
1

Searching Techniques in Peer-to-Peer Networks

Xiuqi Li and Jie Wu
Department of Computer Science and Engineering,

Florida Atlantic University
Boca Raton, FL 33431

Abstract

This chapter provides a survey of major searching techniques in peer-to-peer (P2P) networks. We
first introduce the concept of P2P networks and the methods for classifying different P2P
networks. Next, we discuss various searching techniques in unstructured P2P systems, strictly
structured P2P systems, and loosely structured P2P systems. The strengths and weaknesses of
these techniques are highlighted. Searching in unstructured P2Ps covers both blind search
schemes and informed search schemes. Blind searches include iterative deepening, k-walker
random walk, modified random BFS, and two-level k-walker random walk. Informed searches
include local indices, directed BFS, intelligent search, routing indices, attenuated bloom filter,
adaptive probabilistic search, and dominating set based search. The discussion of searching in
strictly structured P2Ps focuses on hierarchical Distributed Hash Table (DHT) P2Ps and non-
DHT P2Ps. Searching in non-hierarchical DHT P2Ps is briefly overviewed. The presentation of
the hierarchical DHT P2Ps pays more attention to Kelips and Coral, whereas that of searching in
non-DHT P2Ps focuses on SkipNet and TerraDir. The description of searching in loosely
structured P2Ps focuses on Freenet. We conclude this chapter by summarizing open problems in
searching the P2P networks.

Keywords : data management, peer-to-peer networks, routing, searching

2

Abstract

1 Introduction……………………………………………………………………………………3

2 Searching in unstructured P2Ps………………………………………………………………..5
2.1 Iterative deepening
2.2 k-walker random walk and related schemes
2.3 Directed BFS and intelligent search
2.4 Local indices based search
2.5 Routing indices based search
2.6 Attenuated bloom filter based search
2.7 Adaptive probabilistic search
2.8 Dominating set based search

3 Searching in strictly structured P2Ps…………………………………………………………16
3.1 Searching in non-hierarchical DHT P2Ps
3.2 Searching in hierarchical DHT P2Ps

3.2.1 Kelips
3.2.2 Coral and related schemes
3.2.3 Other hierarchical DHT P2Ps

3.3 Searching in non-DHT P2Ps
3.3.1 SkipNet and SkipGraph
3.3.2 TerraDir

4 Searching in loosely structured P2Ps…………………………………………………………25

4.1 Freenet
4.2 Searching the power-law graph overlay
4.3 Searching the small-world model overlay

5 Conclusion……………………………………………………………………………………28

References

3

1. Introduction

There has been a growing interest in peer-to-peer networks since the initial success of some very
popular file-sharing applications such as Napster and Gnutella [15]. A peer-to-peer (P2P) network
is a distributed system in which peers employ distributed resources to perform a critical function
in a decentralized fashion. Nodes in a P2P network normally play equal roles, therefore, these
nodes are also called peers. A typical P2P network often includes computers in unrelated
administrative domains. These P2P participants join or leave the P2P system frequently, hence,
P2P networks are dynamic in nature. P2P networks are overlay networks, where nodes are end
systems in the Internet and maintain information about a set of other nodes (called neighbors) in
the P2P layer. These nodes form a virtual overlay network on top of the Internet. Each link in a
P2P overlay corresponds to a sequence of physical links in the underlying network. Examples of
P2P applications are distributed file -sharing systems, event notification services, and chat
services [1] [3] [4] [5].

P2P networks offer the following benefits [1] [3]:

o They do not require any special administration or financial arrangements.
o They are self-organized and adaptive. Peers may come and go freely. P2P systems handle

these events automatically.
o They can gather and harness the tremendous computation and storage resources on

computers across the Internet.
o They are distributed and decentralized. Therefore, they are potentially fault-tolerant and

load-balanced.

P2P networks can be classified based on the control over data location and network topology.
There are three categorie s: unstructured, loosely structured, and highly structured [7]. In an
unstructured P2P network such as Gnutella [15], no rule exists which defines where data is stored
and the network topology is arbitrary. In a loosely structured network such as Freenet [34] and
Symphony [31] , the overlay structure and the data location are not precisely determined. In
Freenet, both the overlay topology and the data location are determined based on hints. The
network topology eventually evolves into some intended structure. In Symphony, the overlay
topology is determined probabilistically but the data location is defined precisely. In a highly
structured P2P network such as Chord [16], both the network architecture and the data placement
are precisely specified. The neighbors of a node are well-defined. The data is stored in a well-
defined location.

P2P networks can also be classified into centralized and decentralized [7] [11] [12]. In a
centralized P2P such as Napster [53], a central directory of object location, ID assignment, etc. is
maintained in a single location. Peers find the locations of desired files by querying the central
directory server. Such P2Ps do not scale well and the central directory server causes single point
of failure. Decentralized P2Ps adopt a distributed directory structure. These systems can be
further divided into purely decentralized and hybrid [11] [12]. The difference between them lies
in the role peers play. In purely decentralized systems such as Gnutella and Chord, peers are
totally equal. In hybrid systems, some peers called dominating nodes [2] or superpeers [25] serve
the search request of other regular peers. Peers in a P2P system are often heterogeneous in
computation power, stability, and connectivity. Purely decentralized systems can not take
advantage of this heterogeneity while hybrid systems can. However, dominating nodes and
superpeers have to be carefully selected to avoid single points of failure and service bottlenecks.

P2P systems can also be classified into hierarchical and non-hierarchical based on whether the
overlay structure is a hierarchy or not. Most purely decentralized systems have flat overlays and
are non-hierarchical systems. All hybrid systems and few purely decentralized systems such as

4

Kelips [23] , are hierarchical systems. Non-hierarchical systems offer load-balance and high-
resilience. Hierarchical systems provide good scalability, opportunity to take advantage of node
heterogeneity, and high routing efficiency.

There are many research issues in P2P computing. This chapter focuses on searching techniques
in P2P networks. Searching means locating desired data. Most existing P2P systems support the
simple object lookup by key or identifier. Some existing P2P systems can handle more complex
keyword queries, which find documents containing keywords in queries. More than one copy of
an object may exist in a P2P system. There may be more than one document that contains desired
keywords. Some P2P systems are interested in a single data item; others are interested in a ll data
items or as many data items as possible that satisfy a given condition. Most searching techniques
are forwarding-based. Starting with the requesting node, a query is forwarded (or routed) node to
node until the node which has the desired data (or a pointer to the desired data) is reached. To
forward query messages, each node must keep information about some other nodes called
neighbors. The information of these neighbors constitutes the routing table of a node.

The desired features of searching algorithms in P2P systems include high-quality query results,
minimal routing state maintained per node, high routing efficiency, load balance, resilience to
node failures, and support of complex queries. The quality of query results is application
dependent. Generally, it is measured by the number of results and relevance. The routing state
refers to the number of neighbors each node maintains. The routing efficiency is generally
measured by the number of overlay hops per query. In some systems, it is also evaluated using
the number of messages per query. Different searching techniques make different trade-offs
between these desired characteristics.

Searching in highly structured systems follows the well-defined neighboring links. For this
reason, highly structured P2P systems provide guarantees on finding existing data and bounded
data lookup efficiency in terms of the number of overlay hops; however, the strict network
structure imposes high overhead for handling frequent node join-leave. Unstructured P2P systems
are extremely resilient to node join-leave, because no special network structure needs to be
maintained. Searching in unstructured networks is often based on flooding or its variation because
there is no control over data storage. The searching strategies in unstructured P2P systems are
either blind search or informed search. In a blind search such as iterative deepening [6], no node
has information about the location of the desired data. In an informed search such as routing
indices [8], each node keeps some metadata about the data location. To restrict the total
bandwidth consumption, data queries in unstructured P2P systems may be terminated prematurely
before the desired existing data is found; therefore, the query may not return the desired data even
if the data actually exists in the system. An unstructured P2P network can not offer bounded
routing efficiency due to lack of structure. Searching in a loosely structured system depends on
the overlay structure and how the data is stored. In Freenet, searching is directed by the hints used
for the overlay construction and the data storage. In Symphony, the data location is precisely
defined but the overlay structure is probabilistically formed. Searching in Symphony is guided by
reducing the numerical distance from the querying source to the destination node where the
desired data is located. The loosely structured systems can offer a balanced trade-off if they are
properly designed.

This chapter provides a survey of state-of-the-art searching schemes in different types of P2P
systems. The survey focuses on searching schemes in unstructured P2Ps. The chapter is organized
as follows. In section 2, searching in various unstructured systems will be explored. In section 3,
searching in strictly structured systems will be investigated. The discussion in this section focuses
on hierarchical DHT P2Ps and non-DHT P2Ps. Non-hierarchical DHT P2Ps are briefly

5

overviewed since a survey of searching in such systems has been done in [1]. Searching in
loosely structured systems will be examined in section 4. A summary will be given in section 5.

