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Abstract 
 

This chapter provides a survey of major searching techniques in peer-to-peer (P2P) networks. We 
first introduce the concept of P2P networks and the methods for classifying different P2P 
networks. Next, we discuss various searching techniques in unstructured P2P systems, strictly 
structured P2P systems, and loosely structured P2P systems. The strengths and weaknesses of 
these techniques are highlighted. Searching in unstructured P2Ps covers both blind search 
schemes and informed search schemes. Blind searches include iterative deepening, k-walker 
random walk, modified random BFS, and two-level k-walker random walk. Informed searches 
include local indices, directed BFS, intelligent search, routing indices, attenuated bloom filter, 
adaptive probabilistic search, and dominating set based search. The discussion of searching in 
strictly structured P2Ps focuses on hierarchical Distributed Hash Table (DHT) P2Ps and non-
DHT P2Ps. Searching in non-hierarchical DHT P2Ps is briefly overviewed. The presentation of 
the hierarchical DHT P2Ps pays more attention to Kelips and Coral, whereas that of searching in 
non-DHT P2Ps focuses on SkipNet and TerraDir. The description of searching in loosely 
structured P2Ps focuses on Freenet. We conclude this chapter by summarizing open problems in 
searching the P2P networks. 
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1. Introduction 
 

There has been a growing interest in peer-to-peer networks since the initial success of some very 
popular file-sharing applications such as Napster and Gnutella  [15]. A peer-to-peer (P2P) network 
is a distributed system in which peers employ distributed resources to perform a critical function 
in a decentralized fashion. Nodes in a P2P network normally play equal roles, therefore, these 
nodes are also called peers. A typical P2P network often includes computers in unrelated 
administrative domains. These P2P participants join or leave the P2P system frequently, hence, 
P2P networks are dynamic in nature. P2P networks are overlay networks, where nodes are end 
systems in  the Internet and maintain information about a set of other nodes (called neighbors) in 
the P2P layer. These nodes form a virtual overlay network on top of the Internet. Each link in a 
P2P overlay corresponds to a sequence of physical links in the underlying network. Examples of 
P2P applications are distributed file -sharing systems, event notification services, and chat 
services [1] [3] [4] [5].  
 
P2P networks offer the following benefits [1] [3]:  

o They do not require any special administration or financial arrangements. 
o They are self-organized and adaptive. Peers may come and go freely. P2P systems handle 

these events automatically. 
o They can gather and harness the tremendous computation and storage resources on 

computers across the Internet. 
o They are distributed and decentralized. Therefore, they are potentially fault-tolerant and 

load-balanced. 
 
P2P networks can be classified based on the control over data location and network topology. 
There are three categorie s: unstructured, loosely structured, and highly structured [7]. In an 
unstructured P2P network such as Gnutella  [15], no rule exists which defines where data is stored 
and the network topology is arbitrary. In a loosely structured network such as Freenet [34] and 
Symphony [31] , the overlay structure and the data location are not precisely determined. In 
Freenet, both the overlay topology and the data location are determined based on hints. The 
network topology eventually evolves into some intended structure. In Symphony, the overlay 
topology is determined probabilistically but the data location is defined precisely. In a highly 
structured P2P network such as Chord [16], both the network architecture and the data placement 
are precisely specified. The neighbors of a node are well-defined. The data is stored in a well-
defined location. 
 
P2P networks can also be classified into centralized and decentralized [7] [11] [12]. In a 
centralized P2P such as Napster [53], a central directory of object location, ID assignment, etc. is 
maintained in a single location. Peers find the locations of desired files by querying the central 
directory server. Such P2Ps do not scale well and the central directory server causes single point 
of failure. Decentralized P2Ps adopt a distributed directory structure. These systems can be 
further divided into purely decentralized and hybrid [11] [12]. The difference between them lies 
in the role  peers play. In purely decentralized systems such as Gnutella and Chord, peers are 
totally equal. In hybrid systems, some peers called dominating nodes [2] or superpeers [25] serve 
the search request of other regular peers. Peers in a P2P system are often heterogeneous in 
computation power, stability, and connectivity. Purely decentralized systems can not take 
advantage of this heterogeneity while hybrid systems can. However, dominating nodes and 
superpeers have to be carefully selected to avoid single points of failure and service bottlenecks. 
 
P2P systems can also be classified into hierarchical and non-hierarchical based on whether the 
overlay structure is a hierarchy or not. Most purely decentralized systems have flat overlays and 
are non-hierarchical systems. All hybrid systems and few purely decentralized systems such as 
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Kelips [23] , are hierarchical systems. Non-hierarchical systems offer load-balance and high-
resilience. Hierarchical systems provide good scalability, opportunity to take advantage of node 
heterogeneity, and high routing efficiency.  
 
There are many research issues in P2P computing. This chapter focuses on searching techniques 
in P2P networks. Searching means locating desired data. Most existing P2P systems support the 
simple object lookup by key or identifier. Some existing P2P systems can handle more complex 
keyword queries, which find documents containing keywords in queries. More than one copy of 
an object may exist in a P2P system. There may be more than one document that contains desired 
keywords. Some P2P systems are interested in a single  data item; others are interested in a ll data 
items or as many data items as possible that satisfy a given condition. Most searching techniques 
are forwarding-based. Starting with the requesting node, a query is forwarded (or routed) node to 
node until the node which has the desired data (or a pointer to the desired data) is reached. To 
forward query messages, each node must keep information about some other nodes called 
neighbors. The information of these neighbors constitutes the routing table  of a node. 
 
The desired features of searching algorithms in P2P systems include high-quality query results, 
minimal routing state maintained per node, high routing efficiency, load balance, resilience to 
node failures, and support of complex queries. The quality of query results is application 
dependent. Generally, it is measured by the number of results and relevance. The routing state 
refers to the number of neighbors each node maintains. The routing efficiency is generally 
measured by the number of overlay hops per query. In some systems, it is also evaluated using 
the number of messages per query. Different searching techniques make different trade-offs 
between these desired characteristics. 
 
Searching in highly structured systems follows the well-defined neighboring links. For this 
reason, highly structured P2P systems provide guarantees on finding existing data and bounded 
data lookup efficiency in terms of the number of overlay hops; however, the strict network 
structure imposes high overhead for handling frequent node join-leave. Unstructured P2P systems 
are extremely resilient to node join-leave, because no special network structure needs to be 
maintained. Searching in unstructured networks is often based on flooding or its variation because 
there is no control over data storage. The searching strategies in unstructured P2P systems are 
either blind search or informed search. In a blind search such as iterative deepening [6], no node 
has information about the location of the desired data. In an informed search such as routing 
indices [8], each node keeps some metadata about the data location. To restrict the total 
bandwidth consumption, data queries in unstructured P2P systems may be terminated prematurely 
before the desired existing data is found; therefore, the query may not return the desired data even 
if the data actually exists in the system. An unstructured P2P network can not offer bounded 
routing efficiency due to lack of structure. Searching in a loosely structured system depends on 
the overlay structure and how the data is stored. In Freenet, searching is directed by the hints used 
for the overlay construction and the data storage. In Symphony, the data location is precisely 
defined but the overlay structure is probabilistically formed. Searching in Symphony is guided by 
reducing the numerical distance from the querying source to the destination node where the 
desired data is located. The loosely structured systems can offer a balanced trade-off if they are 
properly designed. 
 
This chapter provides a survey of state-of-the-art searching schemes in different types of P2P 
systems. The survey focuses on searching schemes in unstructured P2Ps. The chapter is organized 
as follows. In section 2, searching in various unstructured systems will be explored. In section 3, 
searching in strictly structured systems will be investigated. The discussion in this section focuses 
on hierarchical DHT P2Ps and non-DHT P2Ps. Non-hierarchical DHT P2Ps are briefly 
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overviewed since a survey of searching in such systems has been done in [1]. Searching in 
loosely structured systems will be examined in section 4. A summary will be given in section 5. 
 
2. Searching in unstructured P2Ps 
 
In an unstructured P2P system, no rule exists that strictly defines where data is stored and which 
nodes are neighbors of each other. To find a specific data item, early work such as the original 
Gnutella  [15] used flooding, which is the Breadth First Search (BFS) of the overlay network 
graph with depth limit D. D refers to the system-wide maximum TTL of a message in terms of 
overlay hops. In this approach, the querying node sends the query request to all its neighbors. 
Each neighbor processes the query and returns the result if the data is found. This neighbor then 
forwards the query request further to all its neighbors except the querying node. This procedure 
continues until the depth limit D is reached. Flooding tries to find the maximum number of results 
within the ring that is centered at the querying node and has the radius: D-overlay-hops. 
However, it generates a large number of messages (many of them are duplicate messages) and 
does not scale well.  
 
Many alternative schemes have been proposed to address the problems of the original flooding. 
These works include iterative deepening [6] , k-walker random walk  [7], modified random BFS 
[10], two-level k-walker random walk [52], directed BFS [6], intelligent search [10], local indices 
based search [6], routing indices based search [8], attenuated bloom filter based search [9], 
adaptive probabilistic search [11], and dominating set based search [2]. They can be classified as 
BFS based or Depth First Search (DFS) based. The routing indices based search and the 
attenuated bloom filter based search are variations of DFS. All the others are variations of BFS. 
In the iterative deepening and local indices, a query is forwarded to all neighbors of a forwarding 
node. In all other schemes, a query is forwarded to a subset of neighbors of a forwarding node.  
 
The searching schemes in unstructured P2P systems can also be classified as deterministic or 
probabilistic. In a deterministic approach, the query forwarding is deterministic. In a probabilistic 
approach, the query forwarding is probabilistic , random, or is based on ranking. The iterative 
deepening, local indices based search, and the attenuated bloom filter based search are 
deterministic. The others are probabilistic. 
 
