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Abstract

One of the most intriguing trends in the development of internet applications in past few years is the
immense rise in popularity of peer-to-peer (P2P) applications and networks. Peer-to-peer networks
are characterized by the lack of central control or a-priori hierarchical organization in which all or
most communication is symmetric. Moreover a P2P system is expected to scale gracefully as the
size of the network grows. The sheer scale and dynamism in which P2P networks are suppose to
operate make the design of P2P systems challenging even for relatively simple applications.

The thesis is divided into two main parts. In the first we propose a new general approach for
designing P2P networks called the continuous discrete approach. We demonstrate our technique by
suggesting several specific distributed data structures. The first is a design for the distributed hash
table (DHT) abstract data structure which we call Distance Halving (DH). Our design has an
optimal tradeoff between node degree and path hop length. A variant of our design is also robust
against random faults and even against a form of adversarial behavior of a random subset of the
nodes (which we call the spam generating model). An important feature of the DH hash table is a
dynamic caching algorithm which completely prevents hot spots.

The second data structure we suggest is a dynamic quorum system called Dynamic Paths. We
prove some new lower bounds on the probe complexity of quorum systems. We then show that
Dynamic Paths is optimal with respect to load, availability and probe complexity.

Finally we show how the continuous-discrete approach could be used to emulate in a P2P setting
any topology, thus basically showing that all the classical inter connection topologies (studied in
the context parallel computing) may serve as a basis for a P2P network.

In the second part of the Thesis we analyze some new algorithms for known P2P networks.
Our main result shows that routing algorithms which take into account neighbors of neighbors
for performing better routing decisions, are often provably better than Greedy algorithms and in
some cases optimal. We analyze the Neighbor of Neighbor algorithms in the context of small world
networks and Skip-Graphs. Finally we show that Skip-Graphs are in fact expanders with high
probably and show how to utilize this fact for a variety of algorithms.
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Chapter 1

Introduction

Summary: In this Chapter we describe the P2P model. We list the unique requirements from a good
P2P system and illustrate the main challenges facing designers. We sketch the Continuous-Discrete approach
which is central to many of the results in the Thesis.

1.1 The P2P model

One of the most intriguing trends in the development of internet applications in past few years is the
immense rise in popularity of peer-to-peer (P2P) applications and networks. Peer-to-peer networks
are characterized by the lack of central control or a-priori hierarchical organization in which all or
most communication is symmetric. Moreover a P2P system is expected to scale gracefully as the
size of the network grows. The sheer scale and dynamism in which P2P networks are suppose to
operate make the design of P2P systems challenging even for relatively simple applications. In the
context of the Internet the common model used for designing P2P networks is that of an overlay
network. In an overlay network all servers are connected via some underlying network (say the IP
network). Two servers may open a direct connection (say a TCP channel) if one knows the address
of the other. The goal of the network designer is to maintain network structure and functionality
while nodes leave and join the network dynamically.

Scalable networks have attracted a considerable amount of attention both in the academic
world and in the ‘real world’ of commercial applications. The first popular application which may
be called P2P is the Napster file sharing service. Napster used a traditional client-server design
in order to help users locate other users which hold the desired file, then both users exchange
the file directly without the intervention of the server. The vital role of a central service implies
that Napster does not entirely comply with our P2P definition. Indeed the service was closed
when an RIAA lawsuit shut down the server. Subsequently other more decentralized file sharing
services emerged. Currently the most popular one is probably eMule [39]. While the motivation for
designing P2P file sharing services is legally controversial, other applications such as file distribution
(such as bittorrent [23]) and voice over IP (such as Skype [119]) use the P2P paradigm in order to
reduce costs and improve bandwidth utilization and thus enjoy better performance over a classical
client-server design.

1



2 Chapter 1. Introduction

1.1.1 Measures of Quality

The quality of every distributed system (or algorithm) is determined by a number of measures such
as the complexity and simplicity of the algorithms involved, the robustness in face of failures and
so on. The dynamic nature of P2P-networks imposes some unique requirements:

Cost of join/leave: The network should accommodate changes easily. When nodes join or leave,
only a small number of nodes should change their state. In particular the linkage; i.e. the
degree of the graph that represents the network, should be small.

Decentralization: The algorithmic task of the network should be distributed among all partici-
pants as evenly as possible. This means that no node (or cluster of nodes) acts as a central
server.

Load Balancing: Complementing the decentralization requirement, it is also required that the
total amount of work is divided among the nodes according to their relative resources. In
particular, if all nodes have more or less the same amount of bandwidth and computational
power (a common assumption) then the work load should be evenly balanced between the
nodes.

Scalability: A P2P network is supposed to operate properly and efficiently even when the network
size varies from a few dozen nodes to a few millions. This means that load imposed on each
node should grow very slowly with the size of the network.

Locality: The construction of the P2P overlay network should be sensitive to the metric hidden
by the underlying network (say the IP network). It is desirable that operations would not be
efficient only in terms of the overlay network but would also take into account the varying
latencies of the channels.

1.1.2 The Continuous-Discrete Approach for Designing P2P Networks

We present a high-level description of the framework which may be titled “think continuously, act
discretely”. Let I be some continuous set in an Euclidean space (typically I = [0, 1) but higher
dimensions are also useful). Let Gc be a graph where the vertex set is I. Each point in I is connected
to some other points. The actual network is a discretization of this continuous graph based on a
dynamic decomposition of the underlying space I into cells where each node is responsible for a
cell. Let C1, C2 ⊆ I be two cells. The node responsible for C1 is connected to the node responsible
to C2 iff there exists x ∈ C1, y ∈ C2 such that (x, y) is an edge in Gc. In other words, two cells are
connected if they contain adjacent points in the continuous graph.

The partition of the space into cells should be maintained in a distributed manner. When a
Join operation is performed an existing cell splits, when a Leave operation is performed two cells
are merged into one. In our view the task of designing a dynamic and scalable network should
follow the following design rules:

1. Choose a proper continuous graph Gc over the continuous space I. Design (and prove the
correctness of) the algorithms in the continuous setting. Designing the algorithms in the
continuous graph is typically quite simple. It has the advantage of being oblivious to the
scalability issue, thus bypasses many of the technical difficulties causes by taking the scalabil-
ity into account. It also offers strong and simple mathematical tools for proving statements.
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2. Find an efficient way to discretisize the continuous graph in a distributed manner, such that
the algorithms designed for the continuous graph would perform well in the discrete graph.
The discretization is done via a decomposition of I into cells. An important parameter of the
decomposition of I is the ratio between the size of the largest and the smallest cell which we
call the smoothness. We show that a decomposition in which the smoothness is constant can
be used to build the Distance Halving DHT and the expander based networks. We show that
if the cells which compose I are allowed to overlap then the resulting graph would be fault
tolerant.

The main advantage of the approach is that it gives a unified method for performing the
Join/Leave operation and dealing with the scalability issue, thus separating it from the actual
network and allowing a more modular design. Of course the proof of the pudding is in the eating.
In the following chapters we demonstrate the usefulness of the approach.

1.2 Thesis Organization

The first part of the Thesis consists of Chapters 2 and 3. In it we present and investigate the
Continuous-Discrete approach for designing dynamic data structures. The Continuous-Discrete
approach is applied for designing a simple and efficient Distributed Hash Table called Distance
Halving. Chapter 2 presents this construction along with many extensions. We show a fault
tolerant variant of the Distance Halving DHT, and provide a dynamic caching algorithm which is
guaranteed to eliminate hot spots. We show how a generalization of the approach could be used
to build a DHT with an expanding topology. Most of the results in Chapter 2 originally appeared
in [99] and [101].

In Chapter 3 we show how the Continuous-Discrete approach could be applied to design scalable
and dynamic quorum systems. We also provide some insights regarding the complexity of finding
live quorums in face of random failures. These results appear in [103] and its earlier version [100].

In the second part of the Thesis we investigate existing data structures. In Chapter 4 we present
and analyze the Neighbor-of-Neighbor (NoN) algorithm in Small World Networks and in Skip
Graphs. We provide tight upper and lower bounds on the effectiveness of the NoN routing algorithm
and of the Greedy routing algorithm. These results were originally published in [88],[102]. Finally
in Chapter 5 we show that with high probability Skip Graphs contain a 4−regular expander. We
demonstrate various applications of this fact, including sampling a random node and finding a
highly replicated data item. The Chapter is based upon [17].
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Chapter 2

Distributed Hash Tables

Summery: In this Chapter we demonstrate the power of the continuous-discrete approach by suggesting
two new P2P architectures and various algorithms for them. The first serves as a DHT (Distributed Hash
Table) and the other is a dynamic expander networks. The DHT network, which we call Distance Halving

allows logarithmic routing and load, while preserving constant degrees. It offers an optimal tradeoff between
the degree and the path length in the sense that degree d guarantees a path length of O(logdn). A major
new contribution of this construction is a dynamic caching technique that maintains low load and storage
even under the occurrence of hot spots. Our second construction builds a network that is guaranteed to
be an expander. The resulting topologies are simple to maintain and implement. Their simplicity makes it
easy to modify and add protocols. A small variation yields a DHT which is robust against random (possibly
Byzantine) faults. Finally we show that, using our approach, it is possible to construct any family of constant
degree graphs in a dynamic environment, though with worst parameters.

2.1 Introduction

A distributed hash table (DHT) is a giant hash table that is maintained by a large number of servers
in a P2P manner. The hash table interface is useful for the implementation of a large variety of tasks,
therefore it received a considerable amount of attention from the research community. Previous
DHT designs include [109], Tapestry [128], Chord [120], Pastry [115], CAN [113], Kademlia [91],
Viceroy [84] and many more. These systems follow the general paradigm of consistent hashing [63]:
Let I denote the space into which the data item’s keys are hashed. The idea is to assign to each
node an ID from I as well. Typically I = {0, 1}k for some k > 0, with out loss of generality we may
assume that I = [0, 1). Thus the ID’s of the n nodes partition I into contiguous segments. Assign
each node a segment (say the segment that lies between its ID and the next largest ID) and let
each node be responsible for storing all the data items with hash values that fall within its assigned
segment. The connections in the network are also determined by the ID’s of the different nodes.
Connections are set such that the system supports a lookup protocol that allows nodes to find the
node which is responsible for a required hash value, and thus retrieve a data item. The differences
between the various DHT’s lie in the different ways in which the connections are established, and
the different algorithms in which the routing paths are found1.

1There may be various ways in which a lookup service is implemented even when the network is given and fixed.
For instance in ‘real life’ systems, an iterative lookup algorithm may behave very differently from a recursive one.
We are interested in the algorithmic/combinatorial nature of the algorithms and ignore such issues.

5



6 Chapter 2. Distributed Hash Tables

Lookup Scheme path length congestion linkage
Chord [120] log n (log n)/n log n
Tapestry [128] log n (log n)/n log n
CAN [113] dn1/d dn1/d−1 d
Small Worlds [70] log2 n (log2 n)/n O(1)
Viceroy [84] log n (log n)/n O(1)
Distance Halving logd n (logd n)/n O(d)
(ours) (2 ≤ d ≤

√
n)

Table 2.1: Comparison of expected performance measures of lookup schemes.

The methodology used in designing these networks could be roughly described as follows: first
find a static family of graphs in which there are good protocols for performing the desired tasks.
Typically designers aim at one of the classical inter-connection networks such as hypercubes and
grids. The next task is to show how to construct in a distributed manner a network with a topology
that ‘approximates’ the topology of the static family of graphs. In this sense CAN approximates
the d−dimensional torus. Chord and Pastry approximate the hypercube and Viceroy approximates
the butterfly. The continuous-discrete approach gives a unified technique for performing this. We
use the continuous-discrete approach to design DHT based on the De-Bruijn graph which we call
Distance Halving.

Like any P2P networks, a DHT must specify the properties aforementioned in the Introduction
- low cost of Join/Leave, Scalability and so on. Being a hash table, a good DHT should also have
the following properties:

Short Lookup path length: The routing path of a lookup should involve as few machines as
possible. We aim to minimize the maximum path length in the network.

Low Congestion: No server should be a bottleneck on the performance of the service. The
load incurred by lookups routing through the system should be evenly distributed among
participating servers.

Fault tolerance: The service should function well after some of its servers/connections fail. We
should consider the scenario in which a random subset of the servers fail, and the worst case
scenario in which an adversary chooses which servers fail. In each of these cases there are two
models to consider. The first is the fail and stop model in which failed servers/connections
do not respond at all. The second is a Byzantine model in which failed servers may act in an
inconsistent and malicious way.

Dynamic caching: Highly popular data items may cause a bottleneck at and around their
location. Relieving the congestion around the hot spot requires the service to support some
dynamic caching mechanism, in which the data item is replicated to other servers. We want
to allow the maximally congested server in the system to have a low load while maintaining
the number of data items each server has to store as small as possible.

Table 2.1 summarizes the performance of different constructions under these parameters.
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2.1.1 Our Contributions

Our Contributions are both in the conceptual and in the concrete levels. Conceptually we provide
a set of design rules, and a framework in which we believe it is relatively simple to design and
analyze dynamic data structures. We call the approach ‘continuous-discrete’, it is the first attempt
to unify different constructions in this field.

Concretely we suggest six novel constructions and algorithms:

The Distance Halving DHT: We present a novel construction for a DHT in Section 2.2. The
construction is very simple and offers logarithmic dilation and load. An important feature is that
it has an optimal tradeoff between the degree and the dilation. A degree of d guaranties a dilation
of O(logd n). Previous constructions either had a logarithmic degree (such as Chord [120]) or were
relatively more involved (such as Viceroy [84]). See Table 2.1.

Our DHT construction is inspired by the De-Bruijn graph. We are not the only ones to use the
De-Bruijn graph in this context. Constructions using it were suggested independently by Fraigniaud
and Gauron [41], Kaashoek and Karger [62] and Abraham et al [2]. The parameters they achieve
are similar ours, yet their approach is completely different. In particular it is not clear how to
obtain in theses constructions the caching protocol and the low load in permutation routing, which
we show in the following Sections.

A fault tolerant DHT: In the continuous-discrete approach the ID’s of nodes are used to divide
the name space into segments, thus converting the continuous graph into a discrete one. In Section
2.3 we show that a different discretization technique which allows segments to overlap results in a
more fault tolerant construction.

Dealing with hot spots: We show a dynamic caching algorithm in Section 2.4, that provably
ensures that under any set of requests for data items, all nodes enjoy low load, thus it relieves the
occurrence of hot spots. Dynamic caching achieved a considerable amount of attention under many
different models. The problem of dynamic caching in DHT’s was specifically raised by Ratnasamy
et al at [114]. To the best of our knowledge the algorithm we present is the first to ensure this
property.

Load Balancing: In Section 2.6 we present several algorithms for maintaining a good load
balance between nodes. These techniques allow us to build DHT’s with constant degrees with
high probability. One of the methods we show guarantees constant degrees in the worst case. The
construction in [41] has maximum out-degree of log n, and so is the maximum in-degree of [62].
The techniques we show are applicable for other DHT constructions as well.

Building expander graphs: In Section 2.7 we show a distributed construction of a network
which is guaranteed to be a constant degree expander. Our construction is based upon applying
the continuous-discrete approach over the Gabber-Galil [44] continuous graph. Law and Siu have
independently designed another algorithm which builds an expander with high probability [73].
Their approach is completely different from ours. Possible applications for dynamic expanders
include load balancing jobs and an infrastructure for maintaining probabilistic quorums.
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Figure 2.1: The upper figure demonstrates the edges of a point in the continuous graph.
The lower figure shows a mapping of a segment to two smaller ones.

Emulating everything: Finally we show in Section 2.5 that the continuous-discrete approach
could be used to emulate any graph in a distributed setting, including say, a butterfly of a cube
connected cycle (albeit with somewhat worst parameters compared to the Distance Halving design).

We stress that the simplicity of the continuous-discrete approach plays a central role in the
design and analysis of the algorithms above. In particular in that of the caching algorithm of
Section 2.4 and the Fault Tolerant construction of Section 2.3. We see the relative ease in which
these problems were solved as a ‘proof of concept’ for the entire approach.

2.2 The Distance Halving DHT

2.2.1 The Construction

First we define the continuous Distance Halving graph Gc. The vertex set of Gc is the interval
I
def
= [0, 1). The edge set of Gc is defined by the following functions: `(y)

def
= y

2 , r(y)
def
= y

2 + 1
2

where y ∈ I, ` abbreviates ‘left’ and r abbreviates ‘right’. Note that the out-degree of each point
is 2 while the in-degree is 1. In Figure 2.1 the upper diagram shows the edges of a point in I,
the lower diagram shows that an interval is mapped into two intervals, each half its size. We may
write r([y, z)), `([y, z)) meaning the image of the interval [y, z) under r, `. Next we show how to
construct a discrete Distance Halving graph. The nodes of the graph correspond to a set of n servers
V0, V1, . . . , Vn−1. Denote by ~x a set of n points in I such that x0 < x1 < . . . < xn−1. The point xi
would typically be a hash of the i.d of some server Vi. The points of ~x divide I into n segments.
Define the segment of xi to be s(xi) = [xi, xi+1) (i = 1 . . . n− 1) and s(xn) = [xn−1, 1) ∪ [0, x1).

In the discrete Distance Halving graph G~x, each node Vi is associated with the segment s(xi),
we may refer to this segment as s(Vi) as well. If a point y is in s(xi) we say that Vi covers y. A
pair of nodes (Vi, Vj) is an edge of G~x if there exists an edge (y, z) in the continuous graph, such
that y ∈ s(xi) and z ∈ s(xj). The edges (Vi, Vi+1) and (Vn−1, V0) are added such that G~x contains
a ring. The ring edges are anti-parallel directed edges.

Theorem 2.2.1. The total number of edges in G~x without the ring edges is at most 3n− 1.

Proof. The proof is by induction on n. If n = 1 then there are two self edges. Assume ~x has n− 1
points, and point n is now added. The degree of the continuous graph is 3. The segment that the
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new point covers was previously covered by another point, therefore the addition of point n can
add at most 3 new edges to the graph.

Theorem 2.2.1 implies that for every vector ~x, the average degree of the graph is at most 6. In
order to bound the maximum degree of the graph, another property should be considered:

Definition 2.2.2. The smoothness of ~x is denoted by ρ(~x) and is defined to be maxi,j
|s(xi)|
|s(xj)| .

If it is guaranteed that the smoothness of ~x is bounded by some constant independent of n,
we say that ~x is smooth. We may write ρ(G~x) or simply ρ whenever there is no ambiguity. The
smoothness of ~x plays a central role in the analysis of the construction.

Theorem 2.2.3. The maximal out-degree of G~x without the ring edges is at most ρ(~x) + 4, the
maximal in-degree without the ring edges is at most d2ρ(~x)e+ 1.

Proof. Let i be such that |s(xi)| is maximal. The length of the minimal segment is therefore at
least |s(xi)|

ρ . We have |r(s(xi))| = 1
2 |s(xi)|, therefore there are at most

d(1
2 |s(xi)|)/(

|s(xi)|
ρ )e+ 1 = d12ρe+ 1

different segments that intersect the interval r(s(xi)). The same argument applies for `(s(xi)), and
we have 2(d12ρe+ 1) ≤ ρ+ 4, which bounds the out-degree.

The bound on the in-degree follows in a similar way. Now the preimage of |s(x)| is one contiguous
of segment of length 2|s(x)|, and at most d2ρ(~x)e+ 1 different segments might intersect it.

Mapping the data items to servers: The mapping of data items to nodes is done in the same
manner as other constructions of distributed hash tables (such as consistent hashing [63], Chord
[120], Viceroy [84] and CAN [113]). First data items are mapped into the interval I using a hash
function. Node Vi should hold all data items mapped to points in s(Vi). We assume that h is some
hash function ( for instance a k−wise independent function for some k), which is chosen at the
construction of the system and is given to every server upon joining.

The De-Bruijn Graph The Distance Halving construction resembles the well known De-Bruijn
graph.

Definition 2.2.4. The r-dimensional De-Bruijn graph consists of 2r servers and 2r+1 directed
edges. Each node corresponding to an r−bit binary string. There is a directed edge from each
node u1u2 · · ·ur to nodes u2 · · ·ur0 and u2 · · ·ur1.

The Distance Halving DHT emulates the De-Bruijn graph in the following sense. Assume that
n = 2r. Let ~x be a set of m points such that xi = i

n , the discrete Distance Halving graph G~x
without the ring edges is isomorphic to the r-dimensional De-Bruijn graph. To see this blow the
interval I by a factor n so that I = [0, 2r). Now the location of point xi is at i. Let v1v2 . . . vr
be the binary representation of i. It is easy to verify that `(xi) is 0v1 . . . vr−1 and that r(xi) is
1v1 . . . vr−1. Now the isomorphism follows by mapping each v1v2 . . . vr of G~x to vrvr−1 . . . v1 in the
De-Bruijn graph.

The r-dimensional De-Bruijn graph is a well investigated combinatorial object, it is known
for instance that its diameter and mixing time are Θ(r) and that the smallest bisection contains
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Θ(r−12r) edges. The ease in which short routes are found makes it a popular topology for parallel
algorithm. See Leighton [75] for an overview of various properties of this graph.

While the definition of De-Bruijn graph we presented assumes each node is represented by
a binary string, it is natural to generalize the definition so that each node is represented by a
string of alphabet size ∆. In this case the diameter of the graph would be log∆ n. A variation
of the continuous graph emulates the De-Bruijn graph with alphabet size ∆. See more details in
Section 2.2.5. Different ways to emulate the De-Bruijn graph in a P2P manner were suggested in
[41, 62, 2].

2.2.2 Joining and Leaving the Network

So far we described the graph given a fixed set of points. In the following we show a general
algorithmic scheme which allows a new node to join the network. If a new server V wishes to enter
the system it does the following:

Algorithm Join

1. Choose some point x and set V.id← x.

2. Call the lookup procedure2 for point x. The procedure returns the ID of the node Vj for
which x ∈ s(xj).

3. The segment s(xj) should be divided into two parts so that s(x) = [x, xj+1). Receive from Vj
all the data items that are mapped to s(x) and the addresses of all the neighbors V should
have.

4. Inform the neighbors of V so that they can change their address tables accordingly.

How to choose V.id is not shown here. The way nodes choose there location on the ring
determines the smoothness of the graph, so the specifics of Step (1) of the scheme are important and
may differ according to context. Various options are discussed in-depth in Section 2.6. Alternative
ways for performing step (1) were subsequently suggested in many papers, c.f [64],[49],[25],[85],[66].

Step (2) of the algorithm involves one operation of Lookup which would be discussed later.
Assuming the graph has constant degree Step (3) of the algorithm involves only O(1) messages.

When node Vi leaves the network, some existing node should take over its segment. The simplest
solution would be that the node that is the predecessor of Vi on the ring enlarges its segment such
that it includes s(xi). More sophisticated solutions are discussed in Section 2.6.

2.2.3 The Lookup Operation

We set some notations that would be useful in the future. For any two points x, y ∈ I, define
d(x, y) to be |x− y|. Let σ denote some infinite sequence of binary digits, and σt denote its prefix
of length t. Denote by σt.0 and σt.1 the concatenation of a bit to the string σt. For every point

2We do not deal with the problem of how to perform this initial lookup. It is assumed that a joining node has
some host node which helps it to join the system.
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y ∈ I we define the function w(σt, y) in the following recursive manner:

w(σ0, y) = y (2.1)
w(σt.0 , y) = `(w(σt, y)) (2.2)
w(σt.1 , y) = r(w(σt, y)) (2.3)

In other words w(σt, y) is the point reached by a walk along the edges of Gc that starts at y and
proceeds according to σt when 0 represents ` and 1 represents r.

Routing properties of the continuous DH graph:

Loyal to the continuous-discrete approach we first demonstrate how routing is performed in the
continuous graph. The following observation justifies the name ‘Distance Halving’:

Observation 2.2.5 (distance halving property). For all y, z ∈ I and for all binary strings σ
it holds that:

d(r(y), r(z)) = d(`(y), `(z)) = 1
2d(y, z) (2.4)

d(w(σt, y), w(σt, z)) = 2−t · d(y, z) (2.5)

Let σ(y) be the binary representation of y and σ(y)t the first t bits of σ(y). The following claim
is used to find short paths between different segments of the continuous graph.

Claim 2.2.6. Let y, z ∈ I .For all t it holds that d (y, w(σ(y)t, z)) ≤ 2−t.

The claim states that a walk determined by the binary representation of y would approach y
quickly, and this is independent of the starting point z.

Proof. Let ht be the point reached by walking backwards (along the in-degree edge) from y for t
steps. Such a walk is uniquely defined since each point in I has in-degree of exactly one. Note that
the direction (left or right) of the i’th step in this walk is determined by the i’th bit in σ(y). In
other words it holds that: w(σ(y)t, ht) = y. We have:

d
(
w(σ(y)t, z), y

)
= d

(
w(σ(y)t, z), w(σ(y)t, ht)

)
.

By Observation 2.2.5 it holds that d
(
w(σ(y)t, z) , w(σ(y)t, ht)

)
= 2−td(z, ht) ≤ 2−t.

The previous two claims demonstrate two ways in which nodes of the continuous graph can
approach one another. Loyal to our design rules we use the properties of the continuous graph
to design simple routing algorithms on the discrete graph. These algorithms emulate the scheme
described in Claims 2.2.5 and 2.2.6.

Say node Vi wishes to lookup the point y. The lookup should return the node Vj such that
y ∈ s(xj). We present two algorithms that perform lookup. The first will have short lookup paths,
while the second will increase the lookup path by a factor of at most two and will have better load
balancing qualities.
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Short Lookup

Claim 2.2.6 states that from any point in I it is possible to reach a point that is close to y by
walking according to the binary representation of y. If y ∈ s(xi) for some server, then s(xi) would
also contain points close to y. This observation is used to emulate the continuous lookup in G~x.
The natural way to use Claim 2.2.6 is to start a walk from some point in s(xi) according to σ(y).
The problem with this approach is that the length of the walk should be decided in advance (for
every predefined t the walk would lead to a distance of 2−t from y). The alternative we chose
is to walk ‘backwards’; i.e. walk along a path which starts at y and approaches the point in the
middle of s(xi). This requires the use of the backward edges, therefore we assume that every edge is
bidirectional (which is the case if channels are established using TCP). The following is a description
of the lookup operation initiated by Vi.

Short Lookup (xi, y)

1. Let z be the point in the middle of s(xi). Calculate the minimum t such that w(σ(z)t, y) is
in s(xi).

2. Let h = w(σ(z)t, y). Start moving from h (i.e. from s(xi) and therefore from Vi) on the
backward edges. After t steps the server covering y is reached.

The length of the lookup path is determined by t. If the segments are smooth, then |s(xi)| can not be
too small thus t must be small as well. A direct corollary of Claim 2.2.6 is that t ≤ − log(|s(xi)|)+1.
The shortest segment in I is of length at least 1

ρn , therefore we have:

Corollary 2.2.7. The length of a lookup path taken by Short Lookup is at most log n+ log ρ+ 1.

Note that in Short Lookup the nodes need not to know what ρ or n is, and all computations
are based on local knowledge only. Next we analyze the congestion of Short Lookup.

Definition 2.2.8. The congestion of node Vi is the probability Vi is active in a routing between a
randomly chosen node and a random point in I. The congestion of the network is the maximum
congestion over all its nodes.

First we prove that the congestion of the continuous graph is low; i.e. the congestion when
both source and destination are chosen randomly in I.

Lemma 2.2.9. Let y, z be chosen randomly from I. The probability that node V participates in a
lookup of length t that starts at y and approaches z using the Short Lookup algorithm is at most
|s(V )|(t+ 1).

Proof. Since z is a random point, it holds that σ(z)t is a random sequence of bits. It follows that
in order for V to participate in the ith hop of the lookup, two events must occur:

1. There is an interval of length 2i|s(V )| from which it is possible to reach s(V ) in i steps.
Note that since the in-degree of each point in I is 1, this interval is unequally defined and
independent of y, z. It is necessary that y falls within that interval.

2. Once y is chosen, it is necessary that the i first bits of the rondom string σ(z) would be such
that a message starting from y would actually reach s(V ).
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Both events are independent from one another, therefore for each i = 0...t the probability of server
V to participate in lookup in the ith step is |s(V )| · 2i · 2−i = |s(V )|. Adding the probabilities for
all i ≤ t yields the result.

Theorem 2.2.10. The congestion of node V is at most (log n + log ρ + 1)ρ|S(V )| which implies
that if ~x is a smooth set of points, the congestion of G~x under Short Lookup is Θ( logn

n ).

Proof. The proof follows the same lines of the previous lemma. The number of hops in the path
is bounded by log n + log ρ + 1. For each hop in the path, we show that the probability that V
participates is bounded by ρ|S(V )|. Fix some i ≤ log n + log ρ + 1. As before, there is a unique
segment of length 2i|S(V )| in which y must exist in order for the path to reach s(V ) on ith step.
The probability of this occurring is 2i|s(V )|. Now, given that y is in this segment, in order for V to
participate, there is a unique set of i steps leading from y to |s(V )|. Let U be a randomly chosen
node which lookups y and let z be its middle point. We need to calculate the probability the first
i bits of σ(z) are indeed i bits leading from y to s(V ). This is tantamount to asking what is the
probability z falls within some segment of length 2−i. Since the smoothness is ρ, the size of each
s(U) is at least 1

ρn , thus there are at most 2−iρn different nodes whose middle points might be in
the segment. Thus the probability V participates in the ith step is bounded by:

2−iρn
n
· 2i|S(V )| = ρ|S(V )|.

The second part of theorem follows by the fact that if ρ is constant then |s(V )| is Θ(1/n).

Note that there is no uncertainty in the result of Theorem 2.2.10. If ~x is smooth then the
congestion is low for all nodes with certainty.