2. Searching in unstructured P2Ps

In an unstructured P2P system, no rule exists that strictly defines where data is stored and which
nodes are neighbors of each other. To find a specific data item, early work such as the original
Gnutella [15] used flooding, which is the Breadth First Search (BFS) of the overlay network
graph with depth limit D. D refers to the system-wide maximum TTL of a message in terms of
overlay hops. In this approach, the querying node sends the query request to all its neighbors.
Each neighbor processes the query and returns the result if the data is found. This neighbor then
forwards the query request further to all its neighbors except the querying node. This procedure
continues until the depth limit D is reached. Flooding tries to find the maximum number of results
within the ring that is centered at the querying node and has the radius: D-overlay-hops.
However, it generates a large number of messages (many of them are duplicate messages) and
does not scale well.

Many alternative schemes have been proposed to address the problems of the original flooding.
These works include iterative deepening [6] , k-walker random walk [7], modified random BFS
[10], two-level k-walker random walk [52], directed BFS [6], intelligent search [10], local indices
based search [6], routing indices based search [8], attenuated bloom filter based search [9],
adaptive probabilistic search [11], and dominating set based search [2]. They can be classified as
BFS based or Depth First Search (DFS) based. The routing indices based search and the
attenuated bloom filter based search are variations of DFS. All the others are variations of BFS.
In the iterative deepening and local indices, a query is forwarded to all neighbors of a forwarding
node. In all other schemes, a query is forwarded to a subset of neighbors of a forwarding node.

The searching schemes in unstructured P2P systems can also be classified as deterministic or
probabilistic. In a deterministic approach, the query forwarding is deterministic. In a probabilistic
approach, the query forwarding is probabilistic , random, or is based on ranking. The iterative
deepening, local indices based search, and the attenuated bloom filter based search are
deterministic. The others are probabilistic.

Another way to categorize searching schemes in unstructured P2P systems is regular-grained or
coarse-grained. In a regular-grained approach, all nodes participate in query forwarding. In a
coarse-grained scheme, the query forwarding is performed by only a subset of nodes in the entire
network. Dominating set based search is coarse-grained because the query forwarding is
performed only by the dominating nodes in the CDS (Connected Dominating Set). All the others
are regular-grained.

Another taxonomy is blind search or informed search [11] [12]. In a blind search, nodes do not
keep information about data location. In an informed search, nodes store some metadata that
facilitates the search. Blind searches include iterative deepening, k-walker random walk, modified
random BFS, and two-level k-walker random walk. All the others are informed search.

2.1 Iterative deepening

In [6], Yang and Garcia -Molina borrowed the idea of iterative deepening from artificial
intelligence and used it in P2P searching. This method is also called expanding ring. In this
technique, the querying node periodically issues a sequence of BFS searches with increasing
depth limits D1 < D2 < … < Di. The query is terminated when the query result is satisfied or when
the maximum depth limit D has been reached. In the latter case, the query result may not be

6

satisfied. All nodes use the same sequence of depth limits called policy P and the same time
period W between two consecutive BFS searches.

For example, assume that P = {3, 5, 8}, W = 6 seconds. The query node S first sends a BFS
search with depth limit 3 to all its neighbors via a query message. This BFS search message will
reach all nodes within 3-hops distance from S. These nodes will process this BFS message and
store (freeze) that message for a time period (> W) when they receive it. If any desired data is
located on these nodes, the data will be sent back to S. If the query is satisfied within W (= 6)
seconds following the first BFS search, S will terminate the query and will not continue.
Otherwise, S will initiate the second BFS search with depth limit 5 via a resend message. The
resend message carries the same query ID as in the corresponding query message. Any node
within 2-hops distance from S will simply forward the resend message to all its neighbors after
receiving it. The nodes at 3-hops distance from S will drop the resend message and then unfreeze
the stored query message with the matching query ID. “Unfreeze” means forwarding the
respective stored query message with a new depth limit 2 (35 ??) to all its neighbors. This
unfrozen query message will be processed similarly to the query message in the first BFS search.
If the resend message with maximum depth limit 8 is sent by the querying node, nodes within 8-
hops distance from S will not store (freeze) this query message. The querying node will not issue
another resend message with a larger depth limit.

Iterative deepening is tailored to applications where the initial number of data items returned by a
query is important. However, it does not intend to reduce duplicate messages and the query
processing is slow.

2.2 k-walker random walk and related schemes

In the standard random walk algorithm, the querying node forwards the query message to one
randomly selected neighbor. This neighbor randomly chooses one of its neighbors and forwards
the query message to that neighbor. This procedure continues until the data is found. Consider the
query message as a walker. The query message is forwarded in the network the same way a
walker randomly walks on the network of streets. The standard random walk algorithm uses just
one walker. This can greatly reduce the message overhead but causes longer searching delay.

In the k-walker random walk algorithm [7], k walkers are deployed by the querying node. That is,
the querying node forwards k copies of the query message to k randomly selected neighbors. Each
query message takes its own random walk. Each walker periodically “talks” with the querying
node to decide whether that walker should terminate. Nodes can also use soft states to forward
different walkers for the same query to different neighbors. k-walker random walk algorithm
attempts to reduce the routing delay. On average, the total number of nodes reached by k random
walkers in H hops is the same as the number of nodes reached by one walker in kH hops.
Therefore, the routing delay is expected to be k times smaller.

A similar scheme is the two-level random walk [52]. In this scheme, the querying node deploys

1k random walkers with the TTL being 1l . When the TTL 1l expires, each walker forges 2k
random walkers with the TTL being 2l . All nodes on the walkers’ paths process the query. Given
the same number of walkers, this scheme generates less duplicate messages but has longer
searching delays than the k-walker random walk.

Another similar approach, called the modified random BFS, was proposed in [10]. The querying
node forwards the query to a randomly selected subset of its neighbors. On receiving a query
message, each neighbor forwards the query to a randomly selected subset of its neighbors

7

(excluding the querying node). This procedure continues until the query stop condition is
satisfied. No comparison to the k-walker random walk was given in [10]. It is expected that this
approach visits more nodes and has a higher query success rate than the k-walker random walk.

The works in [7] [41] also address the data replication issue in unstructured P2P systems. The
question studied is: assuming the fixed amount of total storage space in the P2P system, what is
the optimal number of copies for each object in terms of the average search overhead per
successful query? Three replication strategies were analyzed: uniform, proportional, and square-
root replication. In the uniform replication, the same number of copies is created for each object
regardless of the query distribution. In the proportional replication, the number of copies for each
object is proportional to its query distribution. The higher the query rate of an object , the higher
is the number of copies for that object. In the square-root replication, the number of copies per
object is proportional to the square-root of the query rate. The performance measures are the
average search size (i.e. the average number of nodes probed) and the utilization rate of a copy
(i.e. the rate of queries that a copy serves). The search size reflects the query efficiency. The
utilization rate indicates the load balance. The k-walker random walk is used as the searching
scheme in the evaluation.

The analysis and simulation results show that uniform replication and proportional replication
achieve the same average search size and this search size is larger than that of the square-root
replication. As for the utilization rate, the proportional replication has the same rate for all
objects; the uniform replication has the rate proportional to the query rate and the square-root
replication has a varying utilization rate per object. However, the square-root replication has
much smaller variances than uniform and proportional replication in the two performance
measures. In summary, the square-root replication has the best query efficiency and the
proportional replication achieves the best load balance. In practice, the square-root replication is
implemented by replicating copies proportional to the number of sites probed.

The work in [7] [41] also studies where to replicate an object. Three approaches are considered
and evaluated using k-walker random walk : owner replication, path replication, and random
replication. All three schemes replicate the found object when a query is successful. The owner
replication replicates an object only at the requesting node. The path replication creates copies of
an object on all nodes on the path from the providing node to the requesting node. The random
replication places copies on the p randomly selected nodes that were visited by the k walkers. The
path replication implements the square-root replication. The random replication has slightly less
overall search traffic than the path replication, because path replication intends to create object
copies on the nodes that are topologically along the same path. Both the path replication and the
random replication have less overall search traffic than the owner replication.

2.3 Directed BFS and intelligent search

The basic idea of directed BFS approach [6] is that the query node sends the query message to a
subset of its neighbors that will quickly return many high-quality results. These neighbors then
forward the query message to all their neighbors just as in BFS.

