would have been
geometric with parameter η, and this suffices to prove the
lemma. Unfortunately, the event of an edge being successful
depends upon the status of the edges the algorithm had
already probed. Our goal is to show that these dependencies
do not increase the probability of finding a successful edge.

To simplify the argument, we will change the model slightly.
Denote by Gp(S) the induced sub-graph formed by S. As-
sume that when the algorithm queries a cut edge e, it is
also given for free all the edges and vertices in S which are
connected to e via a path in S, i.e. the connected compo-
nent of Gp(S) which contains the end point of e. If e is
connected to v in S (i.e. the edge e is successful), then the
algorithm succeeded in finding a path and stops. In the case
where u ∈ S, the algorithm is also given the connected com-
ponent of u in Gp(S), thus if {(u ∼ v) ∈ S} then the path
must first leave S and then return to it in similarity to the
case in which u ∈ S. It is easy to see that the new model
may only reduce the query complexity of a local algorithm
(the algorithm can simply ignore the extra edges given to
it). Furthermore, without loss of generality we may assume
now that a local algorithm queries cut edges only. Note that

edges outside S are independent of the event of a cut edge
being successful.

Let e1, e2, ..., et be the sequence of the (S, S̄) cut edges
queried by the algorithm. The sequence e1, ..., ei−1 encap-
sulates exactly all the information that the algorithm has
until the i-th query (given Gp). We will show that:

Pr[ei is connected to v via S | e1, ..., ei−1] ≤ η. (2)

This implies that the query complexity of the algorithm is
stochastically bounded by a geometric random variable with
parameter η. In particular, Pr[X < t] ≤

∑t
i=1 η(1−η)i ≤ ηt

as needed.
Denote by Cj the vertices of the subgraph revealed when

querying ej . For every j < i it holds that Cj is a connected
component of Gp(S), and that v 6∈ Cj .

sv

u

s

C1

C2

Ci

e1
e2

ei

Figure 1: probing a cut edge ei reveals its con-
nected component in S (denoted by Ci).

Thus when the algorithm queries ei there are two possi-
bilities:

1. The end point of ei belongs to a previously revealed
Cj . Now the probability ei is successful is zero.

2. The end point of ei does not belong to any of the
previously revealed Cj . Now

Pr[(ei ∼ v) ∈ S| e1, . . . , ei−1] =

Pr[(ei ∼ v) ∈ S \ ∪i−1
j=1Cj] ≤ Pr[(ei ∼ v) ∈ S] ≤ η

Figure 1 demonstrates the argument in the case where u ∈
S̄.

2.1 An Illustrative Example
In the following we use Lemma 5 to lower bound the rout-

ing complexity of the double binary tree. The double binary
tree of depth n denoted TTn is constructed by taking two
binary trees of uniform depth n and identifying their corre-
sponding leaves. Let u, v be the two roots of the trees, as
depicted in Figure 2. First we identify the values of p (which
is the probability that an edge is open) for which u, v are
connected with probability which is bounded away from 0.

Lemma 6. If 1√
2

< p ≤ 1 then there exists a path between

u and v in TTn,p with probability bounded away from 0. If
p ≤ 1√

2
then w.h.p. no such path exists.

Proof. In order for a path to exist between u and v, it
must be the case that there exists an open branch from a
leaf w to the root of the first tree u, and that the mirroring
branch from w to v is also open. This is equivalent to the
case of a single tree where each edge is open with probability
p2. It is well known that the critical probability of a Galton
Watson tree (or the binary branching process) is 1

2
. See for

instance [14] for details.

u v

S

Figure 2: the double binary tree.

Now we show that for any p < 1, the local routing com-
plexity is exponential in the graph diameter.

Theorem 7. Let 1√
2

< p < 1. For some c > 0 and any

a, n, any local router between the two roots of TTn makes at
least ap−n queries with probability at least 1− ca.

Proof. Apply Lemma 5 with S being the second tree to
get the desired bound: Clearly we may have η = pn. The
nodes u and v can be connected only via the cut (S, S̄),
this happens with probability at least c(p). Lemma 5 now

implies Pr[A < ap−n] < ap−npn

c(p)
= a

c(p)

If we set a to be a decaying function (say 1
n
) then the prob-

ability a local router would probe less than p−n

n
is O(1

n
).

The double binary tree has the interesting property that an
oracle routing algorithm may find a path between u and v
with a polynomial number of probes. See Section 5.