Another way to categorize searching schemes in unstructured P2P systems is regular-grained or 
coarse-grained. In a regular-grained approach, all nodes participate in query forwarding. In a 
coarse-grained scheme, the query forwarding is performed by only a subset of nodes in the entire 
network. Dominating set based search is coarse-grained because the query forwarding is 
performed only by the dominating nodes in the CDS (Connected Dominating Set). All the others 
are regular-grained. 
 
Another taxonomy is blind search or informed search [11] [12]. In a blind search, nodes do not 
keep information about data location. In an informed search, nodes store some metadata that 
facilitates the search. Blind searches include iterative deepening, k-walker random walk, modified 
random BFS, and two-level k-walker random walk. All the others are informed search. 
 
2.1 Iterative deepening 
 
In [6], Yang and Garcia -Molina borrowed the idea of iterative deepening from artificial 
intelligence and used it in P2P searching. This method is also called expanding ring. In this 
technique, the querying node periodically issues a sequence of BFS searches with increasing 
depth limits D1 < D2 < … < Di. The query is terminated when the query result is satisfied or when 
the maximum depth limit D has been reached. In the latter case, the query result may not be 
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satisfied. All nodes use the same sequence of depth limits called policy P and the same time 
period W between two consecutive BFS searches.  
 
For example, assume that P = {3, 5, 8}, W = 6 seconds. The query node S first sends a BFS 
search with depth limit 3 to all its neighbors via a query message. This BFS search message will 
reach all nodes within 3-hops distance from S. These nodes will process this BFS message and 
store (freeze) that message for a time period (> W) when they receive it. If any desired data is 
located on these nodes, the data will be sent back to S. If the query is satisfied within W ( = 6) 
seconds following the first BFS search, S will terminate the query and will not continue. 
Otherwise, S will initiate the second BFS search with depth limit 5 via a resend message. The 
resend message carries the same query ID as in the corresponding query message. Any node 
within 2-hops distance from S will simply forward the resend message to all its neighbors after 
receiving it. The nodes at 3-hops distance from S will drop the resend message and then unfreeze 
the stored query message with the matching query ID. “Unfreeze” means forwarding the 
respective stored query message with a new depth limit 2 ( 35 ?? ) to all its neighbors. This 
unfrozen query message will be processed similarly to the query message in the first BFS search. 
If the resend message with maximum depth limit 8 is sent by the querying node, nodes within 8-
hops distance from S will not store (freeze) this query message. The querying node will not issue 
another resend message with a larger depth limit. 
 
Iterative deepening is tailored to applications where the initial number of data items returned by a 
query is important. However, it does not intend to reduce duplicate messages and the query 
processing is slow. 
 
2.2 k-walker random walk and related schemes 
 
In the standard random walk  algorithm, the querying node forwards the query message to one 
randomly selected neighbor. This neighbor randomly chooses one of its neighbors and forwards 
the query message to that neighbor. This procedure continues until the data is found. Consider the 
query message as a walker. The query message is forwarded in the network the same way a 
walker randomly walks on the network of streets. The standard random walk algorithm uses just 
one walker. This can greatly reduce the message overhead but causes longer searching delay. 
 
In the k-walker random walk algorithm [7], k  walkers are deployed by the querying node. That is, 
the querying node forwards k copies of the query message to k  randomly selected neighbors. Each 
query message takes its own random walk. Each walker periodically “talks” with the querying 
node to decide whether that walker should terminate. Nodes can also use soft states to forward 
different walkers for the same query to different neighbors. k-walker random walk algorithm 
attempts to reduce the routing delay. On average, the total number of nodes reached by k  random 
walkers in H hops is the same as the number of nodes reached by one walker in kH hops. 
Therefore, the routing delay is expected to be k times smaller. 
 
A similar scheme is the two-level random walk  [52]. In this scheme, the querying node deploys 

1k  random walkers with the TTL being 1l . When the TTL 1l  expires, each walker forges 2k  
random walkers with the TTL being 2l . All nodes on the walkers’ paths process the query. Given 
the same number of walkers, this scheme generates less duplicate messages but has longer 
searching delays than the k-walker random walk.  
 
Another similar approach, called the modified random BFS, was proposed in [10]. The querying 
node forwards the query to a randomly selected subset of its neighbors. On receiving a query 
message, each neighbor forwards the query to a randomly selected subset of its neighbors 
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(excluding the querying node). This procedure continues until the query stop condition is 
satisfied. No comparison to the k-walker random walk was given in [10]. It is expected that this 
approach visits more nodes and has a higher query success rate than the k-walker random walk.  
 
The works in [7] [41] also address the data replication issue in unstructured P2P systems. The 
question studied is: assuming the fixed amount of total storage space in the P2P system, what is 
the optimal number of copies for each object in terms of the average search overhead per 
successful query? Three replication strategies were analyzed: uniform, proportional, and square-
root replication. In the uniform replication, the same number of copies is created for each object 
regardless of the query distribution. In the proportional replication, the number of copies for each 
object is proportional to its query distribution. The higher the query rate of an object , the higher 
is the number of copies for that object. In the square-root replication, the number of copies per 
object is proportional to the square-root of the query rate. The performance measures are the 
average search size (i.e. the average number of nodes probed) and the utilization rate of a copy 
(i.e. the rate of queries that a copy serves). The search size reflects the query efficiency. The 
utilization rate indicates the load balance. The k-walker random walk is used as the searching 
scheme in the evaluation.  
 
The analysis and simulation results show that uniform replication and proportional replication 
achieve the same average search size and this search size is larger than that of the square-root 
replication. As for the utilization rate, the proportional replication has the same rate for all 
objects; the uniform replication has the rate proportional to the query rate and the square-root 
replication has a varying utilization rate per object. However, the square-root replication has 
much smaller variances than uniform and proportional replication in the two performance 
measures. In summary, the square-root replication has the best query efficiency and the 
proportional replication achieves the best load balance. In practice, the square-root replication is 
implemented by replicating copies proportional to the number of sites probed.  
 
The work in [7] [41] also studies where to replicate an object. Three approaches are considered 
and evaluated using k-walker random walk : owner replication, path replication, and random 
replication. All three schemes replicate the found object when a query is successful. The owner 
replication replicates an object only at the requesting node. The path replication creates copies of 
an object on all nodes on the path from the providing node to the requesting node. The random 
replication places copies on the p randomly selected nodes that were visited by the k walkers. The 
path replication implements the square-root replication. The random replication has slightly less 
overall search traffic than the path replication, because path replication intends to create object 
copies on the nodes that are topologically along the same path. Both the path replication and the 
random replication have less overall search traffic than the owner replication. 
 
2.3 Directed BFS and intelligent search 
 
The basic idea of directed BFS approach [6] is that the query node sends the query message to a 
subset of its neighbors that will quickly return many high-quality results. These neighbors then 
forward the query message to all their neighbors just as in BFS. 
 
To choose “good” neighbors, a node keeps track of simple statistics on its neighbors, for example , 
the number of query results returned through that neighbor, and the network latency of that 
neighbor. Based on these statistics, the best neighbors can be intelligently selected using the 
following heuristics: 
o The highest number of query results returned previously 
o The least hop-count in the previously returned messages (i.e. the closest neighbors) 
o The highest message count (i.e. the most stable neighbors) 
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o The shortest message queue (i.e. the least busy neighbors) 
 
By directing the query message to just a subset of neighbors, directed BFS can reduce the routing 
cost in terms of the number of routing messages. By choosing good neighbors, this technique can 
maintain the quality of query results and lower the query response time. However, in this scheme 
only the querying node intelligently selects neighbors to forward a query. All other nodes 
involved in a query processing still broadcast the query to all their neighbors as in BFS. 
Therefore, the message duplication is not greatly reduced. 
 
A similar approach called intelligent search was presented in [10]. The query type considered in 
the work is the keyword query: a search for documents that contain desired keywords listed in a 
query. A query is represented using a keyword vector. This technique consists of four 
components: a search mechanism, a profile mechanism, a peer ranking mechanism, and a query-
similarity function.  
 
When the querying node initiates a query, it does not broadcast the query to all its neighbors. 
Instead, it evaluates the past performance of all its neighbors and propagates the query only to a 
subset of its neighbors that have answered similar queries before and therefore will most likely 
answer the current query. On receiving a query message, a neighbor looks at its local datastore. If 
the neighbor has the desired documents, it returns them to the querying node and terminates. 
Otherwise, the neighbor forwards the query to a subset of its own neighbors that have answered 
similar queries before. The query forwarding stops when the maximum TTL is reached.  
 
The cosine similarity model is used to compute the query similarity. Based on this model, the 
similarity between two queries is the cosine of the angle between their query vectors. To 
determine whether a neighbor answered similar past queries, each node keeps a profile  for each of 
its neighbors. The profile for a neighbor contains the most recent queries that were answered by 
that neighbor. The profile is created and updated using two schemes. In one scheme, each peer 
continuously monitors the query and query response message. Queries answered by a neighbor 
are stored in the profile for that neighbor. In the second scheme, the peer that replies to a query 
message broadcasts this information to all its neighbors. 
 
Neighbors are ranked to facilitate the selection.  The rank of a neighbor Pi of the peer Pj in terms 
of the query q is determined by the following formula: 

?
?

?
iA  

)),((),(
l

j
q

lsimiP qqQqPR ?  

In the formula, Ai denotes the set of queries among the K most similar ones that were answered by 
peer Pi; ?  is a configurable parameter used to add more weight to more similar queries. The 
ranking formula  aggregates the similarities of K most similar past queries answered by a 
neighbor.  
 