To choose “good” neighbors, a node keeps track of simple statistics on its neighbors, for example ,
the number of query results returned through that neighbor, and the network latency of that
neighbor. Based on these statistics, the best neighbors can be intelligently selected using the
following heuristics:
o The highest number of query results returned previously
o The least hop-count in the previously returned messages (i.e. the closest neighbors)
o The highest message count (i.e. the most stable neighbors)

8

o The shortest message queue (i.e. the least busy neighbors)

By directing the query message to just a subset of neighbors, directed BFS can reduce the routing
cost in terms of the number of routing messages. By choosing good neighbors, this technique can
maintain the quality of query results and lower the query response time. However, in this scheme
only the querying node intelligently selects neighbors to forward a query. All other nodes
involved in a query processing still broadcast the query to all their neighbors as in BFS.
Therefore, the message duplication is not greatly reduced.

A similar approach called intelligent search was presented in [10]. The query type considered in
the work is the keyword query: a search for documents that contain desired keywords listed in a
query. A query is represented using a keyword vector. This technique consists of four
components: a search mechanism, a profile mechanism, a peer ranking mechanism, and a query-
similarity function.

When the querying node initiates a query, it does not broadcast the query to all its neighbors.
Instead, it evaluates the past performance of all its neighbors and propagates the query only to a
subset of its neighbors that have answered similar queries before and therefore will most likely
answer the current query. On receiving a query message, a neighbor looks at its local datastore. If
the neighbor has the desired documents, it returns them to the querying node and terminates.
Otherwise, the neighbor forwards the query to a subset of its own neighbors that have answered
similar queries before. The query forwarding stops when the maximum TTL is reached.

The cosine similarity model is used to compute the query similarity. Based on this model, the
similarity between two queries is the cosine of the angle between their query vectors. To
determine whether a neighbor answered similar past queries, each node keeps a profile for each of
its neighbors. The profile for a neighbor contains the most recent queries that were answered by
that neighbor. The profile is created and updated using two schemes. In one scheme, each peer
continuously monitors the query and query response message. Queries answered by a neighbor
are stored in the profile for that neighbor. In the second scheme, the peer that replies to a query
message broadcasts this information to all its neighbors.

Neighbors are ranked to facilitate the selection. The rank of a neighbor Pi of the peer Pj in terms
of the query q is determined by the following formula:

?
?

?
iA

)),((),(
l

j
q

lsimiP qqQqPR ?

In the formula, Ai denotes the set of queries among the K most similar ones that were answered by
peer Pi; ? is a configurable parameter used to add more weight to more similar queries. The
ranking formula aggregates the similarities of K most similar past queries answered by a
neighbor.

2.4 Local indices based search

The local indices in [6] intends to get the same number of query results as scoped-flooding with
less number of nodes processing a query. In local indices, each node keeps indices of data on all
nodes within k-hop distance from it. Therefore, each node can directly answer queries for any
data in its local indices without resorting to other nodes. All nodes use the same policy P on the
list of depths at which the query should be processed. The nodes whose depths are listed in P
check their local indices for the queried data and return the query result if the sought data is
found. These nodes also forward the query message to all their neighbors if their depths are not
the maximum depth limit. All other nodes whose depths are not listed in P just forward the query
message to all their neighbors once receiving it and do not check their local indices. For example,

9

assume that P = {0, 3, 6}. To route a query, the querying node processes the query because its
depth: 0 (i.e. the depth from itself is 0) is listed in P. The querying node then forwards the query
message to all its neighbors at depth 1. Because their depth 1 is not listed in P, these nodes will
not process the query. They will simply forward the query message to all their neighbors at depth
2. For the same reason, all nodes at depth 2 will simply forward the query message to all their
neighbors at depth 3. All nodes at depth 3 will process the query because their depth is listed in
P. These nodes then forward the query to their neighbors at depth 4. This procedure continues
until the query message is forwarded to all nodes at depth 6. These nodes will process the query.
However, they will not forward the query because their depth is the maximum depth in P. At this
point, the query is terminated even if the query result is not satisfied. Note that all nodes in a P2P
system organized using local indices play equal roles.

The local indices are updated when a node joins, leaves, or modifies its data. A node Y joins the
network by sending a join message with a TTL of r. This join message contains the metadata
(indices) about the data collection in Y. All nodes within r-hop distance from Y will receive this
join message. If a node X receives the join message from Y, it replies with another join message
that includes the metadata over its own data collection. X sends this replied join message directly
to Y over a temporary connection. Then both X and Y add each other’s metadata into their own
local indices.

A new node Y may add a new path of length k or less between two other nodes A and B. These
two nodes can discover this new path in a number of ways without introducing additional
messages. One way to achieve this is through periodic ping-pong messages. Nodes constantly
send ping messages to all nodes within a depth D. Every node replies with a pong message. If A
receives a pong message from B which is at most k hops away and A does not contain indices
about B’s data collection, then A learns that there is a new path between A and B. A will inform B
about its data collection by sending a join message directly to B. B will reply directly to A with
another join message containing the indices of its own data collection.

When a node Z gracefully leaves the network or fails, other nodes will detect this event after a
timeout. If these nodes index Z’s data collection, they will remove those index entries. When the
data collection on a node Z is modified, Z will send a short update message with a TTL of r to all
its neighbors. This update message includes information about all affected data elements and how
they are affected: inserted, deleted or updated. Any node that receives such a message and
contains index entries for those affected elements will update their local indices accordingly.

The local indices approach is similar to iterative deepening. Both broadcast the query message
based on a list of depths; however, in iterative deepening, all nodes within the maximum depth
limit process the query. In local indices, only nodes whose depths are listed in the policy P
process the query. In addition, the iterative deepening approach spreads the query message
iteratively with increasing TTL; the local indices approach spreads the query message once with
the maximum TTL.

2.5 Routing indices based search

Routing indices [8] is similar to directed BFS and intelligent search in that all of them use the
information about neighbors to guide the search. Directed BFS only applies this information to
selecting neighbors of the querying source (i.e. the first hop from the querying source.) The rest
of the search process is just as that of BFS. Both intelligent search and routing indices guide the
entire search process. They differ in the information kept for neighbors. Intelligent search uses
information about past queries that have been answered by neighbors. Routing indices stores
information about the topics of documents and the number of documents stored in neighbors.

10

Routing indices considers content queries, queries based on the file content instead of file name
or file identifier. One example of such a content query is: a request for documents that contain the
word “networks”. A query includes a set of subject topics. Documents may belong to more than
one topic category. Document topics are independent. Each node maintains a local index of its
own document database based on the keywords contained in these documents.

The goal of a Routing Index (RI) is to facilitate a node to select the “best” neighbors to forward
queries. A RI is a distributed data structure. Given a content query, the algorithms on this data
structure compute the top m best neighbors. The goodness of a neighbor is application dependent.
In general, a good neighbor is the one through which many documents can be quickly found.

A routing index is organized based on the single -hop routes and document topics. There is one
index entry per route (i.e. per neighbor) per topic . An RI index entry, (networks,B), at node A
stores information about documents in the topic: networks that may be found through the route (A
-> B). This entry gives hints on the potential query result if A forwards the query to B (i.e. the
route A -> B is chosen). Hence the name Routing Index. A routing index entry is very different
from a regular index entry. If (networks, B) were the regular index entry, it would mean that node
B stores documents in the topic: networks. By organizing the index based on neighbors (routes)
instead of destinations (indexed data locations), the storage space can be reduced.

Three types of RIs, compound RI, hop-count RI, and exponentially aggregated RI, are proposed.
They differ in RI index entry structures. A compound RI (CRI) stores information about the
number of documents in each interesting topic that might be found if a query is forwarded to a
single-hop neighbor. A sample CRI at a node B is shown in Table 1. Each row in the table
describes the number of documents along a specific path and the number of documents on each
interesting topic along that path. For example, the first row in the table indicates that if B
forwards the query to A, 1000 documents may be found. Among those documents, 100 are DB
documents, 200 are network documents, 400 are theory documents, and there are no language
documents.

Documents in topics Path #docs
Database (DB) Networks (N) Theory (T) Languages (L)

A 1000 100 200 400 0
E 300 60 0 200 100
F 800 0 100 160 200

Table 1. An example of a compound RI at node B.

The goodness of a neighbor for a query in CRI is the number of desired documents that may be
found through that neighbor. This can be estimated by the following formula:

?? i
ND

itCRI
ND

)(

In the formula, ti refers to the subject topic that appears in both the query and the CRI table;
CRI(ti) denotes the value in the intersection of the row for a path and the column for the topic ti;
ND represents the value at the column #docs for the path considered. Use the CRI example for
node B in Table 1. Assume that B receives a query for documents on “networks” and “theory”.
The goodness of each neighbor for the query is:

A: 1000 x (200/1000) x (400/1000) = 80.
E: 300 x (0/300) x (200/300) = 0.

11

F: 800 x (100/800) x (160/800) = 20.
Therefore, B will select A to forward the query because its goodness score is the highest.