Distance Halving Lookup

The Distance Halving lookup scheme enjoys small congestion even in a worst case permutation
routing. It has two phases, the first phase is to send the message to an almost random destination,
the second phase routes the message from the random destination to the target. First we describe
how to perform the first phase. When node Vi initiates a lookup for point y, it first chooses a
random string of bits τ . The header of the message Vi sends should contain Vi location - xi, the
target y, the random string τ , and a counter t initially set to 0. Upon receiving a message a node
does the following:

Distance Halving Lookup - Phase I

1. Check if w(τt, y) is covered by the current segment or by one of the neighboring segments. If
so move the message to the server which covers w(τt, y) and move to phase II.

2. Set t← (t+ 1) and update the header of the message.

3. Send the message to the neighbor covering the point w(σt, xi). (An edge must exist).
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In the second phase the message moves backwards from w(τt, y) to y along the backward edges.
The counter t may not be updated, it could be calculated from the source and current location of
the message.

It is convenient to think of the routing as if two messages are moving simultaneously, one from
the source and one from the target. Both of them move according to the same sequence τ . Claim
2.2.5 states that each step the distance between them is reduces by half, until their distance is at
most 1

ρn , in which case they would be in the segment of the same node (or neighboring nodes). The
following theorem is a direct result of Claim 2.2.5:

Theorem 2.2.11. The length of a lookup path taken by Distance Halving Lookup is at most 2 log n+
2 log ρ.

The following theorem states that the maximum congestion of the Distance Halving Lookup is
also logarithmic.

Theorem 2.2.12. Let ~x be a smooth set of points. The congestion of G~x under Distance Halving
Lookup is Θ( logn

n ).

Proof. The first phase of the routing is basically similar to the greedy scheme, i.e. the messages
passes through a random path. Thus the same analysis of Theorem 2.2.10 follows. The second
phase of the routing is analogical to the first phase.

2.2.4 Permutation Routing

The Distance Halving Lookup is similar in spirit to the routing scheme suggested by Valiant [122]
for the hypercube, therefore it is not surprising that it imposes small congestion for worst case
permutation routing. Let τ be some permutation and over [n] and assume that for all i node Vi
initiates a Distance Halving Lookup for a point in s(Vτ(i)).

Theorem 2.2.13. Given that G~x is smooth, then for every permutation τ it holds that when routing
τ w.h.p each node participates in the routing of at most O(log n) messages, where the probability is
taken over the random choices of the routing algorithm.

Proof. First, note that since the length of each of the n lookup paths is typically Θ(log n), by an
averaging argument there would be a node which served Ω(log n) messages, so the Theorem is tight.

Fix a node V . In the following we prove that the expected number of lookups that V participates
in is O(log n). The high probability bound would follow later. For a contiguous segment Q ⊂ I, let
LQi be the random variable counting the number of lookups that reach segment Q at the ith step3,
and consider only the first phase of the routing. We claim that

E
[
L
s(V )
i

]
≤ n(ρ+ 1)|s(V )|.

We prove it by induction on i. As common in proofs by induction we need to strengthen the claim
slightly and prove that any segment Q ⊂ I, has Θ(n(ρ + 1)|Q|) messages reaching it at step i.
Clearly Q can cover points which belong to at most nρ|Q| + 1 ≤ n(ρ + 1)|Q| different servers,
therefore LQ0 ≤ n(ρ+ 1)|Q|.

3It is not necessary that the messages in the ith step indeed reach the segment together. There is no implied
assumption of synchrony.
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For a message to reach Q in the ith step, it must be that on step i − 1 the message was in an
interval of length 2|Q| and then moved to Q. Call this interval Q′.

E
[
LQi

]
=

1
2
LQ

′

i−1

E
[
LQi

]
=

1
2

E
[
LQ

′

i−1

]
The induction hypothesis states that

1
2

E(LQ
′

i−1) ≤
1
2
n(ρ+ 1)|Q′| = n(ρ+ 1)|Q|.

There are at most log n+log ρ steps in the first phase, and |s(V )| ≤ ρ
n . Summing over i yields that

the expected number of lookups that pass through V in the first phase is at most (log n+log ρ)(ρ+
1)ρ, which is O(log n) when ρ is a constant.

The second phase of the routing is similar to the first phase but in reverse order. When paths
are seen as going from the target towards the middle random point, then each path is a random walk
determined by the random choices of the routing algorithm. Thus the analysis of the first phase
holds for the second phase as well. We conclude that if ~x is smooth, then each node participates
in the routing of expected O(log n) messages.

Next we prove that w.h.p the actual number of lookups that pass through V is indeed O(log n).
Let pi (i = 1 . . . n) indicate the probability that message i passes through s(V ) during the first
phase of the lookup. By the previous claim we know that

∑n
i=1 pi ∈ O(log n). The random choices

that determine the paths that messages take are independent from one another. Standard use of
Chernoff’s inequality yields:

Pr
[∑

pi > Θ((1 + ε) log n)
]
≤ n−Θ(ε2)

Choosing ε large enough would allow us to use the union bound over all servers thus proving the
bound for the first phase. As before the analysis of the second phase is similar to that of the
first.

In reality, permutation routing is not likely to occur. Rather, nodes initiate lookups for data
items, and the hash function which maps data items to points should spread them evenly along I.
A family of hash functions H is said to be k-wise independent if when h ∈ H is chosen randomly it
holds that for any data items m1 6= m2 6= . . . 6= mk the random variables h(m1), h(m2), . . . , h(mk)
are independent and uniformly distributed in I.

Next we handle the scenario where each node Vi initiates a lookup for data item mi; i.e. node
Vi seeks for the node covering the point h(mi). We also assume that mi 6= mj for all i 6= j.4

Theorem 2.2.14. Given that G~x is smooth and h is log n-wise independent, for every permutation
τ it holds that when routing τ with high probability each node participates in the routing of O(log n)
messages, where the probability is taken over the choice of the hash function and the random choices
of the routing algorithm.

4Section 2.4 deals with the case where the same item is queried by multiple nodes.
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Proof. The proof follows the same lines as the proof of Theorem 2.2.13. The only difference is
that in the second phase it is not true that the paths messages take are independent, but rather
are log n-wise independent. Fix some node V and let Xi denote the event that message i passed
through V in the second phase of the routing. The analysis of Theorem 2.2.13 holds in this case
as well so we know E[

∑
Xi] is O(log n) and that the Xis are log n-wise independent. We use the

following high moment version of Chebyshev’s inequality:

Claim 2.2.15. Let X1, X2, . . . , Xn be 2k−wise independent random variables. Denote by X =∑
iXi, µ = E[X] and ε > 0. If V ar[X] ≤ E[X] then:

Pr[|X − µ| ≥ εµ] ≤ (ε2µ)−k

In our case the random variables are Bernoulli variables so V ar[Xi] ≤ E[Xi]. The pair-wise
idependence implies that V ar[X] ≤ E[X]. Now we apply Claim 2.2.15. Setting 2k = log n and ε
large enough the probability a node handles more than ε log n messages is smaller that 1

n2 and a
union bound over all nodes completes the proof of the Theorem.

Theorem 2.2.14 demonstrates that in some sense the Distance Halving Lookup is good in a worst
case scenario. An adversary may choose for each Vi its appropriate mi (as long as the adversary is
oblivious of h). It is worth noting a few facts:

• Strictly speaking, the Distance Halving routing is not an oblivious routing; i.e. the edge in
which the message is sent, is not a function of the destination only but is also a function of
the numeric value of xi and the random string τ .

• The routing algorithm is sensitive to small perturbations in the numerical value of the pa-
rameters. It is important to be precise enough, and to allocate enough bits for the variables.

2.2.5 Degree-Path Length Optimality

Increasing the degree may reduce the lookup length and the congestion. For any ∆ ≥ 2 construct
a continuous graph with the following edges: fi(y) = y

∆ + i
∆ (i = 0, 1, . . . ,∆ − 1). Now Claim

2.2.5 translates to be d(fi(y), fi(z)) = 1
∆d(y, z) and Claim 2.2.6 translates to be d(y, σt(z)) ≤ ∆−t.

Therefore:

Theorem 2.2.16. A discretization of the continuous graph would result with a graph of degree
Θ(∆) and with path length Θ(log∆ n).

Note that the diameter of any graph with degree ∆ is at least log∆ n, so for every ∆ the
construction has optimal path length with respect to the degree (up to constants). Two interesting
options are setting ∆ = log n or ∆ = nε (for some constant ε), as the first results with a lookup
length of logn

log logn , and the second with a lookup length of O(1). It is worth noting that the analysis
of previous Sections generalizes so that for each choice of ∆, if the points are smooth the congestion
would be Θ( log∆ n

n ), thus the increase of the degree would decrease the congestion.
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2.3 Fault Tolerant constructions

In this section we present a fault tolerant DHT. There are two common methods for modeling the
occurrence of faults. The first is the random fault model, in which every node becomes faulty with
some probability and independently from the other nodes. The other is the worst case model in
which an adversary which knows the state of the system chooses the faulty subset of nodes. There
are several models that describe the behavior of faulty nodes. One of them is the fail-stop model
in which a faulty node is effectively being deleted from the system. Another is a spam generating
model in which a faulty node may produce arbitrary false versions of the data item requested. A
third model is the Byzantine model in which there are no restrictions over the behavior of faulty
node.

Our construction is based on the DH continuous graph, described in the previous Section. It
differs from the construction of Section 2.2, only in the discretization, by letting the segments of the
vertices overlap. In the random fault model, if we want all servers to be able to access all the data
items then it is necessary that the degree be at least Ω(log n) and that every data item is stored
by at least Ω(log n) servers. Otherwise with high probability there would be servers disconnected
from the system and data items completely deleted from the system. Indeed our construction has
logarithmic degree. We show two routing algorithms. The first has time and message complexity
of O(log n). It guarantees that in the random fail-stop model w.h.p all nodes can locate all data
items. The second routing algorithm guarantees the same but under the random spam generating
model. This algorithm has running time (parallel) of O(log n) and message complexity of O(log3 n).

2.3.1 Related Work

Several peer-to-peer systems are known to be robust under random deletions ([128], [120], [113]).
Stoica et al prove that the Chord system [120] is resilient to random faults in the fail-stop model,
Hildrum and Kubiatowicz [60] proved the resilience of Pastry and Tapestry. It does not seem likely
that these systems could be made spam resistant without a significant change in their design. Fiat
et al [116, 40] propose a content addressable network that is robust against deletion and spam in
the worst case scenario, i.e. when an adversary can choose which nodes fail. In this model some
constant fraction of the non-failed nodes could be denied from accessing some of the data items.
While their solution handles a more difficult model than ours, it has several disadvantages:

• It is not clear whether the system can preserve its qualities when nodes join and leave dy-
namically.

• The linkage needed is Ω(log2 n).

• The construction is very complicated.

It is important to note that all construction (including ours) assume that the construction itself
was done properly; i.e. that during the Join/Leave operations nodes followed the protocol. Giving
any sort of performance guarantees when nodes are allowed arbitrary behavior during network
construction seems to be a very difficult task.

2.3.2 The Overlapping Distance Halving DHT

Our construction (yet again) is a discretization of a continuous graph. The continuous graph we
use is the same continuous graph used to build the DH DHT in Section 2.2.1. The difference is in
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the discretization technique.

Each node Vi (1 ≤ i ≤ n) in the graph is associated with a segment s(Vi)
def
= [xi, yi]. These

segments should have the following properties:

Property I - The set of points ~x = x1, x2, . . . , xn is evenly distributed along I. Specifically we
desire that every interval of length logn

n contains Θ(log n) points from ~x. The point xi is fixed
and would not change as long as Vi is in the network.

Property II - The point yi is chosen such that |xi − yi| ∈ Θ( logn
n ). It is important to notice that

for i 6= j, s(Vi) and s(Vj) may overlap. The point yi would be updated as nodes join and
leave the system and the value of n changes. The precise manner in which yi is chosen and
updated would be described in the next section.

The edge set of G is defined as follows. A pair of of nodes (Vi, Vj) is an edge in G if s(Vi) and s(Vj)
are connected in Gc or if s(Vi) and s(Vj) overlap. The edges of G are bi-directional. As before, a
point z ∈ I is said to be covered by Vi if z ∈ s(Vi). The mapping of data items to nodes is done as
before, node Vi stores all data items D for which h(D) ∈ s(Vi) when h is some hash function. We
observe the following:

1. Each point in I is covered by Θ(log n) nodes ofG. This means that each data item is replicated
Θ(log n) times.

2. Each node in G has degree Θ(log n).

Join and Leave: Our goal in designing the Join and Leave operations is to make sure that
properties I,II remain valid w.h.p. When node Vi wishes to join the system it does the following:

Join Algorithm Vi

1. Choose at random xi ∈ [0, 1)

2. Calculate a variable qi which is an estimation of logn
n .

3. Set yi = xi + qi mod 1.

4. Update all the appropriate neighbors according to the definition of the construction.

5. The neighbors may decide to update their estimation of logn
n and therefore change their y

value.

When node Vi wishes to leave the system (or is detected as down) all its neighbors should update
their routing tables and check whether their estimation of logn

n should change. If so they should
change their y value accordingly. The following lemma is straight forward:

Lemma 2.3.1. If n points are chosen randomly, uniformly and independently from the interval
[0, 1] then with probability 1− 1

n each interval of length Θ( logn
n ) would contain Θ(log n) points.
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As a consequence if each node chooses its x-value uniformly at random from I then property-I
holds. Observe that if each node’s estimation of logn

n is accurate within a multiplicative factor
then property II holds as well. The procedure for calculating qi is very simple. Assume xj is the
predecessor of xi along I. It is proven in [84] that with high probability

log n− log log n− 1 ≤ log
(

1
d(xi, xj)

)
≤ 3 log n

Conclude that node Vi can estimate log n within a multiplicative factor simply by inverting the
distance between its x-value and the x-value of its predecessor. Call this estimation αi. A multi-
plicative estimation of log n implies a polynomial estimation of n, therefore an additional idea should
be used. Let qi be such that in the interval [xi, xi + qi] there are exactly αi different x-values. A
direct consequence of Lemma 2.3.1 is the following:

Lemma 2.3.2. With high probability the number qi estimates logn
n within a multiplicative factor.

When a node joins or leaves the system at most O(log n) nodes need to updates their q value.
So with high probability property II holds as well.

Mapping the data items to servers: The mapping of data items to servers is done in the
same manner as previously. First data items are mapped into the interval I using a hash function.
Node Vi should hold all data items mapped to points in s(Vi). Note that all nodes holding the
same data item are connected to one another so they form a clique. If a node storing a data item
is located, then other nodes storing the same data item are quickly located as well. This means
that accessing different nodes associated with the same data item in parallel can be simple and
efficient. It suggests storing the data using an erasure correcting code, (for instance the digital
fountains suggested by Byers et al [26]) and thus avoid the need for replication. The data stored
by any small subset of the servers would suffice to reconstruct the data item. Weatherspoon and
Kubiatowicz [124] claim that an erasure correcting code may improve significantly the bandwidth
and storage used by the system.

2.3.3 The Lookup Operation

The routing properties of the continuous graphGc were discussed in Section 2.2.3. Assume processor
Vi lookups point y ∈ I. Recall that Claim 2.2.6 implies that there is a point z ∈ s(Vi) such that
there is a path of length O(log n) between z and y in Gc. Call this path the canonical path. The
canonical path exists is Gc, yet by the definition of G, if (a, b) is an edge in Gc, a is covered by Vi
and b is covered by Vj then the edge (Vi, Vj) exists in G. This means that the canonical path can
be emulated by G.

Simple Lookup: Every point in I is covered by Θ(log n) nodes. When node i wishes to pass
a message to a node covering point z ∈ I it has Θ(log n) different neighbors that cover z. In the
Simple Lookup it chooses one of these nodes at random and sends the message to it. The path of
the message could be determined either by Short Lookup or by Disntance Halving Lookup. Either
way, the following theorem follows directly from Claim 2.2.6 and Theorem 2.2.10.

Theorem 2.3.3. Simple Lookup has the following properties:
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Figure 2.2: In the spam resistance protocol the message is sent through
all the nodes covering the path.

1. The length of each lookup path is at most log n+O(1). The message complexity is log n+O(1).

2. If Vi is a randomly selected node and y is chosen at random from I, then the probability a
given node participates in the lookup is Θ( logn

n ).

The following theorem describes the fault tolerance properties of the lookup:

Theorem 2.3.4. If each node fails independently with fixed probability p, then for sufficiently small
p (which depends entirely on the parameters chosen when constructing G), with high probability each
surviving node can locate all data items.

Proof. We prove the following claim:

Claim 2.3.5. If p is small enough, then w.h.p every point in I is covered by at least one server.

Proof. Assume for convenience that x1 < x2 < · · · < xn. Each point in an interval [xi, xi+1] is
covered by the same set of Θ(log n) nodes. Call this set Si. We have

Pr[ All nodes in Si were deleted ] = pΘ(logn)

Therefore for sufficiently small p this probability is smaller than n−2. Applying the union bound
over all i yields that with probability greater than 1− 1

n every point in I is covered by at least one
node. It is important to notice that for an arbitrary value of p it is possible to adjust the q values,
so that each point in I is covered by sufficiently many servers, and the claim follows.

For every edge (a, b) in Gc there exists at least one edge (Vi, Vj) in G such that Vi covers a
and Vj covers b, therefore the path could be emulated in G and the simple lookup succeeds. We
stress that after the deletions the lookup still takes log n time and log n messages. Furthermore the
average load induced on each node increases only by a constant factor.

Spam Resistant Lookup: Now we assume that a failed node may generate arbitrarily false
data items. We show that every node can find all correct data items w.h.p. Just as in the simple
lookup, the spam resistant lookup between node V and y ∈ I emulates a path between s(V ) and y
in Gc. The main difference is that now when node Vi wishes to pass a message to a node covering
point a it will pass the message to all Θ(log n) servers covering a. At each time step each node
receives Θ(log n) messages, one from each node covering the previous point of the path. The node
sends on a message only if it were sent to it by a majority of nodes in the previous step.
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Theorem 2.3.6. Assume each node fails with some small enough probability p. The spam resistant
lookup has the following properties:

1. With high probability all surviving nodes can obtain all correct data items.

2. The lookup takes (parallel) time of log n.

3. The lookup requires O(log3 n) messages in total.

Proof. As before, Statement (2) follows directly from Claim 2.2.6. Statement (3) is correct since
each edge of the path in Gc translates to a bipartite complete graph with O(log n) nodes and O(log2)
edges, and a message is passed along each of these O(log2) edges. It remains to prove Statement
(1). Claim 2.3.5 in fact shows that If each node fails with probability p, then for sufficiently small
p (which depends entirely on the parameters chosen when constructing G) it holds that with high
probability every point in I is covered by a majority of non-failed nodes. Now the proof of Theorem
2.3.6 is straight forward and is done by induction on the length of the path. Every point along the
path is covered by a majority of good nodes, therefore every node along the path would receive a
majority of the authentic message. It follows that with high probability all nodes can find all true
data items.

The easy proofs of Theorems 2.3.4 and 2.3.6 demonstrate the advantage of designing the algo-
rithms in Gc and then migrating them to G. Proving the robustness of Gc is a straight forward
argument.

2.4 Dynamic Caching - Relieving Hot Spots

In this section we discuss a protocol that eliminates the occurrence of hot spots in the network.
A hot spot occurs whenever a data item is requested simultaneously by a large number of clients
- an event that happens quite often in today’s internet. A highly popular data item might not
only cause the server holding it to be swamped, but might also cause a bottleneck at and around
its location. In order to avoid the congestion caused by a hotspot it is necessary to replicate the
popular data item to other servers (i.e. caching), such that the load of handling all requests is
distributed between a large number of servers. Relieving hot spots was pointed out as one of the
main open problems regarding the design of DHT’s by Ratnasamy et al [114]. To the best of our
knowledge ours is the first protocol that resolves this problem, at least in the sense of providing
a provable guarantee. A detailed comparison with previous work is provided bellow. A dynamic
caching protocol should satisfy four properties:

1. Prevent Swamping: Each server should handle as few messages as possible. This is the
ultimate goal of the protocol, and should hold for every possible set of requests.

2. Keep the Caches small: Each server has a cache in which it stores data items. A trivial, yet
inefficient, caching protocol would be to store all data items in all servers. Such a solution
would of course prevent swamping, but would have horrific performance in terms of memory
use. Our goal is to keep the cache of each server as small as possible.

3. Reduce latency: The caching protocol may cause some delays in obtaining the desired data
item. Our goal is to reduce this delay to a minimum.
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4. Keep update time low: Content may change over time, a caching protocol must be able to
accommodate efficiently changes in the cached data item itself.

Previous Work

Various caching techniques were suggested in the literature, which operate under various distributed
models (e.g. [109],[63],[32],[29]). Chankhunthod et al [29] suggested that caches be arranged as
trees, where a request for the data item arrives at a random leaf of the tree and if possible handled
there. If a cache does not hold the data item (and neither does its sibling) it passes the request
to its parent in the cache tree until finally the message is forwarded to the root which must hold
the item. The advantage of the cache tree is that requests are divided more or less evenly between
the leaves and each cache receives requests from its children only, thus no cache is being swamped.
Karger et al [63] enhanced the idea and suggested that each data item have a different random tree
of caches, thus better dividing the load. They used hash functions in order to sample a cache tree
for each data item, and managed to prove that a single popular data item will not cause a hot spot
with high probability.

In the context of a P2P overlay network where each node in the network plays both the role of the
server (with its cache) and the role of the client, the suggestion of Karger et al [63] has the following
disadvantage. The random cache trees associated with each data item are not supported by the
overlay network. Thus, when a cache needs to forward a request to its parent it must either use a
DHT lookup or maintain a separate overlay network for this use only. The first alternative would
cause a meaningful slowdown and has a high communication complexity. The second alternative
would increase the linkage of each node and the maintenance cost associated with it. We also
note that the additional messages that run in the system due to the caching protocol may cause
congestion in their own sake.

Our Contribution

Our suggestion is similar in spirit to that of [63], we also construct a random tree of caches for
each data item and forward a message from a random leaf towards the root. Our scheme differs in
one important point: we use the Distance Halving overlay network as the overlay network of the
caching protocol too; i.e. we couple the cache trees with the Distance Halving graph. The Distance
Halving routing algorithm ensures that requests arrive at a random leaf of the cache tree. Thus
the caching protocol requires no extra connections and imposes no extra delay. As a result we are
able to show that any set of requests (for possibly many data items) do not swamp servers and do
not cause congestion.

Given a ‘batch’ of n requests for data items that arrive in the network5, the main achievement
of this section is to show a dynamic caching protocol with the following properties:

• Swamp Prevention: Each server’s cache is hit O(1) times on average and O(log2 n) with high
probability. The total number of messages passed through each server (by the routing scheme
and by the caching scheme) is O(log2 n) w.h.p..

• Small Caches: With high probability each server stores at most O(log n) data items in its
cache. There are at most O( n

logn) new copies of data items stored in caches throughout the
network.

5Since n denotes the number of servers in the network, we assume that each server issues one request.



2.4 Dynamic Caching - Relieving Hot Spots 23

h(i)=y

+

+++

2
y

2
y

2
1

y
4

y
4

y
4

y
4

1
2

1
4

3
4

Figure 2.3: The first 2 layers of the path tree.

• No Caching Latency: The caching protocol causes no extra delay.

• Quick Content Update: Changes in the data item are updated in O(log n) time.

2.4.1 The Protocol

As usual we first describe the protocol in the continuous graph. Denote by D the set of data items.
Let i ∈ D be a popular data item and denote y to be h(i), so the server which covers y also holds
a copy of i.

Definition 2.4.1. The path tree rooted at y is a subgraph of the the continuous graph Gc. The
tree is created by assigning y as the root, and each node z in the tree is the parent of `(z), r(z).

Here we use the term nodes only in the context of the the path tree, and the term servers to
describe the actual entities in the network. The first two layers of the path tree are drawn in Figure
2.3. The key observation is that if the Distance Halving routing algorithm (of Section 2.2.3) is used
, then every request for i would reach y via a random path in the path tree; i.e. the probability that
a message reaches y via the point y

2 is half, and so on. This observation suggests that it is wise to
replicate data item i from the root of the tree downward, thus creating a cache tree (a-la [29],[63]).
If the data item is copied into the nodes of some layer, then the randomness of the routing protocol
ensures that requests would be divided evenly (more or less) among the nodes. In other words, the
continuous graph may serve as a random cache tree where the nodes of the path tree hold the data
item. We call a node that holds a copy of the data item i an active node. The tree which consists
of all the active nodes is the active tree.

In order to deal with a dynamic caching setting formally, we need to define the dynamics of
the requests. Assume all servers of the system count6 the same time epoch. Each server decides
upon some number c that is a parameter of the protocol and would serve as a threshold. Typically
c would be in the order of log n and may be updated over time. It is not necessary that all servers
choose the exact same parameter, yet for sake of convenience we assume that c is a global parameter
known to all servers.

6We don’t assume that the system is synchronized, this assumption is for convenience and does not play a major
role.
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Continuous Hot Spots Protocol:

1. Each leaf of the active tree holds a counter which indicates the number of times the data
item was requested during an epoch. Once a data item is requested more than c times, the
leaf replicates the data item into both its children, effectively blocking itself from handling
subsequent requests.

2. If z is the parent of two leaves of the active tree, then at the end of an epoch z performs
the following procedure: It checks how many times i was supplied by its children during the
epoch. If i was supplied less than c times by both its children, then both children may delete
the item i and cease to be active. As a consequence the point z becomes a leaf of the active
tree.

3. Step 2 repeats itself recursively, in the same epoch, collapsing the active tree if there are no
requests.

In practice it may be beneficial to set a different threshold in Step (1) and Step (2). This would
add stability to the active tree when the rate of requests is close to the threshold. It also may be
more efficient to modify Step (1) such that the data item is initially copied into one child, and after
another c requests into the second. While both modifications may increase efficiency slightly, they
also complicate the analysis.

Presentation: In Section 2.4.2 we analyze the protocol on the continuous graph, i.e. on the
active tree. In Section 2.4.3 we analyze the case of a single hot spot. In Section 2.4.4 we analyze
the more general case, in which multiple hot spots are formed.

2.4.2 The Active Tree

Denote by qi the number of times i is requested during an epoch. Each node of the active tree
handles at most c requests. Two siblings are deleted if they handled less than c requests each,
therefore:

Observation 2.4.2. For every initial active tree, by the end of the epoch the active tree contains
at most 4qi

c nodes. Therefore, the total size of caches in the network is at most 4qi
c .

Observation 2.4.3. The distance between two points in the jth layer of a path tree is at least 2−j.

Next we show how the active tree grows and shrinks as a function of qi. The threshold c is
assumed to be at least log n.

Lemma 2.4.4. If c ≥ log n then with probability at least 1− 1
n , the lowest point in the active tree

at the end of the epoch is at layer at most log(q/c) + O(1), where the probability is taken over the
random decisions of the Distance Halving routing scheme.

Proof. If for some layer j of the tree it holds that each node in the layer receives less than c
messages, then clearly the tree cannot exceed layer j. Consider layer j = log(q/c)+ t of the tree, for
some constant t. There are q

c2
t nodes in layer j. The randomness of the routing algorithm causes

each message to reach the target independently through a random node in the layer. A standard
balls and bins argument shows that with high probability each node in level j received at most c
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messages: The probability a message reaches a fixed node in level j is 2−j . The total number of
messages reaching the node is distributed according to the Binomial distribution with expectation
2−jq = 2−tc. Chernoff’s bound (e.g. [13]) states that for a binomial variable X it holds that
Pr[|X − µ(X)| ≥ εµ(X)] ≤ 2e−δε log εµ(X) where ε > 10 and δ is a constant independent of ε, n.
Substituting µ(X) for 2−tc and ε for 2t we get that the probability the number of messages handled
by a node exceeds c is at most e−Θ(tc). If t is large enough and c is Ω(log n), then with probability
at most 1

n2 the node receives at most c messages. Union bounding over the 2j nodes in the layer
yields that with probability at least 1− 1

n all nodes of layer j receives less than c messages.

Lemma 2.4.5. The load on each active node is bounded as follows:

1. The cache at each node is hit at most c times.

2. Given that c is Ω(log n), w.h.p each active node passes at most O(log n) messages up to its
parent where the probability is taken over the random choices of the routing algorithm.

Proof. Once a cache is hit more than c times in the same epoch the node replicates the data item
to its children, effectively blocking it from being hit again. To prove the second claim consider a
node at level j+1 and denote by X the number of messages it passed on to its parent. There are at
most 2j active nodes in the first j levels of the tree, therefore at most c2j requests were passed to
the first j levels of the tree by the 2j+1 nodes in level j+1, so X has the binomial distribution with
expectation at most O(c/2). Now the analysis is similar to that of Lemma 2.4.4. Chernoff’s bound
states that Pr[|X − c

2 | ≥ ε c2 ] ≤ e−Θ(ε log ε c
2
). Since c is Ω(log n) we have that for ε large enough,

with probability 1− 1
n the number of messages passed on by each of the nodes is O(log n).

2.4.3 Analysis of a Single Hotspot

In the discrete protocol (as usual) server V emulates all the points in s(V ). Lemma 2.4.5 bounds
the load of each node in the active tree, so all we need is to calculate how many nodes of the active
tree V covers. Figure 2.4 demonstrates a mapping from some active tree to the servers.

Theorem 2.4.6. Server V covers with high probability O(log(q/c) + q
c |s(V )|) nodes of the active

tree, where the probability is over the random choices of the routing algorithm.

