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Chapter 1

An Overview of Structured P2P
Overlay Networks

1.1 Introduction

Historical Background. The term “peer-to-peer” (P2P) is used in many contexts to mean
different things. It was recently used to refer to the form of cooperation that emerged with the
appearance of the music file sharing application Napster [31]. With that application, music
files where exchanged between computers (Peers) relying on a central directory for knowing
which peer has which file. Napster ceased operation due to legal rather than technical
reasons and was followed by a number of systems like Gnutella [17] and Freenet, [13] where
the central directory was replaced with a flooding process where each computer connects to
random members in a peer-to-peer network and queries his neighbors who act similarly until
a query is resolved. The random graph of such peers proved to be a feasible example of an
overlay network, that is an application-level network on top of the Internet transport with
its own topology and routing.

The Motivating Problem. The simultaneous “beauty” and “ugliness” of random over-
lay networks attracted academic researchers from the networking and the distributed systems
communities. The “beauty” lies in the simplicity of the solution and its ability to completely
diffuse central authority and legal liability. From a computer science point of view, this
elimination of central control is very attractive for - among other things - eliminating single
points of failure and building large-scale distributed systems. The “ugliness” lies in the huge
amount of induced traffic that renders the solution unscalable [25, 38]. The problem of hav-
ing a scalable P2P overlay network with no central control became a scientifically challenging
problem and the efforts to solve it resulted in the emergence of what is known as “structured
P2P overlay networks”, referred to also by the term Distributed Hash Tables (DHTs).

The General Solution. The main approach that was introduced by the academics
to build overlay networks was to let the set of cooperating peers act as a a distributed
data structure with well-defined operations, namely a distributed hash table with the two
primitive operations Put(key,value) and Get(Key). The Put operation should result in
the storage of the value at one of the peers such that any of the peers can perform the Get
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2 CHAPTER 1. AN OVERVIEW OF STRUCTURED P2P OVERLAY NETWORKS

operation and reach the peer that has the value. More importantly, both operations need
to take a “small” number of hops. A first naive solution would be that every peer knows all
other peers, and then every Get operation would be resolved in one hop. Apparently, that
is not scalable. Therefore, a second constraint is needed. Each node should know a “small”
number of other peers. From a graph-theory point of view, this means that a directed graph
of a certain known “structure” rather than a random graph needs to be constructed with
scalable sizes of both the outgoing degree of each node and the diameter of the graph.

1.2 Definitions and Assumptions

Values. The set of values V such as files, directory entries etc.. Each value has a corre-
sponding key from the set Keys(V). If a value is a file, the key could be, for instance, its
checksum, a combination of owner, creation date and name or any such unique attribute.

Nodes. The set P of machines/processes also referred to as nodes or peers. Keys(P)
is the set of unique keys for members of P , usually the IP addresses or public keys of the
nodes.

The Identifier Space. A common and fundamental assumption of all DHTs is that the
keys of the values and the keys of the nodes are mapped into one range using a hashing
function. For instance, the IP addresses of the nodes and the checksums of files are hashed
using SHA-1 [12] to obtain 128-bit identifiers. The term “identifier” is used to refer to hashed
keys of items and of nodes. The term “identifier space” refers to the range of possible values
of identifiers and its size is usually referred to by N . We use id as an abbreviation for
identifier most of the time.

Items. When a new value is inserted in the hash table, its key is saved with it. We use
the term “item” to refer to a key-value pair.

Equivalence of Nodes. The operations of adding a value, looking up a value, adding a
new node (join), removing an existing node (leave) are all possible through any node p ∈ P.

Autonomy of Nodes. The addition or removal of any node is a decision taken locally
at that node and there is a distinction between graceful removals of nodes (leaves) and
ungraceful removals (failures).

The first contact. Another fundamental assumption in all DHTs is that to join an
existing set of peers who already formed an overlay network, a new peer must know some
peer in that network. This knowledge in many systems is assumed to be acquired by some
out-of-band method. Some systems discuss the possibility of obtaining the first contact
through IP multicast, however, it is an orthogonal issue to the operation of any DHT.

Ambiguous terms. Since we are forced to use different terminology to refer to the same
logical entities in different contexts, we try to resolve those ambiguities early by introducing
the following equalities. Nodes = peer = contact= reference, overlay network = overlay
graph, identifier=id, edge = pointer, “point to”= “be aware of” = “keep track of”, routing
table = outgoing edges, diameter = lookup path length, lookup = query. routing table size
= outgoing arity. Also some times, letters like n, s, t, x are used to refer to nodes and values
as well as their identifiers but the meaning should be clear from the context.
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1.3 Comparison Criteria

The Overlay Graph. This is the main criteria that distinguishes systems from each other.
For each overlay graph, we want to know how the graph looks like and what is the outgoing
arity of each node in the graph.

Mapping Items Onto Nodes. For a given overlay graph, we want to know the relation
between node ids and item ids, i.e. at which node should an item be stored?

The Lookup Process. A tightly coupled property with the overlay graph is how lookups
are performed and what is the typical performance.

Joins, Leaves and Maintenance. How a new node is added to the graph and how a
node is gracefully deleted from the graph? Joins and leaves make the graph change constantly
and some maintenance process is usually required to cope with such changes, so how does
this process take place and what is its cost?