Figure 1 shows a partial P2P network and some CRI indices. An additional row is added into the
CRI at each node to summarize the local indices in that node. For example, the summary at node
B indicates that there are 200 documents at B; 50 of them are related to database, 60 of them are
about theory, and 20 of them are about languages. B does not store documents about networks.
The CRIs at node B, A, C, and D show that node B can access 200 network documents via A. 75
of them are at A, 60 at C, and 65 at D.

The following shows an example of searching using routing indices. Suppose that the node B
initiates a query for the documents about “networks” and “theory”. B first looks up its local
database for the desired documents. If not enough documents are found, it calculates the goodness
scores of all its neighbors: A: 80; E: 0; F: 20. A is then chosen as the best neighbor to forward the
query. After receiving the query, A first checks its local database and returns all desired
documents to B. If the query result is not satisfied, A will then calculate the goodness scores of its
neighbors C, D (B is excluded): C: 45, D: 23. A then selects C as the best neighbor to forward the
query. C then processes the query and returns all desired data along the query path. C does not
have any other neighbor to forward the query. If the query stop condition is not satisfied, C will
return the query back to A. A then forwards the query to its second best neighbor D. This process
continues until the desired number of documents is found.

The CRIs are expanded as follows. When a new connection is established between nodes A and
D, A will add up its RI vectors (rows) and then sends this aggregated RI vector to D. In the mean
time, D also sums up its RI vectors (excluding A’s entry if it exists), and sends the aggregated RI
to A. When either party receives the other’s aggregated RI, it will create a new entry in its RI for
the other party. After this, both A and D inform their other neighbors about this change in a
similar fashion. The CRI entry deletion and update are handled similarly. RI entry aggregation
reduces the bandwidth overhead.

The compound RI does not consider the number of hops required to reach documents of a specific
topic. However, we can modify the CRI to incorporate the hop count. We can store a CRI for
each hop up to a maximum hop limit H at each node. H is called the horizon of a RI. This
modified CRI is called hop-count Routing Indices. The hop-count RI contains information about
the non-cumulative number of documents that may be found along a path at 1-hop distance, at 2-
hop distance, …, at H-hop distance. The goodness of a neighbor with respect to a query in the
hop-count RI is the number of desired documents per message. It considers both the document

B

E

F

A

C

B 200 50 0 60 20
A 1000 100 200 400 0
E 300 60 0 200 100
F 800 0 100 200 200

DB N T L

A 650 50 75 200 0
B 1300 110 100 460 320
C 200 30 60 150 0
D 150 20 65 50 0

DB N T L

C 200 30 60 150 0
A 2100 180 240 710 320

DB N T L

D 150 20 65 50 0
A 2150 190 235 810 320

DB N T L

Figure 1. A partial P2P with CRI indices.

D

12

counts and the number of messages to reach those documents. The goodness score is computed
using the regular-tree cost model.

The limitation of the hop-count RI is that it does not have information about documents at hop-
distance beyond the horizon. The exponentially aggregated RI (ERI) solves this problem at the
cost of some potential loss in accuracy. The ERI entries store the result of applying the regular-
tree cost formula to a corresponding hop-count RI for the topics of interest.

2.6 Attenuated bloom filter based search

The attenuated bloom filter based search [9] assumes that each stored document has many
replicas spread over the P2P network; documents are queried by names. It intends to quickly find
replicas close to the query source with high probability. This is achieved by approximately
summarizing the documents that likely exist in nearby nodes. However, the approach alone fails
to find replicas far away from the query source.

Bloom filters [50] are often used to approximately and efficiently summarize elements in a set. A
bloom filter is a bit-string of length m that is associated with a family of independent hash
functions. Each hash function takes as input any set element and outputs an integer in [0,m). To
generate a representation of a set using bloom filters, every set element is hashed using all hash
functions. Any bit in the bloom filter whose position matches a hash function result is set to 1. To
determine whether an element is in the set described by a bloom filter, that element is hashed
using the same family of hash functions. If any matching bit is not set to 1, the element is
definitely not in the set. If all matching bits in the bloom filter are set to 1, the element is
probably in the set. If the element indeed is not in the set, this is called a false positive.

Attenuated Bloom Filters are extensions to bloom filters. An attenuated bloom filter of depth d is
an array of d regular bloom filters of the same length w. A level is assigned to each regular bloom
filter in the array. Level 1 is assigned to the first bloom filter. Level 2 is assigned to the second
bloom filter. The higher levels are considered to be attenuated with respect to the lower levels.
Each node stores an attenuated bloom filter for each neighbor. The ith bloom filter in an
attenuated bloom filter (depth: d; i = d) for a neighbor B at a node A summarizes the set of
documents that will probably be found through B on all nodes i-hops away from A. Figure 2
illustrates an attenuated bloom filter for neighbor C at node B. “File3” and “File4” are available at
2-hops distance from B through C. They are hashed to {0, 5, 6} and {2, 5, 8} respectively.
Therefore, the second bloom filter contains 1 at bits 0, 2, 5, 6, 8.

 depth (d)

B C

D

E

 File2
 {1,5,7}

 File1
 {1,4,7}

 File3
 {0,5,6}

 File4
 {2,5,8}

FBC

 0 1
 0

Figure 2. An example of an attenuated bloom filter.

 0 0 0 1 0 1 0
 1 0 1 0 1 0
 1 1 0 1 0

 0 1 1
 0 0 1 1

FBC

 1 2 3 4 5 6 7 8

width (w)

13

To route a query for a file , the querying node hashes the file name using the family of hash
functions. Then the querying node checks level-1 of its attenuated bloom filters. If level-1 of an
attenuated bloom filter for a neighbor has 1s at all matching positions, the file will probably be
found on that neighbor (1-hop distance from the query source). We call such a neighbor a
candidate. The querying node then forwards the query to the closest one among all candidates. If
no such candidate can be found, the querying node will check the next higher level (level-2) of all
its attenuated bloom filters similarly to checking level-1. If no candidate can be found after all
levels have been checked at the query source, this indicates that definitely no nearby replica
exists. On receiving the query, a neighbor of the querying node looks up its local data store. If the
data is found, it will be returned to the query source. If not, this neighbor will check its attenuated
bloom filters similarly. During the query processing, if a false positive is found after d (the depth
of the attenuated bloom filter) unsuccessful hops, the attenuated bloom filter based search
terminates with a failure. No back tracking is allowed.

To ease the filter update operation, for any two neighboring nodes A and B, node A keeps a copy
of the attenuated bloom filter at B for the link B -> A. Node B also keeps a copy of the attenuated
bloom filter at A for the link A -> B. If a new document is inserted at node A, it calculates the
changed bits in the attenuated bloom filters of its own and of its neighbors. A then sends the
changes to the corresponding neighbors. When A’s neighbor B receives such a message, B will
attenuate the changed bits one level and check changes in the attenuated bloom filters which its
neighbors maintain. B will inform its neighbors about the changes as well. Thus, each update is
spread outward from the update source. The duplicate update messages can be suppressed by
either the source node or the destination node with the help of update message IDs.

The attenuated bloom filter approach can be combined with any structured approach to optimize
the searching performance. We can use the attenuated bloom filters to try locating nearby
replicas. If no nearby replica exists, we switch to the structured approach to continue the lookup.
The hop-count RI is similar to the attenuated bloom filter approach. Both summarize the
documents at some distance from the querying source. There are two differences between them.
One is that the attenuated bloom filter is a probabilistic approach while the hop-count RI is a
deterministic approach if omitting the document change. The other is that the attenuated bloom
filter provides information about a specific file while the hop-count RI provides the number of
documents on each document category but not a specific file.

2.7 Adaptive probabilistic search

In the Adaptive Probabilistic Search (APS) [11] [12], it is assumed that the storage of objects and
their copies in the network follows a replication distribution. The number of query requests for
each object follows a query distribution. The search process does not affect object placement and
the P2P overlay topology.

The APS is based on k-walker random walk and probabilistic (not random) forwarding. The
querying node simultaneously deploys k walkers. On receiving the query, each node looks up its
local repository for the desired object. If the object is found, the walker stops successfully.
Otherwise, the walker continues. The node forwards the query to the best neighbor that has the
highest probability value. The probability values are computed based on the results of the past
queries and are updated based on the result of the current query. The query processing continues
until all k walkers terminate either successfully or fail (in which case the TTL limit is reached).