3. HYPERCUBE – TIGHT UPPER AND
LOWER BOUNDS

In this section we show the exact location of the probabil-
ity p, in which the routing complexity shows a phase tran-
sition between being exponential and being polynomial (in
n). The idea is to show that when p < 1√

n
then balls around

nodes look more-or-less like trees, and therefore when trying
to reach node v, a routing algorithm would need to ‘pene-
trate’ a tree through its leaves, as was demonstrated in the
double binary tree graph. When p > 1√

n
then there are

enough edges so that some variant of greedy routing will
find a path within polynomial time.

3.1 The Lower Bound
Here we apply Lemma 5 to get a lower bound on the local

routing complexity of the hypercube when p < n−1/2. The
given bound translates to a fractional exponential (in n)
bound on the routing complexity.

Proof of Theorem 3(i). Let v and u be two vertices.
We apply Lemma 5 to the hypercube with S being a ball of
radius l = nβ around v, for some 0 < β < α− 1/2.

The first stage is to bound η of the lemma, i.e. bound
the probability v is connected to an edge on the boundary
of S via a path within S . We show that for large n, for any
e connecting S and S̄ we have Pr[(v ∼ e) ∈ S] ≤ η holds

with η = 2n(β−α)nβ

. Let x be the endpoint of e in S with
d(x, v) = l. Consider a path from v to x in S as a sequence of
coordinates in which consecutive steps are taken. Let Ak be
the set of such paths of length l + 2k (by parity this catches
all paths).

For k = 0 we have |A0| = l! since a path of A0 uses each
of the l coordinates exactly once. To bound |Ak| we show a
map from Ak to Ak−1 that maps at most n · l2 paths to each
path. Existence of such a map implies |Ak| ≤ nl2|Ak−1| and
therefore by induction |Ak| ≤ nkl2kl!. To define the map,
consider the first l+1 steps of a path. Since the path remains
in the ball S, at least one of the coordinates is repeated.
Take such a repeated coordinate and eliminate its first two
occurrences. It is easy to see that this maps a path p ∈ Ak

to a path p′ ∈ Ak−1. To reconstruct p from p′ one needs
to know which coordinate was removed (n possibilities) and
the indices at which it appeared (

(
l+1
2

)
≤ l2 possibilities).

Thus the pre-image of p′ contains at most nl2 paths from
Ak.

This bound clearly counts many paths more than once, as
well as many non-simple paths, but it is good enough. Each
simple path in Ak is open with probability pl+2k, and so

Pr[(v ∼ x) ∈ S] ≤
∞∑

k=0

pl+2knkl2kl! ≤

(lp)l
∞∑

k=0

(nl2p2)k =
n(β−α)nβ

1− n2β+1−2α
.

For large n the denominator is close to 1, hence η = 2n(β−α)nβ

is a valid choice.
Next, we estimate the other terms in (1). Since each of

u and v is in the giant component with probability tending
to 1, Pr[(u ∼ v)] → 1. If u 6∈ S then Pr[(u ∼ v) ∈ S] = 0.
Otherwise, suppose d(u, v) = m ≤ l. The same argument as
above shows that the number of paths in S of length m+2k
from u to v is at most m!(nl2)k and hence the probability
that any of them are open satisfies

Pr[(u ∼ v) ∈ S] ≤
∞∑

k=0

pm+2knkl2km! =
m!pm

1− n2β+1−2α
.

The denominator tends to 1 and for m ≤ l, the numerator
is o(1) because mp ≤ lp = nβ−α.

Using Lemma 5, we now see that if the complexity of a
local router in the hypercube is A, then

Pr[A < n(α−β)nβ

/n] ≤ 2/n + Pr[(u ∼ v) ∈ S]

Pr[(u ∼ v)]
→ 0.

3.2 The Upper Bound
Next we show that when p is large, local routing on the hy-

percube may be performed using nk probes with high prob-
ability. This is a variation on the result of [3] showing that
in this regime the metric distortion of the percolation is

bounded. This shows that there is indeed an asymptotic
phase transition in the complexity of routing on the hy-
percube. The proof below shows that k = O((1 − 2α)−1),
though it would be interesting to know the exact dependence
of k on α (the optimal k need not be integral).

Proof of Theorem 3(ii). Here, the terms neighbor and
distance relate to the metric of the hypercube before perco-
lation. Percolation neighbor and percolation distance are
used for the percolated hypercube Hn,p.

We refer to the definition of a good vertex from [3], which
roughly means having a high degree in Hn,p. The condition
that a vertex is good is determined by the neighborhood
of percolation radius 2 around it. In [3], Section (2) the
following is proved:

(1) Any given vertex is good with probability of at least
1− exp(−cn1−α).