Replication and Fault Tolerance. In addition to graceful removal of nodes, failures
are usually harder to deal with. Replication is a tightly coupled property since it can be a
technique to overcome failures effect or a method of improving efficiency.

Upper Services and Applications. When applicable, we enumerate some of the ap-
plications and services developed using a certain system.

Implementation. Since many systems are of a completely theoretical nature even for
their services and applications, we try to give and idea about any available implementations
of a system.

1.4 DHT Systems

1.4.1 Chord

The Overlay Graph. Chord [42, 43] assumes a circular identifier space of size N . A Chord
node with identifier u has a pointer to the first node following it clockwise on the identifier
space (Succ(u)) as well as the first node preceding it (Pred(u)). The nodes therefore form
a doubly linked list. In addition to those, a node keeps M = log2(N) pointers called fingers.
The set of fingers of node u is Fu = {(u, Succ(u + 2i−1))}, 1 ≤ i ≤ M , where the arithmetic
is modulo N ;

The intuition of that choice of edges is that a node perceives the circular identifier space
as if it starts from its id. The edges are, then, chosen such as to be able to partition the
space into two halves, partition one of the halves into two quarters, and so forth.

In Figure 1.1(a), we show a network with an id space N = 16. Each node has M =
log2(N) = 4 edges. The network contains nodes with ids 0, 3, 5, 9, 11, 12. The general policy
for constructing routing tables is shown in figure 1.1(b). Node n chooses its pointers by
positioning itself at the start of the identifier space. It chooses to have the pointers to the
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(a) (b)

(c)

Figure 1.1: (a) A chord network with N = 16 populated with 6 nodes and 5 items.
(b) The general policy for Chord’s routing tables. (c) Example routing tables
for nodes 3 and 11.

successors of the ids n + 20, n + 21, n + 22, and n + 23. The last pointer n + 23, divides the
space into two halves. The one before it n+22 divides the first half into two quarters and so
forth. However, there may not exist a node at the desired position so its successor is taken
instead. Figure 1.1(c) shows the routing entries of node 3 and 11.

Mapping Items Onto Nodes. As shown in figure 1.1(a), an item is stored at the first
node that follows clockwise on the circular identifier space. If items with ids 2, 3, 6, 10,13
are to be stored in the network given above, then {2,3} will be stored at 3; {6} at 9; {10}
at 11; and {13} at 0.

The Lookup Process. The lookup process comes as a natural result of how the id space
is partitioned. Both the insertion and querying of items depend on finding the successor of
an id. For example, assume that node 11 wants to insert a new item with id 8, the lookup is
forwarded to node 3, which is the closest preceding finger - from the point of view of 11 - to
the id 8. Node 3 will act similarly and forward the query to node 5 because 5 is the closest
preceding finger for 8 from the point of view of 5. Node 5 finds that 8 is between itself and its
successor 9. And therefore, returns 9 as an answer to the query through the reverse path1.
In all cases, upon getting the answer, node 11’s application layer should contact node 9’s
application layer and ask for the storage of some value under the key 8. Any node looking
for the key 8 can act similarly and in no more than M hops2, a node will discover the node
at which 8 is stored. In general, under normal conditions a lookup takes O(log2(N)) hops.

Joins, Leaves and Maintenance. To join the network, a node n performs a lookup for
its own id through some first contact in the network and inserts itself in the ring between its

1This is known as the recursive method. Another suggested approach in the Chord papers is an iterative method where all
the answers path by the node at which the lookup originated, i.e. instead of the path being 11 → 3 → 5 → 3 → 11, in an
iterative lookup the path will be 11 → 3 → 11 → 5 → 11. A third approach adopted in other systems like e.g. [2] would be to
continue to the destination and send the result to the origin of the lookup, i.e. 11 → 3 → 5 → 9 → 11.

2Chord counts a remote procedure call and the response to it as one hop.
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successor s and the predecessor of s using a periodic stabilization algorithm. Initialization of
n’s routing table is done by copying the routing table of s or letting s lookup each required
edge of n. The subset of nodes that need to adjust their tables to reflect the presence of n,
will eventually do that because all nodes run a stabilization algorithm that periodically goes
through the routing table and looks up the value of each edge. The last task is transfer part
of the items stored at s, namely items with id less than or equal to n need to be transferred
to n and that is also handled by the application layers of n and s.

Graceful removals (leaves) are done by first transferring all items to the successor and
informing the predecessor and successor. The rest of the fingers are corrected by the virtue
of the stabilization algorithm.

Replication and Fault Tolerance. Ungraceful failures have two negative effects. First,
ungraceful failures of nodes cause loss of items. Second, part of the ring is disconnected
leading to the inability of looking up certain identifiers. Let alone if a set of adjacent nodes
fail simultaneously. Chord tackles this problem by letting each node keep a list of the log2(N)
nodes that follow it on the circle. The list serves two purposes. First, if a node detects that
its successor is dead, it replaces it with the next entry in its successor list. Second, all the
items stored at a certain node are also replicated on the nodes in the successor list. For
an item to be lost or the ring to be disconnected, log2(N) + 1 successive nodes have to fail
simultaneously.

Upper Services and Applications. A couple of applications such as a cooperative
file-system [9], a read/write file system [29] and a DNS directory [8] were built on top of
chord. As a general purpose service, a broadcast algorithm was also developed for Chord
[10].

Implementation. The main implementation of Chord is that by its authors in C++ at
[44] where a C++ discrete-event simulator is also available. Naanou [19] is a C# implemen-
tation of Chord with a file-sharing application on top of it.