To select neighbors probabilistically , each node keeps a local index about its neighbors. There is
one index entry for each object which the node has requested or forwarded requests for through
each neighbor. The value of an index entry for an object and a neighbor represents the relative

14

probability of that neighbor being selected for forwarding a query for that object. The higher the
index entry value the higher the probability. Initially, all index values are assigned the same
value. Then, the index values are updated as follows. When the querying node forwards a query,
it makes some guess about the success of all the walkers. The guess is made based on the ratio of
the successful walkers in the past. If it assumes that all walkers will succeed (optimistic
approach), the querying node pro-actively increases the index values associated with the chosen
neighbors and the queried object. Otherwise (pessimistic approach), the querying node pro-
actively decreases the index values. Using the guess determined by the querying node, every node
on the query path updates the index values similarly when forwarding the query.

The index values are also updated when the guess for a walker is wrong. Specifically, if an
optimistic guess is made and a walker terminates with a failure, then the index values for the
requested object along that walker’s path are decreased. The last node on the path sends an update
message to the preceding node. On receiving the message, the preceding node decreases the index
value for that walker and forwards the update message to the next node on the reverse path. This
update procedure continues on the reverse path until the querying node receives an update
message and decreases the index value for that walker. If the pessimistic approach is employed
and a walker terminates successfully, the index values for the requested object on the walker’s
path are increased. The update procedure is similar. To remember a walker’s path, each node
appends its ID in the query message during query forwarding and maintains a soft state for the
forwarded query. If a walker A passes by a node which another walker B stopped by before, the
walker A terminates unsuccessfully. The duplicate message was discarded.

Figure 3 illustrates how the search process works. Peer A issues a query for an object stored on
peer F. Two walkers are deployed. Peer A made an optimistic guess. The initial values of all
index entries for this object are 30. One walker w1 takes the path A -> B -> F. The other one w2
takes the path: A -> C -> D -> E. During the search, each node except the last node on the query
paths increases the index value(s) for this object and the chosen neighbor(s) by 10. Since the
optimistic approach is employed and w2 fails, the index values on the query path for w2 will be
decreased by 20 so that the final index values are smaller than the initial index values. When the
subsequent request for the same object is initiated at or forwarded to A, the neighbor B will be
chosen with the probability 4/9 (40/(20+30+40)), C with the probability 2/9, and G with the
probability 3/9.

40

40

20

20

20

30

40

40

40

40

40

30

30

30

30

30

30

30

A ? B

B ? F

A ? C

C ? D

D ? E

A ? G

A B

C

D

Sought
file

Figure 3. An example of adaptive probabilistic search.

Indices Initially At walker After index
 termination updates

E

G F

query forward ing path

index update path

15

Compared to the k-walker random walk, the APS approach has the same asymptotic performance
in terms of the message overhead. However, by forwarding queries probabilistically to most
promising neighbor(s) based on the learned knowledge, the APS approach surpasses the k-walker
random walk in the query success rate and the number of discovered objects.

Two performance optimizations of the APS were also proposed in [11] [12]. The APS uses the
same guess for all objects. This imprecision causes more messages. The swapping-APS (s-APS)
therefore constantly observes the ratio of successful walkers for each object and swaps to a better
update policy accordingly. The weighted-APS (w-APS) includes the location of objects in the
probabilistic selection of neighbors. A distance function is embedded in the stored path of the
query and is used in the index update. When the pessimistic guess is made for a walker and the
walker succeeds, the index values for neighbors closer to the discovered object are increased
more than those for distant neighbors.

2.8 Dominating set based search

The dominating set based search scheme was proposed in [2]. In this approach, routing indices
are stored in a selected set of nodes that form a connected dominating set (CDS). A CDS in a P2P
network is a subset of nodes which are connected through direct overlay links. All other nodes
that are not in the CDS can be reached from some node in the CDS in one-hop. Searching is
performed through a random walk on the dominating nodes in the CDS.

The construction of the CDS uses solely the local information: a node’s 1-hop and 2-hop
neighbors. The construction consists of two processes: marking followed by reduction. The
marking process marks each node in the P2P system as either a dominating node or a non-
dominating node. The marker T represents a dominating node while the marker F represents a
non-dominating node. A node is marked using T if two of its neighbors are not directly connected
(i.e. these two neighbors are not neighbors of each other). At the end of the marking process, all
nodes with marker T form the CDS. To reduce the size of the CDS, two reduction rules are
applied during the reduction process. Each node in the CDS is assigned a 1-hop ranking value.
This ranking value is the sum of the number of documents on a node and the number of
documents of the node’s neighbor that has the most documents. The first reduction rule specifies
that if the neighbors of a node A in the CDS are a proper subset of neighbors of another node B in
the CDS and the node A has a smaller 1-hop ranking value than node B, then remove node A from
the CDS. The second reduction rule states that a node C is removed from the CDS if the
following three conditions are satisfied: 1) Two neighbors A and B of the node C are also
dominating nodes. 2) The neighbor set of C is a proper subset of the union of the neighbor sets of
A and B. 3) The node C has a 1-hop ranking value that is smaller than the values of both A and B.

Searching is conducted on the CDS as follows. If the querying source is not a dominating node,
the source forwards the query to its dominating neighbor with the highest 1-hop ranking value. If
the querying source is a dominating node, it forwards the query to its dominating neighbor with
the highest 1-hop ranking value. This querying source also forwards the query to a non-
dominating neighbor if that neighbor has the most documents among all neighbors of the
querying source. On receiving a query request, a dominating node looks up its local database for
the searched document and performs the query forwarding similarly to a querying source that is a
dominating node. On receiving a query request, a non-dominating node only looks up the local
database and does not forward the query any further. All found documents are returned from the
hosting nodes to the querying source along the reverse query paths. The query stops when the
TTL limit is reached or a node is visited the second time.

16

The dominating set based approach intends to get the most number of documents by forwarding
queries primarily on dominating nodes which are well-connected and have many documents
themselves or whose neighbors have many documents. The construction of the CDS does not
incur more overlay links, as often occurs in superpeer approaches to be discussed in Section
3.2.The cost of creating and maintaining the CDS is lower than that of routing indices.

3. Searching in strictly structured P2Ps

In a strictly structured system, the neighbor relationship between peers and data locations is
strictly defined. Searching in such systems is therefore determined by the particular network
architecture. Among the strictly structured systems, some implement a distributed hash table
(DHT) using different data structures. Others do not provide a DHT interface. Some DHT P2P
systems have flat overlay structures; others have hierarchical overlay structures.

A DHT is a hash table whose table entries are distributed among different peers located in
arbitrary locations. Each data item is hashed to a unique numeric key. Each node is also hashed to
a unique ID in the same key space. Each node is responsible for a certain number of keys. This
means that the responsible node stores the key and the data item with that key or a pointer to the
data item with that key. Keys are mapped to their responsible nodes. The searching algorithms
support two basic operations: lookup(key) and put(key). lookup(k) is used to find the location of
the node that is responsible for the key k. put(k) is used to store a data item (or a pointer to the
data item) with the key k in the node responsible for k . In a distributed storage application using a
DHT, a node must publish the files that are originally stored on it before these files can be
retrieved by other nodes. A file is published using put(k).

In this section, searching in non-hierarchical (flat) DHT P2Ps is briefly overviewed. Then
searching in hierarchical DHT P2Ps and non-DHT P2Ps are discussed in detail. More about non-
hierarchical DHT P2Ps can be found in a comprehensive survey in [1].

3.1 Searching in non-hierarchical DHT P2Ps

Different non-hierarchical DHT P2Ps use different flat data structures to implement the DHT.
These flat data structures include ring, mesh, hypercube, and other special graphs such as de
Bruijn graph. Chord [16] uses a ring data structure. Node IDs form a ring. Each node keeps a
finger table that contains the IP addresses of nodes that are half of the ID ring away from it, one-
fourth of the ID ring away, one-eighth of the ID ring away, ..., until its immediate successor. A
key is mapped to a node whose ID is the largest number which does not exceed that key. During
the searching for lookup(k), a node A forwards the query for k to successor(k), which is another
node in A’s finger table with the highest ID that is not larger than k . In this way, the query for k is
forwarded through the successor list until the node responsible for k is reached. The finger table
speeds up the lookup operation. In case of the failure of successor(k), a node forwards the query
to its immediate successor node. Chord achieves)(log NO routing efficiency at the cost of

)(log NO routing state per node. N refers to the total number of nodes in the system. The work in
[22] extends Chord by adding different kinds of reverse edges into Chord so that the modified
Chord is resilient to routing attacks.

Pastry [17] uses a tree-based data structure which can be considered as a generalization of a
hypercube. The node ID is 128-digit in base 2b. b is typically 4. Each node A keeps a leaf set L. L
consists of the set of |L|/2 nodes whose IDs are closest to and smaller than A’s ID and the set of
|L|/2 nodes whose IDs are closest to and larger than A’s ID. This leaf set guarantees the
correctness of routing. To shorten the routing latency, each pastry node also keeps a routing table

17

of pointers to other nodes in the ID space. Each node keeps (12 ?b) entries for each prefix of its
node ID. An entry for a prefix of length i stores the location of some node whose ID shares that
prefix and whose (1?i)th digit is different.