(2) With probability 1−exp(−cn), all pairs of good vertices
at distance up to 3 have percolation distance at most
l for some l = l(α) = O((1− 2α)−1).

Now the algorithm is straight forward. Pick arbitrarily a
path from u to v, of minimal length: u = u0, u1, . . . , um = v,
and use BFS iteratively to find a path from ui to ui+1. With
probability tending to 1 all the vertices of the path, including
u and v are good (each one is not good with probability at
most exp(−cn1−α), there are at most n vertices in the path).
On this event, the percolation distance between ui and ui+1

is at most l and a path from ui to ui+1 can be found by,
say, BFS of complexity nl. The total complexity is at most
nl+1.

Remark.A natural approach would be to use greedy rout-
ing, i.e. at each routing step, probe edges that reduce the
Hamming distance to the target. While this strategy may
work most of the way, in the final steps a more extensive
search is required. It may be the case though that a greedy
approach at the early stages of the routing would reduce the
exponent in the complexity of the algorithm.

4. THE MESH — UPPER BOUND
In this section we show that the phenomenon observed

for hypercubes does not apply when the mesh is considered,
i.e. whenever a giant component exists, it is possible to
efficiently route between nodes. Consider a cube of the d-
dimensional mesh, i.e. a submesh with Md nodes, and let
each edge remain open with probability with some fixed p,
and be closed with probability q = 1− p. Let d(·, ·) denote
distance in the mesh, and D(·, ·) denote the distance in the
giant component (which may be referred as percolation dis-
tance). We seek a path between two vertices u, v in the cube
with d(u, v) = n (the cube size is Md which may be much
larger than n). We are interested in the routing complexity
in terms of n when p is fixed. As mentioned, there exists
a number pd

c such that if p ≤ pd
c then Pr[u ∼ v] = o(1)

as n → ∞, so hereinafter we assume p > pd
c . For such p

there is a giant cluster in the cube, and with probability
bounded from 0, both u and v are in the giant component
and therefore connected.

We give an algorithm that efficiently finds a short path
from u to v. The case of d = 2 was solved by Naor and

Wieder in [28], where planar duality is used to show that in
a two dimensional grid with n2 vertices, the routing com-
plexity is O(n) w.h.p. It is important to note that it is
fairly easy to find a path between u, v if we assume that p
is sufficiently close to 1. The main difficulty is pushing the
probability p all the way down to pd

c . In order to do that we
need some fairly recent and strong results from Percolation
Theory.

4.1 The Routing Algorithm
Consider n vertices which belong to some shortest path

between u, v. With high probability many of them are in
the giant component and the percolation distance between
them is not too large. The algorithm searches around each
of them, until the next one is found. More formally:

1. Fix u = u0, u1, u2, . . . , un = v to be a shortest path
between u and v. Start from u0 = u.

2. Assume ui has been reached. Exhaustively probe edges
around ui (using say BFS) until some vertex uj with
j > i is reached.

3. Repeat at most n times until reaching un = v.

Note that a BFS up do distance k from a vertex takes
only O(kd) queries since only edges of the mesh at distance
k from the starting point may be reached. The key point is
that it is very unlikely at any iteration that a large depth
is needed. Correctness of the algorithm is clear since the
search at each stage stops once a closer approximation to v
is found. If an open path from u to v exists, then some path
will be found.

Proof of Theorem 4. Let ui be some vertex along the
chosen path to v that is in the giant component. Let uj be
the next vertex along the path in the giant component. It
follows that the j − i − 1 vertices along the path between
them are outside the giant component, an event that is ex-
ponentially unlikely (see [12]):

Pr[|j − i| > k] < e−c1k for some c1 = c1(p) > 0.

Note that j always exists since v is assumed to be in the
giant component. In practice, uj might be skipped over by
the algorithm if some further vertex uk is reached first. If the
algorithm explores a neighborhood of ui, it finds a further
vertex of the path at distance at most D(ui, uj). Thus to
bound the number of queries the algorithm makes to reach
some uk we use the following Lemma, which is a proper
restatement of result by Antal and Pisztora [4, 13].

Lemma 8. For any p > pd
c and any x, y in a cube Md of

the infinite mesh, let D(x, y) be the percolation distance (in
Md) between them. For some ρ, c2 > 0 depending only on
the dimension and p, and for any a > ρ · d(x, y))

Pr[(D(x, y) > a) ∧ (x ∼ y) ∈ Md] < e−c2a.