1.4.2 Pastry

The Overlay Graph. The overlay graph design of Pastry [39] in addition to aiming to
achieving logarithmic diameter with a logarithmic node state, also tries to target the issue
of locality. In general, as a result of obtaining the node ids by hashing IP numbers/Public
Keys, nodes with adjacent node ids may be farther apart geographically. Differently said,
two machines in one country, would communicate through a machine in another continent
just because the hash of their ids will be far apart in the id space.

Pastry assumes a circular identifier space and each node has a list containing L
2

successors

and L
2

predecessors known as the leaf set. A node also keeps track of M nodes that are close
according to another metric other than the id space like, for instance, network delay. This set
is known as the neighborhood set and is not used during routing but used for maintaining
locality properties. The third type of node state is the main routing table. It contains
⌈log2b(N)⌉ rows and 2b − 1 columns. L, M and b are system parameters.

Node ids are represented as string of digits of base 2b. In the first row, the routing table
of a node contains node ids that have a distinct first digit. Since the digits are of base 2b, a



6 CHAPTER 1. AN OVERVIEW OF STRUCTURED P2P OVERLAY NETWORKS

Figure 1.2: Illustration of how the Pastry node 10233102 chooses its routing edges
in an identifier space of size N = 2128 and encoding base 2b = 4.

node needs to know 2b − 1 nodes for each possible digit except its own.

The second row of a node with id n contains 2b − 1 nodes that share the first digit with n
but differ in the second digit. The third row contains nodes that share the first and second
digit of n but differ in the third and so forth. We stress that −1 in 2b − 1 is because in each
row the node itself would be the best match for one of the columns, therefore we do not need
to keep an address of it. Figure 1.2 illustrates how the the id space is partitioned using this
prefix matching scheme.

As one can observe, for each of the constraints about the node ids contained in a routing
table, there exists many satisfying nodes. Therefore the node with the lowest network delay
or the best according to some other criteria is included in the routing table.

Mapping Items Onto Nodes. An item in Pastry is stored at the node that is numeri-
cally closest to the id of the item. Such a node will have the longest matching prefix.

The Lookup Process. To locate the closest node to an id x, a node n checks first if x
falls within the range of node ids covered by its leaf set. If so, it is forwarded to such node.
Otherwise, the lookup is forwarded to the node in the interval that x belongs to, that is to
a node that shares more digits than the shared prefix between n and x. If no such node
is found in n’s routing table, the lookup is forwarded to the numerically closest node to x.
The later case does not happen so often provided that the ids are uniformly distributed.
With the matching of one digit of the sought id in each hop, after log2b(N) hops a lookup is
resolved.
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Joins, Leaves and Maintenance. When a node n joins the network through a node t,
then t is usually in the proximity of n and thus the neighborhood set of t is suitable for n.
Due to the construction of the routing tables in Pastry, n performs a lookup for its own id
to figure out the numerically closest node s to n. It can take the ith row from the ith node
on the path from t to s and use those rows in initializing its routing table. Moreover, the
leaf set of s is a good initialization for the leaf set of n. Finally, n informs every node in its
neighborhood set, leaf set and routing table of its presence. The cost is about 3× 2b log2b N .

Node departures are detected as failures and repaired in a routing table by asking a node
in the same row of the failed node for its entry on the failed position.

Replication and Fault Tolerance. Pastry replicates an item on the k closest nodes in
its leaf set. This serves in saving an item after a node loss and in the mean time, the replicas
act as cached copies that can contribute in finding an item more quickly.

Upper Services and Applications. A number of applications and services were devel-
oped on top of Pastry such as, SCRIBE [7] for multicasting and broadcasting. PAST [40], an
archival storage system. SQUIRREL [20], a co-operative web caching system. SplitStream
[6], a high-bandwidth content distribution .

Implementation. FreePastry [14] is an open-source Java implementation of the Pastry
system.

1.4.3 Tapestry

Tapestry [46] is one of the earliest and largest efforts on structured P2P overlay networks.
Like Pastry, it is based on the earlier work of a Plaxton [35] mesh. We will not describe the
details of Tapestry due to the large similarity with Pastry. However, we have to point out
that as a software, it is probably one of the most mature implementations of a structured
overlay network. In addition to network simulation, Tapestry has been evaluated using a
more realistic environment, namely PlanetLab [34], a globally distributed platform with
machines all over the world that is used for testing large-scale systems.

Tapestry is a corner-stone project in the larger Oceanstore [22] project for global-scale
persistent storage. Other applications based on Tapestry include the steganographic file
system Mnemosyne [18], Bayeux [48] an efficient self-organizing application-level multicast
system, and SpamWatch [47] a decentralized spam-filtering system.

1.4.4 Kademlia

The Overlay Graph. The Kademlia [28] graph partitions the identifier space exactly like
Pastry. However, it is presented in a different way where node ids are leafs of a binary tree
with each node’s position is determined by the shortest unique prefix of its id. Each node
divides the binary tree into a series of successively lower subtrees that don’t contain the node
id and keeps at least one contact in each of those subtrees. For instance, a node with id 3
has the binary representation 0011 in an identifier space of size N = 16. Since its prefix of
length 1 is the digit 0 then it needs to know a node whose first digit is 1. Since its prefix
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Figure 1.3: The pointers of node 3 (0011) in Kademlia. The same partitioning of
the identifier space as in Pastry with binary-encoded digits.

of length 2 is 00, then it needs to know a node with prefix 01. Since its prefix of length 3
is 001, then it needs to know a node with prefix 000. Finally, since its prefix of length four
is 0011, then it needs to know a node with a prefix 0010. This policy is illustrated in figure
1.3 which results in a space division exactly like Pastry with the special case of a binary
encoding of the digits.