2.4 Local indices based search 
 
The local indices in [6]  intends to get the same number of query results as scoped-flooding with 
less number of nodes processing a query. In local indices, each node keeps indices of data on all 
nodes within k-hop distance from it. Therefore, each node can directly answer queries for any 
data in its local indices without resorting to other nodes. All nodes use the same policy P on the 
list of depths at which the query should be processed. The nodes whose depths are listed in P 
check their local indices for the queried data and return the query result if the sought data is 
found. These nodes also forward the query message to all their neighbors if their depths are not 
the maximum depth limit. All other nodes whose depths are not listed in P just forward the query 
message to all their neighbors once receiving it and do not check their local indices. For example, 
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assume that P = {0, 3, 6}. To route a query, the querying node processes the query because its 
depth: 0 (i.e. the depth from itself is 0) is listed in P. The querying node then forwards the query 
message to all its neighbors at depth 1. Because their depth 1 is not listed in P, these nodes will 
not process the query. They will simply forward the query message to all their neighbors at depth 
2. For the same reason, all nodes at depth 2 will simply forward the query message to all their 
neighbors at depth 3.  All nodes at depth 3 will process the query because their depth is listed in 
P. These nodes then forward the query to their neighbors at depth 4. This procedure continues 
until the query message is forwarded to all nodes at depth 6. These nodes will process the query. 
However, they will not forward the query because their depth is the maximum depth in P. At this 
point, the query is terminated even if the query result is not satisfied. Note that all nodes in a P2P 
system organized using local indices play equal roles. 
 
The local indices are updated when a node joins, leaves, or modifies its data. A node Y joins the 
network by sending a join message with a TTL of r. This join message contains the metadata 
(indices) about the data collection in Y. All nodes within r-hop distance from Y will receive this 
join message. If a node X receives the join message from Y, it replies with another join message 
that includes the metadata over its own data collection. X sends this replied join message directly 
to Y over a temporary connection. Then both X and Y add each other’s metadata into their own 
local indices.  
 
A new node Y may add a new path of length k  or less between two other nodes A and B. These 
two nodes can discover this new path in a number of ways without introducing additional 
messages. One way to achieve this is through periodic ping-pong messages. Nodes constantly 
send ping messages to all nodes within a depth D. Every node replies with a pong message. If A 
receives a pong message from B which is at most k  hops away and A does not contain indices 
about B’s data collection, then A learns that there is a new path between A and B. A will inform B 
about its data collection by sending a join message directly to B. B will reply directly to A with 
another join message containing the indices of its own data collection. 
 
When a node Z gracefully leaves the network or fails, other nodes will detect this event after a 
timeout. If these nodes index Z’s data collection, they will remove those index entries.  When the 
data collection on a node Z is modified, Z will send a short update message with a TTL of r to all 
its neighbors. This update message includes information about all affected data elements and how 
they are affected: inserted, deleted or updated. Any node that receives such a message and 
contains index entries for those affected elements will update their local indices accordingly. 
 
The local indices approach is similar to iterative deepening. Both broadcast the query message 
based on a list of depths; however, in iterative deepening, all nodes within the maximum depth 
limit process the query. In local indices, only nodes whose depths are listed in the policy P 
process the query. In addition, the iterative deepening approach spreads the query message 
iteratively with increasing TTL; the local indices approach spreads the query message once with 
the maximum TTL. 
 
2.5 Routing indices based search 
 
Routing indices [8] is similar to directed BFS and intelligent search in that all of them use the 
information about neighbors to guide the search. Directed BFS only applies this information to 
selecting neighbors of the querying source (i.e. the first hop from the querying source.) The rest 
of the search process is just as that of BFS. Both intelligent search and routing indices guide the 
entire search process. They differ in the information kept for neighbors. Intelligent search uses 
information about past queries that have been answered by neighbors. Routing indices stores 
information about the topics of documents and the number of documents stored in neighbors. 
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Routing indices considers content queries, queries based on the file content instead of file name 
or file identifier. One example of such a content query is: a request for documents that contain the 
word “networks”. A query includes a set of subject topics. Documents may belong to more than 
one topic category. Document topics are independent. Each node maintains a local index of its 
own document database based on the keywords contained in these documents. 
 
The goal of a Routing Index (RI) is to facilitate a node to select the “best” neighbors to forward 
queries. A RI is a distributed data structure. Given a content query, the algorithms on this data 
structure compute the top m best neighbors. The goodness of a neighbor is application dependent. 
In general, a good neighbor is the one through which many documents can be quickly found. 
 
A routing index is organized based on the single -hop routes and document topics. There is one 
index entry per route (i.e. per neighbor) per topic . An RI index entry, (networks,B), at node A 
stores information about documents in the topic: networks that may be found through the route (A 
-> B). This entry gives hints on the potential query result if A forwards the query to B (i.e. the 
route A -> B is chosen). Hence the name Routing Index. A routing index entry is very different 
from a regular index entry. If (networks, B) were the regular index entry, it would mean that node 
B stores documents in the topic: networks. By organizing the index based on neighbors (routes) 
instead of destinations (indexed data locations), the storage space can be reduced. 
 
Three types of RIs, compound RI, hop-count RI, and exponentially aggregated RI, are proposed. 
They differ in RI index entry structures. A compound RI (CRI) stores information about the 
number of documents in each interesting topic that might be found if a query is forwarded to a 
single-hop neighbor. A sample CRI at a node B is shown in Table  1. Each row in the table 
describes the number of documents along a specific path and the number of documents on each 
interesting topic along that path. For example, the first row in the table indicates that if B 
forwards the query to A, 1000 documents may be found. Among those documents, 100 are DB 
documents, 200 are network documents, 400 are theory documents, and there are no language 
documents. 
 

Documents in topics Path #docs 
Database (DB)   Networks (N)     Theory (T)       Languages (L) 

A 1000 100 200 400 0 
E 300 60 0 200 100 
F 800 0 100 160 200 

 
Table 1. An example of a compound RI at node B. 

 
The goodness of a neighbor for a query in CRI is the number of desired documents that may be 
found through that neighbor. This can be estimated by the following formula: 

?? i
ND

itCRI
ND

)(
 

 
In the formula, ti refers to the subject topic that appears in both the query and the CRI table; 
CRI(ti) denotes the value in the intersection of the row for a path and the column for the topic ti; 
ND represents the value at the column #docs for the path considered. Use the CRI example  for 
node B in Table 1. Assume that B receives a query for documents on “networks” and “theory”. 
The goodness of each neighbor for the query is: 

A:     1000 x (200/1000) x (400/1000) = 80. 
E:  300 x (0/300) x (200/300) = 0. 
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F:  800 x (100/800) x (160/800) = 20. 
Therefore, B will select A to forward the query because its goodness score is the highest. 
 

 
Figure 1 shows a partial P2P network and some CRI indices. An additional row is added into the 
CRI at each node to summarize the local indices in that node. For example, the summary at node 
B indicates that there are 200 documents at B; 50 of them are related to database, 60 of them are 
about theory, and 20 of them are about languages. B does not store documents about networks. 
The CRIs at node B, A, C, and D show that node B can access 200 network documents via A. 75 
of them are at A, 60 at C, and 65 at D.  
 
The following shows an example of searching using routing indices. Suppose that the node B 
initiates a query for the documents about “networks” and “theory”. B first looks up its local 
database for the desired documents. If not enough documents are found, it calculates the goodness 
scores of all its neighbors: A: 80; E: 0; F: 20. A is then chosen as the best neighbor to forward the 
query. After receiving the query, A first checks its local database and returns all desired 
documents to B. If the query result is not satisfied, A will then calculate the goodness scores of its 
neighbors C, D (B is excluded): C: 45, D: 23. A then selects C as the best neighbor to forward the 
query. C then processes the query and returns all desired data along the query path. C does not 
have any other neighbor to forward the query. If the query stop condition is not satisfied, C will 
return the query back to A. A then forwards the query to its second best neighbor D. This process 
continues until the desired number of documents is found.  
 
The CRIs are expanded as follows. When a new connection is established between nodes A and 
D, A will add up its RI vectors (rows) and then sends this aggregated RI vector to D. In the mean 
time, D also sums up its RI vectors (excluding A’s entry if it exists), and sends the aggregated RI 
to A. When either party receives the other’s aggregated RI, it will create a new entry in its RI for 
the other party. After this, both A and D inform their other neighbors about this change in a 
similar fashion. The CRI entry deletion and update are handled similarly. RI entry aggregation 
reduces the bandwidth overhead.  
 
The compound RI does not consider the number of hops required to reach documents of a specific 
topic. However, we can modify the CRI to incorporate the hop count. We can store a CRI for 
each hop up to a maximum hop limit H at each node. H is called the horizon of a RI. This 
modified CRI is called hop-count Routing Indices. The hop-count RI contains information about 
the non-cumulative number of documents that may be found along a path at 1-hop distance, at 2-
hop distance, …, at H-hop distance. The goodness of a neighbor with respect to a query in the 
hop-count RI is the number of desired documents per message. It considers both the document 

B

E 

F 

A

C

B    200   50   0    60   20 
A   1000 100 200 400  0 
E    300   60    0  200 100 
F    800   0   100  200 200  

#     DB   N    T   L 

A    650   50    75   200   0  
B   1300 110 100  460  320 
C     200   30    60  150   0 
D     150   20    65   50   0  

#     DB   N    T   L 

C    200    30  60  150  0 
A   2100 180 240 710 320 

#     DB   N   T   L 

D    150    20   65   50   0 
A    2150 190  235 810 320  

#     DB   N    T   L 

Figure 1. A partial P2P with CRI indices. 
 

D
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counts and the number of messages to reach those documents. The goodness score is computed 
using the regular-tree cost model.  
 
The limitation of the hop-count RI is that it does not have information about documents at hop-
distance beyond the horizon. The exponentially aggregated RI (ERI) solves this problem at the 
cost of some potential loss in accuracy. The ERI entries store the result of applying the regular-
tree cost formula to a corresponding hop-count RI for the topics of interest.  
 
2.6 Attenuated bloom filter based search 
 
The attenuated bloom filter based search [9] assumes that each stored document has many 
replicas spread over the P2P network; documents are queried by names. It intends to quickly find 
replicas close to the query source with high probability. This is achieved by approximately 
summarizing the documents that likely exist in nearby nodes. However, the approach alone fails 
to find replicas far away from the query source.  
 