Either d(uu, uj) is large or it is small. In the latter case,
D(ui, uj) is unlikely to be large, and the former case is itself
unlikely:

Pr[D(ui, uj) > k] <

Pr[d(ui, uj) > k/ρ] + Pr[(d(ui, uj) ≤ k/ρ)∧ (D(ui, uj) > k)]

< e−c1k/ρ + e−c2k < e−c3k.

Consequently, if Ai is the number of queries made from ui,

Pr[Ai > k] < Pr[D(ui, uj) > ck1/d] < e−c4k1/d

.

Since this is summable, for each vertex ui of the path that
is in the giant component the expected work to get from ui

to a further vertex is O(1).
The number of queries made by the algorithm is at most

the sum over all vertices of the path in the giant component
of the work to progress from them (actually it is less since
some may be skipped over, and some queries may be dupli-
cated). By additivity of expectation, E[

∑
Ai] = O(n).

5. ORACLE ROUTING VS. LOCAL ROUT-
ING

In this section we consider routing algorithms that are al-
lowed to query any edge, and not just edges to which it has
established a path. This is called oracle routing. Surpris-
ingly, it might be the case that a huge gap exists between the
complexity of local and oracle routing. A simple (yet some-
what artificial) example for this is the double binary tree

TTn with fixed
√

1/2 < p < 1. In section 2 we showed that
any local routing algorithm which finds a path between the
two roots of TTn w.h.p. makes exponentially many queries.
The following theorem shows that oracle routing algorithms
can do significantly better.

Theorem 9. There is an oracle router between the two
roots of TTn with average complexity cn for some c = c(p) <

∞ and any p >
√

1/2.

Proof. A simple path between the two roots is just a
branch up to level n in the first tree joined to the corre-
sponding branch in the second tree. The oracle router is
very simple: To find a path from the root to level n that is
open in both trees, query edges together with their corre-
sponding edges in the second tree. Each such pair of edges is
open with probability p2 > 1/2. The problem is equivalent
to finding a path from the root to level n in a super-critical
Galton-Watson tree, and a depth first search accomplishes
this in expected complexity linear in n.

To see this, observe that any branch of the infinite bi-
nary branching process (the Galton-Watson tree) that fails
to reach level n has expected size c(p) (and is in fact expo-
nentially unlikely to be large), see [25]. Since at most n bad
branches are encountered before reaching level n, the rout-
ing complexity is bounded by a sum of n random variables
with finite expectation and second moments, and hence is
linear in n.

A more natural example is the graph Gn,p: For each pair
of nodes u, v the edge (u, v) is open with probability p. In
our setting it could be thought of as a faulty complete graph.
It turns out that local routers can not do much better than
querying all the edges:

Theorem 10. Any local routing algorithm for the Gn,p

model where p = c/n (for c > 1) has an expected local routing
complexity of at least Ω(n2).

Proof. Assume we wish to route from u to v, and let
X be the number of queries required. Let Ut be the set
of vertices of the graph which are connected to u by paths

known to be open after t queries. Thus U0 = {u}. Each
vertex in Ut has probability p of being connected to v, thus
the probability of finding a route while |Ut| ≤ k is at most
pk.

To reach an additional vertex given that a set of vertices
has been reached, the only option is to probe an edge con-
necting Ut to its complement. By symmetry all such edges
are equivalent, and each has probability c/n of connecting
to a new vertex. Thus |Ut|−1 is just a sum of 0−1 random
variables with expectation p = c/n.

Since u, v are both in the giant component with probabil-
ity at least some a > 0, it follows that

Pr[X < k] <
Pr[Uk > n

√
kp] + Pr[X < k|Uk ≤ n

√
kp]

Pr[u ∼ v]

<
Pr[Uk > n

√
kp] + p · n

√
kp

Pr[u ∼ v]
<

√
k/n + c2

√
k

n

a

= O(
√

k/n).

where the last inequality follows from Markov’s inequality.
This is close to 0 for k = o(n2) and shows that the average
complexity is Ω(n2).

Next we give tight upper and lower bounds on the oracle
routing complexity. The next theorem implies that oracle
routing in this case is better than local routing by a factor
of exactly

√
n.

Theorem 11. There exists a routing algorithm with aver-
age complexity O(n

√
n); Any algorithm succeeds with an

√
n

queries with probability at most O(ca2/3 + cn−1).