Kademlia does not keep a list of nodes close in the identifier space like the leaf set or the
successor list in Chord. However, for every subtree/interval in the identifier space it keeps
k contacts rather than one contact if possible, and calls a group of no more than k contacts
in a subtree a k-bucket.

Mapping Items Onto Nodes. Kademlia defines the notion of distance between two
identifiers to be the value of the bitwise exclusive or (XOR) of the two identifiers. An item
is stored at the node whose XOR difference between the node id and the item id is minimal.

The Lookup Process. To increase robustness and decrease response time, Kademlia
performs lookups in a concurrent and iterative manner. When a node looks up an id, it
checks to which subtree does the id belong and forwards the query to α randomly selected
nodes from the k-bucket of that subtree. Each node possibly returns back a k-bucket of a
smaller subtree closer to the id. From the returned bucket, another α randomly selected
nodes are contacted and the process is repeated until the id is found. When an item is
inserted, it is also stored at the k closet nodes to its id. Because of the prefix matching
scheme, similar to Pastry, a lookup is also resolved in O(log(N)) hops.

Joins, Leaves and Maintenance. A new node finds the closest node to it through
any initial contact and uses it to fill its routing table by querying about nodes in different
subtrees. If it happens that a k-bucket is filled due to exposure to lots of nodes in a particular
subtree, a least-recently-used replacement policy is applied. However, Kademlia makes use
of statistics taken from existing peer-to-peer measurements studies which indicate that a
node which stayed for a longer time in the past will probably stay connected longer in the
future. Therefore, Kademlia can discard the knowledge of new nodes if it knew many other
stable nodes in a given subtree.

Maintenance of the routing tables after joins and leaves depends on a technique that is
different from the stabilization in Chord or the deterministic update of Pastry. Kademlia
maintains the routing tables by using the lookup traffic. The XOR metric results in every
node receiving queries from the nodes contained in its routing table (Which is not the case
in a system like Chord). Consequently, the reception of any message from a certain node in
a certain subtree is essentially an update of the k-bucket for that subtree. This approach
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clearly minimizes the maintenance cost. However, it is not deeply analyzed.

Another maintenance task is that upon receiving multiple queries from the same subtree,
Kademlia updates the latencies of the nodes in a particular k-bucket. This improves the
choice of the nodes used for doing lookups and one could say that by doing that, Kademlia
also takes into consideration network delay and locality.

Replication and Fault Tolerance. Since leaves are not deeply discussed, we assume
that they are treated as failures. Kademlia fault tolerance depends mainly on the strong
connectivity since it keeps k contacts per subtrees and not only one and this makes the
probability of a disconnected graph low.

Also as mentioned above, Kademlia stores k copies of an item on the k closest nodes to
its id. The nodes are also republished periodically. The policy for republishing is that any
node that sees itself closer to an item id than all the nodes it knows about, gives it to k − 1
other nodes.

Applications and Implementation. Kademlia is probably the one DHT that got a
relatively wider non-academic adoption by being used in two file-sharing applications, namely
Overnet [32] and Emule [11].

1.4.5 HyperCup

While it has been mentioned many times in the literature that systems like Chord and
Pastry, for instance, are approximations of Hypercubes, those works were not presented that
way by their authors. HyperCup [41] is a system that presents a way to construct and
maintain Hypercubes in a dynamic setting. The performance of HyperCup is similar to the
many other DHTs with logarithmic order for both the routing table size and the lookup
path length under particular uniformity assumptions. HyperCup also defines a broadcast
algorithm based on the concept of a spanning tree of all nodes. A distinguished feature
of HyperCup is that it addresses semantic search based on ontological terms. Nodes with
similar ontologies are clustered together such that a search by a certain ontological term is
achieved as a localized broadcast within a cluster.

1.4.6 DKS

The Overlay Graph. DKS [2] could be perceived as an optimal generalization of Chord
to provide shorter diameter with larger routing tables. In the mean time, DKS could be
perceived as a meta-system from which other systems could be instantiated. DKS stands
for Distributed k-ary Search and it was designed after perceiving that many DHT systems
are instances of a form of k-ary search. Figure 1.4 shows the division of the space done in
DKS. You can see that it has in common with Chord that each node perceives itself as the
start of the space. In the mean time, like Pastry each interval is divided into k rather than
2 intervals.

Mapping Items Onto Nodes. Along with the goal of DKS to act as a meta-system,
mapping items onto nodes is also left as a design choice. A Chord like mapping is a valid as
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Figure 1.4: Illustration of how a DKS node divides the space in an identifier
space of size N = 28 = 256.

a simple first choice. However, different mappings are possible as well.

The Lookup Process. A query arriving at a node is forwarded to the first node in the
interval to which the id of the node belongs. Therefore, a lookup is resolved in logk(N) hops.