Proof. Observation 2.4.3 implies that server V covers at most d|s(V )|2je points from layer j. It
may be that V covers one point from each layer of the tree. If for instance V covers the point 0 and
the root of the tree, then it also covers all the points in the left branch of the tree. Summing over
the levels of the tree Lemma 2.4.4 implies that the number of times V served as a cache is w.h.p.

log q/c+O(1)∑
j=0

(
d|s(V )|2je

)
≤

log q/c+O(1)∑
j=0

|s(V )|2j + 1 = O(log(q/c) +
q

c
|s(V )|)

The Theorem states that the number of times V served as a cache is O(c log(q/c) + q|s(V )|).
Given that c is Θ(log n) and q ≤ n (each server may issue at most one request per time epoch),
and |s(V )| ≤ log2 n

n then the bound translates to O(log2 n).
Note that Theorem 2.4.6 does not assume that the hash function h has any specific properties

and it holds even if an adversary is allowed to choose h(i). In the following we assume the hash
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Figure 2.4: The mapping of an active tree to the servers. The bold edges represent the active
tree. The dashed edges represent the mapping. The [0, 1) interval is divided to segments which
represents the servers.

function h is randomly chosen from a family of hash functionsH so that h(i) is uniformly distributed
in I. This property is sometimes called one-wise independence. We stress that this is a very weak
requirement, (for instance the common notion of a pairwise independent family of hash functions
satisfies this requirement). As before we need to count the number of active nodes covered by V .
Denote by Bv the number of nodes covered by V . Now Bv depends both on the randomness of the
routing algorithm and on the randomness of the hash function.

Lemma 2.4.7. If h(i) is uniformly distributed in I and |s(V )| is O( logn
n ), then for every t > 0:

Pr[Bv ≥ t] is O
(
|s(V )| · q

c
· 2−Θ(t)

)
where the probability is over the choice of the hash function h and the routing algorithm.

Proof. Consider level j of the path tree. According to Observation 2.4.3, s(V ) covers at most
d|s(V )|2je active nodes. Lemma 2.4.4 bounds the depth of the active tree by log(q/c) + O(1), and
|s(V )| is bounded by log n. We conclude V covers at most O(1) nodes from each level of the active
tree. Therefore if Bv ≥ t then V covers at least one node from the first log(q/c)−Θ(t)+O(1) levels
of the tree.

We proceed by calculating the probability V covers at least one node from level j. Every specific
level j node of the path tree is uniformly distributed (by the hash function) in a segment of length
2−j . For instance the leftmost node of level j is uniformly distributed in the segment [0, 2−j ] and
so on. Therefore the expected number of nodes V covers in level j is O(|s(V )|2j). Conclude that
the probability V covers at least one node in level j is bounded by O(|s(V )|2j).

Now we have: Pr[Bv ≥ t] ≤ Pr[V covers at least one point in the first log(q/c)−Θ(t)+O(1) levels]
which is at most

log(q/c)−Θ(t)+O(1)∑
j=0

|s(V )|2j = O
(
|s(V )| · q

c
· 2−Θ(t)

)
.
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By linearity of expectation, the expected number of active nodes V covers is O(|s(V )| qc ). When
|s(V )| is Θ(1/n) (the graph is smooth) and q ≤ n the bound translates to O(1/c). Therefore the
expected number of requests handled by V is O(|s(V )|q), which is O(1) when the graph is smooth.

2.4.4 Multiple Hotspots

In this Section we analyze the more general case where there is an arbitrary set of demands for n
data items. We make the following assumptions: the threshold is set c = Θ(log n), the demand for
data item i is qi such that

∑
i qi = n and that the hash function h which maps the data items into

I is randomly chosen from a log n-wise independent family.
The following is the main result of this Section:

Theorem 2.4.8. If h is k−wise independent where k ≥ log n then for all sequences of n requests:

(i) - Given that |s(V )| ≤ logn
n for each server V , with probability at least 1 − 1

n the maximum
number of items stored at any of the caches is O(log n), where the probability is taken over
the random choices of the routing algorithm and the hash function.

(ii) - For each server V the expected number of times V supplies a data item is O(|s(V )|n). Given
that |s(V )| ≤ logn

n , with probability 1− 1
n , each server supplies data items at most O(log2 n)

times.

Proof. Fix a server V . Denote by pi the probability V supplies data item i. According to
Lemma 2.4.7 we have that pi is O( qi|s(V )|

c ). Denote by Lv the number of data items supplied
by V . We have

E[Lv] =
∑
i

pi = O

(∑
i

qi|s(V )|
c

)
= O

(
n|s(V )|

c

)
.

Recall that c ≥ log n and |s(V )| ≤ logn
n so E[Lv] is O(1). The random variable Lv is the sum of

log n-wise independent Bernoulli variables. Using Claim 2.2.15 we have that:

Pr[Lv ≥ δ log n] ≤ Pr [|Lv − E[Lv]| ≥ O(δ log n · E[Lv])] ≤ O
(
(δ2 log n)

1
2

logn
)

The proof of part (i) is completed by setting the constant δ large enough so that Pr[Lv ≥
δ log n] ≤ 1

n2 and union bounding the probabilities for the n servers.
Part (ii) is composed of two statements. The first follows directly from Lemma 2.4.7 which

states that the expected number of times V handles the i’th data item is E[qi|s(V )|]. Therefore the
expected number of times V supplies a data item is O(

∑
i qi|s(V )|) = O(|s(V )|n).

For the second part let Bi denote the random variable counting the number of active nodes V
covers from the ith active tree. According to Lemma 2.4.7 there are some constants a, p such that
Pr[Bi ≥ t] ≤ a·pt where a is O( |s(V )|qi

c ) and p = Θ(1). In other words Bi is stochastically dominated
by a random variable of the form Xi = aGi where Gi is a geometric variable with a parameter which
is Θ(1). So Pr[

∑
Bi ≤ O(log n)] ≤ Pr[

∑
Xi ≤ O(log n)]. Furthermore w.l.o.g we may assume that

a < 1 is small enough so that V ar[Xi] ≤ E[Xi], as a change in a may be incorporated into the O
notation. E[

∑
Xi] is O(

∑ |s(V )|qi
c ) which is O(1). Now Claim 2.2.15 implies that for ε large enough

Pr
[∑

Xi ≥ 2ε log n
]
≤ Pr

[∣∣∣∑Xi − E[
∑

Xi]
∣∣∣ ≥ ε log n

]
≤
(

E[
∑
Xi]

ε2 log2 n

)logn

≤ 1
n2
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which concludes the proof of Theorem 2.4.8.

Content Update: The tree like structure of the cache means that the popular data item may
be changed or altered efficiently by propagating the update from the owner of the data (the root)
along the active tree. As a consequence, an update of all the caches in which the data item is stored
would take O(log q

c ) ≤ O(log n) time and O(log q
c ) ≤ O(log n) messages.

Summary We have shown that our caching scheme satisfies the properties required: Hot spots
are eliminated with high probability for every set of requests, caches of servers are small, and most
strikingly - the caching scheme causes no extra delay for obtaining the data item. All done in
a dynamic and scalable manner. The caching scheme uses the fact that in the Distance halving
continuous graph, every node is the root of an infinite binary tree. The same property was also
used by Nadav and Naor [98] in order to build fault tolerant storage systems.

2.5 Emulating General Graphs - Smoothness is Everything

In this section we show how our technique can be used to dynamically construct a graph which em-
beds any family of fixed degree graphs. Theoretically speaking, this result implies that considering
scalable systems separately is superfluous; i.e. any problem could be solved in a static environment
and then be made dynamic via this technique. The main disadvantage of this technique is that
the dependency on the smoothness is heavier, so tailored designs are indeed interesting. General
techniques for constructing network topologies were independently suggested by Abraham et al [2].

Let {G1, G2, . . .} be an infinite family of regular graphs with degree d. Assume that Gi has 2i

vertices called ui1 , ui2 , . . . , ui2i . We show how a smooth set of n points ~x in [0, 1) can be used to
construct a graph G~x that emulates Gdlogne. Assume that ~x is smooth and that node Vi is associated
with point xi. Assume for now that all nodes know n (this assumption would be removed later).
For each k, define the function Φk from the nodes of Gk to the nodes of G~x as follows:

Φk(ukj ) = Vi if j
2k
∈ s(xi).

The function Φk spreads the nodes of Gk evenly among the nodes of G~x. Note that the function
Φk could be computed locally, i.e. each node Vi can calculate which nodes in Gk are mapped to it.

Now if all the nodes of G~x can agree on the same value of k, then the edges of G~x are defined
in the usual continuous-discrete style:

E(G~x) =
{
(Vi, Vj) | ∃(uki , ukj ) ∈ E(Gk) , Φk(uki) = Vi,Φk(ukj ) = Vj

}
.

In this case we say that edge (uki , ukj ) is simulated by (Vi, Vj). If all nodes in the network know
what n is then all of them set k = dlog ne. It is routine to verify the following properties:

1. Every node in G~x simulates at most ρ nodes in Gk.

2. Every edge in G~x simulates at most ρ2 edges in Gk.

3. The degree of G~x is at most ρ · d.
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In other words if ~x is smooth then G~x is a real time emulation of Gk. Particularly this means any
computation performed by Gk, could be performed by G~x in constant slow down. see ([83], [71]) for
an overview on the literature of real time emulations. It is important to notice that assuming all
nodes know what n is, each node in G~x can calculate separately which are its neighbors. Next we
remove the assumption that n is known. Smooth ~x implies that each Vi can calculate an estimation
of n, denoted by ni, by setting ni = 1

|s(Vi)| . By definition maxi,j ninj = ρ(~x). Therefore it holds that
∀i log ni − log ρ ≤ log n ≤ log ni + log ρ. If ~x is guaranteed to have smoothness of at most ρ then
each node can calculate a list of length 2 log ρ that contains dlog ne. Each node V now would set
edges according to every index in its list; i.e. establish connections resulting from the union of the
Φ’s on its list. The following Theorem is summarizes the Section:

Theorem 2.5.1. When G~x is constructed as described it holds that

1. The degree of G~x is at most 2d · ρ log ρ.

2. If ρ is a constant then the graph G~x can emulate in real time the graph Gdlogne.

2.6 Load Balancing the ID’s - Achieving Smoothness

We have seen that the smoothness of the decomposition of I determines the efficiency of many
of our protocols. In this section we suggest various distributed algorithms in which a node can
choose its ID. (i.e. perform the first step of Algorithm Join in Section 2.2). The goal is that all
nodes choose their ID such that I is smoothly divided between them. Algorithms similar to ours
were independently suggested in [2] and [85]. Subsequent papers by Karger and Ruhl [64] and
Manku [66] generalize these results.

A straightforward algorithm, that was also suggested by previous constructions (e.g. [120],[84])
is letting each node choose its ID by sampling randomly and uniformly a point in I:

Algorithm Single Choice for node V :

1. Choose V.ID uniformly at random in [0, 1).

The following lemma is proven in [84].

Lemma 2.6.1. After inserting n random points the length of the longest segment is w.h.p Θ( logn
n ).

With high probability there is no segment which is shorter than Θ( 1
n2 )

An important property of the Single Choice Algorithm is that the distribution of the ID’s
remains unchanged when a random node is deleted from the network. Therefore Lemma 2.6.1
holds as long as nodes join and leave randomly. In the Single Choice Algorithm segments remain
small w.h.p, and in fact a careful look at our proofs shows that this is enough, i.e. using this scheme
would only cause a logarithmic blowup in parameters. The main drawback of the scheme is that it
may allow some segments to be very small - of length O( 1

n2 ), which means that the nodes covering
them would hardly share any of the load. A slight improvement is the following.
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Improved Single Choice Algorithm for node Vi:

1. Choose a point z ∈ [0, 1) uniformly at random.

2. Lookup z and find the boundaries of the segment of the node which currently covers z.

3. Set V.ID to be the middle point in that segment.

Lemma 2.6.2. In the improved single join algorithm, the shortest segment would be of length
Θ( 1

n logn) w.h.p and the longest segment would remain O( logn
n ).

Proof. Simulate the process of choosing the x1, x2, . . . , xn ID’s by growing a random binary tree
in the following way: Let z1, z2, . . . , zn denote the n random points chosen at Step (1) of the
algorithm, where zi is the point chosen by the ith node joining. The point x1 always takes the
value 1

2 , which corresponds to the root of the tree. The point x2 takes a value of 1
4 with probability

1
2 (if 0 ≤ z2 <

1
2), in which case we add a left child to the root. The point x2 takes a value of 3

4
with probability 1

2 , in which case we add a right child to the root, and so on. Each time a point
is added, it randomly selects a path from the root until it reaches a leaf (the path is determined
by the binary representation of z), and then becomes either the left or the right child of that leaf.
Now consider the layer of the tree in which there are Θ(n log n) nodes. For each node of the tree,
with high probability there would be at most one of z-points which reached it (balls and bins). It
immediately follows that the smallest segment would be of length Ω( 1

n logn) with high probability.
Consider the layer of the tree which has Θ(n/ log n) nodes. With high probability each one of them
were hit by at least one of the z-points. It follows that the largest segment is of size O( logn

n ).

The idea of the following algorithm (following the spirit of the two choice paradigm, see [96]
for a survey), is to let a joining node choose many locations and set its ID to be the best location
found.

Multiple Choice Algorithm:

1. Estimate log n.

2. Sample t log n random points from I, when t is some constant to be determined later.

3. Check all segments containing those points. Let s be the longest of these segments. Set ID
to be the middle point of s.

Estimating log n is a simple task, see Section 2.3 for details. For convenience we assume that the
estimation is completely accurate. The problems caused by the inaccuracy of the estimation could
be overcome by slightly enlarging the parameter t.

Lemma 2.6.3. If t ≥ 2, after n points are inserted, the length of the shortest segment is at least
1
4n with probability 1− 1

n .

Proof. A segment of length 1
4n could be created only if all the t log n samples fell in segment of

length at most 1
2n . The probability a random point in I falls in some a segment of length 1

2n is at
most 1

2 . The probability all the t log n fell in these segment is at most 2−t logn = 1
nt . Now, since

t ≥ 2 a union bound over the error probabilities of all the points proves the Lemma.
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In the following we show that even when an adversary controlled the initial state of the system,
after the injection of n more points, with high probability no segment would be big.

Theorem 2.6.4. For any m ≥ n and any configuration of m points in I, after inserting n points,
the largest segment would be of size at most 2

n , with probability 1− 1
n .

Proof. First we prove the following lemma:

Lemma 2.6.5. Assume the longest segment is of length c
n (c may be a function of n), then for

sufficiently large t, after inserting 2n
c points, the longest segment would be of length at most c

2n with
probability 1− 1

n2 .

Proof of Lemma 2.6.5. Let s be a segment such that |s| = c
n , i.e. s is a segment of maximum

length. In step (1) of the algorithm t log n random points are chosen. Whenever one of these points
is in s we say that s is hit. Let A be a random variable that counts the number of times s was hit
after 2n

c points were inserted. We have

E(A) =
c

n
· 2n
c
· t log n = 2t log n

By Chernoff’s inequality

Pr [A ≤ (1− δ)E(A)] ≤ n−δ2t.

If parameters are chosen such that δ2t ≥ 3 then by the union bound, with probability 1 − 1
n2 all

segment of length c
n were hit at least (1−δ)2t log n times. Now assume that there are k segments of

size c
n . The total number of hits in all these k segments is at least k(1− δ)2t log n, with probability

1− 1
n . Each inserted point creates at most t log n hits, therefore there were at least 2k(1− δ) points

in which hit a large segment. We have that if 2(1− δ) ≥ 1 then all segments of length c
n were split.

Both conditions hold when δ = 1
2 and t = 12.

The proof of Theorem 2.6.4 is completed by applying the previous Lemma iteratively log n− 1
times, thus inserting n new points and making sure that all segments are of length at most 2

n .

2.6.1 Handling Deletions

The Multiple Choice Algorithm achieves a smooth set of points in the pure Join model - when node
may join the system but not leave it. Achieving smoothness in a setting which allows deletions
requires a more complicated scheme. We will show two schemes, the first handles random deletions
only, the second deals with adversarial deletions as well.

The most naive way to handle the deletion of a point is to assign its segment to its predecessor
on the ring. It is easy to see that this naive algorithm does not suffice: Assume that there are
2n points spread smoothly in I, and randomly delete each one with probability 1

2 . With high
probability there would be a sequence of Ω(log n) consecutive points that were deleted, creating
a segment of length Ω( logn

n ) and violating the smoothness. We conclude that some balancing
mechanism must be implemented in order to maintain smoothness under deletions.
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The Bucket Solution The ‘bucket’ solution was suggested in Viceroy [84]. In Viceroy the nodes
join the system with the Single Choice algorithm, and the bucket scheme is used balance the nodes
both when nodes join and leave. The balance is achieved via an extra structure. We maintain
a distributed coordination mechanism between contiguous chains of nodes, consisting of O(log n)
nodes each. We call such a group of O(log n) nodes a bucket. Inside each bucked we maintain
a simple ring (which mostly overlaps the larger ring of the DH construction). The buckets are
maintained such that two properties hold:

1. The size of the bucket is always Θ(log n). When the size of a bucket exceeds c log n (for some
constant c) it splits into two. When the size of a bucket shrinks bellow a threshold, it merges
with a neighboring bucket. An estimation of log n is maintained within each bucket.

2. Within each bucket segments are distributed evenly, i.e. nodes may change their ID slightly
so that no segment would be too big or too small.

The exact way in which Step (2) is performed may vary according to context. Keeping all segments
within a bucket of equal length at all times may have a large overhead, as all members of the bucket
update their state whenever a node join or leaves. Therefore it makes more sense for the nodes
in the bucket to rearrange themselves only when the smoothness within the bucket exceeds some
parameter.

The correctness of the bucket solution follows from the fact that w.h.p every interval of length
logn
n would contain Θ(log n) points (balls and bins). Thus, when a segment becomes too big or too

small a balancing within the bucket suffices.

The Cyclic Scheme In the following we sketch a deterministic scheme which guarantees smooth-
ness even when an adversary determines when and which nodes join and leave the system. It takes
Θ(log n) messages to perform both Join and Leave, and it requires an additional structure. The
idea is to divide the segments into long segments and short segment, and to have all the long seg-
ments in one contiguous interval whose starting point is marked by the point a and its ending by
point b. When a node wishes to enter the system, it does so by splitting into two the long segment
adjacent to b (see Figure 2.5). When a node wishes to leave the system, it swaps positions with the
node in charge of the first short segment (whose ID. in Figure 2.5 is a) and then leaves creating
a long segment. If a node wishes to leave the system and there is only one short segment in the
system. then a slightly more delicate operation should be done. The leaving node should swap
places with the node covering the short segment and then leave. The resulting decomposition has
short segments, long segments and at most one medium sized segment whose length is larger than
the short ones but smaller than the long ones. Thus the cyclic scheme guarantees a smoothness of
2 even under adversarial behavior.

The main difficulty is finding quickly the node at the beginning or the end of the interval of
short segments. This could be done by maintaining an extra structure of two 2 − 3 trees on top
of the DHT, in which points a and b are roots. A 2− 3 tree guarantees that points a and b could
be found in O(log n) time. Furthermore the insertion and deletion of nodes would only cause an
overhead of O(log n) messages and updates for maintaining the tree. One difficulty is that nodes
which are close to the roots of the trees suffer from high load in the sense that they handle almost
every joining and leaving. This could be dealt with by rotating each edge once in a while, i.e. once
in a while an inner node randomly chooses one of its children and swaps positions with it, thus over



2.7 Higher Dimensions 33

a

b

L - the long
segments

S - the short
segments

a

b

L - the long
segments

S - the short
segments

The new server

Figure 2.5: In the cyclic scheme, an entering node splits the first long segment.

time all nodes spend most of the time as leaves of the tree. Note that this swap is in the 2− 3 tree
and not in the DHT so it does not involve all the overhead of changing location in the DHT itself.

Theoretically speaking the cyclic scheme is appealing, as it offers excellent smoothness in the
worst case even under adversarial insertions and deletions. Its main drawback is its vulnerability
to concurrent joining and leaving. Say m nodes wish to leave the system in the same time. It is not
clear how to coordinate them such that the smoothness property remains. A locking mechanism
that would ensure that nodes leave (and join) one at a time implies a low throughput of the system
and seriously limits its dynamic nature. Thus it seems that the cyclic scheme is less practical than
the previous schemes discussed in this Section.

2.7 Higher Dimensions

So far we limited ourselves to the case where I is a one dimensional unit interval. Indeed, as was
shown by previous constructions a one dimensional name space suffices for every topology, and is
also good for a tailored design of Distributed Hash Tables. In some applications it turns out to be
useful to apply the same approach to a two dimensional universe. In Chapter 3 the continuous-
discrete approach is used to construct dynamic quorum system. In this Section we show how to
construct a network which is an expander.

In the two dimensional case the set of points cannot be associated with segments, but rather
be associated with a tessellation of the plain into cells, such that each point is associated with a
cell and is responsible for all keys that fall within that cell. This was done in CAN [113] where the
plain was divided into rectangles. We present a simpler way to do it using the points as generators
to a planar ordinary Voronoi diagram.

2.7.1 Dynamic Voronoi Diagrams

Definition 2.7.1 (planar ordinary Voronoi diagram). Given a finite number (at least 2) of
distinct points in the Euclidean plane, we associate all locations in that space with the closest
member(s) of the point set with respect to the Euclidean distance. The result is a tessellation of
the plane into a set of regions associated with members of the point set. We call this tessellation the
planar ordinary Voronoi diagram generated by the point set, the points are sometimes referred to as
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Figure 2.6: Addition of a new generator to a Voronoi dia-
gram.

generators and the regions constituting the Voronoi diagram Voronoi cells. The dual triangulated
graph is called the Delaunay triangulation. See Okabe et al [107] for a thorough overview of Voronoi
diagrams and their applications.

See Okabe et al [107] for a thorough overview of Voronoi diagrams and their applications.
Given an existing Voronoi diagram, the entrance of a new generator and the exit of an existing one
affects only the cells adjacent to the location of the generator. Therefore a Voronoi diagram can
be maintained by a distributed algorithm in which every cell is calculated separately and locally.
The time and memory needed to compute a single Voronoi cell is Θ(d) when d is the number of
neighbors the cell has; i.e., the degree of the generator in the Delaunay tessellation. See Figure 2.6
for a demonstration of an insertion of a new generator. It is known that d is always 6 on average
(Euler’s formula), but might be as high as n− 1.

In the following we set I = [0, 1)× [0, 1). Let ~x be a set of n points in I.

Definition 2.7.2. We say that ~x has smoothness ρ if the following two conditions hold: (1) when
dividing the rectangle to ρn rectangles of size 1√

ρn ×
1√
ρn , each rectangle contains at least one point

from ~x. (2) when dividing the rectangle to n
ρ rectangles of size

√
ρ
n ×

√
ρ
n , each rectangle contains

at most one point from ~x.

The Join/Leave operations

Nodes are associated with generators of a Voronoi diagram. Each node holds its own location on
the plane and the location of its neighbors in the Delaunay triangulation. A node that wishes to
join the system does the following:

Single Choice Algorithm:

1. Choose a location x in the unit square (typically x would be chosen randomly and uniformly
from [0, 1)× [0, 1)).

2. Find the node whose cell contains x. Learn the location of its neighbors.

3. Set x as a new generator of the diagram. Calculate the boundaries of the new Voronoi cell
and inform the neighbors so that they can update their tables.
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u

Figure 2.7: If each square contains
at least one Voronoi generator, then
the cell generated by u is contained
in the shaded area.

Before analyzing the algorithm we show the properties of a Voronoi diagram in which the
location of each generator was chosen randomly and uniformly. We show that with high probably
the Voronoi diagram decomposes the square into more or less equal cells.

Theorem 2.7.3. If the location of each generator of the Voronoi diagram was chosen uniformly
and randomly in [0, 1)× [0, 1) then with high probability the following holds:

1. The area of the largest Voronoi cell is O( logn
n ).

2. The number of neighbors each Voronoi cell (the maximum degree of the Delaunay graph) is
O(log n).

3. The projection of each Voronoi cell on the axis lines is at most O(
√

log n/n).

Proof. Divide the square into n
logn squares, each of size

√
logn
n ×

√
logn
n . Now model the process as

putting n balls in n
logn bins. It is well known that when n balls are put uniformly at random into

n
logn bins, then w.h.p every bin contains Θ(log n) balls. Assume this high probability event occurs
and each small square contains Θ(log n) balls. Fix a generator xi. A simple geometric argument
demonstrated in Figure 2.7.1 shows that all the neighbors of xi must lie within the 25 squares that
compose the 5 × 5 grid which surrounds the square of xi. This asserts claims (1), (3). Since each
square contains O(log n) generators the number of neighbors of xi is also bounded by O(log n).

Since the computation of a Voronoi cell is a local operation, Step (3) of the Join algorithm
takes O(d) time and memory, where d is the degree of the Voronoi cell in the Delaunay graph. The
average degree is 6 and Theorem 2.7.3 assures that w.h.p all degrees are at most O(log n). Step (2)
of the the algorithms requires locating the node whose cell contains the point x. The complexity
of Step (2) depends upon the topology of the network and the search options it provides. If the
topology of the network is that of the Delaunay graph, then the node holding x could be found
by a greedy algorithm along the geometry of the Voronoi diagram; i.e., the query moves along the
Delaunay edges in a greedy way to the direction of x. Thus the time complexity and the message
complexity of Step (2) are O(

√
n). A similar approach is taken in CAN [113]. Additional structure

of the network may reduce the complexity of Step (2). The Distance Halving DHT (or any other
efficient DHT) may be used to perform Step (2) in O(log n) time and O(log n) messages.

The Leave operation is done similarly. When a nodes wishes to leave the system, it informs its
neighbors which in turn divide and redistribute the area of its cell among themselves.
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2.7.2 Achieving Smoothness in Two Dimensions

In this section we show that a natural generalization of the Multiple Choice algorithm achieves
smoothness with high probability in the two dimension setting. We need to assume that the
network supports a lookup operation for the points in I (for instance by a DHT). For a point z ∈ I
define r(z) to be the rectangle containing z when I is divided to 2n rectangle of size 1√

2n
× 1√

2n
.

Let R(z) be the rectangle containing z when I is divided to n/2 rectangle of size
√

2
n ×

√
2
n .

2D Multiple Choice

1. Estimate n.

2. Sample t log n random points in I. Call these points z1, z2, . . . , z3 logn.

3. For each zi perform Lookup(zi) and check whether r(zi) and R(zi) are empty.

4. If there exists an i such that r(zi) is empty and R(zi) is empty then set x← zi.

5. Otherwise find an i such that r(zi) is empty and set x ← zi. If no such i exists then we say
the algorithm failed and set x← z1.

We assume for convenience that the estimation of n is accurate. A multiplicative estimation of n
is easily achievable and suffices.

Lemma 2.7.4. After inserting n points using the 2D Multiple Choice algorithm, with probability
1− 1

n it holds that the smoothness of ~x is as most 2.

Proof. First we show that w.h.p probability every small rectangle will contain at most one point
from ~x, i.e. Step (4) of the algorithm never fails. There are 2n small rectangles, at most n of them
are not empty. The probability to hit a non empty rectangle is at most 1

2 . The probability that all
t log n samples hit a non empty rectangle is at most 1

nt . Thus, the probability the algorithm failed
for some point is at most 1

n2 for any t ≥ 3.
Next we need to show that at the end of the algorithm w.h.p all the big rectangles contain at

least one point. There are n/2 big rectangles. Assume k of them already contain a point from x.
The probability a random point from I hits one of these k rectangles is 2k

n . The probability that

when inserting αk points only non-empty rectangles were hit is at most 2k
n

αkt logn
. This implies

that when 3
t log(n/2k) points are inserted, the probability of hitting non-empty rectangles only is at

most 1
n3 . Now for some t = O(1) it holds that

n/2−1∑
k=0

3
t log(n/2i)

≤ 3
4
n

which means that with probability 1− 1
n2 after inserting 3

4n points, all the big rectangles are full.
The proof is completed by union bounding the error probabilities.
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2.7.3 Constructing Expanders

Here we see how a two dimensional name space could be used to create expanders in a P2P setting.
Expander graphs are graphs that are very ‘well connected’ in the sense that for every set of vertices
S of size at most 1

2 |V | there are at least α|S| vertices in V \ S that are adjacent to some vertex
in S. In this case we say the expansion of the graph is α. Expander graphs are probably one of
the most researched structures in combinatorics. They have numerous applications in computer
science. Applications in distributed computing include load balancing, fault tolerance and search
through random walks (c.f. [7, 36, 76, 40, 48, 17]).

It is well known that a random regular graph is an expander with high probability [43]. Inde-
pendently from this paper, Law and Siu [73] used this fact to construct an expander (w.h.p) in a
P2P setting. An explicit and deterministic construction for expanders was given by Margulis [89]
and Gabber and Galil [44], and was later generalized by Cai [27]. We use the continuous-discrete
approach in order to construct this expander in a P2P setting. Gabber and Galil define a continuous
graphG over I by the following two transformations: f(x, y) = (x+y, y) mod 1 , g(x, y) = (x, x+y)
mod 1. The neighbors of point (x, y) ∈ I are f(x, y), g(x, y), f−1(x, y), g−1(x, y). For any set A ⊆ I
define δ(A) to be the set of points in I \ A which are neighbors of a point in A. Denote by µ(A)
the area of the set A (its Lebesgue measure).

Theorem 2.7.5 ([44]). For every set A of points in I such that µ(A) ≤ 1
2 is well defined, it holds

that µ(δ(A)) ≥ (2−
√

3)
2 µ(A).

Corollary 2.7.6. Let ~x be a set of n points in I. Let G~x be the discretization of the Gabber-Galil
continuous graph. The maximum degree of G~x is Θ(ρ), and the expansion of G~x is Ω( (2−

√
3)

ρ ). So
if ρ is constant G~x is a constant degree expander.