Proof. Let Ut and Vt be the sets of vertices reachable
from u and v after t queries. For the upper bound, consider
the following algorithm

(1) Whenever there are unqueried edges between Vt and
Ut, probe one of them,

(2) Otherwise, pick the smaller of Ut, Vt and probe an un-
probed edge connecting it to a previously unreached
vertex.

(3) If no such edge exists, return that u 6∼ v.

The algorithm is trivially correct. Since Ut and Vt grow
by one vertex at a time, they are roughly of equal size. Since
each edge is open with probability c/n, on average a con-
nection between Ut and Vt will be found when |Ut| = |Vt| =
θ(
√

n). Since adding a vertex to either of the sets requires
a number of queries with geometric distribution and mean
n/c, it takes O(n3/2) queries to find a path from u to v.

For the lower bound, note that |Ut ∪ Vt| ≤ 2 + st where
st is the number of open edges found by time t, and E[st] =

ct/n. Before a connection from u to v is found there must
be an open (unprobed) edge between Ut and Vt, and the

probability of that is at most c|Uv|·|Vt|
n

≤ c(st+2)2

4n
. Thus for

any algorithm A and any λ

Pr[comp(A) < t] ≤ Pr[st > λ]+
c(λ + 2)2

4n
≤ ct

nλ
+

2c(λ2 + 4)

4n
.

If t = an3/2, then setting λ = t1/3 results in:

Pr[comp(A) < an3/2] ≤ 3ca2/3

2
+

2

n
.

6. OPEN QUESTIONS
So far we observed that sometimes efficient routing is pos-

sible whenever the giant component exists, and sometimes
the routing complexity has a phase transition at a differ-
ent value of the percolation parameter. It is natural to as-
sume that this phenomenon relates to the growth rate of the
graph. In particular:

• Prove or refute: there exists a family of constant de-
gree graphs in which: the diameter is logarithmic in
the number of nodes, and the locations of the phase
transition of percolation and routing coincide (at a lo-
cation bounded away from 1).

In particular it would be interesting to analyze De-Bruijn
graphs, Shuffle-Exchange graphs, Butterflies and other fam-
ilies often used in the context of parallel computing.

It would be interesting to see hardness results for oracle
routers. Above we see that in the complete graph the best
oracle router has complexity θ(n3/2) where the giant com-
ponent has diameter θ(log n). If p were a small power of n,
then the diameter would be O(1) and the complexity would
still be some power of n, and thus there is no bound for
the complexity in terms of the diameter. The results of [3]
suggest that oracle routing would not help in the hypercube.

• Prove that for 1
n

< p < 1√
n

the oracle routing com-

plexity of the hypercube is exponential in n.

Finally, it is important to check how well do these results
fit into a realistic model. For instance, it would be interest-
ing to see whether our routing algorithm indeed works well
under a large number of faults in hypercube-like topologies
such as Chord and Skip-Graphs.

7. REFERENCES
[1] M. Ajtai, J. Komlós, and E. Szemerédi. Largest

random component of a k-cube. Combinatorica,
2(1):1–7, 1982.

[2] N. Alon, I. Benjamini, and A. Stacey. Percolation on
finite graphs and isoperimetric inequalities. In Annals
of Probability, 33(3A):1727-1745, 2004.

[3] O. Angel and I. Benjamini. A phase transition for the
metric distortion of percolation on the hypercube.
arXiv:math.PR/0306355.

[4] P. Antal and A. Pisztora. On the chemical distance in
supercritical bernoulli percolation. The Annals of
Probability, (24):1036–1048, 1996.

[5] J. Aspnes and G. Shah. Skip graphs. In Proc. 14th
ACM-SIAM Symp. on Discrete Algorithms (SODA
2003), pages 384–393, Jan. 2003.

[6] B. Bollobas and F. Chung. The diameter of a cycle
plus a random matching. SIAM Journal on Discrete
Mathematics, 1:328–333, 1988.

[7] B. Bollobás, Y. Kohayakawa, and T. Luczak. The
evaluation of random subgraphs of the cube. Random
Structures and Algorithms, 1(3):55–90., 1992.

[8] C. Borgs, J. T. Chayes, R. van der Hofstad, G. Slade,
and J. Spencer. Random subgraphs of finite graphs:
Iii. the phase transition for the n-cube. In ArXive
Article math.PR/0401071.

[9] R. Cole, B. M. Maggs, and R. K. Sitaraman.
Multi-scale self-simulation: a technique for

reconfiguring arrays with faults. In ACM Symposium
on Theory of Computer Science (STOC), pages
561–572, 1993.