Bloom filters [50] are often used to approximately and efficiently summarize elements in a set. A 
bloom filter is a bit-string of length m that is associated with a family of independent hash 
functions. Each hash function takes as input any set element and outputs an integer in [0,m). To 
generate a representation of a set using bloom filters, every set element is hashed using all hash 
functions. Any bit in the bloom filter whose position matches a hash function result is set to 1. To 
determine whether an element is in the set described by a bloom filter, that element is hashed 
using the same family of hash functions. If any matching bit is not set to 1, the element is 
definitely not in the set. If all matching bits in the bloom filter are set to 1, the element is 
probably in the set. If the element indeed is not in the set, this is called a false positive. 
 
Attenuated Bloom Filters are extensions to bloom filters. An attenuated bloom filter of depth d is 
an array of d regular bloom filters of the same length w. A level is assigned to each regular bloom 
filter in the array. Level 1 is assigned to the first bloom filter. Level 2 is assigned to the second 
bloom filter. The higher levels are considered to be attenuated with respect to the lower levels. 
Each node stores an attenuated bloom filter for each neighbor. The ith bloom filter in an 
attenuated bloom filter (depth: d; i = d) for a neighbor B at a node A summarizes the set of 
documents that will probably be found through B on all nodes i-hops away from A. Figure 2 
illustrates an attenuated bloom filter for neighbor C at node B. “File3” and “File4” are available at 
2-hops distance from B through C. They are hashed to {0, 5, 6} and {2, 5, 8} respectively. 
Therefore, the second bloom filter contains 1 at bits 0, 2, 5, 6, 8. 
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B C 
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 File2 
 {1,5,7} 
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 File3 
 {0,5,6} 

 File4 
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 0  1 
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Figure 2. An example of an attenuated bloom filter. 
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To route a query for a file , the querying node hashes the file name using the family of hash 
functions. Then the querying node checks level-1 of its attenuated bloom filters. If level-1 of an 
attenuated bloom filter for a neighbor has 1s at all matching positions, the file will probably be 
found on that neighbor (1-hop distance from the query source). We call such a neighbor a 
candidate. The querying node then forwards the query to the closest one among all candidates. If 
no such candidate can be found, the querying node will check the next higher level (level-2) of all 
its attenuated bloom filters similarly to checking level-1. If no candidate can be found after all 
levels have been checked at the query source, this indicates that definitely no nearby replica 
exists. On receiving the query, a neighbor of the querying node looks up its local data store. If the 
data is found, it will be returned to the query source. If not, this neighbor will check its attenuated 
bloom filters similarly. During the query processing, if a false positive is found after d (the depth 
of the attenuated bloom filter) unsuccessful hops, the attenuated bloom filter based search 
terminates with a failure. No back tracking is allowed.  
 
To ease the filter update operation, for any two neighboring nodes A and B, node A keeps a copy 
of the attenuated bloom filter at B for the link B -> A. Node B also keeps a copy of the attenuated 
bloom filter at A for the link A -> B. If a new document is inserted at node A, it calculates the 
changed bits in the attenuated bloom filters of its own and of its neighbors. A then sends the 
changes to the corresponding neighbors. When A’s neighbor B receives such a message, B will 
attenuate the changed bits one level and check changes in the attenuated bloom filters which its 
neighbors maintain. B will inform its neighbors about the changes as well. Thus, each update is 
spread outward from the update source. The duplicate update messages can be suppressed by 
either the source node or the destination node with the help of update message IDs. 
 
The attenuated bloom filter approach can be combined with any structured approach to optimize 
the searching performance. We can use the attenuated bloom filters to try locating nearby 
replicas. If no nearby replica exists, we switch to the structured approach to continue the lookup. 
The hop-count RI is similar to the attenuated bloom filter approach. Both summarize the 
documents at some distance from the querying source. There are two differences between them. 
One is that the attenuated bloom filter is a probabilistic approach while the hop-count RI is a 
deterministic approach if omitting the document change. The other is that the attenuated bloom 
filter provides information about a specific file  while the hop-count RI provides the number of  
documents on each document category but not a specific file. 
 
2.7 Adaptive probabilistic search 
 
In the Adaptive Probabilistic Search (APS) [11] [12], it is assumed that the storage of objects and 
their copies in the network follows a replication distribution. The number of query requests for 
each object follows a query distribution. The search process does not affect object placement and 
the P2P overlay topology.  
 
The APS is based on k-walker random walk  and probabilistic  (not random) forwarding. The 
querying node simultaneously deploys k  walkers. On receiving the query, each node looks up its 
local repository for the desired object. If the object is found, the walker stops successfully. 
Otherwise, the walker continues. The node forwards the query to the best neighbor that has the 
highest probability value. The probability values are computed based on the results of the past 
queries and are updated based on the result of the current query. The query processing continues 
until all k  walkers terminate either successfully or fail (in which case the TTL limit is reached).  
 
To select neighbors probabilistically , each node keeps a local index about its neighbors. There is 
one index entry for each object which the node has requested or forwarded requests for through 
each neighbor. The value of an index entry for an object and a neighbor represents the relative 
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probability of that neighbor being selected for forwarding a query for that object. The higher the 
index entry value the higher the probability. Initially, all index values are assigned the same 
value. Then, the index values are updated as follows. When the querying node forwards a query, 
it makes some guess about the success of all the walkers. The guess is made based on the ratio of 
the successful walkers in the past. If it assumes that all walkers will succeed (optimistic 
approach), the querying node pro-actively increases the index values associated with the chosen 
neighbors and the queried object. Otherwise (pessimistic approach), the querying node pro-
actively decreases the index values. Using the guess determined by the querying node, every node 
on the query path updates the index values similarly when forwarding the query.  
 
The index values are also updated when the guess for a walker is wrong. Specifically, if an 
optimistic guess is made and a walker terminates with a failure, then the index values for the 
requested object along that walker’s path are decreased. The last node on the path sends an update 
message to the preceding node. On receiving the message, the preceding node decreases the index 
value for that walker and forwards the update message to the next node on the reverse path. This 
update procedure continues on the reverse path until the querying node receives an update 
message and decreases the index value for that walker. If the pessimistic approach is employed 
and a walker terminates successfully, the index values for the requested object on the walker’s 
path are increased. The update procedure is similar. To remember a walker’s path, each node 
appends its ID in the query message during query forwarding and maintains a soft state for the 
forwarded query. If a walker A passes by a node which another walker B stopped by before, the 
walker A terminates unsuccessfully. The duplicate message was discarded. 
 
Figure 3 illustrates how the search process works. Peer A issues a query for an object stored on 
peer F. Two walkers are deployed. Peer A made an optimistic  guess. The initial values of all 
index entries for this object are 30. One walker w1 takes the path A -> B -> F. The other one w2 
takes the path: A -> C -> D -> E. During the search, each node except the last node on the query 
paths increases the index value(s) for this object and the chosen neighbor(s) by 10. Since the 
optimistic  approach is employed and w2 fails, the index values on the query path for w2 will be 
decreased by 20 so that the final index values are smaller than the initial index values. When the 
subsequent request for the same object is initiated at or forwarded to A, the neighbor B will be 
chosen with the probability 4/9 (40/(20+30+40)), C with the probability 2/9, and G with the 
probability 3/9. 
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Compared to the k-walker random walk, the APS approach has the same asymptotic performance 
in terms of the message overhead. However, by forwarding queries probabilistically to most 
promising neighbor(s) based on the learned knowledge, the APS approach surpasses the k-walker 
random walk in the query success rate and the number of discovered objects. 
 
Two performance optimizations of the APS were also proposed in [11] [12]. The APS uses the 
same guess for all objects. This imprecision causes more messages. The swapping-APS (s-APS) 
therefore constantly observes the ratio of successful walkers for each object and swaps to a better 
update policy accordingly. The weighted-APS (w-APS) includes the location of objects in the 
probabilistic selection of neighbors. A distance function is embedded in the stored path of the 
query and is used in the index update. When the pessimistic guess is made for a walker and the 
walker succeeds, the index values for neighbors closer to the discovered object are increased 
more than those for distant neighbors.  
 
2.8 Dominating set based search 
 
The dominating set based search scheme was proposed in [2]. In this approach, routing indices 
are stored in a selected set of nodes that form a connected dominating set (CDS). A CDS in a P2P 
network is a subset of nodes which are connected through direct overlay links. All other nodes 
that are not in the CDS can be reached from some node in the CDS in one-hop. Searching is 
performed through a random walk on the dominating nodes in the CDS. 
 
The construction of the CDS uses solely the local information: a node’s 1-hop and 2-hop 
neighbors. The construction consists of two processes: marking followed by reduction. The 
marking process marks each node in the P2P system as either a dominating node or a non-
dominating node. The marker T represents a dominating node while the marker F represents a 
non-dominating node. A node is marked using T if two of its neighbors are not directly connected 
(i.e. these two neighbors are not neighbors of each other). At the end of the marking process, all 
nodes with marker T form the CDS. To reduce the size of the CDS, two reduction rules are 
applied during the reduction process. Each node in the CDS is assigned a 1-hop ranking value. 
This ranking value is the sum of the number of documents on a node and the number of 
documents of the node’s neighbor that has the most documents. The first reduction rule specifies 
that if the neighbors of a node A in the CDS are a proper subset of neighbors of another node B in 
the CDS and the node A has a smaller 1-hop ranking value than node B, then remove node A from 
the CDS. The second reduction rule states that a node C is removed from the CDS if the 
following three conditions are satisfied: 1) Two neighbors A and B of the node C are also 
dominating nodes. 2) The neighbor set of C is a proper subset of the union of the neighbor sets of 
A and B. 3) The node C has a 1-hop ranking value that is smaller than the values of both A and B. 
 