Joins, Leaves and Maintenance. Unlike Chord, DKS avoids any kind of periodic sta-
bilization both for the maintenance of the successors, the predecessor and the routing table.
Instead, it relies on three principles, local atomic actions, correction-on-use and correction-
on-change. When a node joins, a form of an atomic distributed transaction is performed to
insert it on the ring. Routing tables are then maintained using the correction-on-use tech-
nique, an approach introduced in DKS. Every lookup message contains information about
the position of the receiver in the routing table of the sender. Upon receiving that informa-
tion, the receiver can judge whether the sender has an updated routing table. If correct, the
receiver continues the lookup, otherwise the receiver notifies the sender of the corruption of
his routing table and advises him about a better candidate for the lookup according to the
receiver’s knowledge. The sender then contacts the candidate and the process is repeated
until the correct node for the routing table of the sender is used for the lookup.

By applying the correction-on-use technique, a routing table entry is not corrected until
there is a need to use it in some lookup. This approach reduces the maintenance cost
significantly. However, the number of joins and leaves are assumed to be reasonably less
than the number of lookup messages. In cases where this assumption does not hold, DKS
combines it with the correction-on-change technique [4]. Correction-on-change notifies all
nodes that need to be updated upon the occurrence of a join, leave or failure.

Replication and Fault Tolerance. In early versions of DKS, fault tolerance was han-
dled similar to Chord where replicas of an item are placed on the successor pointers. In
later developments [16], DKS tries to address replication more on the DHT level rather than
delegating most of the work to the application layer. Additionally, to avoid congestion in a
particular segment of the ring, replicas are placed in dispersed well-chosen positions and not
on the successor list. In general, for the correction-on-use technique to work, an invariant is
maintained where the predecessor pointer has always to be correct and that is provided by
the atomic actions on the circle.

Upper Services and Applications. General purpose broadcast [15] and multicast [3]
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(a) (b)

Figure 1.5: (a) The pointers of all the nodes in a complete Koorde network
where N = 8. Every node n points to nodes of ids 2n and 2n + 1. (b) Examples
of how nodes 1, 3 and 4 reach other nodes by matching the destination id digit
by digit starting from the most significant bit.

algorithms were developed for DKS.

1.4.7 P-Grid

P-Grid [1] is a system based on randomized algorithms assuming that there will be random
interactions between nodes of the overlay. In the mean time, P-Grid ensures that those peers
are arranged in a graph most similar to the overlay graph of Pastry. A unique assumption
of P-Grid is that nodes do not have constant ids, instead, ids change over time in order for
the identifier space to be partitioned fairly among them. The property is not only used for
decreasing the lookup path length but also for balancing items among nodes. A file-sharing
application with the same name is implemented in Java and available at [33]

1.4.8 Koorde

The Overlay Graph. Koorde [21] is based on the DeBruijn graph [27]. Koorde stresses the
point that a constant number of outgoing edges per node is enough for having a logarithmic
lookup length. The DeBruijn graph is an example capable of doing that. The significance
of a constant number of edges is that the maintenance overhead is lower compared to a
logarithmic number as is the case in all the previous DHTs we have shown so far. In figure
1.5(a) we show the pointers of all the nodes of a Koorde graph of eight nodes. A node with
id n has edges to nodes 2n and 2n + 1 in a circular identifier space like Chord. We denote
the first and the second edge of node n En ◦ 0 and En ◦ 1 respectively.

Mapping Items Onto Nodes. Exactly like Chord.
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The Lookup Process. When a node n needs to lookup an id x represented as a string of
binary digits d1d2...dlog2(N), it takes the top bit d1, if it is a 0, it forwards the query to En ◦ 0
otherwise to En ◦ 1. The second node looks at the remaining string d2...dlog2(N) and acts
similarly. After, at most, log2(N) hops a query is resolved. Figure 1.5(b) shows what paths
nodes 1, 3 and 4 take to reach any node in the network. The Koorde paper also elaborates
on an algorithm to handle networks where not all the nodes are present in the id space. Each
node tries to locally traverse imaginary hops for nodes that do not exist.

Joins, Leaves and Maintenance. Exactly like Chord. In fact, the authors say that
Koorde could be perceived as a Chord system with a constant instead of a logarithmic
number of fingers. Stabilization is also the basic mechanism for maintenance.

Replication and Fault Tolerance. For fault tolerance to be realized, an out-degree
less than log(N) nodes has to be maintained, otherwise a node will loose all its contacts
very easily. This makes the advantage of a constant node state invalid. However, since
with k edges, Koorde provides logk(N) diameter. Then with logk(N) edges, it provides

loglogk(N)(N) = log(N)
log(log(N))

diameter, which is an advantage over the logarithmic class of

DHTs.

Load Balancing. The load balancing of items onto nodes will depend on the uniform
distribution exactly like Chord. However, another load-balancing issue arises which is the
load of message passing on each node. In a DeBruijn graph, some nodes will have more
traffic than others by a factor of O(log(N)) of the average traffic load. For example, in the
network illustrated in figure 1.5, if every node would send a message to every other node in
the network, not all the nodes will endure the same number of messages; 12 messages will
be routed via a node like 7 while 21 messages will be routed via a node like 3.