The searching in Pastry is done as follows. Given a query for the key k , a node A forwards the
query to a node whose ID is numerically closest to k among all nodes known to A. The node A
first tries to find a node in its leaf set. If such node does not exist, the node A tries to find a node
in its routing table whose ID shares a longer prefix with k than A. If such node does not exist
either, the node A forwards the query to a node whose ID has the same shared prefix as A but is
numerically closer to k than A. Network proximity can be considered using heuristics during
query forwarding in Pastry. Each Pastry node maintains)(log NO routing state to achieve the

routing latency)(log NO . The algorithms in Tapestry [18] and Kademlia [19] are similar to
Pastry.

A d-dimensional toroidal space is used to implement the DHT in CAN [20]. The space is divided
into a number of zones. Each zone is a hyper-rectangle and is taken care of by a node. The zone
boundaries identify the node responsible for that zone. A key k is hashed to a point p in the d-
dimensional space. The node whose zone covers p stores the hash table entry for k. Each node’s
routing table consists of all its neighbors in the d-dimensional space. A node A is considered as a
neighbor of another node B if B’s zone shares a (d-1)-dimensional hyperplane with A’s zone.
Given a query for the data item with key k , a node forwards the query to another node in its
routing table whose zone is closest to the zone of the node responsible for the key k . Ties are

broken arbitrarily. Each CAN node maintains)(dO states to achieve) (d NdO routing
efficiency, where N refers to the total number of nodes in the P2P.

The systems Koorde [21], Viceroy [47], and Cycloid [48] have overlays with constant degrees.
Koorde embeds a de Bruijn graph on the Chord ring for forwarding lookup requests. A routing
efficiency of)(log NO can be achieved with)1(O state per node. The overlay of Viceroy is an
approximate butterfly network. The node ID space is [0, 1). The butterfly level parameter of a
node is selected according to the estimated network size. Viceroy also achieves)(log NO routing
efficiency with)1(O neighbors per node. Cycloid integrates Chord and Pastry and imitates the
cube-connected-cycles (CCC) graph routing. It has a routing efficiency of)(dO with a routing
state per node of)1(O . The simulation results in [48] show that Cycloid performs better than
Koorde and Viceroy in large-scale and dynamic P2P systems.

3.2 Searching in hierarchical DHT P2Ps

All hierarchical DHT P2Ps organize peers into different groups or clusters. Each group forms its
own overlay. All groups together form the entire hierarchical overlay. Typically the overlay
hierarchies are two-tier or three-tier. They differ mainly in the number of groups in each tier, the
overlay structure formed by each group, and whether or not peers are distinguished as regular
peers and superpeers/dominating nodes. Superpeers/dominating nodes generally contribute more
computing resources, are more stable, and take more responsibility in routing than regular peers.
The discussion in this subsection focuses on Kelips and Coral.

3.2.1 Kelips

Kelips [23] is composed of k virtual affinity groups with group IDs in [0, k-1]. The IP address and
port number of a node n is hashed to a group ID of the group to which the node n belongs. The

18

consistent hashing function SHA-1 provides a good balance of group members with high
probability. Each file name is mapped to a group using the same SHA-1 function. Inside a group,
a file is stored in a randomly chosen group member, called the file’s homenode. Thus Kelips
offers load balance in the same group and among different groups.

Each node n in an affinity group g keeps in the memory the following routing state:
(1) View of the belonging affinity group g:

This is the information about the set of nodes in the same group. The data includes the round-
trip time estimate, the heartbeat count, etc.

(2) Contacts of all other affinity groups :
This is the information about a small constant number of nodes in all other groups. The data
for each contact is the same as that of an intra-group node.

(3) Filetuples:
This is the intra-group index about the set of files whose homenodes are in the same affinity
group. A file tuple consists of a file name and the IP address of the file’s homenode. A
heartbeat count is also associated with a file tuple.

The total number of routing table entries per node is kFkckN /)1(/ ???? , where N refers to
the total number of nodes, c: the number of contacts per group, F: tota l number of files in the
system, and k : the number of affinity groups. Assume that F is proportional to N and c is fixed.

With the optimal k , the complexity of the routing state is)(NO .

To look up a file f, the querying node A in the group G hashes the file to the file’s belonging
group G'. If G' is the same as G, the query is resolved by checking the node A’s local data store
and local intra-group data index. Otherwise, A forwards the query to the topologically closest
contact in group G'. On receiving a query request, the contact in the group G' searches its local
data store and local intra-group data index. The IP address of f’s homenode is then returned to the
querying node directly. In case of a file lookup failure, the querying node retries using different
contacts in the group G', a random walk in the group G' , or a random walk in the group G. The
query is processed in)1(O time with)1(O message complexity.

To insert a file f, the origin node hashes the file name to the belonging group G. After looking up
the routing table, the origin node sends an insert request to the topologically closest contact in the
group G. A node in the group G is randomly chosen by this contact to be the homenode of the file
f. This contact forwards the insert request to the chosen homenode. The file is then transferred
from the orig in node to the homenode. A new file tuple for the file f is created and added to the
states of other nodes in group G. The failure of a file insertion is handled similarly to a file lookup
failure. The file insertion is also done in)1(O time with)1(O message overhead.

All existing routing states are periodically updated using the spatially weighted gossip scheme
within a group and across groups. Any timed-out entries are deleted. An update such as the
heartbeat count for a file tuple starts at the responsible node. This node gossips the update for a
number of fixed time intervals. During each time interval, the update message is multicast to a
small constant number of gossip target nodes. The target nodes are chosen using a weighted
scheme based on the round-trip time estimates. The preferences are given to those that are
topologically closer in the network.

When a new node joins Kelips, it contacts a well-known introducer node (or group). The new
node then uses the introducer’s routing table to create its own routing table. The new node then
announces its presence through gossiping. Contacts may be replaced either proactively or

19

reactively taking into account node distance and accessibility. Currently, a proactive approach is
used to replace the farthest contact.

3.2.2 Coral and related schemes

Coral in [24] is an indexing scheme. It does not dictate how to store or replicate data items. The
objectives of Coral are to avoid hot spots and to find nearby data without querying distant nodes.
A distributed sloppy hash table was proposed to eliminate hot spots. In DHT, a key is associa ted
with a single value which is a data item or a pointer to a data item. In a DSHT, a key is associa ted
with a number of values which are pointers to replicas of data items. DSHT provides the
interface: put(key, value) and get(key). put(key,value) stores a value under a key; get(key) returns
a subset of values under a key. There is a quota on the number of values associated with a
particular key stored per node. When this quota is exceeded, the additional values are distributed
across multiple nodes on the lookup path.

Specifically, when a file replica is stored locally on a node A, the node A hashes the file name to a
key k and inserts a pointer nodeaddr (A’s address) to that file into the DSHT by calling
put(k,nodeaddr). During the processing of put(k,nodeaddr), the node A finds the first node whose
list of values under the key k is full or the first node that is closest to key k . If a node with a full-
list is found, the node A goes back one hop on the lookup path. This previous node appends the
pointer nodeaddr together with a timestamp to the end of its list under the key k. To query for a
list of values for a key k , get(k) is forwarded in the identifier space until the first node storing a
list for the key k is found. The requesting node can then download data from the list of nodes
obtained. The unique “spill-over” scheme in Coral inserts pointers along the lookup path for
popular keys. The hot spots are removed because load is balanced during pointer insertion and
retrieval and data downloading.

To find nearby data without going through distant nodes, Coral organizes nodes into a hierarchy
of clusters and puts nearby nodes in the same cluster. Coral consists of three levels of clusters.
Each cluster is a DSHT. In the lowest-level, Level 2, there are many clusters that cover peers
located in the same region and have the cluster diameter (round-trip time) 30msecs. In the next
higher level, Level 1, there are multiple clusters that cover peers located in the same continent
and have the cluster diameter 100msecs. The highest level, Level 0, is a single cluster for the
entire planet and the cluster diameter is infinite. Each cluster is identified by a cluster id. Coral’s
hierarchy is built on top of Chord. Each cluster is a Chord ring that is composed of a different set
of peers. The cluster at Level 0 is the original Chord ring. Each node belongs to one cluster at
each level and has the same node id in all clusters to which it belongs.

A node inserts a key/value pair into Coral by performing a put on all of its clusters. To retrieve a
key k , the querying node A first looks in its lowest level cluster. If the query fails in this level, the
node B in the same cluster whose id is closest to the key k is reached. The node B returns its
routing information in Level 1 to A. The node A then continues the search on its Level-1 cluster
starting with the closest Level-1 node C in B’s routing table. If the query fails again, A will
continue the search in the global cluster beginning with the closest Level-0 node E in C’s routing
table. The query latency is therefore reduced by resolving a query from nearby nodes to distant
nodes. The query hop count is still)(log NO , where N is the total number of nodes in the system.