Searching is conducted on the CDS as follows. If the querying source is not a dominating node, 
the source forwards the query to its dominating neighbor with the highest 1-hop ranking value. If 
the querying source is a dominating node, it forwards the query to its dominating neighbor with 
the highest 1-hop ranking value. This querying source also forwards the query to a non-
dominating neighbor if that neighbor has the most documents among all neighbors of the 
querying source. On receiving a query request, a dominating node looks up its local database for 
the searched document and performs the query forwarding similarly to a querying source that is a 
dominating node. On receiving a query request, a non-dominating node only looks up the local 
database and does not forward the query any further. All found documents are returned from the 
hosting nodes to the querying source along the reverse query paths. The query stops when the 
TTL limit is reached or a node is visited the second time. 
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The dominating set based approach intends to get the most number of documents by forwarding 
queries primarily on dominating nodes which are well-connected and have many documents 
themselves or whose neighbors have many documents. The construction of the CDS does not 
incur more overlay links, as often occurs in superpeer approaches to be discussed in Section 
3.2.The cost of creating and maintaining the CDS is lower than that of routing indices. 
 
3.    Searching in strictly structured P2Ps 
 
In a strictly structured system, the neighbor relationship between peers and data locations is 
strictly defined. Searching in such systems is therefore determined by the particular network 
architecture. Among the strictly structured systems, some implement a distributed hash table 
(DHT) using different data structures. Others do not provide a DHT interface. Some DHT P2P 
systems have flat overlay structures; others have hierarchical overlay structures.  
 
A DHT is a hash table whose table entries are distributed among different peers located in 
arbitrary locations. Each data item is hashed to a unique numeric key. Each node is also hashed to 
a unique ID in the same key space. Each node is responsible for a certain number of keys. This 
means that the responsible node stores the key and the data item with that key or a pointer to the 
data item with that key. Keys are mapped to their responsible nodes. The searching algorithms 
support two basic operations: lookup(key) and put(key). lookup(k) is used to find the location of 
the node that is responsible for the key k. put(k)  is used to store a data item (or a pointer to the 
data item) with the key k in the node responsible for k . In a distributed storage application using a 
DHT, a node must publish the files that are originally stored on it before these files can be 
retrieved by other nodes. A file is published using put(k). 
 
In this section, searching in non-hierarchical (flat) DHT P2Ps is briefly overviewed. Then 
searching in hierarchical DHT P2Ps and non-DHT P2Ps are discussed in detail. More about non-
hierarchical DHT P2Ps can be found in a comprehensive survey in [1]. 
 
3.1 Searching in non-hierarchical DHT P2Ps 
 
Different non-hierarchical DHT P2Ps use different flat data structures to implement the DHT. 
These flat data structures include ring, mesh, hypercube, and other special graphs such as de 
Bruijn graph. Chord [16] uses a ring data structure. Node IDs form a ring. Each node keeps a 
finger table that contains the IP addresses of nodes that are half of the ID ring away from it, one-
fourth of the ID ring away, one-eighth of the ID ring away, ..., until its immediate successor. A 
key is mapped to a node whose ID is the largest number which does not exceed that key. During 
the searching for lookup(k), a node A forwards the query for k to successor(k), which is another 
node in A’s finger table with the highest ID that is not larger than k . In this way, the query for k is 
forwarded through the successor list until the node responsible for k is reached. The finger table 
speeds up the lookup operation. In case of the failure of successor(k), a node forwards the query 
to its immediate successor node. Chord achieves )(log NO routing efficiency at the cost of 

)(log NO  routing state per node. N refers to the total number of nodes in the system. The work in 
[22] extends Chord by adding different kinds of reverse edges into Chord so that the modified 
Chord is resilient to routing attacks.  
 
Pastry [17] uses a tree-based data structure which can be considered as a generalization of a 
hypercube. The node ID is 128-digit in base 2b. b is typically 4. Each node A keeps a leaf set L. L 
consists of the set of |L|/2 nodes whose IDs are closest to and smaller than A’s ID and the set of 
|L|/2 nodes whose IDs are closest to and larger than A’s ID. This leaf set guarantees the 
correctness of routing. To shorten the routing latency, each pastry node also keeps a routing table 
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of pointers to other nodes in the ID space. Each node keeps ( 12 ?b ) entries for each prefix of its 
node ID. An entry for a prefix of length i stores the location of some node whose ID shares that 
prefix and whose ( 1?i )th digit is different.  
 
The searching in Pastry is done as follows. Given a query for the key k , a node A forwards the 
query to a node whose ID is numerically closest to k  among all nodes known to A. The node A 
first tries to find a node in its leaf set. If such node does not exist, the node A tries to find a node 
in its routing table whose ID shares a longer prefix with k  than A. If such node does not exist 
either, the node A forwards the query to a node whose ID has the same shared prefix as A but is 
numerically closer to k  than A. Network proximity can be considered using heuristics during 
query forwarding in Pastry. Each Pastry node maintains )(log NO routing state to achieve the 

routing latency )(log NO . The algorithms in Tapestry [18] and Kademlia [19] are similar to 
Pastry.  
 
A d-dimensional toroidal space is used to implement the DHT in CAN [20]. The space is divided 
into a number of zones. Each zone is a hyper-rectangle and is taken care of by a node. The zone 
boundaries identify the node responsible for that zone. A key k  is hashed to a point p in the d-
dimensional space. The node whose zone covers p stores the hash table entry for k. Each node’s 
routing table consists of all its neighbors in the d-dimensional space. A node A is considered as a 
neighbor of another node B if B’s zone shares a (d-1)-dimensional hyperplane with A’s zone. 
Given a query for the data item with key k , a node forwards the query to another node in its 
routing table whose zone is closest to the zone of the node responsible for the key k . Ties are 

broken arbitrarily. Each CAN node maintains )(dO  states to achieve ) ( d NdO  routing 
efficiency, where N refers to the total number of nodes in the P2P. 
 
The systems Koorde [21], Viceroy [47], and Cycloid [48] have overlays with constant degrees. 
Koorde embeds a de Bruijn graph on the Chord ring for forwarding lookup requests. A routing 
efficiency of )(log NO can be achieved with )1(O  state per node. The overlay of Viceroy is an 
approximate butterfly network. The node ID space is [0, 1). The butterfly level parameter of a 
node is selected according to the estimated network size. Viceroy also achieves )(log NO routing 
efficiency with )1(O neighbors per node. Cycloid integrates Chord and Pastry and imitates the 
cube-connected-cycles (CCC) graph routing. It has a routing efficiency of )(dO with a routing 
state per node of )1(O . The simulation results in [48] show that Cycloid performs better than 
Koorde and Viceroy in large-scale and dynamic P2P systems. 
 
3.2 Searching in hierarchical DHT P2Ps 
 
All hierarchical DHT P2Ps organize peers into different groups or clusters. Each group forms its 
own overlay. All groups together form the entire hierarchical overlay. Typically the overlay 
hierarchies are two-tier or three-tier. They differ mainly in the number of groups in each tier, the 
overlay structure formed by each group, and whether or not peers are distinguished as regular 
peers and superpeers/dominating nodes. Superpeers/dominating nodes generally contribute more 
computing resources, are more stable, and take more responsibility in routing than regular peers. 
The discussion in this subsection focuses on Kelips and Coral. 
 
3.2.1 Kelips  
 
Kelips [23] is composed of k virtual affinity groups with group IDs in [0, k-1]. The IP address and 
port number of a node n is hashed to a group ID of the group to which the node n belongs. The 
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consistent hashing function SHA-1 provides a good balance of group members with high 
probability. Each file  name is mapped to a group using the same SHA-1 function. Inside a group, 
a file is stored in a randomly chosen group member, called the file’s homenode. Thus Kelips 
offers load balance in the same group and among different groups. 
 
Each node n in an affinity group g keeps in the memory the following routing state: 
(1) View of the belonging affinity group g: 

This is the information about the set of nodes in the same group. The data includes the round-
trip time estimate, the heartbeat count, etc. 

(2) Contacts of all other affinity groups : 
This is the information about a small constant number of nodes in all other groups. The data 
for each contact is the same as that of an intra-group node. 

(3) Filetuples:  
This is the intra-group index about the set of files whose homenodes are in the same affinity 
group. A file tuple consists of a file name and the IP address of the file’s homenode. A 
heartbeat count is also associated with a file tuple. 
 

The total number of routing table entries per node is kFkckN /)1(/ ???? , where N refers to 
the total number of nodes, c: the number of contacts per group, F: tota l number of files in the 
system, and k : the number of affinity groups. Assume that F is proportional to N and c is fixed. 

With the optimal k , the complexity of the routing state is )( NO . 
 

To look up a file f, the querying node A in the group G hashes the file to the file’s belonging 
group G'. If G' is the same as G, the query is resolved by checking the node A’s local data store 
and local intra-group data index. Otherwise, A forwards the query to the topologically closest 
contact in group G'. On receiving a query request, the contact in the group G' searches its local 
data store and local intra-group data index. The IP address of f’s homenode is then returned to the 
querying node directly. In case of a file lookup failure, the querying node retries using different 
contacts in the group G', a random walk in the group G' , or a random walk in the group G. The 
query is processed in )1(O time with )1(O message complexity. 
 
To insert a file f, the origin node hashes the file name to the belonging group G. After looking up 
the routing table, the origin node sends an insert request to the topologically closest contact in the 
group G. A node in the group G is randomly chosen by this contact to be the homenode of the file 
f. This contact forwards the insert request to the chosen homenode. The file is then transferred 
from the orig in node to the homenode. A new file tuple for the file f is created and added to the 
states of other nodes in group G. The failure of a file insertion is handled similarly to a file lookup 
failure. The file insertion is also done in )1(O  time with )1(O  message overhead.  
 
All existing routing states are periodically updated using the spatially weighted gossip scheme 
within a group and across groups. Any timed-out entries are deleted. An update such as the 
heartbeat count for a file tuple starts at the responsible node. This node gossips the update for a 
number of fixed time intervals. During each time interval, the update message is multicast to a 
small constant number of gossip target nodes. The target nodes are chosen using a weighted 
scheme based on the round-trip time estimates. The preferences are given to those that are 
topologically closer in the network.  
 