1.4.9 Distance Halving

The Overlay Graph. The Distance Halving (DH3) [30] distributed hash table is another
system based on the DeBruijn graph like Koorde. However, the way of building the graph is
somewhat different. The DH is based on an approach called the continuous-discrete approach
for building graphs. To build a DeBruijn graph with this approach, the identifier space is
normalized into a continuous space represented by the interval [0, 1[. Nodes are points in
that interval. Each node y has two edges, a left edge and a right edge denoted ℓ(y) and
r(y) respectively where ℓ(y) = y

2
and r(y) = y

2
+ 1

2
. Given the set of points and their edges,

a discretization step is done to build the graph. The set of points are denoted by
→

x. The
points of

→

x divide the space into n segments. The segment of a point xi, S(xi) = [xi, xi+1),
(i = 1...n − 1) and S(xn) = [xn−1, 1) ∪ [0, x1). If a node y has an edge that belongs to the
segment of some node z, then there is an edge in the discrete graph between y and z. One
can also notice that the segments are defined in a way that realizes a circular identifier space.

The intuition behind that graph is that every node divides the space into two intervals
and keeps a pointer to a node that is in the middle of the left interval and a pointer in
the middle of the right interval. Figure 1.6(a) shows the pointers of all the nodes in a DH
network of size N = 8. Figure 1.6(b) shows the paths to all possible destinations starting
from node 1.

3Please do not confuse this abbreviation with the abbreviation of a Distributed Hash Table (DHT).
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(a) (b)

Figure 1.6: (a) The pointers of all the nodes in a complete Distance-Halving
network where N = 8. (b) Examples of how nodes 1 reaches other nodes by
matching the destination id digit by digit starting from the least significant bit.

Mapping Items Onto Nodes. Exactly like Chord, Koorde. In DH terminology, an
item is stored at node y where the id of the item belongs to S(y).

The Lookup Process. The lookup process, similar to many other DHTs, is done by the
prefix matching of the sought id digit by digit. The lookup is forwarded to the node pointed
to by the left edge for matching a 0 digit and to the right edge for matching a 1 digit. The
lookup path length is thus O(log2(N)).

Joins, Leaves and Maintenance. A new node n joins a DH network by looking up
the node s such that n belongs to S(s) . n then uses s to lookup its left and right edges. By
the construction of DH, a node can easily know the nodes that are pointing to it. Therefore
a node can easily compute the nodes that needs to be updated and notifies them of n’s
existence. Updating of others upon a leave is done in the same way. The transfer of the
items upon a join or a leave is also similar to Chord.

Replication and Fault Tolerance. DH recognizes the problem of failures that can
lead to a disconnected graph and advocates an additional state of O(log(N)) pointers. That
comes in agreement with Koorde’s reasoning and emphasizes that the main advantage of
having a constant degree graph will be compromised if fault tolerance is to be considered.
However, with a logarithmic degree, those types of graphs can offer a diameter of log(N)

log(log(N))
.

Other Comments. The formal analysis of the DH graph and the continuous discrete
approach are both useful tools that help gaining more understanding of the properties of a
DHT system. The discussion of the smoothness of the graph which is a term used by the
authors to quantify the uniformity of distribution of the ids is quite unique. It was noted in
other DHT systems that uniform distribution could affect the performance but in DH, an
analysis of the magnitude of that effect is provided.
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(a) (b)

Figure 1.7: The Butterfly edges of a complete Viceroy network with N = 16
nodes. (a) The down edges. (b) The up edges.

1.4.10 Viceroy

The Overlay Graph. Viceroy [24] is based on the Butterfly [26] network. Like many other
systems, it organizes nodes into a circular identifier space and each node has successor and
predecessor pointers. Moreover, nodes are arranged in log2(N) levels numbered from 1 to
log2(N). Each node apart from nodes at level 1 have an “up” pointer and every node apart
from the nodes at the last level have 2 “down” pointers. There is one short and one long
“down” pointers. Those three pointers are called the Butterfly pointers. All nodes also have
pointers to successors and predecessors pointers on the same level. In that way, each node
has a total of 7 outgoing pointers.

Figure 1.7(a) shows the down pointers of a network of N = 16 nodes where all nodes
are present. Figure 1.7(b) shows the up pointers of all nodes. For simplicity, the successor
pointers of the ring and the levels are not illustrated4.

Mapping Items Onto Nodes. Exactly like Chord.

The Lookup Process. To lookup an item x, a node n follows its up pointer until it
reaches level 1. From there, it starts going down using the down links. In each hop, it should
traverse a pointer that does not exceed the target x. For example, if node 1 is looking up
the id 10, first it will follow its up pointer and reach 4 which is at level 1. At node 4 there
are two choices either to use the short pointer to 5 or the long pointer to 13, since 5 precedes
the target 10, the pointer to 5 is followed. At node 5, there is a direct pointer to 10. In

another example, for reaching id 15 from node 3, the path will be 3
up
→ 6

up
→ 9

up
→ 12

down
→ 13

down
→ 14

down
→ 15. From the last example, we can see that in a worst case, we can traverse all

the levels up and down, i.e. 2 × log(N) hops. Needless, to say that the example includes a
simplified network where all the nodes are present. When the graph is sparse, the reasoning
is slightly more complicated, however the expected lookup path length is still O(log(N)).

Joins, Leaves and Maintenance. To join, a node looks up its successor s, fixes the
ring pointers and takes the required items from s. After that, it selects a level based on
the estimation of the number of nodes. It finds, by a combination of lookups and stepping

4In fact, some of them coincide with the Butterfly pointers.
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on the ring, the rest of the pointers (successor and predecessor at the selected level, up and
down pointers).