A node only joins acceptable clusters. A cluster is acceptable to a node if its latency (round-trip
time) to 90% of the nodes in the cluster is below the cluster diameter. If a node can not find such
clusters, it forms its own cluster. A node first joins a lowest level cluster. Then the node inserts
itself to its higher-level cluster under the hash key of the IP addresses of its gateway routers.

20

When a node switches to a new cluster, its information is still kept in the old cluster. When old
neighbors contact this node, it replies with the new cluster information. These members in the old
cluster found the new cluster with more nodes and the same diameter. They will then switch to
this larger cluster. The cluster split is implemented by guiding the split toward two directions.
Some node in the cluster c is chosen as the cluster center. The nodes that are close to c form one
cluster. The nodes far away from c form another cluster.

The HIERAS in [38] is similar to Coral. They differ in three aspects. Firstly, HIERAS supports
DHT while Coral supports DSHT. Secondly, a HIERAS node joins the P2P hierarchy from the
top level to the lowest level while a Coral node joins the hierarchy in an opposite way. Thirdly,
HIERAS employs distributed binning to determine nodes in each Chord ring while Coral uses
ping-pong messages to get latencies for determining peers in the same cluster (a Chord ring).

Another work similar to Coral was proposed in [48]. The overlay is also a hierarchy of Chord-like
rings. The hierarchy emulates the nodes’ real-world organization. Each Chord ring corresponds to
an administrative domain. It requires that each node knows its own position in the hierarchy, and
two nodes are able to compute their common ancestor in the hierarchy. The overlay hierarchy is
formed in a bottom-up manner. All nodes in each leaf domain form their own overlay, a Chord
ring. The overlay for a domain in the next higher-level is formed by merging the overlays for its
child domains. The merging of two Chord rings is conducted as follows. Each node keeps all
neighbors in its original Chord ring. In addition, each node A in one Chord ring adds another node
B in the other Chord ring into its neighbor set if the following two conditions are satisfied: 1) B is
the closest node which is at least 2k away from A in the node ID space, where mk ??0 (Node
IDs are m-bit numbers). 2) B is closer to A than A’s immediate successor in A’s original Chord
ring. The query routing in [48] is performed from the bottom level to the higher level in the
hierarchy similarly to Coral.

3.2.3 Other hierarchical DHT P2Ps

In Kelips and Coral, all peers play equal roles in routing. The differences among peers, such as
processing power and storage capacity, are not considered. The work in [25] takes into account
peer heterogeneity such as CPU power and storage capacity. The nodes with more contributed
resources are called superpeers. Otherwise, they are called peers. A superpeer may be demoted to
a peer. A peer may also become a superpeer. The system architecture consists of two rings: an
outer ring and an inner ring. The outer ring is a Chord ring and consists of all peers and all
superpeers. The inner ring consists of only superpeers. Each superpeer is responsible for an arc in
the outer ring. Each superpeer sp maintains a peer table and a superpeer table. The peer table
contains the node ID and address of each peer in the sp’s managed arc. The superpeer table stores
the node ID and managed arc range of each superpeer. The routing state is in the order of

)(log NO , where N is the total number of nodes in the system.

To look up a document with the key k , the querying node first sends the query to its superpeer. If
the key k is in the superpeer’s managed arc, this superpeer locates and returns the successor of k
to the querying node. Otherwise, the superpeer checks its superpeer table and forwards the query
to another superpeer whose arc includes k. This second superpeer then looks up its peer table and
returns the successor of k to the querying node. The lookup cost is)1(O .

To support the superpeer selection, the system uses a volunteer service to keep track of resources
each node is willing and able to contribute to the system. Each new node registers its resources
with the volunteer service. The volunteer service is provided as a black box.

21

A new node first joins the outer ring just as in Chord [16] and obtains its superpeer from its
immediate neighbor. The new node then informs its superpeer to add a new entry for itself into
the peer table. Unless selected as a superpeer later, this new node remains as a peer and stays in
the outer ring in its life time. The peer failure is detected through periodic keep-alive messages
between peer neighbors. The neighbor peer detecting a peer failure notifies its superpeer to
remove the corresponding entry from the peer table. Superpeer failures are detected similarly. In
case of a superpeer failure, the load of the failed superpeer may be taken over by newly created
superpeers or existing neighbor superpeers. The actual load failover scheme is determined by the
arc range of the failed superpeer. All changes to the inner ring topology are distributed to all
superpeers.

The work in [26] also considers peer heterogeneity. However, the criterion for the superpeer
selection is different. The selection in [26] primarily considers nodes with longer uptime and
better connection, secondarily CPU power and network bandwidth. The hierarchy in [26] is also
somewhat different. It contains 2 tiers. Peers form disjoint groups in the lower tier based on the
network latency. Each group has its own overlay structure like Chord or CAN. A small number of
peers in each group are chosen as superpeers for that group. All superpeers in the system form a
separate overlay: a Chord ring in the top tier. Each “node” in the top-tier ring refers to all
superpeers in a group and is represented by a vector. Given a query for the key k, the querying
node first tries to look up the key in the lower tier. If the key is not found, the querying node
sends the query to one of the superpeers in its group. This superpeer routes the query on the top-
tier overlay towards the group that is responsible for the key k. After passing one or more
superpeers, the query reaches one superpeer in the responsible group. This superpeer routes the
query to the node closest to k in its own group in a similar way to the routing in a regular Chord
ring.

KaZaA [27] also employs a two-tier hierarchy. It chooses nodes with fastest Internet connections
and best CPU power as supernodes. A supernode indexes the files in its managed groups. In the
literature, it is not clear what type of structure is formed by supernodes. In Brocade [28], all peers
in the system form an overlay. Some peers in this overlay that have significant processing power,
minimal number of IP hops to the wide-area network, and high-bandwidth outgoing links are
chosen as supernodes. Each supernode acts as a landmark node for a network domain. Each
supernode keeps a list of nodes in its managed domain. All supernodes form a Tapestry overlay
on top of the base overlay. During query routing, the supernode of the querying source
determines whether the query can be resolved in the local domain or not. If not, the supernode
will route the query on the supernode overlay to the supernode of the node responsible for the
sought key.

3.3 Searching in non-DHT P2Ps

The non-DHT P2Ps try to solve the problems of DHT P2Ps by avoiding hashing. Hashing does
not keep data locality and is not amenable to range queries. This section introduces three kinds of
non-DHT P2Ps: SkipNet [29], SkipGraph[30] , and TerraDir [32]. SkipNet is designed for storing
data close to users. SkipGraph is intended for supporting range queries. TerraDir is targeted for
hierarchical name searches. Searching in such systems follows the specified neighboring
relationships between nodes.

3.3.1 SkipNet and SkipGraph

DHTs balance load among different nodes. However, hashing destroys data locality. The work in
[29] introduces content locality and path locality. Content locality refers to the fact that a data
item is stored close to its users, and the nodes in a given organization store their data items inside

22

the same organization. Path locality means that routing between the querying node and the node
responsible for the queried data are within their organization if these two nodes belong to the
same organization. The overlay SkipNet in [29] supports these two data localities by using a
hierarchical naming structure.

The SkipNet is based on the SkipList. A SkipList is a sorted linked list where some nodes have
pointers that skip over varying numbers of list elements in the increasing sort order. In a perfect
SkipList, all elements that have pointers skipping 2h elements form the level h. The highest level
of an element is called its height. In a probabilistic SkipList, node heights are determined
probabilistically. A SkipList may also be considered as a hierarchy of sorted linked lists that are
increasingly sparse.

The SkipNet is a modification of a SkipList. The data in the SkipNet are peer names (name IDs).
The linked list is changed to a doubly-linked ring for path locality. All SkipNet nodes have the
same Nlog2 number of pointers where N denotes the number of peers in the P2P. All pointers of
a peer constitute its routing table. Figure 4 shows the peer name order and the routing tables for
the peer A. The corresponding perfect SkipNet is shown in Figure 5. All peers are part of the root
ring at level 0. The root ring is divided into two disjoint rings at level 1. The pointer of each peer
at level 1 traverses 2 peers. Each ring at level 1 is divided into 2 disjoint rings at level 2. The
pointers at level 2 traverse 4 peers. This procedure continues until at level 3, each peer forms a
ring containing just itself. The pointers at level 3 traverse 8 (i.e. all) peers.