When a new node joins Kelips, it contacts a well-known introducer node (or group). The new 
node then uses the introducer’s routing table to create its own routing table. The new node then 
announces its presence through gossiping. Contacts may be replaced either proactively or 
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reactively taking into account node distance and accessibility. Currently, a proactive approach is 
used to replace the farthest contact. 
 
3.2.2 Coral and related schemes 
 
Coral in [24] is an indexing scheme. It does not dictate how to store or replicate data items. The 
objectives of Coral are to avoid hot spots and to find nearby data without querying distant nodes. 
A distributed sloppy hash table was proposed to eliminate hot spots. In DHT, a key is associa ted 
with a single value which is a data item or a pointer to a data item. In a DSHT, a key is associa ted 
with a number of  values which are pointers to replicas of data items. DSHT provides the 
interface: put(key, value) and get(key). put(key,value) stores a value under a key; get(key) returns 
a subset of values under a key. There is a quota on the number of values associated with a 
particular key stored per node. When this quota is exceeded, the additional values are distributed 
across multiple nodes on the lookup path.  
 
Specifically, when a file replica is stored locally on a node A, the node A hashes the file name to a 
key k  and inserts a pointer nodeaddr (A’s address) to that file into the DSHT by calling 
put(k,nodeaddr). During the processing of put(k,nodeaddr), the node A finds the first node whose 
list of values under the key k  is full or the first node that is closest to key k . If a node with a full-
list is found, the node A goes back one hop on the lookup path. This previous node appends the 
pointer nodeaddr together with a timestamp to the end of its list under the key k. To query for a 
list of values for a key k , get(k) is forwarded in the identifier space until the first node storing a 
list for the key k  is found. The requesting node can then download data from the list of nodes 
obtained. The unique “spill-over” scheme in Coral inserts pointers along the lookup path for 
popular keys.  The hot spots are removed because load is balanced during pointer insertion and 
retrieval and data downloading.  
 
To find nearby data without going through distant nodes, Coral organizes nodes into a hierarchy 
of clusters and puts nearby nodes in the same cluster. Coral consists of three levels of clusters. 
Each cluster is a DSHT. In the lowest-level, Level 2, there are many clusters that cover peers 
located in the same region and have the cluster diameter (round-trip time) 30msecs. In the next 
higher level, Level 1, there are multiple clusters that cover peers located in the same continent 
and have the cluster diameter 100msecs. The highest level, Level 0, is a single cluster for the 
entire planet and the cluster diameter is infinite. Each cluster is identified by a cluster id. Coral’s 
hierarchy is built on top of Chord. Each cluster is a Chord ring that is composed of a different set 
of peers. The cluster at Level 0 is the original Chord ring. Each node belongs to one cluster at 
each level and has the same node id in all clusters to which it belongs.  
 
A node inserts a key/value pair into Coral by performing a put on all of its clusters.  To retrieve a 
key k , the querying node A first looks in its lowest level cluster. If the query fails in this level, the 
node B in the same cluster whose id is closest to the key k is reached. The node B returns its 
routing information in Level 1 to A. The node A then continues the search on its Level-1 cluster 
starting with the closest Level-1 node C in B’s routing table. If the query fails again, A will 
continue the search in the global cluster beginning with the closest Level-0 node E in C’s routing 
table. The query latency is therefore reduced by resolving a query from nearby nodes to distant 
nodes. The query hop count is still )(log NO , where N is the total number of nodes in the system. 
 
A node only joins acceptable clusters. A cluster is acceptable to a node if its latency (round-trip 
time) to 90% of the nodes in the cluster is below the cluster diameter. If a node can not find such 
clusters, it forms its own cluster. A node first joins a lowest level cluster. Then the node inserts 
itself to its higher-level cluster under the hash key of the IP  addresses of its gateway routers. 
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When a node switches to a new cluster, its information is still kept in the old cluster. When old 
neighbors contact this node, it replies with the new cluster information. These members in the old 
cluster found the new cluster with more nodes and the same diameter. They will then switch to 
this larger cluster. The cluster split is implemented by guiding the split toward two directions. 
Some node in the cluster c is chosen as the cluster center. The nodes that are close to c form one 
cluster. The nodes far away from c form another cluster.  
 
The HIERAS in [38] is similar to Coral. They differ in three aspects. Firstly, HIERAS supports 
DHT while Coral supports DSHT. Secondly, a HIERAS node joins the P2P hierarchy from the 
top level to the lowest level while a Coral node joins the hierarchy in an opposite way. Thirdly, 
HIERAS employs distributed binning to determine nodes in each Chord ring while Coral uses 
ping-pong messages to get latencies for determining peers in the same cluster (a Chord ring). 
 
Another work similar to Coral was proposed in [48]. The overlay is also a hierarchy of Chord-like 
rings. The hierarchy emulates the nodes’ real-world organization. Each Chord ring corresponds to 
an administrative domain. It requires that each node knows its own position in the hierarchy, and 
two nodes are able to compute their common ancestor in the hierarchy. The overlay hierarchy is 
formed in a bottom-up manner. All nodes in each leaf domain form their own overlay, a Chord 
ring. The overlay for a domain in the next higher-level is formed by merging the overlays for its 
child domains. The merging of two Chord rings is conducted as follows. Each node keeps all 
neighbors in its original Chord ring. In addition, each node A in one Chord ring adds another node 
B in the other Chord ring into its neighbor set if the following two conditions are satisfied: 1) B is 
the closest node which is at least 2k away from A in the node ID space, where mk ??0  (Node 
IDs are m-bit numbers). 2) B is closer to A than A’s immediate successor in A’s original Chord 
ring. The query routing in [48] is performed from the bottom level to the higher level in the 
hierarchy similarly to Coral. 

 
3.2.3 Other hierarchical DHT P2Ps 
 
In Kelips and Coral, all peers play equal roles in routing. The differences among peers, such as 
processing power and storage capacity, are not considered. The work in [25] takes into account 
peer heterogeneity such as CPU power and storage capacity. The nodes with more contributed 
resources are called superpeers. Otherwise, they are called peers. A superpeer may be demoted to 
a peer. A peer may also become a superpeer. The system architecture consists of two rings: an 
outer ring and an inner ring. The outer ring is a Chord ring and consists of all peers and all 
superpeers. The inner ring consists of only superpeers. Each superpeer is responsible for an arc in 
the outer ring. Each superpeer sp maintains a peer table and a superpeer table. The peer table 
contains the node ID and address of each peer in the sp’s managed arc. The superpeer table stores 
the node ID and managed arc range of each superpeer. The routing state is in the order of 

)(log NO , where N is the total number of nodes in the system. 
 
To look up a document with the key k , the querying node first sends the query to its superpeer. If 
the key k is in the superpeer’s managed arc, this superpeer locates and returns the successor of k 
to the querying node. Otherwise, the superpeer checks its superpeer table and forwards the query 
to another superpeer whose arc includes k. This second superpeer then looks up its peer table  and 
returns the successor of k to the querying node. The lookup cost is )1(O . 
 
To support the superpeer selection, the system uses a volunteer service to keep track of resources 
each node is willing and able to contribute to the system. Each new node registers its resources 
with the volunteer service. The volunteer service is provided as a black box.  
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A new node first joins the outer ring just as in Chord [16] and obtains its superpeer from its 
immediate neighbor. The new node then informs its superpeer to add a new entry for itself into 
the peer table. Unless selected as a superpeer later, this new node remains as a peer and stays in 
the outer ring in its life time. The peer failure is detected through periodic keep-alive messages 
between peer neighbors. The neighbor peer detecting a peer failure notifies its superpeer to 
remove the corresponding entry from the peer table. Superpeer failures are detected similarly. In 
case of a superpeer failure, the load of the failed superpeer may be taken over by newly created 
superpeers or existing neighbor superpeers. The actual load failover scheme is determined by the 
arc range of the failed superpeer. All changes to the inner ring topology are distributed to all 
superpeers. 
 
The work in [26] also considers peer heterogeneity. However, the criterion for the superpeer 
selection is different. The selection in [26] primarily considers nodes with longer uptime and 
better connection, secondarily CPU power and network bandwidth. The hierarchy in [26] is also 
somewhat different. It contains 2 tiers. Peers form disjoint groups in the lower tier based on the 
network latency. Each group has its own overlay structure like Chord or CAN. A small number of 
peers in each group are chosen as superpeers for that group. All superpeers in the system form a 
separate overlay: a Chord ring in the top tier. Each “node” in the top-tier ring refers to all 
superpeers in a group and is represented by a vector. Given a query for the key k, the querying 
node first tries to look up the key in the lower tier. If the key is not found, the querying node 
sends the query to one of the superpeers in its group. This superpeer routes the query on the top-
tier overlay towards the group that is responsible for the key k. After passing one or more 
superpeers, the query reaches one superpeer in the responsible group. This superpeer routes the 
query to the node closest to k  in its own group in a similar way to the routing in a regular Chord 
ring.  
 
KaZaA [27] also employs a two-tier hierarchy. It chooses nodes with fastest Internet connections 
and best CPU power as supernodes. A supernode indexes the files in its managed groups. In the 
literature, it is not clear what type of structure is formed by supernodes. In Brocade [28], all peers 
in the system form an overlay. Some peers in this overlay that have significant processing power, 
minimal number of IP hops to the wide-area network, and high-bandwidth outgoing links are 
chosen as supernodes. Each supernode acts as a landmark node for a network domain. Each 
supernode keeps a list of nodes in its managed domain. All supernodes form a Tapestry overlay 
on top of the base overlay. During query routing, the supernode of the querying source 
determines whether the query can be resolved in the local domain or not. If not, the supernode 
will route the query on the supernode overlay to the supernode of the node responsible for the 
sought key.  
 
3.3 Searching in non-DHT P2Ps 
 
The non-DHT P2Ps try to solve the problems of DHT P2Ps by avoiding hashing. Hashing does 
not keep data locality and is not amenable to range queries. This section introduces three kinds of 
non-DHT P2Ps: SkipNet [29], SkipGraph[30] , and TerraDir [32]. SkipNet is designed for storing 
data close to users. SkipGraph is intended for supporting range queries. TerraDir is targeted for 
hierarchical name searches. Searching in such systems follows the specified neighboring 
relationships between nodes. 
 