Any network created by maintaining a Voronoi diagram of a smooth set of points, would guaran-
tee expansion. Currently no know routing scheme is known for the general Gabber-Galil expander.
A step towards a routing scheme was given by Larsen [72] which provides an algorithm for finding
short routes in the Gabber-Galil expander whenever the number of nodes is a square of a prime.
In this case the construction yields an efficient constant degree expanding DHT. In contrast, in the
construction of Law and Siu [73], in order for the expander to be navigable the degree should be
logarithmic.
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Chapter 3

Scalable and Dynamic Quorum
Systems

Summary: We investigate issues related to the probe complexity of quorum systems and their
implementation in a dynamic environment. Our contribution is twofold. The first regards the
algorithmic complexity of finding a quorum in case of random failures. We show a tradeoff between
the load of a quorum system and its probe complexity for non adaptive algorithms. We analyze
the algorithmic probe complexity of the Paths quorum system suggested by Naor and Wool in
[105], and present two optimal algorithms. The first is a non adaptive algorithm that matches
our lower bound. The second is an adaptive algorithm with a probe complexity that is linear in
the cardinality of the smallest quorum set. We supply a constant degree network in which these
algorithms could be executed efficiently. Thus the Paths quorum system is shown to have good
balance between many measures of quality. Our second contribution is presenting Dynamic Paths
- a suggestion for a dynamic and scalable quorum system, which can operate in an environment
where elements join and leave the system. The quorum system could be viewed as a continuous-
discrete dynamic adaptation of the Paths system, and therefore has low load high availability and
good probe complexity. We show that it scales gracefully as the number of elements grows.

3.1 Introduction and Motivation

Quorum systems serve as a basic tool providing a uniform and reliable way to achieve coordination
between nodes in a distributed system. Quorum systems are defined as follows:

Definition 3.1.1. Let U be a universe of n elements. A set system S = {S1, S2, . . . , Sm} is said to
be a quorum system over the universe U if ∀i Si ⊆ U and ∀i, j Si ∩ Sj 6= ∅. Each set Si is referred
to as a quorum set or simply as a quorum.

Quorum systems have been used in the study of distributed control and management problems
such as mutual exclusion (cf. [46],[117]), data replication protocols (cf. [46]) and secure access
control ([104]). In many applications of quorum systems the underlying universe is associated with
a network of nodes, and a quorum is employed by accessing each of its elements. For example, in
a typical implementation of mutual exclusion using quorum systems, processes request access to
the critical section from all members of a quorum. A process can enter its critical section only if it
receives permission from all nodes in a quorum. The intersection property guarantees the integrity
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of the mutual inclusion. In a typical application of data replication, the quorum sets are divided into
reading quorums and writing quorums where each reading quorum intersects each writing quorum.
When a data item is added to the system, it is written into all the members of a writing quorum. A
data item is searched by querying all the members of a reading quorum. The intersection property
guarantees the effectiveness of the search. We investigate two aspects of quorum systems:

1. It is often assumed that nodes can somehow find and communicate with one another. We
analyze algorithms for finding quorum systems in a distributed network while taking into
account the network implementation; i.e., the network and the quorum system should be
compatible such that elements from the same quorum are connected to one another. We
supply algorithms for finding a quorum set (even in the case of failures) and analyze their
running time and communication complexity. In this setting non-adaptive algorithms are
attractive since they can be executed in parallel.

2. The setting in which the quorum operates is often dynamic, and should accommodate changes
in the quorum system over time. See for instance [80],[117]. We address the problem of
designing a quorum system that is fit for a scalable and dynamic environment where nodes
leave and join at will. Abraham and Malkhi [3] address this problems when the intersection
property is not guaranteed but rather occurs with high probability.

We suggest quorum systems that operate in a dynamic peer-to-peer model. We apply the
continuous-discrete approach to an appropriate quorum systems, and provide the distributed algo-
rithms for finding the quorums. We allow two types of events:

1. A Node may temporarily fail (halt). The failure of a node occurs with some fixed proba-
bility and is independent from failures of other nodes in the network. It is desired that the
probability that a live quorum is found be as high as possible.

2. Nodes may wish to join the system or to leave it (a long term failure of a node could be
regarded as if the node left the system). It is desired that the quorum sets be updated such
that these nodes are included/excluded from the system.

3.1.1 Measures of Quality

The metrics that measure the quality of a dynamic quorum system relate both to its combinatorial
structure and to its effectiveness when implemented in a distributed network. The following metrics
were analyzed by Naor and Wool in [105] and are used to measure the quality of static systems as
well.

• Load - A strategy is a distribution over quorum sets, giving each quorum set an access
probability (i.e., the probability by which it is accessed by the user). A strategy induces a
load on each element, which is the sum of the probabilities of quorums it belongs to. This
represents the fraction of the time an element is used. For a given quorum system S, the load
ζ(S) is the minimal load on the busiest element, minimizing over the strategies. The load
measures the quality of the quorum system in the following sense: if the load is low, then
each element is accessed rarely, thus it is free to perform other unrelated tasks. Let c be the
cardinality of the smallest quorum set. Naor and Wool prove in [105] the following lemma:
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Lemma 3.1.2. The load of a quorum system is always at least max{1
c ,

c
n} which implies that

ζ(S) ≥ 1√
n
.

• Availability - Assuming that each element fails with probability p, what is the probability
Fp, that the surviving elements do not contain any quorum? This failure probability measures
how resilient the system is, and we would like Fp to be as small as possible.

The Load is especially important if the application of the quorum system involves replication of
data, as was described in the previous section. In this case the load is proportional to the fraction
of data each element has to hold, and therefore smaller load means that each node needs to allocate
a smaller amount of memory. The notion of availability is important when dealing with temporary
faults. The most common strategy to deal with faults is to bypass them; i.e., find a quorum set for
which all nodes are alive. This introduces the following notion:

• Algorithmic probe complexity - The complexity of the algorithms for finding a quorum
should be low. Even if all nodes are alive the network should allow easy access to elements
of the same quorum system. In case some elements fail, finding a live quorum set can be a
difficult algorithmic task. Peleg and Wool analyzed in [108] the probe complexity of several
quorum systems. They assume that an adversary decides which elements fail and analyzed
the number of elements needed to be probed before either a living quorum is found or an
evidence for the lack thereof. They assume that each probing takes O(1); i.e., they ignore
the complexity caused by the implementation of the network. Hassin and Peleg extend these
results in [58] to the case where each node fails with some fixed probability . The Algorithmic
probe complexity is the actual time and message complexity needed to find a live quorum.
It is determined by the network and by the quorum system. A related term is the Cost of
Failures introduced by Bazzi [20]. Given a network implementation and an algorithm for
finding quorums, the cost for failures measures the average communication overhead caused
by encountering a faulty node.

The dynamic setting introduces another set of demands:

• Integrity- Typically a the joining of a new node or the departure of an existing one result
in a modification of the quorum sets. The integrity of the system should be preserved in two
aspects: First the intersection property must hold. Bearden and Bianchini suggest in [21]
a protocol for an online adjustment of quorum systems without compromising the integrity
of the intersection property during the adaptation. It is necessary that the adaptations
themselves do not corrupt the intersection property of the quorum system; i.e., that the
intersection property holds after the adaptations took place. The second aspect is application
oriented. Quorums that were used in the past (say for mutual exclusion) might not be
legal quorum sets after the adaptation. It is necessary that when an adaptation occurs, the
intersection guarantee that the quorum system supplies the application is not compromised.

• Scalability- The number of elements in the quorum system may increase over time. The
increase in the size of the system should maintain the good qualities of it, i.e., it should
decrease the load on each node and increase the availability of the system. It is important
that when the system scales the algorithmic probe complexity would remain low. Finally the
Join and Leave operation should be applied with low time and message complexity.
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3.1.2 Our Contributions

Our contributions are divided into two parts. In the first part, we show a tradeoff between the
load and the non-adaptive probe complexity of quorum systems in the face of failures (Section
3.2). Our Theorem gives lower bound for non-adaptive probe complexity as a function of the
load. In Section 3.3 we show a non-adaptive algorithm for finding a quorum in the Paths quorum
system which is tight in that respect. We further show an adaptive algorithm for Paths with
probe complexity O(

√
n), which is optimal (up to constants). Thus combined with the results in

[105] the Paths system is the first quorum system shown to have an excellent balance between
many somewhat contradictory measures of quality. In Section 3.4) we present our second main the
contribution - the presentation and analysis of Dynamic Paths, a construction for a dynamic and
scalable quorum system which could be viewed as a dynamic adaptation of the Paths system. To
the best of our knowledge Dynamic Paths is the first scalable quorum system which is shown to
have low load, high availability and good probe complexity. Thus it is an excellent candidate for
an implementation of quorums in a dynamic distributed network.

3.2 Non Adaptive Algorithms vs. Load

A non adaptive algorithm for finding a live quorum is an algorithm which decides which elements
to probe before it gains any knowledge regarding which elements failed and which did not. Non-
adaptive algorithms are important in the context of a distributed network since they are easy
to implement in parallel. It might be worthwhile to ‘pay’ in a higher message complexity, and
reduce the total time complexity of the algorithm. As an illustrative example consider a quorum
system in which only

√
n elements participate in quorum sets. Clearly querying only those

√
n

elements is sufficient to find a live quorum. The drawback of this approach is that the load on
these elements would be high (Lemma 3.1.2 implies that it would be at least n−

1
4 ). In this section

we show a tradeoff between the load of a quorum system and its probe complexity for non adaptive
algorithms.

Theorem 3.2.1. Let S be a quorum system over universe U with a load of ζ = ζ(S). Assume
that each element in U fails with some fixed probability p < 1

2 . Let X ⊆ U be a predefined set of
elements such that

Pr[X contains a live quorum] ≥ 1
2
,

then
|X| ≥ 1

2 log(1/p) + 1
· log(1/4ζ)

ζ
.

In particular if ζ(S) is O( 1√
n
) then, |X| is Ω(

√
n log n).

Proof. Let SX be all the quorum sets contained in X, i.e., SX = {S|S ∈ S ∧ S ⊆ X}. Let R be all
the sets which are an intersection of X with a quorum; i.e.,

R = {R|R = S ∩X,S ∈ S}.

By the intersection property each set R ∈ R intersects all the sets in SX . Therefore, if for a set
R ∈ R all elements in R fail then X does not contain a live quorum. We show that R must contain
many disjoint sets of small cardinality. Let f be a distribution over quorum sets which imposes
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the optimal load ζ, and let a = |X|ζ. Distribution f induces a marginal distribution over the sets
R ∈ R by taking S ∩X for each sampled set S. Under this distribution, the expected size of R is
at most a (i.e., Ef [|R|] ≤ a), otherwise the load on the elements of X would be higher than ζ. By
Markov’s inequality we have that with probability at least 1

2 the sampled set is of size at most 2a,
so we have ∑

R:|R|≤2a

Pr
f

[R is sampled] ≥ 1
2

(3.1)

On the other hand since the load induced by f is at most ζ we have

∀x ∈ X
∑
R:x∈R

Pr
f

[R is sampled] ≤ ζ (3.2)

Next we show that inequalities (3.1) and (3.2) imply that R contains a collections R′ of at least
1
2ζ disjoint sets of size at most 2a. To see this employ the following procedure: pick a set Q ∈ R
such that |Q| ≤ 2a and put Q in R′. Define RQ ⊂ R to be all the small sets in R which intersect
Q, i.e., RQ = {R ∈ R|R ∩ Q 6= ∅ ∧ |R| ≤ 2a}. Now since Q has at most 2a elements then by
inequality (3.2) we have ∑

R∈RQ

Pr
f

[R is sampled] ≤ 2aζ (3.3)

Remove the sets RQ from R and repeat the procedure by picking another set Q, until all the sets
of cardinality ≤ 2a were removed. By inequalities (3.1) and (3.3) we can perform this procedure
1

4aζ times. Clearly all the sets Q chosen in this process are disjoint and of small cardinality. For
each set Q ∈ R′ the probability that all its elements fail is at least p2a. Since the sets are disjoint,
these events are mutually independent. In order for the probability of finding a live quorum to be
at least 1

2 we must have then that

(1− p2a)
1

4aζ ≥ 1
2

exp
(
− p

2a

4aζ

)
≥ e−1

2a · log(1/p) + log a ≥ log(1/4ζ)

a ≥ log(1/4ζ)
2 log(1/p) + 1

Now since |X| = a
ζ this implies the theorem.

Theorem 3.2.1 lower bounds the probe complexity of non-adaptive algorithms. The smaller the
load is, the larger the probe complexity is. The Paths system has a load of Θ( 1√

n
). The theorem

implies that any non-adaptive algorithm would have to probe a predefined set of Θ(
√
n log n) nodes,

in order to succeed with probability 1
2 . If the load is very large, say constant, then the bound given

by Theorem 3.2.1 is Ω(1). In case of the Majority system, the bound is much worst than the trivial
lower bound of n

2 . This however is unavoidable since quorum systems with high load may have
quorum sets of small cardinality, so any bound which uses the load alone will deteriorate when the
load increases.
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(0,0)

Figure 3.1: The Paths quorum system. The grids G(3) (thick lines) and
G∗(3) (thin lines).

3.3 The Paths Quorum System

We recall the construction of the Paths system from [105]. We start with a precise definition of the
grid we will be using.

Definition 3.3.1. Let G(`) be the subgrid of Z2 with vertex set {(v1, v2) ∈ Z2 : 0 ≤ v1 ≤ `+1, 0 ≤
v2 ≤ `} and edge set consisting of all edges joining neighboring vertices except those joining vertices
u, v with either u1 = v1 = 0 or u1 = v1 = `+ 1.

Definition 3.3.2. Let G∗(`), the dual of G(`) be the subgrid with vertex set {(v1, v2) + (1
2 ,

1
2) :

0 ≤ v1 ≤ `,−1 ≤ v2 ≤ `} and edge set consisting of all edges joining neighboring vertices except
those joining vertices u, v with either u2 = v2 = −1

2 or u2 = v2 = `+ 1
2 .

Note that every edge e ∈ G(`) has a dual edge e∗ ∈ G∗(`) which crosses it. We call such e
and e∗ a dual pair of edges. Note also that G(`) and G∗(`) are isomorphic. Both G(`) and G∗(`)
contain `2 + (`+ 1)2 = 2`2 + 2`+ 1 edges.

Definition 3.3.3. The Paths quorum system of order ` has n = 2`2 + 2` + 1 elements, and we
identify an element in U with a dual pair of edges e ∈ G(`) and e∗ ∈ G∗(`). A quorum in the
system is a set of elements which contains (elements identified with) the edges of a left-right path
in G(`) and the edges of a top-bottom path in G∗(`).

The Paths quorum system of order 3 is depicted in Figure 3.1. The intersection property of the
quorum system follows from the following fact:

Fact 3.3.4. Every left-right path in G(`) crosses every top-bottom path in G∗(`).

Naor and Wool proved that the load of the Paths quorum system is at most 2
√

2√
n

(where 1√
n

is
best possible). Furthermore it is shown that if each node fails with probability smaller than half,
then the probability a live quorum exists is at least 1− e−Ω(

√
n).

3.3.1 Algorithmic Probe Complexity in Paths

The analysis of the algorithms we present is based on Theorem 3.3.5 bellow due to Menshikov
[93]. The original context of Menshikov’s research was Percolation Theory. Consider the infinite
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two dimensional grid Z2 and fix a vertex u. Define S(k) to be the ball of radius k with u at its
center, where the distance k is taken according to the grid L1 metric. The set ϑS(k) consists of
the vertices in the boundary of the ball. Assume each edge fails with some fixed probability p > 1

2 .
Note that since the failure probability is greater than 1

2 , we discuss the case in which most edges
fail. Define Ak to be the event that there is a path of surviving edges between u and some vertex
in ϑS(k). The following is Menshikov’s Theorem. A good reference for its proof could be found in
Grimmett’s book [52].

Theorem 3.3.5. Let 1
2 < p ≤ 1 be some failure probability, and let Ak be defined as above. There

exists some positive constant ψ(p) such that Pr[Ak] < e−ψ(p)k for all k.

Let G(`) be the dual grid of G(`) (just like G∗(`)), however if an edge in G(`) survives then its
dual edge in G(`) fails and if an edge in G(`) fails then its dual edge in G(`) survives. The graph
G(`) is used for the analysis and is not a part of the construction itself. Now, since the failure
probability in G(`) is smaller than 1

2 , the failure probability in G(`) is greater than 1
2 , and we can

use Theorem 3.3.5. Theorem 3.3.5 bounds the radius of a connected component of G(`). It states
that the radius of a connected component has an exponential decay.

Corollary 3.3.6. If each edge of G(`) fails with probability p < 1
2 , there exists some constant

δ = δ(p) such that with high probability1 every connected component of G(`) is contained in some
ball of radius δ log n (where the balls are defined by the metric of the grid before failures).

Proof. Theorem 3.3.5 states that the probability that a ball of radius δ log n centered at vertex u
does not contain the component of u in G(`) is less than e−ψ(p)δ logn. Set δ such that δ · ψ(p) ≥ 2.
Now for each vertex u this probability is less than 1

n2 . When applying the union bound over all the
n vertices we have that the probability all components are contained in balls of radius δ log n is at
least 1− 1

n .

A Non Adaptive Algorithm.

We show an algorithm that matches the lower bound of Ω(
√
n log n) for non adaptive probes from

Theorem 3.2.1. A left-right path in G(`) must avoid all the components of surviving edges in
G(`). See Figure 3.2. We describe a non-adaptive algorithm that finds a left-right path, when
each element fails with probability p < 1

2 . The case of a top-bottom path is analogous. Choose a
horizontal strip of width at least 2δ log n+ 1 (where δ is taken from Corollary 3.3.6) and examine
all the edges. The algorithm tries to find a left-right crossing within the boundaries of this strip.

Claim 3.3.7. If each element in the quorum system fails independently with probability p < 1
2 , then

after probing non-adaptively 2`(2δ log n+1) = Θ(
√
n log n) elements, the algorithm finds a quorum

with high probability.

Proof. Corollary 3.3.6 implies that there is no path in G(`) that crosses the strip top to bottom
(otherwise this path is part of a component which can not be contained in a δ log n radius ball).
By Fact 3.3.4 this implies a left-right path in the strip. See Figure 3.2.

1The term ‘with high probability’ (w.h.p) means with probability 1− n−ε where ε is some positive constant.
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r

Figure 3.2: A possible quorum in Paths after failures. The dashed lines indicate the duals
of failed edges. The bold line indicates a left-right path.

Note that while probing O(
√
n log n) elements is sufficient to succeed with high probability,

Theorem 3.2.1 states that Ω(
√
n log n) probes are necessary to succeed with merely probability 1

2 .
As mentioned, since the algorithm is non adaptive it could be implemented in parallel. The actual
running time of the algorithm depends on the implementation of the network.

The Load After Failures: Naor and Wool show in [105] (Proposition 5.8) that the load of the
Paths system is Θ( 1√

n
) even after failures. In this section we present an efficient non-adaptive

algorithm for picking a quorum which meets this bound w.h.p.

Lemma 3.3.8. If each edge fails with probability p < 1
2 , then there exists a positive constant

α = α(p) such that in every strip of width α log n there exists log n left-right paths that are edge
disjoint.

Proof. Denote by LR the event that there exists a left-right path in a strip of width α log n (the
constant α will be fixed later). Denote by LRr the event that there are r edge disjoint left-right
paths in the strip. Fix some p′ such that p < p′ < 1

2 . Proposition 5.8 in [105] uses a known result
from percolation theory [8] in order to show the following:

Pr
p

(LRr) ≥ 1−
(

1− p
p′ − p

)r
(1− Pr

p′
(LR))

When r = log n we have that
(

1−p
p′−p

)r
is O(nk) for some constant k. Since p′ < 1

2 , by Corollary

3.3.6 and Claim 3.3.7 we can choose α to be large enough so that 1− Prp′(LR) < n−(k+1) and the
Lemma follows.

The strategy of picking a quorum is the following: First pick at random a strip and probe all
its elements. Find the edge disjoint left-right paths and pick at random one of these paths.

Corollary 3.3.9. If p < 1
2 then the load imposed on the elements by the strategy described above

is Θ( 1√
n
).

Proof. Given a node u, the probability that node u belongs to the randomly chosen strip is Θ( logn√
n

).
Lemma 3.3.8 implies that given that u is in the strip, the probability it belongs to the chosen quorum
set is at most Θ( 1

logn). As the second event is conditioned upon the first, we may multiply the
probabilities and deduce that the load imposed by the strategy is Θ( 1√

n
) even after failures.
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r

Figure 3.3: The dashed lines indicate the duals of failed edges. The bold line indicates a possible
path taken by the adaptive algorithm.

An Adaptive Algorithm for Finding Quorums in Paths

Adaptive algorithms can do better than non adaptive ones. Hassin and Peleg presented in [58]
a lower bound of c

1−p + O(1) on the expected probe complexity, when c is the cardinality of the
smallest quorum set. They proved that for some quorum systems this bound is tight. We note
that it is proved in [105] that ζ(S) ≥ max{1

c ,
c
n} therefore this lower bound is at best linear in the

inverse of the load. In the following we present an adaptive algorithm for the Paths quorum system
which needs only Θ(

√
n) probes. It is optimal in the sense that every quorum system with optimal

load must have c = Ω(
√
n). Various adaptive algorithms for quorums were analyzed by Hassin and

Peleg [58]. The only quorum system with a better probe complexity is the Crumbling Walls system.
This system however suffers from high load. Bazzi presented in [20] the Triangle Lattice quorum
system, which resembles Paths, and an adaptive algorithm for finding quorums in case of failures.
Bazzi proves that its cost of failures (i.e., the communication overhead due to encountering a failed
node) is constant. Our algorithm, is an adaptation of Bazzi’s algorithm to the grid, and therefore
Bazzi’s analysis applies in our case and shows the following: let Q be the set of nodes probed by
the algorithm until a quorum was found. Let F ⊂ Q be the subset of which that failed, then there
exists a constant α such that |F | ≤ |Q|

α . This result does not bound the total number of probed
nodes. Our goal in this section is to show that with high probability, the total number of nodes
probed is O(

√
n).

We start with a formal description of the algorithm, as before it is sufficient to show how to find
a left-right path. The algorithm is a variant of a DFS-search with a specified strategy for picking
the next edge to probe. We say that a path circumvents a component of G(`) if it travels along
the surface of it; i.e, it travels along edges, the duals of which are adjacent to the component and
not part of it. The algorithm would try to find a path which is a straight left-right line. Whenever
a component of G(`) is encountered it would be circumvented. More formally:

1. Choose r at random 1 ≤ r ≤ `. The search begins at edge r of the left column, and aims to
travel along row r.

2. Go to the right. When a failed edge is encountered circumvent the component until row r is
reached again. If r ≤ 1

2` from above, otherwise from below. Return to row r.

The path in bold presented in Figure 3.3 demonstrates a possible path of the DFS search. The
path taken by the algorithm needs to circumvent a component of G(`) only if it contains the dual
of an edge in row r. For each failed edge e of row r define Ce to be the number of edges in the
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component of G(`) that contains the dual of e. If e did not fail then Ce = 0. The number Ce is an
upper bound on the length of the circumvention the path had to take in order to avoid the failed
edge e.

Observation 3.3.10. The length of the path taken by the algorithm is at most `+
∑
Ce where the

sum is taken over the edges of row r.

Theorem 3.3.11. The probe complexity of the algorithm is Θ(`) = Θ(
√
n) with high probability

(where the probability is taken over the occurrence of faults).

Proof. Assume that the random starting point selected in Step (1) of the algorithm is a starting
point of some left-right path of the grid. By Lemma 3.3.8 we know that the probability of this is
constant. Thus we repeat the procedure above, until a good starting point is found. We need to
show that all the circumventions taken in Step (2), i.e.,

∑
Ce, accumulate to no more than Θ(`).

Fix some edge e on row r, and let vertex u belong to its dual edge. Let Cu be the number of edges
in the component of u in G(`). Let Au denote the diameter of that component. Since the vertex u
is adjacent to the dual of e it holds that Cu ≥ Ce. The grid topology implies that if Cu ≥ k then
Au ≥ 1

2

√
k. We have (by Theorem 3.3.5) that for some ψ(p) > 0

Pr[Cu ≥ k] ≤ Pr[Au ≥ 1
2

√
k] ≤ e−ψ(p)

√
k (3.4)

E[Cu] = µ ≤
∞∑
k=1

k · e−ψ(p)
√
k = O(1) (3.5)

The algorithm may need to avoid at most ` components of G(`). By linearity of expectation
the expected probe complexity of the algorithm is Θ(`). To show that this sum is Θ(`) with high
probability we need a slightly different argument. Divide the grid into ( `

δ logn) vertical strips each of
width δ log n, where δ is taken from Corollary 3.3.6. Each strip is wide enough such that w.h.p it is
wider than any component of G(`). Assume this high probability event occurs. Define Xi

def
=
∑
Ce

where the sum is taken over edges of row r and strip i. The length of the path the algorithm took
is at most `+

∑
Xi.

Lemma 3.3.12. E[Xi] ≤ µδ log n and w.h.p for all i we have Xi ≤ 2δ2 log2 n.

Proof. The width of the strip is δ log n and the expected size of each component is µ, therefore
by linearity of expectation E[Xi] ≤ µδ log n. By Corollary 3.3.6 we know that w.h.p all the
components are contained in a δ log n radius ball. Therefore w.h.p all the components are confined
into a rectangle of area 2δ2 log2 n. which proves the second claim.

Define Iσ = {1 ≤ i ≤ `
δ logn : i mod 3 = σ}, σ ∈ {0, 1, 2}.

Lemma 3.3.13. Conditioned on the event that all the components are of diameter O(log n), which
by Corollary 3.3.6 occurs with high probability, the set {Xi}i∈Iσ consists of independent random
variables.

Proof. If all components are of small diameter, then every connected component of G(`) belongs
to at most two strips. Therefore Xi depends only upon the probes of edges in strips i− 1, i, i+ 1.
This means that Xi, Xi+3 are independent.
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Figure 3.4: The line graph of a 4× 4 grid and its dual.

By using the appropriate Chernoff Hoefding bound (cf. [51] page 17) we have

Pr

[∑
Iσ

Xi −
∑
Iσ

E[Xi] ≥ t|Iσ|

]
≤ 2 exp

(
− 2t2|Iσ|

(2δ2 log2 n)2

)

Since |Iσ| is in the order of
√
n

logn , the probability that there is a large deviation decays exponentially
fast. In particular setting t to be some large enough constant implies that Pr[

∑
Iσ
Xi > Θ(`)] ≤ 1

n2

for σ ∈ {0, 1, 2}. Now we apply the union bound over the high probability events of Corollary 3.3.6
and Lemmas 3.3.12 and 3.3.13, which means that with high probability the probe complexity of
the algorithm is Θ(`) = Θ(

√
n). This concludes the proof of Theorem 3.3.11.

Network implementation: In order to calculate the actual running time and message complex-
ity of these algorithms we need to take into consideration the topology and implementation of the
network over which the quorum system is defined. The most natural network topology to consider is
that of G(`), G∗(`) themselves. Each node is associated with a pair of dual edges, and is connected
to the nodes that are associated with edges that are adjacent to its own edges. In other words, the
topology of the network is the line graph of the two dimensional grid. In Figure 3.4 the thick solid
edges belong to the line graph of G(`), the dotted edges belong to the line graph of G∗(`) and the
diagonal edges belong to both. A quorum set therefore is composed of nodes that form a left-right
path using the solid horizontal, vertical and diagonal edges and a left-right path using the dotted
and diagonal lines. In this implementation the message complexity and the time complexity of
the adaptive algorithm are indeed Θ(`). The non-adaptive algorithm can probe its chosen strip in
parallel, and achieve a running time of Θ(`) and a message complexity of Θ(

√
n log n). Other data

structures that are implemented on the network might support the implementation of the quorum
system. For instance if the network implements a DHT then the DHT could be used for probing
the strip in parallel and the time complexity would reduce to Θ(log n) with an extra logarithmic
factor in the message complexity.
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Figure 3.5: A possible sample from the worst case distribution of failed edges. The bolded
edges have failed. The third row is an open path.

Worst case model: Assume an adversary is given the possibility to crash a constant fraction
of the elements. It is easy to see that an adversary can ‘kill’ all the short paths, and leave only
paths of length Ω(`2) = Ω(n). However an adversary may force any algorithm (even probabilistic)
to probe Ω(n) elements, even if we are guaranteed that there exists a short left-right path. We
sketch the proof using Yao’s minimax principle (cf. [97]). We need to supply a distribution of the
inputs such that every deterministic algorithm would need to probe an expected Ω(n) elements.
The distribution over inputs is as follows:

1. Kill every line of even index.

2. From the remaining lines choose at random one which would remain alive.

3. Kill each remaining line by choosing at random one element from it and deleting it.

An example of a possible input is seen in Figure 3.5, where the third row from the top is the only
surviving row. Now every deterministic algorithm needs to find the line that survived. Every such
algorithm will need to probe Ω(`) lines, each of these lines should be probed Ω(`) times. All in all
every deterministic algorithm would probe on expectation Ω(`2) edges. We conclude that for every
algorithm (deterministic or randomized) there is an input, for which the expected probe complexity
of the algorithm is Ω(n). Peleg and Wool analyze in [108] the probe complexity of several quorums
under the model of adversarial deletion. They show several lower bounds, all of which turn to be
Ω(`) in the Paths system. Note that even though the algorithmic probe complexity is high, the
cost of failures (as were defining by Bazzi [20]) is a constant.

3.4 The Dynamic Paths Quorum System

In this section we suggest a quorum system that operates in a dynamic model, where nodes may
join and leave. The applications of quorum systems in a dynamic setting were considered in a
wide range of papers cf. [1],[59],[65]. Previous constructions of dynamic quorums focused on
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implementing quorum systems in a dynamic environment and designing algorithms that allowed a
group of nodes to form a new quorum in a consistent way (cf. [61],[79],[111], [54],[81]). We focus
on the combinatorial properties of dynamic quorums. Our goal is to design dynamic quorums that
enjoy low load, high availability, low probe complexity and that scale gracefully in respect to these
parameters. Stojmenović and Peña [121] suggest a location based dynamic quorum system for use
in ad-hoc wireless networks. The system is composed of North-South and West-East paths which
are constructed dynamically according to the physical location of the nodes. Our work differs by
assigning virtual coordinates to nodes, thus using the quorum system in a more general setting. We
then provide a rigorous analysis in which the combinatorial properties (load, availability, integrity)
of the system are analyzed.