To leave, a node disconnects all its pointers, the concerned nodes consequently are aware
and lookup for replacements. Additionally, the stored items are transferred to the successor.

Replication and Fault Tolerance. Viceroy does not deeply discuss ungraceful failures
nor replication but refers to Lynch et al.’s paper [23] for a general approach in handling
failures in DHTs.

Implementation. There exists a Java implementation of Viceroy at [45]. This homepage
includes also a visualization applet that can illustrate the main topology, lookups, joins and
leaves in Viceroy.

Other Comments. While the intuitive analysis might lead to thinking that nodes at
higher levels endure more lookup traffic, Viceroy’s analysis shows that the congestion is not
that bad, however such a proof is beyond the scope of that chapter.

1.4.11 Ulysses

Ulysses is another system based on the Butterfly graph. It achieves the known limits of
routing table and lookup path length, O(log(N)) and log(N)

log(log(N))
while accounting for joins,

leaves and failures. In that sense, it agrees with the conclusions of Koorde, Distance-Halving
and Viceroy and shows a second way of building a Butterfly network. Ulysses also depends
on periodic stabilization for maintenance of the graph. Like Distance-Halving, it discusses
the elimination of congestion. Ulysses also has an interesting discussion on the optimization
of the average lookup path length.

1.4.12 CAN

The Overlay Graph. CAN [36] is in a class of its own. The design of the graph is based on
a d-dimensional coordinate space. Like all other systems, the nodes and items are mapped
onto a virtual space using a uniform hashing function, but the hashing is applied d times
to get the d coordinates. For instance, in a 2-dimensional discrete coordinate space, an IP
address or key of a file would be hashed once to obtain an x value and another time to
obtain a y value. The coordinate space is dynamically partitioned among all the nodes in
the system such that every node“owns” its distinct zone within the overall space. Figure 1.8
shows a discrete coordinate space of 16 × 16 partitioned among 5 nodes.

Mapping Items Onto Nodes. An item with key k is stored at the node that owns the
zone onto which k is mapped. Two nodes are neighbors, i.e. have pointers to each other if
their zones have common sides.

The Lookup Process. A lookup is achieved by using the straight line path through the
Cartesian space from source to destination.
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Figure 1.8: The process of 5 nodes joining a CAN network.

Joins, Leaves and Maintenance. A new node w joins by selecting a random point
P , it sends to its initial contact in the network u a JOIN message containing P . Node u
consequently routes the message to the node v that owns the zone in which P lies. The zone
of v is then split between v and w. Zones are split along the x axis first then along the y
axis. Upon a split, the new node learns its neighbors from the previous owner. Neighbors
of a new node are neighbors of the previous owner plus the previous owner itself. The new
node informs its neighbors of the change. The cost of join in that way is O(d). Finally, items
that belong to the new node are obtained from the previous owner.

The leave process is the reverse, a node informs its neighbors of its leaving and merges
its zone with a neighbor to produce a valid zone. If no valid zone could be formed, the items
are transferred to a neighbor owning the smallest zone.

Under normal conditions, a node sends periodic updates to each of its neighbors given
them its zone coordinates. Additionally, there is a background zone-balancing process that
tries to reconfigure zones after a series of joins and leaves.

Replication and Fault Tolerance. There are two ways of detecting failures in CAN,
the first if a node tries to communicate with a neighbor and fails, it takes over that neighbor’s
zone. The second way of detecting a failure is by not receiving the periodic update message
after a long time. In the second case, the failure would probably be detected by all the
neighbors, and all of them would try to take over the zone of the failed node, to resolve this,
all nodes send to all other neighbors the size of their zone, and the node with the smallest
zone takes over.

Replication in CAN is achieved in two ways. The first way is to use α hashing functions
to map an item to α points. When retrieving an item, α queries are sent and α responses
are received. The second way is to create multiple instances of the coordinate space. Each
instance is called a “reality”. If a node storing an item is dead in one reality, the item can
be retrieved from one of the other realities because the item would be stored at other nodes
in the other realities.
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Figure 1.9: A classification of DHT systems based on the size of the node state
and underlying graph.

Category Node State Lookup Path Length
Logarithmic sate O(log(N)) O(log(N))
DeBruijn & Butterfly (per se) O(k) O(log(N))

DeBruijn & Butterfly (k = O(log(N))) O(log(N)) O(log(N))
O(log(log(N)))

CAN (per se) O(k) O(kN1/k))
CAN (k = O(log(N))) O(log(N)) O(log(N)N1/ log(N))) = O(log(N))a

aSince N1/ log(N) is a constant factor.

Table 1.1: Summary of Node State and Lookup Path Length for the different
categories of systems.

Latency. Every node in CAN keeps round-trip-time (RTT) of its neighbors. When
selecting a path for a lookup, a CAN node forwards to the neighbor with maximum ratio of
progress to RTT. CAN also has a mechanism for nodes to choose their points so as to make
points near in the IP network also near in the Cartesian space, the technique uses root DNS
servers as landmarks from which a node can approximate to which other nodes it is near in
the IP network.

Upper Services. A multicast protocol is available for CAN [37]. Some work has also
been done on richer queries such as range queries in [5].