3.3.1 SkipNet and SkipGraph 
 
DHTs balance load among different nodes. However, hashing destroys data locality. The work in 
[29] introduces content locality and path locality. Content locality refers to the fact that a data 
item is stored close to its users, and the nodes in a given organization store their data items inside 



22 

the same organization. Path locality means that routing between the querying node and the node 
responsible for the queried data are within their organization if these two nodes belong to the 
same organization. The overlay SkipNet in [29] supports these two data localities by using a 
hierarchical naming structure.  
 

 
The SkipNet is based on the SkipList. A SkipList is a sorted linked list where some nodes have 
pointers that skip over varying numbers of list elements in the increasing sort order. In a perfect 
SkipList, all elements that have pointers skipping 2h elements form the level h. The highest level 
of an element is called its height. In a probabilistic SkipList, node heights are determined 
probabilistically. A SkipList may also be considered as a hierarchy of sorted linked lists that are 
increasingly sparse. 
 
The SkipNet is a modification of a SkipList. The data in the SkipNet are peer names (name IDs). 
The linked list is changed to a doubly-linked ring for path locality. All SkipNet nodes have the 
same Nlog2 number of pointers where N denotes the number of peers in the P2P. All pointers of 
a peer constitute its routing table. Figure 4 shows the peer name order and the routing tables for 
the peer A. The corresponding perfect SkipNet is shown in Figure 5. All peers are part of the root 
ring at level 0. The root ring is divided into two disjoint rings at level 1. The pointer of each peer 
at level 1 traverses 2 peers. Each ring at level 1 is divided into 2 disjoint rings at level 2. The 
pointers at level 2 traverse 4 peers. This procedure continues until at level 3, each peer forms a 
ring containing just itself. The pointers at level 3 traverse 8 (i.e. all) peers. 
 
To ease efficient node insertions and deletions, the probabilistic SkipNet is used in practice. In 
such probabilistic design, each ring at level i is still split into two rings at level i+1. However, the 
peers in the two rings at level i+1 are randomly and uniformly selected from the peers in the 
corresponding ring at level i. With such probabilistic design, a pointer at level i traverses an 
expected 2i number of peers. The routing efficiency is )(log NO with high probability where N is 
the number of peers in the P2P. SkipNet generates a random binary bit vector for each peer. 
These random bit vectors are used to determine the random ring memberships of peers. A ring at 
level i consists of all peers whose random vectors have the same i-bit prefix. For example, the 
vectors for A and D are 000 and 001 respectively. Both A and T are in the same ring 0 at level 1 
and the same ring 00 at level 2. The random bit vector is also used as the numeric ID of a peer. 
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Figure 4. The peer name order and sample routing tables.  
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A file is stored in the node whose name ID is closest to the file name. To provide content locality, 
the node name is used as the prefix of the file name. For example, a file cert9i.html stored in the 
node education.oracle.com can be named education.oracle.com/cert9i.html. To search for a file 
named fname, the querying node A forwards the query along its highest level pointers until the 
node B whose name ID is closest to but is not greater than fname is reached. The node B 
continues the search along its next lower level pointers until the node C whose name ID is closest 
to but is not greater than fname is reached. This procedure continues until the node E whose name 
ID is closest to fname among all levels is reached. If the node E stores the sought file , the query 
succeeds. Otherwise, the query fails. To provide path locality, the DNS name with reversed 
components is used as the prefix of the file name. For example, nodes in the domain oracle.com 
can be named com.oracle.node1, com.oracle.node2, etc. In summary, searching by name ID visits 
nodes whose name IDs share a non-decreasing prefix of the desired file name. 
 
In SkipNet, searching can also be done by numeric ID. It is similar to searching by name ID. 
However, the querying node starts the search from the lowest-level (Level 0). In Level 0, the 
search stops at the node whose numeric ID matches the first bit in the desired numeric ID. This 
node then continues the search in its level-1 ring and stops at the node with the first two matching 
bits. This procedure continues until the longest prefix is found in a ring at Level h. The search 
continues in this ring and terminates at the node that is numerically closest to the desired numeric 
ID.  
 
SkipNet supports constrained load balance: loads are balanced among peers in a constrained 
range such as an organization. This is implemented by dividing the file name into two parts: a 
prefix and a suffix. The prefix specifies the domain where load balance should occur. The suffix 
is hashed uniformly to the peers in that domain. 
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DHTs do not support range queries very well because hashing destroys the ordering on hash keys 
such as file names. The overlay SkipGraph in [30] is tailored for range queries. SkipGraph is very 
similar to SkipNet. There are three differences. First, SkipNet is designed for providing data 
locality while SkipGraph is designed for supporting range queries. Secondly, each node in 
SkipNet is a computer and the node name is the computer name while each node in a SkipGraph 
is a resource and the node name is the resource name. Thirdly, SkipNet is a hierarchy of doubly-
linked sorted rings while SkipGraph is a hierarchy of doubly-linked sorted list. Searching for a 
specific resource in SkipGraph is similar to searching by node name in SkipNet. A range query is 
resolved by first locating the range boundary and then traversing the linked list in the lowest 
level. 
 
3.3.2 TerraDir 
 
TerraDir [32] [33] is a general distributed directory service for searching data by hierarchical 
names like Unix file names. The hierarchical name space consists of meta-information about the 
data stored in the P2P system. The TerraDir directory structure is a rooted graph. Each node in 
this graph has one single canonical name and may have other names. All canonical names form a 
rooted tree. They are used to avoid cycles in wildcard queries and also used for failure recovery. 
Users can query the data using any node name. Each TerraDir directory node has a single owner. 
The owner is a peer that permanently maintains information for a TerraDir directory node. The 
owner is in charge of the replication of the owned node. Only the owner can make modifications 
to the owned node. Many directory nodes may be owned by the same owner. An owner keeps the 
following information (state) for each owned directory node: a label, a set of incoming edges, a 
set of outgoing edges, a set of attributes, a record, and some bookkeeping information. The 
incoming and outgoing edges contain the information about the peers that own or replicate the 
parent nodes and children nodes respectively. The attributes are meta-data about the node and are 
represented using (type, value) pairs. The record is the actual data represented by this node. The 
bookkeeping information is used for failure recovery. Each peer also permanently maintains the 
meta-data for all nodes replicated on it.  
 
To reduce the routing latency, the owner of each node on the query path caches the partial query 
path from that node to the sought node. The querying peer (i.e. the owner of the starting node) 
caches the entire query path. The cache entry for a cached node includes information about that 
node, its parent and children, its owning peer, and a digest of the nodes permanently hosted by its 
owning peer. The node owner replicates an owned node in randomly selected peers. The number 
of replicas of an owned node is hk * , where k  is a configurable constant and h is the level of that 
node in the TerraDir directory tree. Level 1 consists of all leaf nodes. Level 2 consists of all 
parents nodes of the leaf nodes. With this replication scheme, the average replication overhead 
per node is a constant. The network addresses of peers that have replicas of a node A are also part 
of the state  which A’s parent maintains for A.  
 
The searching in TerraDir is conducted as follows. Assume that a peer A is forwarding a query 
towards the peer that owns, replicates, or caches the target node t. Peer A proceeds in the 
following order: 
1) It generates a list L of prefixes of node names it knows. L includes the target t, names of the 

nodes A owns, replicates, or caches. The entire node name is also considered as a prefix of 
that node name. 

2) It sorts all elements in L in the increasing order of the distance (on the namespace tree) 
between the prefixes and the target t. This sorted list is called a candidate list. 

3) It searches the candidate list for the first prefix whose owning peer or replicating peer B is 
known to A. This best prefix is closest to the target t. 

4) It forwards the query to B. 
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The peer failures are handled as follows. If the peer storing the best prefix fails, the next best 
prefix in the candidate list is tried. If all peers storing the prefixes in the candidate list fail, the 
query is retried on a replica of the current node that is available and has not yet been visited. If 
such a replica does not exist, the query is retried on a replica of the directory root that is available 
and has not yet been visited. If no such replica exists, the query fails. 
 
4.   Searching in loosely structured P2Ps 
 
In loosely structured P2Ps, the overlay structure is not strictly specified.  It is either formed based 
on hints or formed probabilistically. In Freenet [34] and Phenix [40], the overlay evolves into the 
intended structure based on hints or preferences. In Symphony [31] and the work in [35], the 
overlay is constructed probabilistically. Searching in loosely structured P2P systems depends on 
the overlay structure and how the data is stored.  In Freenet, data is stored based on the hints used 
for the overlay construction. Therefore, searching in Freenet is also based on hints. In Phenix 
[40], the overlay is constructed independent of the application. The data location is determined by 
applications using the Phenix. Therefore searching in Phenix is application dependent. In 
Symphony [35], the data location is clearly specified but the neighboring relationship is 
probabilistically defined. Searching in Symphony is guided by reducing the numerical distance 
from the querying source to the node that stores the desired data. 
 
4.1 Freenet 
 
Freenet [34] is one loosely structured decentralized P2P designed for protecting the anonymity of 
data sources. It supports the DHT interface. Each node maintains a local datastore and a dynamic 
routing table. The routing table of a node contains addresses of some other nodes and the keys 
possibly stored on these nodes. Because of the storage capacity, both the datastore and the routing 
table are managed using the LRU algorithm.  
 