3.4.1 The Quorum System

The good properties of the Paths quorum system motivates us to design a dynamic version of the
Paths system. The main idea is to substitute the grid with the continuous unit square [0, 1) ×
[0, 1) ⊂ R2. Now we use the continuous-discrete approach in the two-dimensional case as described
in Section 2.7. In the Dynamic Paths quorum system, a quorum set is the union of (elements
identified with) the vertices (generators) that form a left-right path and a top-bottom path in the
Delaunay graph.

Load: We upper bound the load by analyzing a specific distribution over quorum sets: choose at
random two points (x, y) in the interval [0, 1). Now pick the quorum set that is composed from all
the cells that intersect the horizontal line x and the vertical line y. An example of a quorum set is
depicted in Figure 3.8. The bound on the projection of a cell in Theorem 2.7.3 implies that with
high probability the load imposed by this strategy is at most Θ(

√
logn√
n

).

Availability: Planar duality implies that if the locations of the generators were picked uniformly
at random, and the failure probability is 1

2 then with probability 1
2 a left-right path exists. A

rough outline of the argument is as follows: If there is no left-right crossing, then there must be
a top-bottom crossing of failed Voronoi cells. The procedure of creating the Voronoi diagram is
symmetric and imposes the same probability over a top-bottom and a left-right crossing. Therefore
when p = 1

2 the probability that a crossing exists is equal to the probability a crossing does not
exist. This suggests strongly that the critical probability (i.e. the value of p in which the probability
there is a crossing when n → ∞ jumps from 0 to 1) is at 1

2 . Indeed recently Bollobas et al [24]
prove that this is the case. Another important result in [24] is that when p > 1

2 , i.e. most of the
cells fail, the size of the connected components has an exponential decay. In other words Bollobas
et al prove a theorem analog to Menshikov’s Theorem 3.3.5. This implies that the same analysis
done when specifying the availability of Paths should hold for Dynamic Paths as well.

Integrity: It is necessary that nodes save some information about the quorum sets that were used.
A quorum set is associated with a path. Every time a quorum is used, a node that participates
in the quorum should remember the identity of the nodes before and after it in the path. When
a new node joins the system either the quorum set grows or the load should be divided evenly
between the new quorums. Figure 3.6 demonstrates the process. Figure (a) shows the Voronoi
diagram before the entrance of v. Figure (c) demonstrates the case where v is added to quorum
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Figure 3.6: Maintaining the integrity of the quorum system.
When adding a node either the load of quorum A is split between quorums A1, A2 as seen in
(b), or A grows, as seen in (c).

A. Figure (b) shows the case where the responsibilities of quorum A (represented by the line in
bold) should now be split between quorums A1, A2. If for instance the application of the quorum
system is mutual exclusion, and quorum A is currently active, then nodes u, v should decide among
themselves which one of them remains active, and inform their neighbors. If the quorum system
is used for replication of data, then the procedure is slightly more delicate. Each data item is
associated with a quorum set. Nodes u, v should divide among themselves the data items that were
previously associated with quorum A, and of course inform their neighbors.

Algorithmic probe complexity: The probing algorithms that were described in Section 3.3
have obvious analogs in the Dynamic Paths system. In order to prove that the probe complexity
of the non-adaptive and adaptive algorithms is Θ(

√
n log n) and Θ(

√
n) respectively, we need an

analog for Theorem 3.3.5; i.e., we need that for a small failure probability, the radius of a component
of failed cells would decay in sub-exponential rate. Until recently such a theorem was unknown.
The recent paper by Bollobas et al [24] mentioned above, proves exactly this. So the performance
of the algorithms could be analyzed in the same manner as in Section 3.3 and the Dynamic Paths
quorum system enjoys excellent probe complexity.

3.4.2 A Smooth Voronoi Diagram

The Single Choice Join algorithm is simple and offers optimal availability and probe complexity.
It has the disadvantage though that some of the Voronoi cells are quite big, causing an increase in
the load and the degree. The load of the system is proportional to the size of the projection of the
cells over the axis lines. Theorem 2.7.3 bounds the size of the projection (and therefore the load)

by O(
√

logn
n ), in the case where the location of the nodes is chosen uniformly and randomly in

[0, 1)× [0, 1). Furthermore the existence of large cells enlarges the maximum degree in the network
to be logarithmic.

As seen in Section 2.7, a more sophisticated and coordinated procedure for choosing the location
upon entrance reduces the size of the largest cell and creates a smooth Voronoi diagram. In a smooth
Voronoi Diagram every cell is contained in a square of area Θ( 1

n) and therefore its projection on
the axis lines is O( 1√

n
). This implies that the load of the quorum system would be optimal and the

maximum degree is constant. A slight difficulty arises when trying to prove the high availability
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and low probe complexity of the algorithms. We know that both the grid and a random Voronoi
diagram have high availability and low probe complexity whenever the failure probability is smaller
than 1

2 . It is very likely therefore that a smooth Voronoi diagram has the same properties. We can
prove a somewhat weaker claim, namely that the availability and probe complexity are as good as
in Paths, as long as the failure probability is at most some small constant (smaller than 1

2).
Intuitively if the Voronoi diagram is smooth then ‘it looks like a grid’ and therefore theorems that

are correct for the grid should apply for the diagram. The technique we use follows this intuition,
though it is rather delicate. We use domination by product measures as shown by Liggett et al in
[77]. We need some definitions from probability theory. In the following we define the necessary
definitions and sketch the idea of the proof. A good exposition of the notions we use appears in
Grimmett’s book[52]. The discussion below follows it.

Domination by Product Measures

We begin by defining stochastic domination in our context. Say we have a finite set S and a state
space Ω = {0, 1}S . The set S may be the set of edges in a two dimensional grid and Ω the set
of configurations when some of the edges fail. Given ω1, ω2 ∈ Ω we say that ω1 ≤ ω2 if ∀s ∈ S
ω1(s) ≤ ω2(s). In our case ω1 ≤ ω2 if all the surviving edges in ω1 have also survived in ω2.

Given a function f : Ω→ R we say that f is increasing if

ω1 ≤ ω2 ⇒ f(ω1) ≤ f(ω2).

For instance the function that assigns the value 1 to a configuration that contains a left-right
crossing and 0 otherwise, is an increasing function.

Now, given two probability measures on Ω, µ and ν we shall say that µ stochastically dominates
ν - and write µ � ν - if for any increasing function f we have Eµ(f) ≥ Eν(f). This is a very strong
condition which amounts to saying that in every possible way, µ puts more mass on bigger elements
of Ω than ν does. In case that f is defined as above, it means that the probability there exists a
left-right path is larger in µ than it is in ν. A canonical example for domination is the following:
Assume we have a two dimensional grid. Denote by πp the product measure with probability p,
i.e., the case in which each edge fails independently with probability 1− p. It is intuitive (though
requires proof) that πp1 � πp2 , when p1 ≥ p2.

The analysis of Paths used various bounds on increasing events on the product measure over
the grid. Our approach would be to show that the process of randomly failing cells in a smooth
Voronoi diagram dominates a product measure on the grid, thus lower bounding the probability
there exists a left-right path in the Voronoi diagram.

Let T be a smooth Voronoi diagram with n generators and assume that each cell survives with
probability p > 1

2 and fails with probability 1−p, independently from all other cells. Now construct
a
√
n ×
√
n grid called G on top of the Voronoi diagram, as shown in Figure 3.7. We say that an

edge e ∈ G failed iff it intersects a failed cell of T . Let Xe be the indicator of the state of e (i.e.,
Xe = 1 iff e survived). Now Pr[Xe = 1] is exactly p to the power of the number of cells it intersects.
However since T is smooth, we know that this power is bounded by some constant, therefore there
exists some p′ < p independent of n, such that for all e ∈ G, Pr[Xe = 1] ≥ p′. Assume that p was
large enough such that p′ > 1

2 .

Observation 3.4.1. If there exists a left-right crossing of survived edges in G then there exists a
left-right crossing of survived Voronoi cells in T (i.e., a crossing in the Delaunay graph).



54 Chapter 3. Scalable and Dynamic Quorum Systems

Figure 3.7: The grid G is put on top of the diagram T .

Since p′ ≥ 1
2 one is tempted to use known results from percolation theory that show that the

probability of a crossing is very high, as was used in [105] to prove the availability of Paths and as
was used perviously to prove the low probe complexity of Paths. The problem is that the random
variables {Xe}e∈G are not mutually independent. In particular, if two edges are contained in the
same cell in T , then the state of both of them is determined by the state of that cell. The key
observation is that since T is smooth, Xe is independent from all but a constant number of other
edges. Let µ be the probability measure thus defined on {Xe}e∈G. Liggett et al show in [77] that
in this case µ dominates the product measure over the edges of G for some other value r′ ≤ p′.
Theorem 1.3 in [77] could be stated in our case as follows:

Theorem 3.4.2. Let µ be some probability measure over the set of configurations of the edges of
G. Assume that each edge in G survives with probability at least p′, and that the state of each edge
is dependent on the state of at most k other edges for some constant k. Then there exists some r′

which is a function of p′, k and independent of n such that µ � πr′. Furthermore by increasing p′,
r′ could be made arbitrarily close to 1.

Intuitively speaking Theorem 3.4.2 states that if we have a two dimensional grid, and each edge
fails ‘almost’ independently from all other edges, then by reducing the failure probability, we may
think as if each edge failed independently. Note that the existence of a left-right path in the grid is
an increasing event. The diameter of a connected component in the dual graph (which is bounded
in Theorem 3.3.5) is also an increasing function. Theorem 3.4.2 implies that by reducing the failure
probability, we may use these theorems to bound those random variables in the smooth Voronoi
diagram.

Denote by Gµ(p′) the random graph induced by {Xe}e∈G. Denote by Gπ(r′) the random graph
induced by the product measure with probability r′.

Corollary 3.4.3. Let p′ be close enough to 1. There exists some r′ ≤ p′ independent from n,
such that the probability there exists a crossing in Gµ(p′) is at least the probability there exists a
crossing in Gπ(r′), and the probability a component of the dual Gµ(p′) is of diameter k, is at most
the probability a component of the dual of Gπ(r′) is diameter k. Furthermore by increasing p′, r′

could be made arbitrarily close to 1.

Corollary 3.4.3 is directly used to analyze the availability and probe complexity of Dynamic
Paths:
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Figure 3.8: An example of a quorum in Dynamic Paths.
The cells that belong to the quorum set are the ones that intersect the dashed lines.

Theorem 3.4.4. Let T be a smooth Voronoi diagram, and let S be the Dynamic Paths quorum
system derived by it. Then the load of the system ζ(S) is O( 1√

n
). There exists some 1

2 < pc < 1
such that for pc < p < 1, if each node fails independently with probability 1 − p then the following
hold:

1. The probability a live quorum set exists is 1− e−Ω(
√
n)

2. The non-adaptive algorithmic probe complexity is O(
√
n log n) w.h.p.

3. The adaptive algorithmic probe complexity is O(
√
n) w.h.p.

3.4.3 A simpler Quorum System

A possible simplification of the Dynamic Paths system is the following: Define a quorum set to be
all the (elements identified with) cells that intersect the same horizontal and vertical line (see Figure
3.8). This quorum system is a dynamic adaptation of a quorum system suggested by Maekawa [82].
A slight improvement was suggested by Agrawal et al in [6] where instead of looking at horizontal
and vertical lines, they examine diagonal lines that resemble the paths of billiard balls. Theorem

2.7.3 implies that the load of these quorum systems is Θ(
√

logn
n ). The integrity of these systems

could be maintained by associating each quorum set with the numeric value of the vertical and
horizontal lines, thus the implementation is simpler. The main drawback of these systems is their
low availability. If each node fails with probability Θ( logn√

n
), then with high probability no quorum

set survives.

3.5 Conclusion and Open Questions

The main open problem is to improve the load of the Dynamic Paths quorum system so that it
matches the load of Paths. The load of Dynamic Paths is determined by the size of the projection
of cells over the axis lines. The simple Join algorithm in which the location of each generator is
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random guarantees that the projection of all cells is at most O(
√

logn√
n

). It is interesting to find other
(perhaps more sophisticated) Join algorithms that guarantee a better load. The cyclic presented
in Section 2.6 applies for the one dimensional case only. It would be interesting to find a two
dimensional analog to that algorithm. Some work in this direction was done in [5], however they
considered splitting the plain into rectangles (as in CAN) and not a Voronoi diagram.

A better understanding of percolation theory over Voronoi diagrams would improve the analysis
of the algorithms. In particular it is important to bound the probability of a diameter k component
in a percolation with p < 1

2 . A ‘Menshikov style’ theorem of this sort that states that this probability
is exponentially small in k, would imply a Θ(log n

√
n) algorithmic probe complexity for Dyanmic

Paths even for the simple random Join algorithm.

Conclusion: The Paths quorum system is shown to have excellent adaptive and non-adaptive
probing algorithms. It was previously known that the Paths system has optimal load and availabil-
ity, thus the Paths system offers excellent balance between different quality measures. This makes
Paths a natural candidate for an adaptation into a dynamic setting. Applying the continuous-
discrete technique results with the Dynamic Paths quorum system which is scalable and operates
in a dynamic setting. Dynamic quorum systems were used by Nadav and Naor [98] for designing
fault tolerant storage systems. Dynamic Paths maintains the good qualities of the Paths system.
Its low load, high availability and simple probing algorithms makes it an excellent candidate for an
implementation of dynamic quorums.
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The Neighbor of Neighbor Algorithm

Summary: Several peer-to-peer networks are based upon randomized graph topologies that permit effi-
cient greedy routing, e.g., randomized hypercubes, randomized Chord, skip-graphs and constructions based
upon small-world networks. In each of these networks, a node has out-degree O(log n), where n denotes the
total number of nodes, and greedy routing is known to take O(log n) hops on average. Our contribution
is twofold. First we investigate the limitations of greedy routing and establish lower-bounds for greedy
routing for these networks, then we present and analyze the Neighbor-of-Neighbor (NoN)-greedy routing.
The idea behind NoN, as the name suggests, is to take a neighbor’s neighbors into account for making better
routing decisions.

The following picture emerges: Deterministic routing networks such as hypercubes and Chord have
diameter Θ(log n). This means that greedy routing is optimal in the sense that its routing distance is
at most (approximately) the diameter, yet networks with average degree of O(log n) may have diameter
O( log n

log log n ). Randomized routing networks such as skip-graphs, randomized hypercubes, randomized Chord,
and constructions based upon small-world percolation networks, have diameter Θ(log n/ log log n) with high
probability. In all of these networks, greedy routing fails to find short routes, requiring Ω(log n) hops
with high probability. Surprisingly, the NoN-greedy routing algorithm is able to diminish route-lengths to
Θ(log n/ log log n) hops, which is asymptotically optimal.

4.1 Small World Networks

Randomized network constructions that model the Small-World Phenomenon have recently received
considerable attention. A widely-held belief pertaining to social networks is that any two people in
the world are connected via a chain of six acquaintances (six-degrees of separation)1. The behavior
of such networks has been investigated extensively by researchers from diverse set of disciplines
including: the social sciences, physics, computer science and webologists. These investigations
consist of either checking the existence of the phenomenon in various setting or coming up with
models to explain it. The quantitative study of the phenomenon started with Milgram’s [94] ex-
periments in 1960’s, asking people to send letters to unfamiliar targets only through acquaintances.
Milgram’s experiments and the work by Pool and Kochen [110] confirmed that often random pairs
of individuals are indeed connected by short chains. Watts and Strogatz [123] claimed that the
Small-World Phenomenon is common in a variety of different realms and suggested modeling the
phenomenon by analyzing some distribution over random graphs.

1According to Barabási [18] this idea may have its origins in a short story “Chains” by the Hungarian
writer Frigyes Karinthy from 1929; this idea has been retold and recast many times since then, in the
literature, popular press as well as scientific studies.

57
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The study of the algorithmic or routing perspective of this phenomenon was initiated by Klein-
berg [70],[69], who pointed out that the small world experiments showed not only that short paths
exist, but that people can find such paths based on local information. To model the routing aspects
of the Small-World Phenomenon, Kleinberg considered a family of random graphs. The graphs not
only have small diameter (to model the “six degrees of separation”) but also allow short routes to
be discovered on the basis of local information alone (to model Milgram’s observation that mes-
sages can be “routed to unknown individuals efficiently”). In particular, Kleinberg considered a
two dimensional n × n grid with n2 nodes. Each node is equipped with a small set of “local”
contacts and one “long-range” contact drawn from a harmonic distribution, i.e, the probability
of establishing an edge (x, y) is proportional to ||x − y||−2, where ||x − y|| stands for the grid’s
L1 distance. With greedy routing, the path-length between any pair of nodes is O(log2 n) hops,
w.h.p. Local knowledge available to a node suffices for greedy routing – a message is forwarded
along that out-going link which takes it closest to the destination. Barrière et al [19] showed that
greedy routing requires Ω(log2 n) hops for Kleinberg’s construction. The diameter of small world
graphs is shorter and is Θ(log n) on expectation [90]. Thus, greedy routing is sub-optimal and it
is desirable to find routing schemes that route along shorter paths.

Kleinberg’s results can have various interpretations: it could be thought of as an explanation of
how people in the chain letter experiments behaved (this is a descriptive approach). Alternatively, it
could be seen as suggesting a routing strategy. While sending letters to unknown targets is not the
most useful activity, the problem is related to routing in peer-to-peer networks, i.e. networks where
nodes join and leave the system dynamically. In various P2P systems nodes are assigned labels
that are interpreted as points on some d−dimensional space; links are added to close neighbors and
some links are added to far away ones. Hence the hope is that lessons learned for the small world
graphs may be applicable in the peer-to-peer environment. Indeed the works of Aspnes et al [14]
and Manku et al [87] apply intuitions from small worlds into peer-to-peer constructions. We shall
show further adaptations in this work.

Peer-to-Peer Networks

The topology of P2P networks can be classified into two categories – deterministic and randomized.
In deterministic P2P networks the topology is a function of the id’s of the nodes. Typically they
are based upon classical parallel inter-connection networks, such as the hypercube and its variants,
butterflies or De-Bruijn graphs. Examples include the Distance Halving DHT and many more
e.g [115, 128, 120, 2]. In randomized networks, as the name suggests, randomization is used
to determine the topology of the network. Natural examples include skip-graphs [16, 57], the
randomization of hypercubes [53, 28] and the randomization of Chord [127, 53]. All of which have
a node degree of O(log n). Other examples are networks based on Kleinberg’s construction such
as Symphony [87] [14]. In these networks the out-degree of each node is bounded by a constant.
Among the various P2P routing networks, skip-graphs are unique in that node identifiers (or “keys”
associated with nodes) can be drawn from an arbitrary ordered domain, e.g., the set of character
strings. This property makes skip-graphs the only P2P routing network that naturally supports
prefix-search. Other P2P routing networks assume that nodes are assigned identifiers that are
drawn uniformly from the unit interval [0, 1).

Many P2P networks share structural similarities with a network in which nodes are associated
with a d−dimensional torus, and an edge (i, j) is established with probability 1

||i−j||d , independently
of all other edges. We call this network a small-world percolation network. The small-world perco-
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lation network has its antecedents in classical “long range percolation” models. We outline a brief
history at the beginning of Section 4.2.

The routing scheme suggested for all the above networks is greedy; i.e., each node routes the
message to its neighbor which is closest to the target. The greedy algorithm is appealing to use
since it is based on local information only and is very simple (both conceptually and implementation-
wise). The main disadvantage of greedy is that often it routes along paths that are much longer
than the shortest paths in the network. The Neighbor-of-Neighbor (NoN) greedy algorithm is
meant to overcome this problem. The idea underlying NoN is to allow a node to gain knowledge
of its neighbor’s neighbors for assistance in making better routing decisions. . Our work addresses
two questions:

(a) When does greedy routing route along (approximately) shortest paths?

(b) What is the role of look-ahead (or Neighbor of Neighbor) upon greedy routing?

4.1.1 Our Contributions

In a network with k out-going links per node, the average length of shortest paths is Ω(log n/ log k).
Therefore, with O(log n) links per node, it might be possible to route in O(log n/ log log n) hops,
and it might be possible to route in O(log n) hops in Kleinberg’s construction. The known upper
bounds for greedy routing are sub optimal in this sense. The main contribution of this work is
to show that in many cases greedy routing is indeed asymptotically sub-optimal, while the NoN-
Greedy algorithm which uses just one level of look-ahead is asymptotically optimal. In particular
we show the following:

Upper bounds: We show that NoN-greedy routing, which fixes two hops of a route (by taking
the neighbors of neighbors of a node into account), is optimal for the small-world percolation
networks and requires Θ(log n/ log log n) hops, w.h.p. (Section 4.2). The same upper bound is
established for randomized-hypercubes and randomized-Chord (Section 4.3) and for skip graphs
(Section 4.4). Thus skip-graphs are the only degree-optimal P2P network that supports prefix
search. In Section 4.3 we also analyze Kleingberg’s construction (Symphony) and show that the
NoN algorithm is asymptotically better than greedy yet not optimal.

The asymptotical analysis is accompanied by simulations which show that for network sizes
ranging from 212 to 224 nodes, NoN-greedy routes are 40% to 48% shorter than greedy routes
in all of these topologies (Section 4.6).

Lower bounds In Section 4.5 we show that greedy routing requires Ω(log n) hops on average in
small world percolation graphs and in each of the following randomized P2P networks: skip-graphs,
randomized-Chord, randomized-hypercube, and Symphony with k = Θ(log n) per node.

4.1.2 Related Work

The tradeoff between the average path length and the out-degree of nodes is of fundamental in-
terest to designers of P2P routing networks. Hypercubes and Chord offer average paths of length
Θ(log n) with Θ(log n) links per node with greedy routing (optimal routes in Chord were iden-
tified by Ganesan and Manku [45]). Skip graphs, Randomized-hypercubes and randomized-Chord
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were known to offer routes of length O(log n) with greedy routing. Among the randomized P2P
networks, Viceroy [84] offers routes of length Θ(log n) w.h.p. with only O(1) links per node. A
randomized construction in [86] combines ideas from Viceroy with Kleinberg’s construction to
arrive at a network that routes in Θ(log n/ log k) hops w.h.p., with k links per node.

Networks based on De-Bruijn graphs [99, 62, 41] offer an optimal tradeoff between degree and
path length, in particular for O(log n) links per node the routes are of length O(log n/ log log n).
The De-Bruijn networks are significantly simpler than Viceroy and the construction in [86], yet
the routing protocol in De-Bruijn graphs is not greedy – it is based on numeric computations on
labels of nodes. Recently Abraham et al [4] presented a graph based on the Butterfly network in
which when the degree is d, greedy routes along paths of length O(log n/ log d).

Overall, two classes of networks are known to have optimal route lengths with respect to the
degree, for instance route in Θ(log n/ log log n) hops with Θ(log n) links per node: De-Bruijn net-
works and butterfly networks. The P2P implementation of these networks requires that keys are
random, thus unlike skip-graphs there is no natural way for keys to carry semantic meaning. The
results of this paper add a third class – “randomized small-world networks”. We hope that our
results inspire further investigations into the general properties of these networks.

The basic idea of the NoN-greedy approach is drawn from two sources. A paper by Copper-
smith et al [33] uses the neighbors-of-neighbors approach, though not in an algorithmic perspec-
tive. They use the idea to establish that the diameter of small-world percolation networks on n
nodes is O( logn

log logn) w.h.p. NoN-greedy routing was first used (under the name “greedy with
1-lookahead”) by Manku et al [87] as a heuristic for Symphony, a randomized P2P network.
Fraigniaud et al [42] recently analyzed other variants of greedy algorithms in Kleinberg’s model,
when each node is aware of the long-range contacts of the log n nodes which are closest to it.
They show that a variant of greedy which routes in expected Θ(log1+ 1

d n) hops (when d is the
dimension of the mesh). Aspnes et al [14] established lower bounds for greedy over a general
family of randomized networks under the assumption that each “long-range” link is drawn from
the same probability distribution. Lebhar and Schabanel [74] present a routing algorithm which is
not greedy and improves over the simple greedy algorithm.

4.1.3 The NoN-GREEDY Routing Algorithm

We introduce the main object of our investigation, the NoN-greedy Routing Algorithm, in Fig-
ure 4.1. We assume the existence of a metric on the labels of nodes.

Algorithm for routing a message to node t.

1. Assume the message is currently at node u 6= t. Let w1, w2, . . . , wk be the neighbors
of u.

2. For each wi, 1 ≤ i ≤ k, find zi - the closest neighbor to t. Let j be such that zj is
the closest to t among z1, z2, . . . , zk.

3. Route the message from u via wj to zj .

Figure 4.1: The NoN-greedy Algorithm. Some metric over the labels of nodes is assumed.
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In the NoN-greedy algorithm, wj may not be the neighbor of u which is closest to t. The
algorithm could be viewed as a greedy algorithm on the square of the graph – a message gets routed
to the best possible node among those at distance two.

4.2 NoN in Small-World Percolation Graphs

Definition 4.2.1. A “small-world percolation network” of dimension d is a finite graph whose
vertex set is associated with the d−dimensional mesh. The probability that (u, v) is an edge is

1
||u−v||d and is independent from all other edges, and ||u − v|| stands for the mesh L1 distance
between u and v.

Small-world percolation networks originate from a classical percolation model called “long range
percolation”. In that model, nodes lie on an infinite grid and an edge is put between a pair of nodes
with some positive probability. The question of existence of infinite components was considered
by Schulman [118], Aizenman and Newman [9] and Newman and Schulman [106], where the one
dimensional grid Z is studied and edges (i, j) are selected with probability β/‖i − j‖s for some
values β, s.

Benjamini and Berger [22] proposed and studied a finite percolation model: a cycle graph over
n nodes where an edge between nodes i and j exists with probability 1 if ‖i− j‖ = 1, otherwise, it
exists with probability exp(−β/‖i− j‖s), for some values β, s. Coppersmith et al [33] extended the
model to multiple dimensions: a d−dimensional mesh where an edge (u, v) is selected independently
with probability 1/‖u− v‖d. Coppersmith et al [33] established that the diameter of the resulting
graph is Θ(log n/ log log n) w.h.p. Their proof used the neighbor-of-neighbor approach for part of
the way, and a non-constructive argument for the rest of the way. We now show that Non-greedy
routing results in paths of length Θ(log n/ log log n) w.h.p.

Theorem 4.2.2. Given two nodes s, t in a d−dimensional small-world percolation network over n
nodes, with probability at least 1− 1

n3 the NoN-greedy algorithm routes a message from s to t in
O( logn

log logn) hops. The probability is taken over the configuration of the graph.

Note that the high probability bound of Theorem 4.2.2 implies that with high probability the
NoN algorithm finds short paths between all pairs of nodes.

Proof of Theorem 4.2.2. The L1 distance between any two nodes is at most n. So we assume the
worst case - that the distance between the source and target is n. We partition the routing into
two phases. In the first phase, the message is routed so that the remaining distance to the target
diminishes to e

√
logn or less. In the second phase, the message covers the remaining distance. We

show that each phase takes O(log n/ log log n) w.h.p., thus proving the theorem. The first phase
was handled in Lemma (6.1) from [33].

Lemma 4.2.3 ([33]). If m ≥ c log n/ log log n, for some constant c which depends only on the
dimension, then after m NoN-greedy routing steps, the message would reach a node that lies at
distance e

√
logn or less from the destination, with probability at least 1− 1

n3 .

The second phase of the routing could in fact be performed by plain greedy routing.

Lemma 4.2.4. Given that the current location of the message from the source is at distance at
most e

√
logn from its destination, then with probability at least 1− 1

n3 , the message would reach its
destination within O(log n/ log log n) greedy steps.
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First we show the effect of a single a NoN hop:

Claim 4.2.5. Let δ and δ′ denote the distance from the destination before and after performing a
single NoN greedy hop. There is an ε = ε(d) > 0 such that for any sequence of hops leading to
the current node and for all k > 0

Pr[δ′ ≤ d(1− 1
k
)δe] ≥ 1− 1

kε
.

Proof. The proof will show that the Claim holds even for a single greedy hop. A single NoN hop
is always longer than a single greedy hop. Assume the message is at node ~0, and the target note t
is such that ||t||1 = δ. For each integer k define Bk to be all nodes with distance at most (1− 1

k )δ
from t (for notational convenience we remove the ceilings and floors). We calculate the probability
there is an edge from ~0 to the ball Bk. Define `i to be the number of vertices x such that ||x|| = i
and x is in Bk. We have:

Pr[~0 is not connected to Bk] =
δ∏

i=δ/k

(1−i−d)`i ≤
δ∏

i=2δ/k

(1−i−d)`i ≤
δ∏

i=2δ/k

e−`i/i
d

= exp(−
δ∑

i=2δ/k

`i
id

)

Now assuming that `i is Θ(id−1) for 2δ
k ≤ i ≤ δ, for some constant ε it holds that

exp(−
n∑

i=2δ/k

`i
id

) ≤ exp(−Θ(
n∑

i=2δ/k

1
i
)) ≤ 1

kε

which proves the claim. It remains to show that indeed `i = Θ(id−1) for 2δ
k ≤ i ≤ δ. There are

Θ(id−1) nodes at distance i from ~0, we need to show that a constant fraction of them are in Bk,
i.e with distance at most (1− 1

k )δ from t. Let i take some value 2δ/k ≤ i ≤ δ and let x be a point
on a shortest path from ~0 to t such that ||x|| = d12(δ/k + i)e. Note that x ∈ Bk, furthermore, all
the points in distance i − ||x|| = b12(i− δ/k)c from x are also in Bk. Note that b12(i− δ/k)c is
Θ(i) therefore there are Θ(id−1) points at distance b12(i− δ/k)c from x. How many of them are
of distance i from ~0? All the points of equal distance from x are evenly divided between the 2d

quadrants of the ball around x. It follows that a 2−d = Θ(1) fraction of them are at distance i from
~0, which concludes the proof of Claim 4.2.5. Figure 4.2 illustrates these calculations.