1.5 Summary

1.5.1 The Overlay Graph

We summarize the different overlay graphs by providing a classification based on the size of
the node state as shown in figure 1.9. The first category is for systems that keep a logarithmic
number of routing entries. Most DHT systems are in that category. A common property
in that category is the logarithmic order lookup path length. The second category includes
systems that use a constant number of routing entries. CAN is in a class of its own as it
provides a polynomial order lookup path length. Other systems in the same category include
the DeBruijn-based and the Butterfly-based DHTs and such systems offer a logarithmic path
length. Naturally, one can instead set the constant of the constant-state systems to a value
logarithmic in the number of nodes and get a shorter lookup length. Table 1.1 summarizes
those performance trade-offs.



18 CHAPTER 1. AN OVERVIEW OF STRUCTURED P2P OVERLAY NETWORKS

1.5.2 Mapping Items Onto Nodes

Four ways of assigning items to ids are identified and summarized in table 1.2.

Assignment policy Example Systems
Item assigned to successor on the ring Chord, DKS, Koorde, Viceroy,

DH, Ulysses
Item assigned to numerically closet node Pastry, Tapestry
Item assigned to XOR closest node Kademlia
Item assigned to zone owner CAN

Table 1.2: The different policies for mapping items onto nodes.

In all those scenarios, the fair (load-balanced) assignment of items onto nodes relies on the
uniform distribution of the hashing function. This is apart from P-Grid, where the network
is in constant trial to load balance the items between nodes irrespective of the distribution
of identifiers.

1.5.3 The Lookup Process

The lookup process is a direct result of the node state. Increasing more node decreases the
lookup path length but increases the maintenance cost.

In some systems like Pastry, Tapestry, Kademlia and CAN, overlay hops are not the sole
optimized metric, additionally network latency is addressed.

Congestion is a tricky issue related to the lookup process. Not only the lookup path
length should be optimized, but it should not be the case that some nodes endure more
traffic than others which is the case in the DeBruijn and Butterfly graphs. However, authors
of systems that suffer from congestion try to adapt those graphs to eliminate congestion.

1.5.4 Joins, Leaves and Maintenance

Joins and leaves jeopardize the desired properties of any good graph, different systems have
adopted different techniques to bring back the overlay graph to its ideal state. Table 1.3
enumerates those techniques.

Maintenance policy Example Systems
Stabilization Chord, Koorde, Viceroy, CAN
Use of Traffic Kademlia
Determinism+ Stabilization Pastry, Tapestry
Correction on-use + Correction on-change DKS
Lazy+Randomized P-Grid

Table 1.3: The different policies overlay graph maintenance policies.
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Stabilization is the most common technique where routing table entries are periodically
looked up and corrected. The use of traffic is adopted in Kademlia where the graph structure
makes a node receive lookups from the same nodes it is pointing to. Pastry also depends on
the structure of the graph where a new node can inform all the other nodes that need to be
informed about it. Periodic activity is still needed though for collecting latency information.
The correction-on-use introduced in DKS, relies on the presence of traffic as well but a
receiving node can correct a sending node and no periodic activity is used. Where not
sufficient alone, correction-on-use is complemented with a more deterministic technique,
namely, correction-on-change. P-Grid has a unique correction mechanism, where the random
interaction between peers can lead to the change of their ids in a way that causes eventual
optimality of the graph.

1.5.5 Replication and Fault Tolerance

Replication is an essential tool for recovering items stored at failed nodes. Choice of nodes
for replication is tightly coupled with the policy for mapping items to nodes. Local vicinity
is mostly chosen, for example, the successors on the circle or the k numerically closest nodes.

Fault tolerance is one of the most challenging and open areas in structured overlay net-
works. Some systems can cope with the failure of a small number of nodes at a time.
However, dealing with a large number of simultaneous failures is harder. A constant- state
routing table is an advantage that has to be given up if a large number of simultaneous
failures is to be tolerated. Nodes will have to keep their node state to at least logarithmic
order to be able to cope with N/2 randomly-distributed nodes failing simultaneously or the
failure of O(log(n)) adjacent node ids simultaneously.

1.6 Open Problems and Other Issues

Some of the open issues related to the aspects we discussed in that chapter include the
following: Reducing maintenance cost. While we have seen different techniques for dealing
with the maintenance of the overlay structure, any optimization in that aspect is important
for the overall performance of a DHT. State-performance trade-off. The trade-off between
node-state and lookup path length is fundamental. The current known limit is that a con-
stant node state can provide logarithmic path length but if fault-tolerance is to be addressed,
more state is required. It is still an open question whether a constant state suffices for a
fault-tolerant system while preserving the logarithmic path length and without introducing
congestion. Performance of existing DHTs. At the time of writing of this chapter, while
many systems have been introduced, less work has been dedicated to measuring their per-
formance in different aspects and for different applications. Heterogeneity. Many of the
desirable DHT properties depend on some kind of uniform distribution. In practice, aspects
like connection time or bandwidth are evidently uniformly distributed for a given set of
peers. Therefore, supporting heterogeneity is another open issue from a practical point of
view. Search and indexing. All DHTs have the simple “put-get” interface. Consequently, the
knowledge of the key of the sought item is assumed. However, an efficient listing of all items
that have some common property is rather challenging in a DHT. Grid computing. Since
both Grid computing and P2P computing are both forms of resource sharing, it is a current
hot topic to investigate how results of both areas can be mutually beneficial. Other unrelated
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active and challenging research topics include: Security, trust, anonymity, denial-of-service
attacks, malicious node behavior, reputation and incentives.
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