The query routing in Freenet is similar to DFS. Given a query for a file with a key k , the querying 
node A first looks up its local datastore. If the file is in the local data store, the query is resolved. 
Otherwise, A forwards the query to the node B in its routing table whose key is nearest to k. On 
receiving the query, B performs the similar computation. If the file is not stored on B, then B 

forwards the query to the neighbor in its routing table which has the nearest key to k . This 
forwarding procedure continues until the query terminates. During query routing, some node may 
not forward the query to the neighbor with the nearest key because that neighbor is down or a 
loop may be detected. In such cases, this node tries the neighbor with the second nearest key. If 
the node can not forward to all its neighbors, the node reports a failure back to its upstream node. 
This upstream node will try its second best choice. A TTL limit is specified to restrict the number 
of messages in query routing. When the file is found, the file is returned to the querying node hop 
by hop along the reverse of the query path. Each node except the last one on the query path 
caches the found file and creates an entry in the routing table for the key k.  
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To provide anonymity, each node except the last one on the query path can change the reply 
message and claim itself or another node as the data source. Figure 6 depicts a querying routing 
example. Node A starts the query for the file f with the key k stored on node F. It first sends the 
query to node B with the nearest key. Node B then forwards to its best neighbor C. C reports the 
failure back to node B because C does not have any other neighbor. B then forwards the query to 
its second best neighbor D. D forwards the query to its best neighbor F. The file is found in F. F 
then returns the file to A through the path F -> D -> B -> A. After this query, nodes A, B, D all 
have the file f in their datastores and entries for the key k in their routing tables. 
 
To insert a file f with key k , the inserting node first issues a query for the key k  to avoid duplicate 
keys. This search request for k  is processed as a regular query. If an existing file with key k  is 
found, the file is returned to the inserting node. All nodes except the last one on the search path 
cache the file and add an entry for the key k in their routing tables. The inserting node will retry 
the insertion with a different key. If the search fails, the last node on the search path sends a “no-
collision” message back to the inserting node. The inserting node then sends an insert message to 
its neighbor on the path established by the initial search for duplicate keys. On receiving the 
insert message, the neighbor adds the new file into its own datastore and a new entry for the new 
file into its routing table. The neighbor then forwards the insert message to the next node on the 
initial search path. The insert message is normally propagated along the initial search path. If 
some node on the search path fails, the upstream node forwards the insert message to the 
neighbor with the second nearest key, etc. The insertion terminates successfully when a TTL limit 
is reached and fails when the message is backtracked to the original inserter. To provide data 
anonymity, any node on the insert path may change the insert message and claim itself or another 
node as the data source. Freenet does not support persistent data storage. Unpopular files with 
few requests are purged from the datastores by the LRU algorithm.  
 
Freenet’s query routing improves over time as more queries are answered and more files are 
inserted. Nodes tend to locate collections of similar keys. Once a node is listed in the routing 
table under a key, it will receive many requests for keys similar to that key. As the node builds up 
its routing table, it gets more informed about the locations of similar keys. Nodes also tend to 
store files with clusters of keys. Forwarding a successful query causes a node to keep a copy of 
the sought file with key k . File insertion normally follows the query path. Therefore files with 
similar keys are inserted along the same query path. The nodes on the query path accumulate files 
of similar keys in their datastores. Consequently, the routing tables of these nodes also contain  
entries with similar keys. 
 
A new node joins the Freenet by sending messages to some existing nodes discovered through 
out-of-band means. The new node announces its presence using a random walk. The key 

A B 

C 

D 
Sought    

file 

Figure 6. A sample of querying processing in Freenet. 
 

E 

F 

data request path data reply path data request failure path 



27 

associated with the new node is the XOR of the random seeds generated by all nodes on the 
random walk.  A cryptographic protocol is used during the random walk for verifying the truth of 
each random seed.  
 
4.2 Searching the power-law graph overlay 
 
In a power-law graph, node degrees follow a power-law distribution [14]. This means that the 
probability of a node with the degree k , kP , is  

??? ckPk  
where, ?  is a positive integer, c is a constant. In many networks, ?  is close to 2. Freenet [34] 
and Gnutella [15] tend to evolve into a power-law graph with a power-law exponent close to 2. 
An efficient strategy for searching power-law overlays is proposed in [14]. The scheme tries to 
utilize high-degree nodes. First, each node forwards the query to a neighbor with a higher degree. 
This rule continues until the node with the highest degree is reached. After the highest-degree 
node is accessed, the node of approximately second highest degree will be selected. Following 
this procedure, the searching algorithm approximately visits nodes with degrees in the decreasing 
order across the entire graph. 
 
The approach in [40] makes a power-law overlay “organically” emerge by guiding the node-join 
process through preferences. The new node prefers connecting to existing nodes with high 
degrees. Specifically, when a new node joins the system, it gets a list of live nodes using a 
rendezvous mechanism. Then, the new node divides this node list into two sets: random 
neighbors and friend neighbors. Next, the new node sends a TTL-1 ping message to each friend. 
Each friend returns its own neighbors in a pong message to the new node. Each friend also 
forwards the ping message to its own neighbors. On receiving the ping message, the friend’s 
neighbors add the new node to their own special lists. The new node’s friends and the friends’ 
neighbors form a candidate list of the new node. The candidate list is then sorted based on the 
decreasing order of the number of node appearances. The top c number of nodes in this list is 
selected as the preferred list of the new node. The new node then creates connections to all nodes 
in its random list and preferred list. The new node also periodically contacts the neighbors in its 
preferred list for possible backward connections. A preferred neighbor increases its counter each 
time it is contacted by the new node. If the counter reaches a constant value r, the preferred 
neighbor decreases the counter by r and adds a backward connection to the new node. The work 
in [40] is intended for a generic overlay topology independent of the application. Searching on the 
resulting power-law overlay can be any scheme suitable for the specific application. 
 
4.3 Searching the small-world model overlay 
 
A small-world graph is a graph in which each node has many local connections and a few random 
long-range connections. The diameter of a small-world graph is ))((log 2NO [49]. Symphony [31] 
employs the small-world graph model to implement the DHT. A data item with a key k is mapped 
to a node whose ID is numerically closest to k. Each node has two short-distance links to its 
immediate predecessor and successor in the ID ring and m long-distance links to other distant 
nodes in the ID ring. These distant nodes are chosen probabilistically. Specifically, when 
selecting a long-distance neighbor, a node A draws a random number r based on the probabilistic 
distribution function: )ln/(1)( N

N rrp ? , where r is in ]1,/1[ N and N is the current number of 
nodes in the P2P. Then the node A finds another node B that is responsible for the number r. This 
node B is selected as one long-distance neighbor of node A.  m is determined experimentally. N is 
estimated based on the sum of segment lengths managed by a set of distinct nodes.  
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Symphony has a unidirectional routing protocol and a bidirectional routing protocol. In the 
unidirectional routing protocol, each node on the query path forwards the query to one of its 
immediate or distant neighbors that is clockwise closest to the sought key. In the bidirectional 
routing protocol, the query is forwarded to one immediate or distant neighbor that has the 
absolutely shortest distance (clockwise or counterclockwise) from the responsible node. The look-
ahead approach is proposed to reduce the query latency even further. In this approach, each node 
looks ahead at its neighbors’ neighbors during query forwarding. For example , in the 1-lookahead 
approach, each node forwards a query to the neighbor whose neighbor is closest to the sought 
key. 
 
In Freenet, the cache replacement policy LRU for datastores can destroy the key clustering in 
both the datastores and the routing tables when the number of files stored is huge. The work in 
[35] solves this problem by incorporating a small-world model in the datastore cache replacement 
policy. Routing tables are tailored by datastores. Integrating a small-world mode l in the datastore 
cache replacement policy makes the routing tables emulate a small-world model overlay. 
Specifically, each new node selects a random seed from the key space. When a new data item 
with a new key k  comes in and the datastore is full, the node first compares the new key with the 
existing key k’ in its datastore that is farthest from its seed. If the new key k  is closer to the seed 
than k’, then the node removes the file with key k’, stores the new file with key k , and adds a new 
entry for k  in the routing table. (This is intended for emulating short links to close neighbors in a 
small-world model.) Otherwise, the node probabilistically removes k’, caches k , and adds a new 
routing table entry for the new key k . (This is designed for emulating a small number of random 
long links to distant neighbors in a small-world model.) This scheme enforces clustering of keys 
around the random seed at each node’s datastore and routing table. 
 
5. Conclusion 
 
This chapter discusses various searching techniques in peer-to-peer networks (P2Ps). First, the 
concept of peer-to-peer networks is introduced and different schemes are classified. Next, 
searching strategies in unstructured P2P systems, strictly structured P2P systems, and loosely 
structured P2P systems are presented. Strengths and weaknesses of these approaches are 
addressed.  
 
Clearly, significant progress has been made in the P2P research field. However, there are still 
many issues left unresolved. First, good benchmarks need to be developed to evaluate the actual 
performance of various techniques. The work in [36] [37] made such an initial attempt. Secondly, 
schemes amenable to complex queries supporting relevance ranking, aggregates, or SQL are 
needed to satisfy the practical requirements of P2P users [3]. An initial work in [51] addressed the 
top-K query, the query supporting relevance ranking of query results. It uses a global index and 
ranks the result  using the term frequency and inverse document frequency. This scheme is not 
amenable to large-scale systems. Thirdly, security issues have not been addressed by most current 
searching techniques. An initial work in [45] adds security by preferring to forward queries to 
friends obtained through third-party services such as instant messenger service. Fourthly, P2P 
systems are dynamic in nature. Unfortunately existing searching techniques can not handle 
concurrent node join-leave gracefully. Fifthly, good strategies are needed to form overlays that 
consider the underlying network proximity. Some initial effort has been made in Coral, Hieras, 
and other approaches in [42] [43] [44]. Both Coral and Hieras consider network proximity in the 
initial construction of overlays. Coral uses ping-pong messages to estimate round-trip times 
between nodes. Hieras employs distributed binning to estimate the proximity between nodes. The 
works in [42] [43] [44] try to modify the existing overlay to match the underlying network. The 
modification is conducted by deleting inefficient overlay links and adding efficient ones. Sixthly, 
almost all existing techniques are forwarding-based techniques. Recently, a study on non-
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forwarding techniques [39] was done. More effort is required to develop good non-forwarding 
techniques and to compare non-forwarding techniques to various forwarding techniques. 
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