Proof of Lemma 4.2.4. Claim 4.2.5 analyzed the case of a single NoN hop. Each hop (whether NoN
or Greedy) examines edges towards the target, and eventually takes the edge (or two edges) which
covers the longest distance. Therefore the portion of the graph that was encountered on previous
hops is disjoint from the portion of the graph encountered in the current hop. In other words, the
length of each hop is a random variable which depends only on the distance from the target and
is independent from previous hops. Therefore we can use Claim 4.2.5 iteratively: set k = log1/4 n,
the probability the distance is reduced by a factor of 1 − 1

(logn)1/4
is 1 − 1

logε n . This means that

o(log n/ log log n) steps, each reduces the distance by 1− 1
(logn)1/4

, would route the message to the

destination. We prove this occurs with probability 1 − 1
n3 using the following argument: Let Xi

be the random Bernoulli variable indicating whether the ith NoN-hop have failed in reducing the
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δ/k0 i t
x

Bk

Figure 4.2: The bold line indicates points which are in Bk and are exactly distance i from ~0.

distance by a factor of 1 − 1
(logn)1/4

. We know that Pr[Xi = 1] ≤ 1
logε n . Now assume that the

variable Xi is simulated by tossing ε log log n fair coins and setting Xi = 1 if all coins turned up to
be 1. Now we have c log n fair coins, and if less than 3

4 of the coins turned up to be 1 the algorithm
will not fail. The standard Chernoff bound [30] shows there is a constant c such that this happens
with probability at least 1− 1

n3 .

The proof of Theorem 4.2.2 is now completed by combining Lemma 4.2.3 which handled the
first phase of the routing, with Lemma 4.2.4 which handled the second phase of the routing.

Do People Use the NoN-GREEDY Algorithm in Social Networks?

Since the original motivation of analyzing small-world graphs was the modeling of social networks,
it is interesting to check whether people use the NoN-greedy algorithm when they navigate in
a social network. Recently Dodds et al [37] repeated the famous experiment of Milgram [94] in
which letters were passed between random nodes on a social network where edges corresponds to
say, an acquaintance known by first name. In the Dodds et al experiment participants were given
a target and were asked to forward an email to some person they were acquainted with. The goal
of forwarding was to ensure that the email would reach its destination quickly. The participants
were also asked to explain why they chose the person from among their set of acquaintances. It
appears that in the first two steps of the “routing”, which are most meaningful, about 25% of the
people sent the message to a recipient for one of the following reasons:

1. The recipient was known to have traveled to the target’s geographical region.
2. The recipient’s family was known to have originated from the target’s geographical region.

Both reasons suggest that the recipient received the message based on who his/her (possible)
acquaintances were, and not on the individual characteristics of just the recipient. Other reasons,
such as – “the recipient has the same education as the target” – could be viewed both as greedy and
NoN-greedy steps. We can conclude that at least some of the time, the NoN-greedy algorithm
was used.
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4.3 NoN in Small-World P2P Networks

In this section, we analyze NoN-greedy routing for various randomized P2P routing networks
which are related to the small world model and the small world percolation model discussed in the
previous Section. Skip Graphs, which are of a different flavor, are analyzed in Section 4.4. We
begin by defining these networks formally. For each of the following we assume there are n = 2`

nodes arranged on a circle.
o Randomized-Hypercube [28, 53]: The out-degree of each node is `. For each 1 ≤ i ≤ `,

node x makes a connection with node y defined as follows: The top i− 1 bits of y are identical
to those of x. The ith bit is flipped. Each of the remaining ` − i bits is chosen uniformly at
random. Edges are directed. Out-degree is ` = log n.

o Randomized-Chord [127, 53]: Node x makes ` connections as follows: Let r(i) denote an
integer chosen uniformly at random from the interval [0, 2i). Then for each 0 ≤ i < `, node x
creates an edge with node (x + 2i + r(i)) mod n. Edges are directed. Each node has out-degree
` = log n.

o Symphony [87, 14]: Node x establishes a short-distance edge with node (x + 1) mod n. Node
x also establishes k ≥ 1 long-distance edges as follows: For each edge, node x first draws a
random number r from the probability distribution p(x) = 1/(x lnn) where x ∈ [1, n] and then
establishes a link with node dx + re mod n. Edges are directed. The resulting graph is thus a
multi-graph node x could be connected to y by more than one edge. The out-degree of each
node is k + 1.
Symphony with k = 1 is identical to Kleinberg’s construction [70] in one dimension. Randomized-

Hypercube and randomized-Chord are structurally similar to small-world percolation networks with
d = 1 (see Definition 4.2.1). An important distinction is that the out-degree for each of the P2P
routing networks is fixed.

Some easy adaptations of Lemma 4.2.3 and 4.2.4 could be used to prove the following theorem:

Theorem 4.3.1. Given two nodes s, t in a randomized-Chord or a randomized-Hypercube network
over n nodes, with probability at least 1− 1

n3 the NoN-greedy algorithm routes a message from s

to t in O( logn
log logn) hops, (the probability is taken over the configuration of the graph).

The Theorem implies that these P2P networks are degree optimal using NoN. In Section 4.5 we
show that Greedy routing takes Ω(log n), thus Greedy makes suboptimal routing decisions.

In Symphony with out-degree k + 1 the expected path length found by greedy is Θ( log2 n
k ).

The following Theorem shows that NoN-greedy improves upon greedy.

Theorem 4.3.2. The expected number of hops taken by NoN-greedy to route between any two
nodes in Symphony is O

(
log2 n
k log k

)
, when 1 ≤ k ≤ log n and the expectation is over the formation of

the graph.

Theorem 4.3.2 means that NoN improves upon greedy for any degree. When the degree is
log n then NoN improves such that it is degree optimal w.h.p. Martel and Nguyen show that the
diameter of symphony for any constant k is O(log n), which means that for these values of k NoN
does not route along approximately shortest paths.

Proof. Consider node x that holds a message destined for node y lying clockwise distance d away.
It is proven in [87] that greedy routing takes O( logn log d

k ) hops. Therefore, if log d ≤ log n/ log k,
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then the remaining distance can be covered by NoN (which is faster than plain greedy) in
O(log2 n/(k log k)) hops.

We now consider large d satisfying logn
log k < log d ≤ log n. Let r(d) = ck log d

logn where d is the

clockwise distance currently remaining and c is a constant that we will shortly fix. Since logn
log k <

d ≤ log n, we deduce that ck
log k < r(d) ≤ ck.

Lemma 4.3.3. Let E denote the event that the current node is able to diminish the remaining
distance from d to at most d

r(d) in (at most) two hops, then Pr[E ] is Ω( k
logn), independent of d.

Thus the expected number of nodes encountered before event E occurs is O( logn
k ). Since ck

log k <

r(d), there can be at most O( logn
log k ) such events for a total of O( log2 n

(k log k ) hops. When d becomes small

enough to satisfy log d < logn
log k , plain greedy routing will take at most O( log2 n

k log k ) hops. Summing

the two, the total number of hops is O( log2 n
k log k ). Thus it only remains to prove Lemma 4.3.3.

Proof that Pr[E ] is Ω( k
logn): Denote by B(x) the number of nodes connected by an edge to x

which are at a clockwise distance of at most d away. By the definition of Symphony it holds that
E[B(x)] ≥ k log d

logn . Let d′ = dd(1− 1
r(d))e. Let ψ denote the event that such a node has a link in

clockwise distance [d′, d] from x. Since ψ is independent from B(x) and Pr[E ] is monotone in B(x)
we have that overall, the probability that one or more of these nodes has a link in distance [d′, d]
from x is:

Pr[E ] ≥ 1− (1− Pr[ψ])
k log d
2 logn · Pr

[
B(x) ≥ k log d

2 log n

]
(4.1)

We handle each element in (4.1) separately. B(x) is the sum of k Bernoulli variables, each with
success probability log d

logn ≥
1
k . By Chernoff’s bound (e.g [55]) we have:

Pr
[
B(x) ≤ k log d

2 log n

]
≤ exp(−1

8
E2[B(x)]) ≤ e−

1
8

Next we show that Pr[ψ] is Ω( k
r(d) logn). Recall that ψ denotes the probability that node x or

one of its neighbors has a link in distance [d′, d] where d′ = dd(1− 1
r(d))e. According the definition

of Symphony, the probability node x or one of its neighbors does not have a link in distance [d′, d]
is

Pr[ψ] ≤

1−
log( r(d)

r(d)−1)

log n

k

≤

(
1−

log(1 + 1
r(d))

log n

)k
≤
(

1− 1
2r(d) log n

)k
≤ e−

k
2r(d) logn

In the third inequality we used the fact that log(1 + 1
r(d)) ≤

1
2r(d) . We have:

Pr[ψ] ≥ 1− e−
k

2r(d) logn ≥ c′k

r(d) log n

for some constant c′. Now all that remains is to substitute in (4.1). We had defined r(d) = ck log d
logn .

We set c ≥ c′ which ensures that

c′k

r(d) log n
· k log d

log n
≤ k

log n
≤ 1.
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Using the fact that 1− (1− x)t ≥ xt/2 if x ∈ (0, 1) and xt ≤ 1, we deduce that

Pr[E ] ≥ c′k2 log d
2r(d) log2 n

.

Substituting r(d) = c′k log d
logn , we get Pr[E ] is Ω( k

logn) as needed. This completes the proof of
Lemma 4.3.3 and thus of Theorem 4.3.2.

4.4 NoN in Skip Graphs

In this section, we analyze NoN-greedy routing in skip-graphs [16] and SkipNets [57], which adapt
skip-lists [112] for creating a randomized P2P routing network2. We follow the description in [16].

4.4.1 A Review of Skip Graphs

In a skip graph, each node represents a resource to be searched. Node x holds two fields: the first is
a key, which is arbitrary and may be the resource name. Nodes are ordered according to their keys.
We assume for notational convenience that the keys are the integers 1, 2, . . . , n; as the keys have no
function in the construction other than to provide an ordering and a target for searches there is no
loss of generality. The second field is a membership vector m(x) which is for convenience treated
as an infinite string of random bits chosen independently by each node; in practice, it is enough to
generate an O(log n)-bit prefix of this string with overwhelming probability.

The nodes are ordered lexicographically by their keys in a circular doubly-linked list Sε so that
node i is connected to i − 1 mod n and i + 1 mod n. For each finite bit-vector σ, an additional
circular doubly-linked list Sσ is constructed by taking all nodes whose membership vectors have σ
as a prefix, and linking adjacent nodes in the lexicographic key order. More formally, let m(x)k be
the restriction of m(x) to its first k bits; then nodes x < y are connected by an edge if there exists
some k such that m(x)k = m(y)k, and either (a) m(z)k 6= m(x)k for each z between x and y, or
(b) m(z)k 6= m(x)k for all z > x and all z < y. In such case we say the edge (x, y) corresponds to
a prefix of length k. Note that the cycle edges could be seen as corresponding to the empty prefix.

In analyzing a skip graph as a graph, we treat each pair of links as a single undirected edge,
and take the union of the resulting edge sets for all lists Sσ. An example of a skip graph is depicted
if Figure 4.3

The skip graph data structure is well fit for implementation in a dynamic setting. It is shown
in [16] and [57] that the joining and leaving of a node takes O(log n) time and O(log n) messages.
Efficient search algorithms and repair algorithms are also shown, so in this respect skip graphs
are comparable to other constructions of DHT’s. The main merit of skip-graphs is the following:
edges do not depend on the keys themselves but rather on their ordering and the random vectors.
Thus the keys may be arbitrary and can carry semantic meaning. Furthermore, since the nodes
are ordered by their keys, the skip-graph data structure supports prefix search. This is in stark
contrast with the other networks we discuss, which require that keys be random.

Claim 4.4.1. Let x, y be two nodes such that x < y. The probability there exists a (clockwise) edge
(y, x) is Θ( 1

y−x).

2There are some differences between the two suggestions, but essentially they are the same, and our results apply
for both.
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Figure 4.3: An example of a skip graph.
Only three levels are displayed. The actual graph is the union of all cycles.

Proof. Denote by y ∼ x the event that (y, x) is an edge. The probability that m(x) and (y) share
the same length k prefix is 2−k. The probability none of the nodes x+ 1, x+ 2, . . . , y− 1 have this
prefix is (1− 2−k)|x−y|−1. Since these two events are independent, the probability (x, y) is an edge
which corresponds to a prefix of length k is 2−k · (1−2−k)|x−y|−1. Setting k = blog(y − x)c we have

Pr[y ∼ x] ∈ Ω( 1
y−x). On the other hand Pr[y ∼ x] ≤

∑
k

2−k · (1− 2−k)(y−x)−1 ∈ O
(

1
y − x

)

The Claim above demonstrates the structural similarity skip graphs share with small world
percolation graphs - thus the effectiveness of NoN on skip graphs is perhaps not that surprising.
The claim above implies that the expected degree of each node is about log n. It is easy to see
that w.h.p. the maximum degree in the graph is logarithmic: With high probability all prefixes of
length 3 log n are different, therefore all the edges in the graph correspond to prefixes of length at
most 3 log n.

4.4.2 Routing in Skip Graphs

The routing algorithm suggested in [16], [57] routes the message using the longest prefix of m(x)
possible, without overshooting the target. In other words it is a greedy algorithm which moves
the message as close to the target as possible without overshooting, and routes in O(log n) hops
on expectation3. We improve this routing by showing in Theorem 4.4.2 that the NoN-Greedy
algorithm routes in O(log n/ log log n) hops w.h.p, and by showing in Theorem 4.5.1 that the
greedy algorithm needs Ω(log n) time to route. Each NoN hop considers paths of two edges and
routes the message as close as possible to the target without overshooting it. That is, assuming the
target node is 0, at each hop the algorithm routes the message to the neighbor of neighbor with the
smallest positive id4. Since the target node is set to 0 we abuse notation slightly and let a node’s

3A high probability bound can be easily derived using the machinery introduced in this section.
4For notational convenience we assume that the routing is always done in the clockwise direction.
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key indicate its distance from the target.

Theorem 4.4.2. Let s be some node in a skip graph of n nodes, with probability 1 − 1
n2 the NoN

algorithm finds a path between node s and node 0 of length O( logn
log logn), where the probability is taken

over the choices of membership vectors.

Given the low probability of failure, Theorem 4.4.2 implies that with high probability all nodes
are connected to node 0 via a short path:

Corollary 4.4.3. With probability at least 1 − 1
n the diameter of a skip-graph with n nodes is

O( logn
log logn), where the probability is taken over the choices of membership vectors.

The proof of Theorem 4.4.2 is rather technical, though the outline is similar to that of percolation
small world graphs. The proof is divided into two parts. In the first we show that with high
probability the message reaches quickly a distance of exp(

√
log n) from the target and in the second

part we show that with high probability all nodes of distance at most exp(
√

log n) are connected
to the target through short chains. We need to re-prove Lemmas 4.2.3 and 4.2.4 and deal with the
dependencies created by the properties of skip graphs.

The First Phase of the Routing

Let Xm be the point the NoN algorithm reached after performing m NoN hops. Since the target is
0, Xm also represents the distance from the target. X0 = s is the starting point. The following is
a restatement of Lemma 4.2.3 for the case of skip graphs.

Lemma 4.4.4. There exists a constant c such that for m ≥ c( logn
log logn) with probability at least

1− 1
n2 it holds that Xm ≤ exp(

√
log n).

The general outline of the proof follows that of Lemma 4.2.3 in [33]. Our goal is to show that
each NoN hop the distance to the target reduces by some poly-logarithmic factor. The main source
of technical difficulty in skip graphs is that the probability of a hop of a certain length depends
upon all the hops taken so far. In other words the value Pr[Xr ≤ Xr−1

(logn)1/4
] is now a random variable

whose distribution depends upon r and the membership vectors sampled in the segment [s,Xr−1].
Fix some 1 ≤ r ≤ m. It is sufficient to prove the following lemma:

Lemma 4.4.5. Denote by Er the event that Pr[Xr ≤ Xr−1

(logn)1/4
] ≥ 1− c√

logn
. There exists a constant

c such that Pr[Er] ≥ 1− 1
n3

Before proving Lemma 4.4.5 lets see why it derives Lemma 4.4.4. With probability 1− 1
n3 the

event Er holds, so with probability greater than 1− 1
n2 the event Er holds for every r, i.e. all through

the path. Call a NoN hop successful if it reduces the distance to 0 by a factor of (log n)−1/4. It holds
that 4 logn

log logn successful hops suffice to bring the message to a distance of exp(
√

log n). The previous
discussion implies that with high probability each NoN hop along the path is not successful with
probability at most c log−1/2 n. Therefore we can simulate the process in the following way: for
each hop we toss 1

2 log log n + log c fair coins, and the hop fails if all of them turn out successful.
As seen in the proof of Lemma 4.2.4, for large enough m, with probability 1 − 1

n2 there would be
4 logn

log logn successful NoN hops within the first m logn
log logn attempts.
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Proof of Lemma 4.4.5. Our goal is to use the same outline as in [33]: Assume the current node
is x (i.e. Xr−1 = x). The proof has two components. First we show that with sufficiently high
probability x has Ω(log x) neighbors in [x−1, 0], then we show that with sufficiently high probability
one of these neighbors is part of a successful NoN step.

Before we do that however we need to build the machinery that will help us deal with the
dependencies. The main problem is that conditioning on the path taken so far, the membership
vectors in the segment [x− 1, 0] are not drawn from the uniform distribution. To see this consider
for instance the case that for some y ∈ [x − 1, 0] it holds that m(y)k = m(s)k for large k, then
the edge (s, y) would exist and the NoN path starting at s would bypass x altogether. In other
words the conditioning that Xr = x affects the distribution of membership vectors in the segment
[x− 1, 0]. We conclude that for every choice of membership vectors in the segment [n, x] there is a
set of vectors Fx ⊆ {0, 1}∗ such that the following two conditions hold:

i If a node y ∈ [x−1, 0] has m(y) ∈ Fx then there would be an edge from some node in [n, x+1]
to y that would cause the NoN path from s to 0 to bypass node x.

ii If all nodes in [x− 1, 0] have their membership vectors drawn from {0, 1}∗ \ Fx then node x
would belong to the NoN path starting from s.

It holds therefore that when conditioning on the path taken so far, the membership vectors in
[x− 1, 0] are drawn uniformly and independently from {0, 1}∗ \ Fx.

Denote by µ(Fx) the measure of Fx, i.e. the probability a random membership vector falls
within Fx. Note that every choice of membership vectors for the nodes [n, x] defines a path to x
and a set Fx, so µ(Fx) is a random variable determined by the membership vectors in [n, x]. Our
goal now is to show that with high probability µ(Fx) is small. For every 0 ≤ α ≤ 1 we have:

Pr[µ(Fx) ≥ α | Xr−1 = x] ≤ Pr[Xr−1 = x | µ(Fx) ≥ α]
Pr[Xr−1 = x]

.

For {Xr−1 = x} to occur all vectors in [0, x− 1] must be outside Fx, therefore for every 0 ≤ α ≤ 1
it holds:

Pr[Xr−1 = x |µ(Fx) ≥ α] ≤ (1− α)x

Let Sr−1 ⊆ [0, n] denote the set of nodes such that Pr[Xr−1 = x] ≥ 1
n3 . The event that x 6∈ Sr−1 is

negligible. For every x ∈ Sr−1 we have:

Pr[µ(Fx) > α | Xr−1 = x] ≤ n3(1− α)x (4.2)

Setting α = 4 logn
x we have that with probability ≥ 1 − 1

n3 , it holds that µ(FXr−1) ≤
4 logn
x .

Denote by A the high probability event that x ∈ Sr−1 and µ(FXr−1) ≤
4 logn
x .

Now all that remains is to show that the occurrence of A implies the occurrence of Er. First we
show that the occurrence of A implies that the distribution of membership vectors in [x − 1, 0] is
almost uniform.

For a prefix ψ ∈ {0, 1}k denote by bψ the probability a random and uniform vector in {0, 1}∗
falls in Fx conditioned on its prefix being ψ (i.e. if u is sampled uniformly from {0, 1}∗ then
bψ = Pr[u ∈ Fx|m(u)k = ψ]). Denote by wψ the probability a random vector in {0, 1}∗ \ Fx has
ψ as a prefix, i.e. wψ is the probability ψ is a prefix in the conditional distribution of vectors in
[x− 1, 0].
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Claim 4.4.6. For every integer k > 0 ∑
ψ∈{0,1}k

bψ = µ(Fx) · 2k (4.3)

1− bψ
2k

≤ wψ ≤
1

2k(1− µ(Fx))
(4.4)

Proof. Let u be a vector sampled uniformly in {0, 1}∗. Equation (4.3) follows since:

µ(Fx) = Pr[u ∈ Fx] =
∑

ψ∈{0,1}k
Pr[u ∈ Fx | m(u)k = ψ] Pr[m(u)k = ψ] = 2−k

∑
ψ∈{0,1}k

bψ

The first inequality in Equation (4.4) follows since 1−bψ
2k

is the probability a single sample from
{0, 1}∗ has ψ as a prefix and falls outside Fx. The second inequality holds since 1

2k(1−µ(F))
is the

normalized probability after removing a measure µ(Fx).

We are now set to prove the claims needed for the proof of Lemma 4.4.5.

Lemma 4.4.7. Let B(x) be the number of nodes in [0, x− 1] which are connected to x by an edge
corresponding to a prefix of length at most 1

10 log x.

Pr
[
B(x) ≥ 1

100
log x

∣∣∣A] ≥ 1− 1√
log n

Proof. First note that for every k ≤ log( 1
µ(Fx))−2 Claim 4.4.6 implies that

∑
bψ ≤ 1

4 and therefore
for every ψ ∈ {0, 1}k it holds that

3
4
· 1
2k
≤ wψ ≤

5
4
· 1
2k

Next we claim that with high probability there is a series of nodes y1 > y2 > . . . > y1/10 log x

where yk is the largest node in [x − 1, 0] such that m(yk)k = m(x)k for 1 ≤ k ≤ 1
10 log x. We toss

the membership vectors in [x− 1, 0] one by one from m(x− 1) to m(0) finding the yi’s one by one.
In other words - consider a series of independent geometric random variables g1, g2, . . . where the
parameter of gi is the probability a vector shares a prefix of length i withm(x). Since we conditioned
on µ(F) being small, by the previous discussion the success probability of gi is at least 3

42−i. Each gi
is repeatedly tossed until there is a success, in which case gi+1 is tossed and so on. On expectation,
the number of attempts needed until g1/10 log x succeeds is at most

∑1/10 log x
i=1 2i+1 ≤ 4x1/10. We have

x tosses at our disposal so by Markov’s inequality, with probability greater than 1 − 4x−
9
10 there

is a series of nodes y1, y2, . . . , y 1
10

log x such that m(x)k = m(yk)k. Typically it is not the case that
all these nodes are neighbors of x. If for some j < i it holds that m(x)i = m(yj)i then yi is not a
neighbor of x. It holds however that

Pr[m(y)i+1 = m(x)i+1|m(y)i = m(x)i] ≤
3
42−(i+1)

5
42−i

=
5
6

It follows then that each yi is a neighbor of x with probability at least 1
6 and independently from

all other yi’s. So on expectation at most 1
6 of the yi’s are neighbors of x. By Chernoff’s bound, the

probability less than 1
10 of the yi’s are connected to x is at most e−ε log x, where ε is some constant.
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Now, since log x ≥
√

log n we conclude that with probability greater than 1− eε
√

logn > 1− 1√
logn

it holds that B(x) ≥ 1
100 log x.

We continue with the proof of Lemma 4.4.5. recall that y1, y2, . . . , ym are neighbors of x where
m ∈ Ω(log x) and each yi corresponds to a prefix of length at most 1

10 log x. It remains to show
that with probability 1 − 1√

logn
one of them has an edge towards [ x

log1/4 n
, 0]. Consider the first

log x bits of each m(yi).

Claim 4.4.8. Let z be some node in [x− 1, 0]. Pr[yi ∼ z | A] ≥ 1
40x where the edge corresponds to

a prefix of length blog xc.

Proof. Let L ⊂ {0, 1}log x be vectors with m(yi)i as a prefix, so |L| ≥ x9/10. Now, according to
Claim 4.4.6 there are at least x9/10 − 4 log2 n prefixes ψ ∈ L such that 1

2x ≤ wψ ≤ 2
x . Denote by

yψ the probability that m(yi)log x = ψ. The same arguments show that for the vast majority of
vectors in L it holds that 1

2x9/10 ≤ yψ ≤ 2
x9/10 . So to conclude, in at least half of the prefixes in L

the conditioning on A changes the probability by a factor of at most 2. Now:

Pr[yi ∼ z | A] ≥
∑
ψ∈L

yψwψ(1− wψ)x ≥ 1
40x

Claim 4.4.8 implies that for every node z ∈ [ x
log1/4 n

, 0], the probability (yi, z) is an edge corre-
sponding to a prefix of length blog xc is Θ(1/x). Let Yi be the random variable indicating that yi is
connected to some node in[ x

log1/4 n
, 0] with an edge which corresponds to a prefix of length exactly

blog xc. There could be at most one such edge so

Pr[Yi] ≥
1

40 log1/4 n

For i 6= j it holds that Pr[Yi|Yj ] ≤ Pr[Yi]. The reason is that if Yj holds then m(yj)log x appears
in [ x

log1/4 n
, 0] and does not appear in [x, x

log1/4 n
], both events reduce the probability of Yi, and this

holds also when conditioning on A. In other words, the Yi|A are negatively correlated, so:

Pr[Y1 ∧ . . . ∧ Ym |A] ≤
Θ(log x)∏
i=1

(
1−Θ(log−1/4 n)

)
≤ exp(−Θ(log1/4 n)) ≤ 1√

log n

where in the second inequality we used the assumption that log x ≥
√

log n. Adding all the error
probabilities implies that given the high probability event A, the event Er holds, and as seen,
Lemma 4.4.5 implies Lemma 4.4.4.

Routing the Remaining Distance

For the second phase of the routing we basically re-prove Lemma 4.4.4 with different number
crunching. Assume the Skip Graph contains e

√
n nodes and as before denote by Xi the location of

the NoN algorithm after i steps.
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Lemma 4.4.9. There exists a constant c such that for m ≥ c( logn
log logn) with probability at least

1− 1
n2 it holds that Xm ≤ c( logn

log logn).

Proof. We use the same notation and mechanism of Lemma 4.4.4. Assume Xr−1 = x is the current
node. Note that x− 1 is always a neighbor of x, so it is enough to show that a greedy choice from
x− 1 would reduce the distance by a factor of 1− 1

log1/4 n
with probability 1− 1

logε n for some ε ≥ 0.

Recall that Equation (4.2) states that Pr[µ(Fx) > α | Xr−1 = x] ≤ n3(1 − α)x. The Equation
implies that for every δ there exist c(δ) such that if x ≥ c logn

log logn , then Pr[µ(Fx) > 1−log−δ n |Xr−1 =
x] ≤ 1

n3 . The exact value of δ would be set later on. As before we name this high probability event
A and condition on it to hold.

Denote by k = 0.8 log x. If k is not integer then take a coefficient slightly smaller than 0.8. As
before, for every prefix ψ of length k denote by wψ the probability that ψ is sampled condition on
the path taken so far. Now:

Pr
[
Xr ≤ (1− 1

log1/4 n
)x
∣∣ A] ≥ Pr

[
x− 1 ∼ y for some y ≤ (1− 1

log1/4 n
)x
]

≥
∑

ψ∈{0,1}k
wψ(1− wψ)

x

log1/4 n

(
1− (1− wψ)

(1− 1

log1/4 n
)
)

=
∑

ψ∈{0,1}k
wψ(1− wψ)

x

log1/4 n −
∑

ψ∈{0,1}k
wψ(1− wψ)x (4.5)

Our goal is to show that the sum in Equation (4.5) is at least 1 − 1
logε n . Claim 4.4.6 implies

that if A occurs then for every ψ ∈ {0, 1}k it holds that wψ ≤ logδ n
x0.8 . We deal with the two sums of

Equation (4.5) separately:

∑
ψ∈{0,1}k

wψ(1− wψ)
x

log1/4 n ≥ min{(1− wψ)
x

log1/4 n }

≥

(
1− logδ n

x0.8

) x

log1/4 n

≥ 1− 1
log1/25 n

for sufficiently small δ

The first inequality holds since
∑
wψ = 1. In the last inequality we used the assumption that

x > logn
log logn .

For the second part of Equation (4.5) we divide the sum into elements of small and big weight.
Denote by S all the elements ψ ∈ {0, 1}k such that wψ ≤ 1

x0.9 . There are at most x0.8 elements in
S therefore ∑

ψ∈S
wψ(1− wψ)x ≤ x0.8

x0.9
≤ 1

log1/25 n
.

On the other hand ∑
ψ 6∈S

wψ(1− wψ)x ≤ max
ψ 6∈S
{e−wψx} ≤ e−

x
x0.9 ≤ 1

log1/25 n
.
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Now as before we have that O( logn
log logn) distance reductions of factor 1 − 1

log1/4 n
are enough to

bring the path to a distance of O( logn
log logn) from the target, and with probability greater than 1− 1

n2

this indeed happens within O(log n/ log log n) attempts.

The remaining distance to the target could be covered by the cycle edges. Now the proof of
Theorem 4.4.2 is concluded by union bounding the error probabilities of Lemmata 4.4.4 and 4.4.9.

4.5 Lower Bounds

In this section we prove that in order to find a path between nodes at distance n, a routing
algorithm must either run in Ω(log n) time w.h.p (i.e. Ω(log n) hops), or must use additional
knowledge about the neighbor’s neighbors of a node. The lower bound holds for a model which
generalizes the greedy algorithm, thus it applies for a larger family of algorithms which includes
greedy. It holds both for small-world percolation networks and skip graphs.