[10] R. Cole, B. M. Maggs, and R. K. Sitaraman. Routing
on butterfly networks with random faults. In IEEE
Symposium on Foundations of Computer Science,
pages 558–570, 1995.

[11] P. Erdos and J. Spencer. Evolution of the n-cube.
Comput. Math. Appl., (5):33–39., 1979.

[12] G. Grimmett. Percolation. Springer-Verlag, second
edition, 1999.

[13] G. Grimmett and J. M. Marstrand. The supercritical
phase of percolation is well behaved. Proceedings of
the Royal Society (London), A(430):439–457, 1990.

[14] G. R. Grimmett and D. R. Stirzaker. Probability and
Random Processes. Oxford Science Publications,
second edition, 1993.

[15] K. P. Gummadi, R. Gummadi, S. D. Gribble,
S. Ratnasamy, S. Shenker, and I. Stoica. The impact
of DHT routing geometry on resilience and proximity.
In Proc. ACM SIGCOMM 2003, pages 381–394, 2003.

[16] J. Hastad, T. Leighton, and M. Newman.
Reconfiguring a hypercube in the presence of faults. In
Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing (STOC), pages
274–284, May 1987.

[17] J. Hastad, T. Leighton, and M. Newman. Fast
computation using faulty hypercubes. In Proceedings
of the 21st Annual ACM Symposium on Theory of
Computing (STOC), pages 251–263, 1989.

[18] K. Hildrum and J. Kubiatowicz. Asymptotically
efficient approaches to fault-tolerance in peer-to-peer
networks. In 17th International Symposium on
Distributed Computing (DISC), pages 321–336, 2003.

[19] C. Kaklamanis, A. R. Karlin, F. T. Leighton,
V. Milenkovic, P. Raghavan, S. Rao, C. D.
Thomborson, and A. Tsantilas. Asymptotically tight
bounds for computing with faulty arrays of processors.
In The 31st Annual Symposium on Foundations of
Computer Science (FOCS), pages 285–296, 1990.

[20] A. R. Karlin, G. Nelson, and H. Tamaki. On the fault
tolerance of the butterfly. In Proceedings of the 26th
Annual ACM Symposium on the Theory of Computing
(STOC), pages 125–133, 1994.

[21] J. Kleinberg. The Small-World phenomenon: An
algorithmic perspective. In Proceedings of the 32nd
ACM Symposium on Theory of Computing, pages
163–170, 2000.

[22] J. Kleinberg. The small-world phenomenon: An
algorithmic perspective. Advances in Neural
Information Processing Systems (NIPS), (14), 2001.

[23] M. Krivelevich, B. Sudakov, and V. Vu. Sharp
threshold for network reliability. Combinatorics,
Probability and Computing, (11):465–474, 2002.

[24] F. T. Leighton, B. M. Maggs, and R. K. Sitaraman.
On the fault tolerance of some popular
bounded-degree networks. SIAM Journal on
Computing, 27(5):1303–1333., 1998.

[25] R. Lyons and Y. Peres. Probability on Trees and
Networks.

[26] G. S. Manku, M. Naor, and U. Wieder. Know thy

neighbor’s neighbor: The power of lookahead in
randomized p2p networks. In Proceedings of the 36th
ACM Symposium on Theory of Computing (STOC),
pages 54–63 , 2004.

[27] T. R. Mathies. Percolation theory and computing with
faulty arrays of processors. In Proceedings of the Third
Annual Symposium on Discrete Algorithms (SODA),
pages 100–103, 1992.

[28] M. Naor and U. Wieder. Scalable and dynamic
quorum systems. In ACM Conf. on Principles of
Distributed Computing (PODC), pages 114–122, 2003.

[29] M. Naor and U. Wieder. A simple fault tolerant
distributed hash table. In Second International
Workshop on P2P Systems (IPTPS), pages 88–97,
2003.

[30] C. M. Newman and L. S. Schulman. One dimensional
1/|j − i|s percolation models: The existence of a
transition for s ≤ 2. Communications in Mathematical
Physics, 180:483–504, 1986.

[31] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329–350, 2001.

[32] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In Proceedings
of the 2001 ACM SIGCOMM Conference, pages
149–160, 2001.

	Introduction
	The Model
	Related Work
	Summary of Results

	The Lower Bound Lemma
	An Illustrative Example

	Hypercube -- Tight Upper and Lower Bounds
	The Lower Bound
	The Upper Bound

	The Mesh --- Upper Bound
	The Routing Algorithm

	Oracle Routing vs. Local Routing
	Open Questions
	References