A logarithmic lower bound of Ω(log2 n) for greedy routing in Kleinberg’s construction [70] in
one dimension was proved by Barrière et al [19]. Aspnes et al [14] extended the result to a larger
family of random graphs. They show that if the average degree is O(log n) then greedy routing
would take Ω(log n) hops on average. The proof however is limited to the case where the nodes are
set on a one dimensional line and the probability upon the edges has some symmetry assumptions
that do not apply to skip graphs. We show lower bounds for small-world percolation networks
and skip-graphs. Randomized-Chord, randomized-hypercube and Symphony are quite similar to
small-world percolation networks, and the proofs could be adapted for each of them.

4.5.1 A Probing Model

Assume that our goal is to find a path between two specific vertices distance n apart, say node 0
and node n. In order to do so, an algorithm must probe the vertices of the graph, where the probing
of a vertex reveals all the edges connected to it. Our lower bounds apply in a probing model, where
we bound the number of probes needed to find a path. Clearly, a lower bound on the number of
probes needed by the algorithm is a lower bound on the (sequential) time complexity of a routing
algorithm.

We define a 1−local algorithm to be a probing algorithm with the following properties:

1. The algorithm begins by probing the node 0.
2. The algorithm only probes nodes to which it has already established a path from 0.

The term local derives from the assumption that the algorithm starts at 0 and is only allowed to
probe nodes it has already reached. The term 1−local is used, since the probing of a node reveals its
neighborhood of radius 1, i.e. its neighbors. If it is assumed that a probe reveals a neighborhood
of radius k then the algorithm is termed k-local. Every routing algorithm which relies on local
information only, corresponds to a 1−local probing algorithm. The greedy algorithm therefore
is 1−local. The NoN-greedy algorithm could be viewed, following Theorems 4.2.2 and 4.4.2 as
either a 2−local algorithm with O(log n/ log log n) probes w.h.p, or as a 1−local algorithm having
probing complexity of O(log2 n/ log log n). Other 1−local algorithms could be though of, see for
instance [74].
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4.5.2 Lower Bounds in the Probing Model

Theorem 4.5.1. (i) In a skip graph - any 1-local algorithm that outputs a path between two nodes
at distance n, must probe Ω(log n) probes, with probability at least 1− 1

nε . In particular, the expected
number of probes is Ω(log n).
(ii) In a d−dimensional small-world percolation network - any 1-local algorithm that outputs a path
between two nodes at distance n, must probe Ω(log n) probes, with probability at least 1 − 1

nε . In
particular, the expected number of probes is Ω(log n).

The theorem implies that if a node holds only its neighbors then any routing algorithm would
need Ω(log n) probes w.h.p. Thus the assumption that nodes have some knowledge of their neigh-
bor’s neighbors is essential.

We first argue that greedy dominates any other 1−local algorithm. The following lemma holds
both for skip graphs and small-world percolation networks.

Lemma 4.5.2. Let A be a 1−local algorithm . Denote by Ad, Gd the random variables representing
the number of probes it takes the algorithm A and the greedy algorithm respectively, to find a path
between two nodes at distance d. For all d > k > 0 it holds that Pr[Gd ≤ k] ≥ Pr[Ad ≤ k].

Proof. We distinguish between the two cases.

Small-World Percolation Networks For convenience, we label the target node as ~0, and
assume that the mesh is infinite. The trick is to give A some extra power. Assume that at some
step, the closest node to ~0 which A had found is at distance d from ~0, where the distance is
measured by the L1 norm. At this point, we grant A access to all nodes outside a ball of radius
d from ~0. Now if d1 > d2 then for every configuration of edges, every move A can do in case the
distance is d1, is also available when the distance is d2, so without loss of generality, for every k,
Pr[Ad1 ≤ k] ≤ Pr[Ad2 ≤ k]. In other words, for every k, Pr[Ad ≤ k] is monotonically decreasing in
d. The algorithm A samples some point v. The greedy choice is to sample a point closest 0, call
that point u. Let f(v) denote the the distance from ~0 of the neighbor of v which is closest to ~0.
Now

Pr[Ad ≤ k] =
∑
i<d

Pr[f(v) = i] · Pr[Ai ≤ k − 1]

Since ||u|| ≤ ||v|| it holds that for every i,
∑i

j=0 Pr[f(u) = j] ≥
∑i

j=0 Pr[f(v) = j]. Since Pr[Ad ≤ k]
is monotonically decreasing we have:∑

i

Pr[f(u) = i] Pr[Ai ≤ k − 1] ≥
∑
i

Pr[f(v) = i] Pr[Ai ≤ k − 1]

In other words, the best thing A can do is sample the greedy point, which implies that the greedy
algorithm dominates any other 1−local algorithm.

Skip Graphs The technique used in the previous section applies here as well. Now if at some
step the closest node to 0 which A had found is at distance d from 0 we supply to A both the
access and the membership vectors of all the nodes in the segment [n, d]. We need to handle some
dependencies. Denote by Md the membership vectors of this segment. Assume that A probes point
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v and greedy probes point u. Using the notation of the previous section we have

Pr[(Ad ≤ k)|Md] =
d−1∑
i=0

Pr[(f(v) = i)|Md] · Pr[(Ai ≤ k − 1)|Md]

It is easy to see that for every instance of Md, it holds that Pr[f(v) = i|Md] ≤ Pr[f(u) = i|Md].
To see this consider prefixes of length k. If v does not have a neighbor corresponding to a prefix of
length k within the segment [n, d] then the probability f(v) = i due to a prefix of length k is equal
to the probability f(u) = i due to a prefix of length k. If v does have a neighbor corresponding to
a prefix of length k in [n, d] then Pr[f(v) = i] < Pr[f(u) = i]. Conclude that

Pr[(Ad ≤ k)|Md] =
d−1∑
i=0

Pr[(f(v) = i) |Md] · Pr[(Ai ≤ k − 1) |Mi]

≤
d−1∑
i=0

Pr[(f(u) = i) |Md] · Pr[(Ai ≤ k − 1) |Mi]

which concludes the proof of the lemma.

It remains to lower bound the number of hops taken by the greedy algorithm. Assume as
before that the initial node is ||z|| = n and the destination is ~0. Divide the nodes of the graph into
sets B0, B1, . . . , Blogn according to their distance from ~0 (or L1 norm), such that Bi = {u|2i−1 ≤
||u|| < 2i}. So ~0 ∈ B0 and z ∈ Bdlogne. We slightly change the greedy algorithm thus: if the
algorithm reaches a node within a ball Bi it is granted access to all nodes with distance at least 2i−1

from 0, i.e. to all nodes in Bi, Bi+1, ..., Bn. When routing in a skip graph the algorithm is also given
the membership vectors of these nodes. The reason for this change is to cancel the dependencies on
previous hops, it may only reduce the number of hops greedy takes, since it allows the algorithm
a ‘free’ hop to the edge of the ball Bi. For each 0 ≤ i ≤ log n let Xi be the indicator of the event:
“The path taken by greedy includes at least one vertex in Bi”. Clearly the number of nodes in
the path is at least

∑logn
i=o Xi.

Lemma 4.5.3. Both for skip graphs and for small world graphs and for each i, it holds that

Pr[Xi = 1|Xi+1, Xi+2, . . . , Xlogn] ≥ c

for some constant c independent of n.

Before proving the lemma we show why it suffices to prove Theorem 4.5.1. Let Yi be a Bernoulli
variable with Pr[Yi = 1] = c. Now E[

∑
Yi] = c log n ≤ E[

∑
Xi]. Furthermore the random variable∑

Xi dominates the random variable
∑
yi. We have

Pr[
∑

Xi ≤
1
2
c log n] ≤ Pr[

∑
Yi ≤

1
2
c log n] ≤ 1

nε

according to Chernoff’s bounds.

Proof of Lemma 4.5.3. As before we distinguish between the two cases:
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Small World Percolation Networks Assume that the values of Xi+1, . . . , Xlogn are already
set and that j is the smallest index such that Xj = 1. Since we changed the algorithm such that
when a ball Bi is reached all nodes in it are revealed, it is clear that Xi is independent from
Xj+1, Xj+2, . . . , Xlogn, it remains to analyze Pr[Xi = 1|Xi+1 = 0, Xi+2 = 0, . . . , Xj = 1]. Let y be
the node in Bj which is closest to 0, i.e. the node probed by greedy. The notation y ∼ Bi stands
for the event - ‘y is connected by an edge to Bi’. For convenience let B = ∪i−1

j=0Bj . All edges are
independent of each other. Therefore Pr[Xi = 1|Xi+1 = 0, Xi+2 = 0, . . . , Xj = 1] is the probability
y is connected to Bi and is not connected to B0, B1, ..., Bi−1, conditioned on it being connected to
one of them. We need to compute:

Pr[y ∼ Bi ∧ y 6∼ B|y ∼ B ∪Bi] =
Pr[y ∼ Bi ∧ y 6∼ B]

Pr[y ∼ B ∪Bi]

=
Pr[y ∼ Bi] · Pr[y 6∼ B]

1− Pr[y 6∼ B] Pr[y 6∼ Bi]

It is easy to verify that Pr[y 6∼ B] ≥ Pr[y 6∼ Bi] and that Pr[y 6∼ B] ≥ ε for some constant ε.
We have:

Pr[y ∼ Bi] · Pr[y 6∼ B]
1− Pr[y 6∼ B] Pr[y 6∼ Bi]

≥ (1− Pr[y 6∼ Bi]) Pr[y 6∼ B]
(1− Pr[y 6∼ Bi])(1 + Pr[y 6∼ B])

≥ ε

1 + ε

Skip Graphs Here we have to deal with some dependencies. Let D denote the event that the
algorithm reached the node y (i.e. the segment Bj which contains y). As before we need to compute:

Pr[(y ∼ Bi ∧ y 6∼ B)|D]
Pr[y ∼ B ∪Bi|D]

The events {y ∼ Bi} and {y 6∼ B} are positively correlated, even when conditioned on D. So the
calculation of the previous section applies here as well.

4.6 Implementations of NoN

We ran simulations in which we compared the performance of the greedy algorithm and the
performance of the NoN-greedy algorithm. We constructed a skip graph of up to 217 nodes and
a small world percolation graph of up to 224 nodes. In a small world graph it is not necessary to
create the full graph in advance. Each time the message reached a node, we randomly created the
neighborhood of radius 2 around the node. This is a negligible compromise over the definition of
the model, since the edge in which the node was entered might not be sampled. This technique
allowed us to run simulations on much larger graphs. For each graph size we ran 150 executions. A
substantial improvement could be seen. Figures 4.4 and 4.5 demonstrate an improvement of about
48% for skip graphs of size 217 and an improvement of 34% for small world percolation graphs of
size 224. Figure 4.4 also depicts the average shortest path in the graph. We see that the shortest
paths may be 30% shorter than the paths found by NoN, yet even for moderate network sizes, the
NoN algorithm performs substantially better than then Greedy.

An even more impressive improvement could be seen when the size of the graph is fixed and the
average degree changes. We fixed a small world percolation graph of size 220. After that we deleted
each edge with a fixed probability which varied from 0 to 0.9 (a graph with roughly one tenth of
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Figure 4.4: Average length of greedy paths, NoN paths and shortest paths in skip graphs
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graph with 220 nodes (left) and skip graphs of 217 nodes (right).

the edges). Figure 4.6 depicts the results of these simulations. It shows that the reduction in the
number of hops is more or less independent from the number of edges. The path length achieved
by the greedy algorithm when the degree is 26 is achieved by the NoN algorithm when the degree
is merely 12. In the case of skip graphs we ran the simulation for a graph of size 217 and varied
the size of the alphabet of the membership vectors. When the alphabet size is s the average degree
is O(logs n). We can see in Figure 4.6 that NoN with alphabet size 20 is better than Greedy with
alphabet size 2, i.e. when the average degree is log2 20 ' 4.3 bigger.

4.6.1 A different Implementation

The algorithm presented in Figure 4.1 is somewhat unnatural. Each NoN step has two phases.
In the first phase the message is sent to a neighbor whose neighbor is close to the target. In
the second phase a greedy step is taken (i.e. the message moves to the neighbor of neighbor).
A 1−phase implementation would let each node initiate a NoN step again, i.e. each node upon
receiving a message, finds the closest neighbor of neighbor, and passes the message on. This variant
is harder to analyze, indeed Theorem 4.4.2 holds for the 2−phase version only. Yet, as Figure 4.7
shows, in practice the two variants have basically the same performance.

4.6.2 System Issues with NoN-greedy

An implementation of the NoN-greedy algorithm in a P2P network necessitates that each node
acquire knowledge of its neighbor’s neighbors. At first glance, it might appear that maintenance of
such knowledge is problematic since it is tantamount to squaring the degree of the graph and there-
fore, squaring the size of the routing table at each node. However, it is important to note that the
bottleneck in the system is actually the run-time cost of maintaining the TCP links between nodes.
This cost remains unchanged, irrespective of which routing protocol we use: greedy or NoN-
greedy. The primary concern in implementing NoN-greedy is the amount of communication-
overhead needed to keep the neighbor-of-neighbor lists (reasonably) up-to-date. Updates could be
piggy-backed on top of maintenance messages (the “keep-alive” messages). Moreover, the neighbor-
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Figure 4.7: Comparison between the two variants of NoN

of-neighbor information at a node does not have to be perfectly up-to-date at all times to derive
the benefits of NoN-greedy routing, as could be seen in the next Section.

In the following we analyze more carefully the amount of communication needed in order to
keep the routing lists up-to-date. The execution NoN requires that nodes should update each other
regarding their own lists of neighbors. Such an update occurs in two scenarios:

1. Each node upon entrance sends its list of neighbors to its neighbors.

2. Whenever a node encounters a change in its neighbor list (due to the entrance or exit of a
node), it should update its neighbors.

The extra communication imposed by these updates is not heavy due to the two following reasons.
First, assume nodes u, v are neighbors. Node u periodically checks that v is alive (for instance
by pinging it). Checking whether v’s neighbor list has changed could be piggy-backed on the
maintenance protocol by letting v send a hash of its neighbor list. A possible hash function may be
MD5 (though the cryptographic properties of this hash function are not needed). Another possibility
is simply to treat the id of neighbors as coefficients of a polynomial, and evaluate this polynomial
at a random point. Either way the actual cost in communication is very small. When an actual
update occurs there is no reason for v to send its entire neighbor list. It may only send the part of
it which u misses. If it does not know which part it is then u, v may participate in a very fast and
communication efficient protocol that reconciles the two sets, see e.g. [95] for details. The second
reason the communication overhead is small is that the the actual updates are not urgent (as the
next section will show) and may be done when the system is not busy.

It is important to notice that the implementation of the NoN algorithm does not affect the
Join/Leave operations - the NoN updates should be passed only after the node enters the system.
We conclude that implementing NoN has little cost both in communication complexity and in
internal running time. It is almost a free tweak that improves performance considerably and may
be implemented on top of existing constructions.
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4.6.3 Fault Tolerance

The previous simulations assumed that the list of neighbor’s neighbors each node holds is always
correct. In reality this might not be the case. We examine two scenarios which capture the two
extremes of this problem.

Optimistic Scenario: In this case we assume that a node knows whether its neighbors of neigh-
bors lists are up-to-date or not. Whenever a node has a stale list it avoids a NoN hop and performs
instead a greedy step based on its own neighbors list. We ran simulations in which each node
performs with probability 1

2 a NoN step, and with probability 1
2 a greedy step. Whenever a NoN

step is performed, both phases of it are performed correctly. Figures 4.5 and 4.8 show that the
total performance is hardly compromised. A small world of size 222 suffered a relative delay of less
than one hop, A skip graph of size 217 suffers a relative delay of 1.2 hops. But why is the optimistic
scenario justified? Our suggestion is that each node would calculate a hash of its neighbors list.
This hash would be sent to all its neighbors on top of the maintenance messages. Thus with a
minuscule overhead in communication each node would know whether its lists are up-to-date.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6
7
8
9

10
11
12
13
14

log nGreedy

NoN - Greedy
Optimistic FT

Skip Graphs

Figure 4.8: Optimistic fault tolerance in Skip
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Figure 4.9: Pessimistic Fault Tolerance in Per-
colation Small World graphs

Pessimistic Scenario: In this scenario we assume that a node is unaware that its neighbor’s
neighbors lists are not up-to-date. So when node u passes a message to node w expecting it to
move on to node z, with probability 1

2 the edge (w, z) no longer exists. We tested two variants:
in the first one, whenever this occurs the intermediate node w performs a greedy step. In the
second variant the intermediate node w initiates another NoN step. The results of the simulations
appear in Figure 4.9. It could be seen that in the pessimistic scenario, the performance of NoN is
approximately the same as the Greedy algorithm.

We conclude that the NoN-greedy algorithm is beneficial even if the neighbor of neighbor lists
are error prone.
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4.7 Discussion

Randomization Reduces Latency: A common strategy in the design of P2P routing networks
is to first identify a static graph which is known to possess good properties, and then to adapt the
static graph topology to handle the dynamism (arrival/departure of nodes) and scale (changes in
the average number of nodes). The resulting dynamic routing network resembles the underlying
static graph closely. In the case of skip graphs, a ‘perfect’ skip graph has the ith edge of each node
cover a distance of 2i, i.e., the lengths of edges of a node form a geometric series. The randomization
involved in the dynamic construction is usually considered as a negative by-product and much effort
is put in reducing it. For instance, a deterministic P2P routing network that guarantees that the
skip graph is almost ‘perfect’ is presented in [56]. As was noticed by Harvey et al [57], a perfect
skip graph is similar to Chord [120]. The average length of shortest paths in both Chord (studied
in [45]) and hypercubes is Ω(log n). Xu et al [125] proves that if edges are added to the cycle
deterministically such that the existence of an edge (x, y) is a function of |x− y| (and not say x, y
themselves), then the diameter of a network of degree log n is bounded by Ω(log n). This leads to
the following counter-intuitive and surprising fact:

Randomization of edges reduces the average length of shortest paths in the hypercubes, Chord
and Skip Graphs.

The reason is that the randomization enables a routing algorithm to use an ‘exceptionally’ long
edge once in a while. The density of these long edges is just large enough so that the NoN-Greedy
algorithm finds them. In a ‘perfect’ skip graph, Chord, and in the hypercube - these long edges do
not exist. Our results show that safety has a price: while these network topologies have guaranteed
worst-case route-lengths, they enlarge the expected length of routes.
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Chapter 5

The Expansion and Mixing Time of
Skip Graphs

Summary: We prove that with high probability a skip graph contains a 4-regular expander as a subgraph
and estimate the quality of the expansion via simulations. As a consequence skip graphs contain a large
connected component even after an adversarial deletion of nodes. We show how the expansion property could
be used to sample a node in the skip graph in a highly efficient manner. We also show that the expansion
property could be used to load balance the skip graph quickly. Finally it is shown that the skip graph could
serve as an unstructured P2P system, thus it is a good candidate for a hybrid P2P system.

5.1 Introduction

Skip graphs [16] or SkipNets [57] are randomized distributed data structures designed for use in peer-
to-peer (P2P) storage systems. Like Distributed Hash Tables (DHTs), skip graphs scale gracefully,
and as seen in previous chapter, offer excellent query complexity. Skip graphs have an advantage
over DHTs in the sense that they directly support range queries, while DHTs provide exact search
only. For a more thorough description of skip graphs we refer the reader to Section 4.4.1. Much
of the usefulness of skip graphs depends on their properties as random graphs. It was previously
shown [16] that (with high probability) skip graphs have expansion ratio Ω(1/ log n): every subset
of m ≤ n/2 nodes of a skip graph has Ω(m/ log n) neighbors. This bound is surprisingly low
given that skip graphs have average degree O(log n), but experimental examination of small cases
suggested it was the best possible.

In this chapter we prove that with high probability a skip graph has a node expansion ratio of
Ω(1): every subset of m ≤ n/2 nodes has Ω(m) neighbors. In fact, we prove a stronger result: with
high probability, a skip graph contains a spanning degree-4 regular expander as a subgraph; i.e., it
contains a spanning degree-4 regular subgraph with expansion ratio Ω(1). Each node can compute
which 4 of its edges belong to the expander using only local information in O(1) expected time and
O(log n) time with high probability. Consequences of the embedded expander (which are analyzed
in Sections 5.3 and 5.4) include:

• Fault tolerance: The expansion property is equivalent to the property that a deletion of k
nodes may isolate from the primary component at most O(k) nodes. In other words, even if
a constant fraction of the nodes are deleted by an adversary, still a constant fraction of the

83
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nodes would remain connected in a single component.

• Efficient sampling: A random walk in an expander graph quickly converges towards the
stationary distribution. This could be used in order to sample uniformly a random node. We
present several sampling algorithms and show that they are much faster than the currently
best known algorithms.

• Low hitting times: Random walks on expanders have the property of hitting a large set
of nodes fast and with high probability. This can be used for a variety of applications such
as load balancing, gathering statistics on the nodes of the skip graph, and for finding highly
replicated data items. It is known that unstructured P2P systems which are expanders permit
more efficient searches than simple flooding [48]. The skip graph therefore is shown to be
competitive with unstructured P2P systems, thus making it an excellent candidate for a
hybrid P2P system.

5.1.1 Comparison with previous work

Expanding networks The advantages of an expanding topology are well known, and the liter-
ature is abundant with variations of expanding networks. In the context of dynamic P2P networks
we are aware of only two previous approaches. The first was presented in Section 2.7.3, we used the
continuous-discrete approach to build overlay network that emulates the Margulis [89, 44] explicit
construction of expanders. The quality of the expansion property depends upon the smoothness of
the i.d. selection scheme. The expanding network does not currently support an efficient lookup
functionality though a step towards achieving this was given by Larsen [72]. The main advantage
of this construction is its guaranteed expansion. Its main drawback compared to the present work
is that it has a rather large overhead in maintaining the network and keeping the i.d. selection well
balanced, thus making it an appealing theoretical solution yet somewhat unpractical.

The second suggestion for an expanding overlay network was made by Law and Siu [73]. They
suggest building d random Hamiltonian cycles, which have an optimal spectral gap w.h.p. and
are thus expanding [43]. The main advantages of this scheme are its relative simplicity and its
optimality in the sense that w.h.p. the graph will have the (almost) largest possible spectral
gap with respect to the degree. The construction does not support a lookup operation.1 Their
construction also needs a sampling protocol as a primitive, and assumes that samples are obtained
by performing a random walk. But the uniformity of the distribution produced by the random walk
depends on the expansion, while the expansion depends on the uniformity. This mutual dependency
means that an error in the early stages of the construction may accumulate and ruin the expanding
property. In contrast, the expansion in our construction depends upon the random bits generated
independently by each node separately, so there is no mutual dependency between the correctness
of the join algorithm and the expansion. Furthermore, it should be noted that Law and Siu’s
construction can easily be implemented on top of the skip graph using the sampling algorithm of
Section 5.3, obtaining the best properties of both constructions. Indeed this is implicitly done by
Zatloukal and Harvey [126] which build a variant of skip graphs with two random Hamiltonian
cycles.

1In order to support lookup their construction would need logarithmic degree and then a lookup takes Θ(log n)
hops on expectation.
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Sampling schemes In the context of P2P systems, a random walk sampling scheme was previ-
ously suggested by Law and Siu [73] (as mentioned above) and by Gkantsidis [48]. Obtaining good
samples using such random walks requires a priori knowledge of the spectral gap of the graph. In
Section 5.3.2, we show that the spectral gap of the skip graph is well concentrated and therefore
can be known in advance, so that random walks work well in a skip graph.

A different sampling scheme for DHTs was suggested by King and Saia [68]. Their scheme
yields an exact uniform distribution and runs in expected logarithmic time. Recent work by King,
Lewis and Saia [67] shows that the expected running time is at least 11 log n. Empirical testing
shows that our algorithm runs much faster, albeit at the cost of slight deviations from uniformity.
A running time of about 2 log n produces a sample from a distribution that is close enough to
uniform for most conceivable applications (see Section 5.3.2).

5.2 Main result

We will show that skip graphs have an edge expansion of some small ε > 0 with high probability.
Throughout the paper let G denote a skip graph of n vertices. For a vertex set U define δ(U) to
be the number of nodes outside U which have a neighbor in U .

Theorem 5.2.1. There exists an ε > 0 independent of n such that with high probability2 the
following event occurs: G has a subgraph G′ of degree 4 such that for every set U ⊂ V of size at
most n

2 it holds that |δ(U)| ≥ ε|U |.

Remark: We do not state what is the largest ε for which Theorem 5.2.1 is correct. Indeed, in the
proof we are liberal in making ε as small as necessary. A lower bound on the expansion is obtained
via simulations. See Section 5.3.2.

The subgraph G′ in the union of two degree 2 spanning sub graphs. In a skip graph, all the
nodes are connected by the bottom-layer cycle Sε. The graph G′ is the union of Sε with another
sub graph. The second sub graph is a collection of cycles which we call buckets, that are obtained
by selectively including higher-level cycles as described in Section 5.2.2. An important property of
the buckets is that the event that they expand a set is independent from the event that Sε expands
a set, so the effect of each sub graph can be analyzed separately. The idea of the proof is to show
that the probability a set U ⊂ V does not expand by the cycle Sε and by the buckets is sufficiently
small.

5.2.1 The expansion of the cycle Sε

We show that for most sets the cycle edges alone suffice to show expansion. The remaining sets
expand due to the buckets. For a set of vertices A denote by c(A) the set of cycle edges which have
exactly one end point in A. The following Lemma is proven in [16]:

Lemma 5.2.2. In a n-node skip graph, the number of sets A where |A| = m < n/2 and |c(A)| ≤ s
is at most

2
(
m+ 1
s

)(
n−m− 1

s

)
2Throughout the paper the term ‘with high probability’ stands for probability 1− n−δ for some δ > 0
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Take s to be εm for a sufficiently small ε. we have:

2
(
m+ 1
εm

)(
n−m− 1

εm

)
≤ exp

(
0.1m ln

n

m

)
(5.1)

Since Sε is had degree 2, for every set A, the number of nodes expanded by Sε is at least 1
2 |c(A)|.

Conclude that far small enough ε, the number of sets A for which |δ(A)| ≤ ε|A| is at most
exp

(
0.1m ln n

m

)
.

5.2.2 The Buckets

The second sub graph is obtained by partitioning the nodes among a disjoint family of buckets,
upper-level cycles Sσ that are not too small.3 A cycle Sσ is a bucket if σ is a minimal prefix for
which |Sσ| ≥ 10 and either |Sσ0| < 10 or |Sσ1| < 10 (or both). Equivalently, the buckets are the
cycles obtained by repeatedly splitting cycles, starting with the original cycle Sε, by adding one bit
at a time to the common prefix, stopping only when further divisions would yield cycles that are
too small. The minimum bucket size is set to 10 for convenience in the proof, other values may be
chosen as well. In simulations, we show that a bucket size of 4 appears to be the best choice.

We call the edges that create the cycles of each bucket the bucket edges of the graph. The
following observation motivates the division into buckets: Consider a set A of nodes. Whenever
there exists a bucket which contains a node in A and a node not in A, the bucket contributes at
lease one edge to δ(A). Our aim therefore is to prove that with high probability there are at least
ε|A| buckets that are partially covered by A; i.e. that A hits at least one element and misses at
least one element from each bucket.

Lemma 5.2.3. With high probability for all 1 ≤ m ≤ n
2 the number of nodes in buckets which

contain more than 100n
1
4m− 1

4 nodes is at most m
10 .

Before proving Lemma 5.2.3, we show how to deduce Theorem 5.2.1 given that the event
described in the lemma occurs. Let ε be a small constant. We calculate for how many sets of size
m the buckets do not contribute εm edges to the expansion.

Call buckets which contain more than 100n
1
4m− 1

4 nodes large buckets. The rest of the buckets
will be referred to as small. We do not count edges caused by large buckets (thus overcounting
the number of bad sets). According to Lemma 5.2.3, there are at most m

10 nodes in large buckets,
therefore there are at most 2m/10 ways to place the nodes in the large buckets. Since each bucket
contains at least 10 nodes, there at most n/10 buckets. There are at most

(
n/10
εm

)
ways to choose the

εm small buckets that do expand. Each small bucket is of size at most 100n
1
4m− 1

4 . It follows that

there are at most
(
ε100n

1
4m

3
4

m

)
ways to place the vertices in these εm small buckets. The remaining

vertices are scattered in other buckets, with the restriction that each such bucket is either not hit
by the set or is covered completely by it. Each bucket is of size at least 10, therefore there are
at most

(n/10
m/10

)
ways to choose the location of the rest of the vertices. We conclude that the total

number of bad sets is bounded by:

3Recall that Sσ is the doubly-linked list of all nodes whose membership vectors have σ as a prefix.
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2m/10

(
n/10
εm

)(
100εn1/4m3/4

m

)(
n/10
m/10

)
≤ exp

(
(m/10) ln 2 + εm ln

( en

10εm

)
+m ln

(
100eεn1/4m−1/4

)
+ (m/10) ln

(en
m

))
≤ exp

(
m

(
ε ln
( n
m

)
+

1
4

ln
( n
m

)
+

1
10

ln
( n
m

)
+ 0.2

))
for small enough ε

≤ exp
(
0.8m ln

n

m

)
. (5.2)

In the first inequality we use the fact that
(
n
m

)
≤
(
ne
m

)m. The total number of sets of size m is(
n
m

)
≥
(
n
m

)m. Inequality 5.1 states that the number of sets which are not expanded by the cycle
edges is at most

(
n
m

)0.1. Inequality 5.2 states that the probability a set of size m is not expanded
by the bucket edges is at most

(
n
m

)−0.2. The key observation is that the large cycle is independent
from the division into buckets. In other words, all bad sets with respect to the large cycle are
equally likely to be expanded by the bucket edges. We conclude that the probability there exists a
set of size m which is not expanding is at most

(
n
m

)−0.1. The proof of Theorem 5.2.1 is completed
by union bounding these probabilities for all 2 ≤ m ≤ n

2 and the error probability of Lemma 5.2.3.
We now proceed with the proof of Lemma 5.2.3:

Proof. of Lemma 5.2.3
Let M denote all the prefixes of length blog n− log log n− 3c, so that n

16 logn ≤ |M | ≤
n

8 logn .
For every σ ∈M , let Bσ denote all the nodes that have σ as a prefix.

Lemma 5.2.4. For every σ ∈M , with high probability log n ≤ |Bσ| ≤ 24 log n.

Proof. This is a simple balls and bins argument. For each σ ∈M , |Bσ| has the Binomial distribution
and 8 log n ≤ E[|Bσ|] ≤ 16 log n. By Chernoff’s bound:

Pr[|Bσ| ≤ log n] ≤ exp
(
−E[|Bσ|]

4

)
≤ 1
n2

Pr[|Bσ| ≥ 24 log n] ≤ exp
(
−E[|Bσ|]

8

)
≤ 1
n

We conclude that w.h.p. all buckets are of size at most 24 log n, therefore the lemma is correct
if m ≤ n

log4 n
. Assume to the contrary that m > n

log4 n
. Suppose further that during the procedure

of creating the buckets we have a bucket of size ` which corresponds to the prefix σ. The bucket
does not split into two buckets if there are less than 10 nodes with prefix σ.0 or less than 10 nodes
with prefix σ.1. Conclude that the probability a bucket of size ` is not partitioned into two buckets
of size at least 10 is

2
((

`

0

)
+
(
`

1

)
+ . . .+

(
`

10

))
2−` ≤ 5`102−`.

Let pk denote the probability an element belongs to a bucket of size at least k. Once a node
participates in more than n− k partitions, it must belong to a bucket of size smaller than k, so we
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have:

pk ≤
n∑
`=k

5`102−` ≤ 20k102−k (5.3)

According to Lemma 5.2.4, we can divide the nodes into sets according to the first blog n− log log n− 3c
bits of their prefix. Each set is of size at most 24 log n, and there are at most n

8 logn such sets. De-
note by Zi the random variable counting the number of nodes in the ith set which will eventually
be in a bucket of size at least k. We know the following:

1. For each i it holds that 0 ≤ Zi ≤ 24 log n.

2. All the Zi are mutually independent.

3. Inequality (5.3) implies that E[
∑
Zi] = npk ≤ 20nk102−k.

We use the following version of the Chernoff/Hoeffding bound:

Theorem 5.2.5. For mutually independent random variables Z1, . . . , Z`, where Zi ∈ [a, b]

Pr

[∣∣∣∣∣∑̀
i=1

Zi − E

[∑̀
i=1

Zi

]∣∣∣∣∣ ≥ `δ
]
≤ 2e

− 2δ2

(b−a)2
·`

Set k = 100
(
n
m

) 1
4 and µ = E[

∑
Zi] ≤ 20nk102−k and we have:

Pr
[∑

Zi ≥
m

10

]
≤ Pr

[∣∣∣∑Zi − µ
∣∣∣ ≥ µ− m

10

]
We can use Theorem 5.2.5 by setting (b− a) = 24 log n and ` = n

24 logn and δ = (m10 − µ) logn
n . We

have:

≤ 2 exp
(
− 1

242 log2 n
· 2
(m

10
− µ

)2 log2 n

n2
· n

24 log n

)
≤ 2 exp

(
−
(m

10
− µ

)2
· 1
243n log n

)
(5.4)

Next we bound µ as a fraction of m. Substitute k = 100
(
n
m

) 1
4 and µ ≤ 20nk102−k and we have::

m

10
− µ ≥ m

10
− 2000n

( n
m

) 10
4 · 2−100( nm)

1/4

≥ m
(

1
10
− 2000 · 24 · 2−100

)
≥ 0.09m

Now we complete the calculation of Equation (5.4) using the assumption that m ≥ n
log4 n

.

≤ 2 exp
(
−(0.09m)2 · 1

243n log n

)
≤ 2 exp

(
− n

20 · 105 ln5 n

)
The proof of Lemma 5.2.3 is completed by union bounding for all m.
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5.2.3 Identifying the bucket edges:

Each node can identify its bucket edges in O(1) time in expectation and O(log n) time with high
probability via the following procedure: initially each node sets its maximal edge as a bucket edge;
i.e., assumes that the prefix of its bucket is the longest prefix for which it has an edge. Next each
node performs a walk along the bucket’s cycle to verify that the bucket’s size is large enough i.e.
that the bucket contains at least 10 nodes4. While performing this check, the node updates the
other nodes along the cycle about the bucket edge. Now there are a few cases:

1. If the bucket is of size less than 10 then the prefix of the bucket is too long. So the node picks
the next longest edge as its bucket edge and again counts the size of the bucket’s cycle.

2. It may be that even though the bucket’s size is more than 10 nodes, a node is informed that
its current bucket edge is not valid and that it has to reduce the length of the bucket edge.
This case occurs if the bucket which corresponds to the same prefix with the last bit converted
is too small; i.e. a different node performed case number (1).

3. If the bucket size is at least 10 and case (2) does not occur then the bucket edges are decided
upon.

The running time of the algorithm is in the order of the size of the bucket, therefore the algorithm
runs in expected constant time, and in logarithmic time with high probability.

5.3 How to sample a random node

A random walk on a regular expander mixes rapidly, and may be used to sample a node in the
skip graph efficiently and simply. In the following it is convenient to think of distributions over the
nodes as vectors. We say that ~p is a distribution vector if pi ≥ 0 for all 0 ≤ i < n, and

∑
pi = 1.

Let ~u denote the probability vector of the uniform distribution over the nodes; i.e. ~u = ( 1
n , . . . ,

1
n).

Let ~p be some arbitrary distribution over the nodes. A useful measure for the distance between
two distribution is the variation distance5 which is defined to be half of the L1 distance between
their vectors; i.e. ∆(~p, ~u) = 1

2 ||~p− ~u||1 = 1
2

∑
v |pv −

1
n |. Assume a random walk is performed on a

d−regular graph, starting from some arbitrary initial distribution ~p (distribution ~p may of course
put all its weight on a single vertex). Let A be the adjacency matrix of the d−regular graph and
let Â = 1

dA. The largest eigenvalue of A is d (and ~u is an eigenvector), so the largest eigenvalue of
Â is 1. Denote by α the second largest eigenvalue of Â. Now for every integer t the vector Ât~p is
the distribution over the nodes after performing t steps of a random walk. It holds (see [11]) that
if the graph has a node or edge expansion which is bounded away from 0 then α will be bounded
away from one.6 The following theorem is well known (see for instance [10]):

Theorem 5.3.1. For every initial distribution ~p, it holds that

1. ||Ât~p− ~u||1 ≤
√
nαt · ||~u− ~p||2 where || · ||i stands for the Li norm.

4If we allow buckets of size 2 then this part is not necessary
5There are many ways to define distance between distributions. Variation distance is the most useful in our

context.
6We slightly abuse notation. The statement is meaningful only when discussing families of graphs with n → ∞

(which is of course our case), and not a single graph.



90 Chapter 5. The Expansion and Mixing Time of Skip Graphs

2. If t > log(1/δ)
log(1/α) then for every node v it holds that |(Ât~p)v − 1

n | ≤ δ. In particular, if δ = 1
2n

then the probability each node is sampled by the walk is in the range [ 1
2n ,

3
2n ].

Theorem 5.3.1 combined with Theorem 5.2.1 implies that a long enough random walk along
the subgraph formed by the cycle edges and the bucket edges yields an approximately uniform
sample. The length of the random walk may depend upon the application. If it is required that
each node be sampled with probability which is within factor 2 of uniform then, by the second
assertion of the theorem, a walk of length 1+logn

log(1/α) suffices. For a variation distance between the
sample and the uniform distribution bounded by ε, according the the first assertion a walk of length
t = logn+2 log(1/ε)

2 log(1/α) is enough (note that if ~p puts all its weight on one node then ||~p− ~u||2 ≈ 1).
The running time to obtain a fixed variation distance depends upon the second eigenvalue and

upon log n. Simulations show (see Section 5.3.2) that the second eigenvalue is concentrated around
0.85. An estimation of log n could be easily derived through simple procedures as was shown in
Section 2.3.

5.3.1 Speeding up the mixing time

Theorem 5.2.1 refers to a constant degree subgraph. One might hope that the logarithmic degree
of the skip graph implies that using more edges would significantly decrease the mixing time.
Unfortunately this is not the case.

Lemma 5.3.2. With high probability there exists a set A ⊂ V such that n
2 − log n

√
n ≤ |A| ≤ n

2 ,
and |δ(A)| ≤ |A|.

Proof. For τ ∈ {0, 1} Let Aτ be the set of vertices that have τ as the first bit of their membership
vector. Assume w.l.o.g that |A0| ≤ |A1|. We have that w.h.p. |A0| ≥ n

2 − log
√
n and that

|δ(A0)| ≤ |A0|.

Lemma 5.3.2 implies that the edge expansion of the entire skip graph is O(1), so for every
subgraph of the skip graph, the mixing time is bounded by Ω(log n). Furthermore since the con-
ductance of the set A0 is O( 1

logn) the mixing time of the entire skip graph is Ω(lnn ln lnn). It may
be the case however that adding a small set of edges to the subgraph would improve the mixing
time by a constant.

Sampling in O(log n/ log log n) time:

The unique properties of the skip graph, in particular its support for the lookup operation, can be
used to hot-start a random walk, and thus reduce the complexity of sampling. Let ~u denote the
uniform probability. In the following we show a procedure that for a given δ > 0 samples a node
with distribution ~p such that ||u− p||1 ≤ δ. The expected running time is O(log n/ log log n) where
the constant depends upon δ. The procedure is as follows:

1. Choose a vector m of 3 log n random bits. look up the node7 with the longest prefix which
agrees with m. Call that node v.

2. Perform a random walk according to the bucket scheme, starting at v and of lengthO(log n/ log log n).

7In case of several such nodes, any one of them suffices.
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Let ~p be the distribution formed by the first phase of the algorithm. Our goal is to bound ||Ât~p−u||1
when t = O(log n/ log log n). Let ~ε = ~u − ~p. Theorem 5.3.1 states that ||Ât~p − u||1 ≤

√
nαt||~ε||2.

We calculate a bound on ||~ε||2. First note that with high probability it holds that pv ≤ 2 logn
n for

every node v. This is true since w.h.p. every vector of length log(n/2 log n) is the prefix of at least
one node. We conclude that:

||~ε||2 ≤

√
n ·
(

2 log n
n

)2

≤ 2 log n√
n

and that ||Ât~p−u||1 ≤ 2αt log n so in order for the distance to be at most δ we need t ≥ log( 2 logn
δ )

log(1/α) .
For example, if we take δ = 1/100 and α = 0.85 we get that t ≥ 33 + 4.3 log log n. As before, it is
important to note that these are upper-bounds only. It may be that the walk mixes much faster.
Indeed in Section 5.3.2 we show that once a random prefix is reached, a very short walk yields an
almost uniform sample.

The complexity of Step (1) depends upon the algorithm used for searching a prefix. It takes
O(log n) steps w.h.p. to find a prefix when the node is searched greedily (this is basically identical
to the algorithm for finding the edges when joining).

5.3.2 Empirical evidence

We ran simulations in which the bucket edges and cycle edges were constructed. We calculated the
second eigenvalue of the Laplacian (which is the gap between the first and second eigenvalue of the
adjacency matrix). In Figure 5.1 we sketch the spectral gap as a function of log n. Each entry is
the average of 5 simulation only. The first observation is that the value of the second eigenvalue is
extremely concentrated (which is why the average of 5 simulations is enough). When n = 256 the
difference between the smallest gap measured and the largest was under 0.1 for all different bucket
sizes. When n = 65536 the difference between the smallest and largest measurement was less than
0.03. Simulations show that the largest gap is achieved when the minimum bucket size is 4. In
this case the spectral gap is roughly 0.495. The value of α from Theorem 5.3.1 could be calculated
as: 4−0.495

4 ≈ 0.87. The second eigenvalue of a Ramanujan graph, that is, a graph with the largest
possible spectral gap is bounded by 2

√
3 ≈ 3.46. In other words the largest spectral gap we could

have hoped for is 4 − 3.46 = 0.54. In this case the value α is 3.46
4 = 0.866, so the value of α we

achieve is about 0.004 from optimal.
Next we checked the quality of the mixing by calculating the distribution over the nodes when

starting from some arbitrary vertex. The vector Ât~p was explicitly calculated when ~p puts weight 1
on the first vertex. The simulations have n = 218 and bucket size of at least 4. Table 5.1 summarizes
the results. The minimum weight column indicates the probability weight of the node least likely
to be sampled, as a fraction of 1

n . The maximum weight is the analog for the heaviest vertex. When
the walk is of length 2.5 log n the variation distance from uniform is only 0.018 and all vertices are
sampled with probability at least 0.9 1

n . When the walk is of length 3.5 log n then all vertices are
sampled with probability at most 1.33 1

n .
It is important to note that even though the bucket edges achieve an almost optimal spectral

bound, in practice they may not necessarily be the optimal choice as far as mixing is considered. For
instance it may be that a random walk which uses several bucket sizes together would mix faster.
When designing such heuristics one must bare in mind that the mixing time is not monotone in
the number of edges, indeed the entire skip graph mixes slower than the expanding subgraph.
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Figure 5.1: The spectral gap of the Laplacian as a function of log n, using various values for
the minimum bucket size.

Walk minimum maximum variation
Length weight weight distance
1 log n 0.1 990 0.49
1.5 log n 0.42 162 0.185
2 log n 0.74 35 0.059
2.5 log n 0.9 7.7 0.018
3 log n 0.96 3.21 0.0055
3.5 log n 0.99 1.33 0.0015
4 log n 0.996 1.12 0.0005

Table 5.1: Quality of mixing when n = 218 and buckets are of size at least 4.
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Walk minimum maximum variation
Length weight weight distance
2 ≈ 0.1 log n 0.05 4.95 0.14
4 ≈ 0.2 log n 0.41 2.75 0.08
7 ≈ 0.4 log n 0.67 1.72 0.04
11 ≈ 0.6 log n 0.83 1.29 0.017
14 ≈ 0.8 log n 0.9 1.16 0.01
18 = log n 0.95 1.08 0.005

Table 5.2: Quality of hot-started mixing when n = 218, buckets are of size at least 4 and the walk
starts from a random prefix.

Random walk with a hot start: We simulated a random walk starting from a random prefix.
Table 5.2 summarizes the results. It could be seen that once a random prefix is reached, a random
walk of length 7 = b0.4 log nc samples each node with probability at most 1.71 1

n and at least 0.67 1
n .

Thus, this is by far the fastest known sampling algorithm.

Estimating the expansion The simulations above may be used to give lower bound on the
expansion of the graph. The following theorem is proven in [12]:

Theorem 5.3.3. If λ is the second largest eigenvalue of a d−regular graph G with n vertices, then
the node expansion of G is at least 2(d−λ)

3d−2λ .

Plugging in d = 4 and λ = 4− 0.495 = 3.505 we get that the node expansion of the expanding
subgraph is at least 0.18. The bound in Theorem 5.3.3 is probably not tight in our case, furthermore,
since the expansion is monotone in the number of edges, we expect the expansion of the skip graph
to be a larger constant.

5.3.3 The maximal edge heuristic

Another possible subgraph to consider is the one composed of the cycle edges and maximal edges.
An edge (u, v) is said to be maximal if for either u or v it corresponds to the longest prefix that yields
a nonempty cycle. Given Theorem 5.2.1, it is natural to conjecture that a random walk on these
edges would mix rapidly. The main advantage of this scheme is that the maximum edge of each
node is immediately identifiable without any overhead. A disadvantage is that the degrees of nodes
in the resulting subgraph are not uniform, which produces a nonuniform stationary distribution.

However, this nonuniform distribution can be corrected by applying rejection sampling to the
more frequently sampled high-degree nodes. We give empirical evidence that this heuristic converges
quickly, achieving a distribution within 1% of uniform in just 5 lg n steps.

Figure 5.2 plots the degree distribution of three different graph sizes. Each plot is the average
of five simulations. The results of the simulations were very well concentrated. About 97.5% of the
nodes have degrees 3 or 4. Degree 5 nodes are about 2.5% of the nodes. The remaining degrees
could be found in less than 0.1% of the nodes, and in no simulation have we encountered a node
with degree larger than 7. The average degree in all 15 simulations was between 3.275 and 3.285.
Nodes with higher degree have a higher probability of being sampled by the walk. As mentioned
previously, this can be fixed using rejection sampling based on the node degrees: when a random
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Figure 5.2: The distribution of the degrees when the maximum edge is taken.

walk ends at a node of degree d, it samples the node with probability 3
d (which is 1 most of the

time) and initiates a new random walk with the remaining probability. The expected length of the
walk increases by a factor of approximately 16/15.

The mixing time is estimated by calculating the second eigenvalue of the Laplacian. Figure 5.3
charts the spectral gap of the Laplacian as a function of the graph size. Each value is the average
of 15 simulations. It could be seen that a spectral gap exists, and stands at about 0.256. The
following theorem relates the spectral gap of a non-regular graph to the mixing time (see [31]).
Denote by ~π the stationary distribution of the random walk. Denote by λ the second eigenvalue of
the Laplacian matrix and by d(x) the degree of node x.

Theorem 5.3.4. For every graph with a normalized adjacency matrix Â and any initial distribution
~p,

max
x
|(Ât~p)x − ~πx| = ||Ât~p− ~π||∞ ≤

maxx
√
d(x)

miny
√
d(y)

· e−tλ

Plugging in a maximum degree of 6, minimum degree of 2 and λ = 0.256, we get that if we
want each node to be sampled with probability within 1

2n , the length of the walk should be at
least 4.85 + 5.64 log n. This quantity must be further multiplied by 16

15 to account for the extra
walks needed for skewing the distribution to the uniform one. We conclude that the running time
is about 5 + 5.75 log n. It should be noted that Theorem 5.3.4 is not tight, and a shorter walk
would probably suffice. Indeed, we ran simulations and checked the variation distance between
the random walk sample and the stationary distribution (which is not uniform, but which can be
sampled to obtain a uniform distribution as discussed previously). The results are summarized is
Table 5.3. A walk of length 5 log n yields a variation distance of less than 1

100 from stationary.

5.4 Applications

Consequences of expansion in skip graphs can be divided between those that use the expansions
directly, like fault tolerance, and those that depend on the resulting rapid mixing of random walks.
We discuss both below.
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Figure 5.3: The spectral gap of the Laplacian as a function of log n,
using the maximum edge heuristic.

Walk Length variation distance
1 log n 0.72
2 log n 0.29
3 log n 0.095
4 log n 0.025
5 log n 0.007

Table 5.3: The variation distance between the random walk distribution and the stationary distri-
bution, when n = 218,and the maximum edge is used.

5.4.1 Fault tolerance

Aspnes and Shah [16] showed via simulations that skip graphs are highly resilient to random failure
of nodes. The expansion property of skip graphs gives the theoretical support to these empirical
findings.

When adversarial faults are considered we have the following conclusion: If k nodes are deleted
in an adversarial manner, then the largest connected component would have Ω(n − O(k)) nodes.
In other words, even if an adversary deletes a constant fraction of nodes, still a constant fraction
of the nodes would remain connected.

5.4.2 Hitting large sets

As seen, a random walk of length O(log n) in an expander yields a random point. One of the
most interesting and appealing properties of expander graphs is that in some sense a random walk
of length o(log n) yields Θ(log n) random samples. Clearly the nodes hit by the random walk
are highly correlated, yet for the purpose of hitting a set of nodes, they behave as if they were
independent random samples. The following theorem was proven by Ajtai, Komlós and Szemerédi
[10]; it can also be found in Alon and Spencer’s book [13].

Theorem 5.4.1 (Ajtai, Komlós and Szemerédi). Let G = (V,E) be a d−regular graph on n
vertices, and suppose that each of its eigenvalues but the first one is at most λ. Let C be a set of
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cn vertices of G. Then, for every `, the number of walks of length ` in G that avoid C does not
exceed (1− c)n((1− c)d+ cλ)`.

There are nd` walks of length `, which means that if we pick a random starting point for the
walk, then the probability of avoiding the set C is at most:

(1− c)n((1− c)d+ cλ)`

nd`

= (1− c) ·
(

(1− c)d+ cλ

d

)`
≤
(

(1− c)d+ cλ

d

)`
We know that a random walk of length O(log n) reaches a random point, therefore for any initial

point, a random walk of length ` + O(log n) avoids C with probability at most
(

(1−c)d+cλ
d

)`
=(

1− (1− λ
d )c
)`

. Note that the probability the set C is avoided by log n independent samples is
(1− c)logn. The theorem states that this probability can be achieved by a walk of length O(log n).

We use the random-walk property in a somewhat different setting than the one described by
Aspnes and Shah in [14]. We begin by briefly sketching this setting and then continue with appli-
cations of random walks.

5.4.3 The skip graph as a peer-to-peer data storage system

So far, we have assumed that each node of the graph represents a data item to be searched for.
This allows for a simple implementation of range queries over the data set. Unfortunately, it also
comes with a price: each data item is put separately in the system and requires roughly O(log n)
communication links. Distributed Hash Tables which do not support range queries group elements
together such that the total number of communication links is a function of the number of servers
rather than data items. A natural way to group data items is to let each server hold a contiguous
segment of the key space. Each server puts only one element of that segment in the skip graph
(this data item effectively serves as the key of the skip graph node), and holds the rest in some
internal data structure (which allows range queries). Now each node corresponds to a server in the
system and not to a data item, and the capability to range query the data set is preserved.

Load balancing

The problem with the construction above is that it might be the case that different servers hold
different fraction sizes of the data, thus dividing the load unevenly. A large fraction of the data
set inflicts load not only due to the memory needed to store the items, but also because a server
which holds many data items would be queried more often. It is therefore desirable that nodes
share the data items as evenly as possible. Aspnes et al [15] and Karger and Ruhl [64] suggest
various algorithms to deal with this problem. The algorithms they design apply a re-balancing
mechanism that involves heavily loaded nodes actively seeking lightly loaded nodes. We take a
different approach and suggest a simple Join algorithm, which preserves load balancing as long as
the distribution from which data items receive their keys does not change often.

The algorithm we suggest is very simple. A server that wishes to join the skip graph performs a
random walk of length Ω(log n), recording the number of data items held by each node it encounters.
It then picks a segment in the key space such that it splits the load of the most heavily loaded
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of these nodes. Consider a set H of heavily loaded nodes. According to Theorem 5.4.1, the
probability H is hit by a walk of length Ω(log n) is equal to the probability it would be hit by
Ω(log n) independent random samples.

We simulated the second, simpler scenario. In our simulation we put 227 data items in a single
node, and then added 218 nodes one by one. The kth node to enter sampled ln k nodes uniformly
and independently and split the load of the heaviest sample. The resulting division of data items
between the nodes was strikingly balanced. While the average load is 29, no node had a load larger
than 212. Clearly this simulation oversimplifies the model: in particular, it does not take into
account deletion of nodes and the dynamics of the data items themselves. Yet if we assume that
the distribution of data item names is fixed, then it is reasonable to assume that the random walk
would be a good load balancing heuristic. Testing the random walk algorithm in more realistic
scenarios is an important future goal.

Locating highly replicated data items

Assume that some data item is immensely popular and appears at a large fraction of the nodes.
Theorem 5.4.1 implies that a random walk would hit a node holding the popular item fast. It is
shown in [78] that for popular data items an exhaustive search (as in Gnutella) is more efficient than
an exact search using a DHT. It is shown in [48] that when the underlying graph is an expander,
a random walk is more efficient than exhaustive search. We conclude that a skip graph may serve
as an excellent hybrid data structure; i.e., may serve as a structured and unstructured P2P system
simultaneously.

Gathering statistics

Assume we want to estimate what fraction of the skip graph nodes run Linux, or more generally
we want to estimate the fraction of nodes which have some property. A natural approach would
be to sample Θ(log n) nodes randomly and use the sample to estimate the fraction. Typically
a Chernoff bound is then used to show that the answer is approximately correct w.h.p. David
Gillman [47] proved a theorem in the spirit of Theorem 5.4.1 and showed that one random walk of
length O(log n) may serve to produce Θ(log n) random samples. In the following we let λ denote
the spectral gap of the normalized adjacency matrix (i.e. 1− α), let C be a set of cn nodes.

Theorem 5.4.2. Let tk be the number of visits to C in k steps of a random walk, starting from

some arbitrary distribution, then Pr[|tk − ck| ≥ γ] ≤ ne−
γ2λ
20k .

Note that ck is the expected number of visits in the set. It follows that if c is a constant and k
is O(log n) then w.h.p. the estimation of c could be arbitrarily close to c itself.
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Chapter 6

Open Problems and Further Research

Clearly one of the most important tasks currently faced by the research community is to collect
real data from actual implementations. In the theoretical aspect there are still many difficult and
intriguing problems without a satisfactory solution. We conclude in this Chapter by outlining what
we think are the main open problems that merit further research.

6.1 Problems Related to Load Balancing

Load-Balancing under Adversarial Deletions: The Continuous-Discrete approach relies on
the equal division of the name space between the nodes (the smoothness). In Section 2.6 we
presented several algorithms that guarantee smoothness. All of them but the cyclic scheme rely
on the assumption that either there are no deletions; i.e. nodes never leave the system, or that
nodes leave the system randomly. Theoretically speaking the cyclic scheme is appealing, as it offers
excellent smoothness in the worst case even under adversarial insertions and deletions. Its main
drawback is its vulnerability to concurrent joining and leaving. Say m nodes wish to leave the
system in the same time. It is not clear how to coordinate them such that the smoothness property
remains. A locking mechanism that would ensure that nodes leave (and join) one at a time implies
a low throughput of the system and seriously limits its dynamic nature. Thus it seems that the
cyclic scheme is less practical. It is important to come up with a scheme which is robust against
adversarial insertions and deletions, yet is local enough to maintain high throughput. In particular,
can the throughput of the cyclic scheme be increased?

Another limitation of the cyclic scheme is that it operates in a one dimensional name space only.
As seen in Section 2.7, it is sometimes useful to have the names drawn from a two dimensional
space. How can we modify the cyclic scheme to operate in a two dimensional space?

Exploiting Heterogeneity in DHT’s: All the DHT’s mentioned in this work were designed
under the assumption that nodes in the network are identical – all have the same amount of
resources. Clearly in the real world this is not the case. In the Internet some hosts have high
bandwidth and some low, some allocate plenty of memory and some do not. It is desirable to allow
each physical node of the network to fully utilize its resources, both for its own benefit and for the
benefit of others.

A straight forward and well known approach (c.f. [63],[35]) for dealing with heterogeneity is to
assign several (virtual) nodes to each physical node. In this scheme each physical entity simulates

99
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many independent nodes, holding a different ID for each, and allocating separate resources for each
simulation. The advantage of this approach is its simplicity and modularity. The network could be
designed for homogenous nodes and the heterogeneity is taken into account only by the mapping of
nodes to physical entities. The main drawback of this approach is that the overhead of maintaining
and simulating several (virtual) nodes is replicated and multiplied. For instance a physical node
simulating k virtual nodes will have to maintain k sets of overlay links. It is reasonable to assume
that some of the replications could be saved. Indeed a different approach would be to deal with
heterogeneity in the design of the virtual network itself. One way of doing this is by designing a Join
protocol that assigns to each node a contiguous segment of the key space, with length proportional
to the amount of resources the node has. The various algorithms presented in Section 2.6 aim to
assign each node a segment of length 1

n , and it is interesting to try and modify them so that they
assign each node a different segment size. Godfrey and Stoica [50] take some steps in this direction.

Load Balancing Skip Graphs: In Section 5.4.3 we describe how to transform a skip graph into
a data storage system. The main idea is to allow each server to hold a segment of the key space,
and put in the skip graph only one data item which falls in the segment. Recall that in skip graphs
data items may have arbitrary names, so we face the following load balancing problem: Given an
arbitrary distribution of data item names in the ring [0, 1), how to assign segments to servers such
that each segment contains approximately the same number of data items? Simulations suggest
that sampling log n random servers, and splitting the load of the heaviest server encountered is
a good idea. It is desirable to improve the analysis and to find more clever algorithms for load
balancing. Aspnes et al [15] made some progress in that direction.

6.2 Problems related to Security

Handling Byzantine Behavior in Network Construction: In Section 2.3 we handles the
case where a random fraction of the nodes can send arbitrary messages relating to the content of
data items. We named this adversarial behavior the spam generating model. The dynamic nature
of P2P networks allows an adversary to do much more. A faulty node may influence the actual
topology of the network and not merely the messages sent once the network exists. For instance a
node may choose its ID such that it holds a specific piece of the key space, thus controlling all data
items with keys that fall within that segment. A node may send false massages while executing the
Join protocol (or as part of the maintenance protocol) causing its neighbors to have inconsistent
views of the network, and so on. It would be interesting to find a method in which nodes could
be enforced to behave according to protocol. A first step towards a secure system is the following:
find a protocol that verifies that the ID of a joining node is chosen uniformly at random from the
key space.

The egalitarian nature of a P2P network and the lack of central control means that it is not at
all clear who should verify these things, and what actions should be done (and indeed by whom)
once a foul play is detected. It is most likely that a combinatorial approach would not suffice and
that cryptography would have to be used.

Pricing via Processing in a P2P setting: Even if all nodes adhere to the Join protocol,
an adversary may repeatedly enter the system under various identities until it controls a specific
portion of the network, what is known as the Sybil attack [38]. For instance, an adversary which
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wants to control a specific data item may enter the system again and again until its random ID
falls within a range that gives it control over that item. A possible direction towards dealing with
the attack is to somehow enforce each joining node to solve some moderately hard problem (a-la
the Pricing via Processing approach of Dwork and Naor [34]), thus forcing each joining node to
‘pay’ in computation. Hopefully such a scheme would imped Sybil attacks by making them too
expensive for the adversary and thus uneconomical. As before, the lack of central control means
that it is not clear who decides which function the joining node should compute and who verifies
that the node indeed computed it. The idea has been implemented in a more limited setting by
Maniatiset al [92].
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