To ease efficient node insertions and deletions, the probabilistic SkipNet is used in practice. In
such probabilistic design, each ring at level i is still split into two rings at level i+1. However, the
peers in the two rings at level i+1 are randomly and uniformly selected from the peers in the
corresponding ring at level i. With such probabilistic design, a pointer at level i traverses an
expected 2i number of peers. The routing efficiency is)(log NO with high probability where N is
the number of peers in the P2P. SkipNet generates a random binary bit vector for each peer.
These random bit vectors are used to determine the random ring memberships of peers. A ring at
level i consists of all peers whose random vectors have the same i-bit prefix. For example, the
vectors for A and D are 000 and 001 respectively. Both A and T are in the same ring 0 at level 1
and the same ring 00 at level 2. The random bit vector is also used as the numeric ID of a peer.

W

B

E

R

I

U

Figure 4. The peer name order and sample routing tables.

O

Z

 2 R R

 1 I W

 0 E Z

Level clock-wise counter
 clock-wise

 2 E E

 1 Z O

 0 W R

Level clock-wise counter
 clock-wise

23

A file is stored in the node whose name ID is closest to the file name. To provide content locality,
the node name is used as the prefix of the file name. For example, a file cert9i.html stored in the
node education.oracle.com can be named education.oracle.com/cert9i.html. To search for a file
named fname, the querying node A forwards the query along its highest level pointers until the
node B whose name ID is closest to but is not greater than fname is reached. The node B
continues the search along its next lower level pointers until the node C whose name ID is closest
to but is not greater than fname is reached. This procedure continues until the node E whose name
ID is closest to fname among all levels is reached. If the node E stores the sought file , the query
succeeds. Otherwise, the query fails. To provide path locality, the DNS name with reversed
components is used as the prefix of the file name. For example, nodes in the domain oracle.com
can be named com.oracle.node1, com.oracle.node2, etc. In summary, searching by name ID visits
nodes whose name IDs share a non-decreasing prefix of the desired file name.

In SkipNet, searching can also be done by numeric ID. It is similar to searching by name ID.
However, the querying node starts the search from the lowest-level (Level 0). In Level 0, the
search stops at the node whose numeric ID matches the first bit in the desired numeric ID. This
node then continues the search in its level-1 ring and stops at the node with the first two matching
bits. This procedure continues until the longest prefix is found in a ring at Level h. The search
continues in this ring and terminates at the node that is numerically closest to the desired numeric
ID.

SkipNet supports constrained load balance: loads are balanced among peers in a constrained
range such as an organization. This is implemented by dividing the file name into two parts: a
prefix and a suffix. The prefix specifies the domain where load balance should occur. The suffix
is hashed uniformly to the peers in that domain.

B E I O R U W Z L = 3

Ring 000 Ring 001 Ring 010 Ring 011 Ring 100 Ring 101 Ring 110 Ring 111

 Ring 00 B R Ring 01 I W Ring 10 Z O Ring 11 E U L = 2

Ring 0

I

W

B R
L = 1

Ring 1

E

U

Z O

Figure 5. A sample of perfect SkipNet.

Root Ring

I

Z

B
R

E O

U W

L = 0

24

DHTs do not support range queries very well because hashing destroys the ordering on hash keys
such as file names. The overlay SkipGraph in [30] is tailored for range queries. SkipGraph is very
similar to SkipNet. There are three differences. First, SkipNet is designed for providing data
locality while SkipGraph is designed for supporting range queries. Secondly, each node in
SkipNet is a computer and the node name is the computer name while each node in a SkipGraph
is a resource and the node name is the resource name. Thirdly, SkipNet is a hierarchy of doubly-
linked sorted rings while SkipGraph is a hierarchy of doubly-linked sorted list. Searching for a
specific resource in SkipGraph is similar to searching by node name in SkipNet. A range query is
resolved by first locating the range boundary and then traversing the linked list in the lowest
level.

3.3.2 TerraDir

TerraDir [32] [33] is a general distributed directory service for searching data by hierarchical
names like Unix file names. The hierarchical name space consists of meta-information about the
data stored in the P2P system. The TerraDir directory structure is a rooted graph. Each node in
this graph has one single canonical name and may have other names. All canonical names form a
rooted tree. They are used to avoid cycles in wildcard queries and also used for failure recovery.
Users can query the data using any node name. Each TerraDir directory node has a single owner.
The owner is a peer that permanently maintains information for a TerraDir directory node. The
owner is in charge of the replication of the owned node. Only the owner can make modifications
to the owned node. Many directory nodes may be owned by the same owner. An owner keeps the
following information (state) for each owned directory node: a label, a set of incoming edges, a
set of outgoing edges, a set of attributes, a record, and some bookkeeping information. The
incoming and outgoing edges contain the information about the peers that own or replicate the
parent nodes and children nodes respectively. The attributes are meta-data about the node and are
represented using (type, value) pairs. The record is the actual data represented by this node. The
bookkeeping information is used for failure recovery. Each peer also permanently maintains the
meta-data for all nodes replicated on it.

To reduce the routing latency, the owner of each node on the query path caches the partial query
path from that node to the sought node. The querying peer (i.e. the owner of the starting node)
caches the entire query path. The cache entry for a cached node includes information about that
node, its parent and children, its owning peer, and a digest of the nodes permanently hosted by its
owning peer. The node owner replicates an owned node in randomly selected peers. The number
of replicas of an owned node is hk * , where k is a configurable constant and h is the level of that
node in the TerraDir directory tree. Level 1 consists of all leaf nodes. Level 2 consists of all
parents nodes of the leaf nodes. With this replication scheme, the average replication overhead
per node is a constant. The network addresses of peers that have replicas of a node A are also part
of the state which A’s parent maintains for A.

The searching in TerraDir is conducted as follows. Assume that a peer A is forwarding a query
towards the peer that owns, replicates, or caches the target node t. Peer A proceeds in the
following order:
1) It generates a list L of prefixes of node names it knows. L includes the target t, names of the

nodes A owns, replicates, or caches. The entire node name is also considered as a prefix of
that node name.

2) It sorts all elements in L in the increasing order of the distance (on the namespace tree)
between the prefixes and the target t. This sorted list is called a candidate list.

3) It searches the candidate list for the first prefix whose owning peer or replicating peer B is
known to A. This best prefix is closest to the target t.

4) It forwards the query to B.

25

The peer failures are handled as follows. If the peer storing the best prefix fails, the next best
prefix in the candidate list is tried. If all peers storing the prefixes in the candidate list fail, the
query is retried on a replica of the current node that is available and has not yet been visited. If
such a replica does not exist, the query is retried on a replica of the directory root that is available
and has not yet been visited. If no such replica exists, the query fails.

4. Searching in loosely structured P2Ps

In loosely structured P2Ps, the overlay structure is not strictly specified. It is either formed based
on hints or formed probabilistically. In Freenet [34] and Phenix [40], the overlay evolves into the
intended structure based on hints or preferences. In Symphony [31] and the work in [35], the
overlay is constructed probabilistically. Searching in loosely structured P2P systems depends on
the overlay structure and how the data is stored. In Freenet, data is stored based on the hints used
for the overlay construction. Therefore, searching in Freenet is also based on hints. In Phenix
[40], the overlay is constructed independent of the application. The data location is determined by
applications using the Phenix. Therefore searching in Phenix is application dependent. In
Symphony [35], the data location is clearly specified but the neighboring relationship is
probabilistically defined. Searching in Symphony is guided by reducing the numerical distance
from the querying source to the node that stores the desired data.

4.1 Freenet

Freenet [34] is one loosely structured decentralized P2P designed for protecting the anonymity of
data sources. It supports the DHT interface. Each node maintains a local datastore and a dynamic
routing table. The routing table of a node contains addresses of some other nodes and the keys
possibly stored on these nodes. Because of the storage capacity, both the datastore and the routing
table are managed using the LRU algorithm.

The query routing in Freenet is similar to DFS. Given a query for a file with a key k , the querying
node A first looks up its local datastore. If the file is in the local data store, the query is resolved.
Otherwise, A forwards the query to the node B in its routing table whose key is nearest to k. On
receiving the query, B performs the similar computation. If the file is not stored on B, then B

forwards the query to the neighbor in its routing table which has the nearest key to k . This
forwarding procedure continues until the query terminates. During query routing, some node may
not forward the query to the neighbor with the nearest key because that neighbor is down or a
loop may be detected. In such cases, this node tries the neighbor with the second nearest key. If
the node can not forward to all its neighbors, the node reports a failure back to its upstream node.
This upstream node will try its second best choice. A TTL limit is specified to restrict the number
of messages in query routing. When the file is found, the file is returned to the querying node hop
by hop along the reverse of the query path. Each node except the last one on the query path
caches the found file and creates an entry in the routing table for the key k.

26

To provide anonymity, each node except the last one on the query path can change the reply
message and claim itself or another node as the data source. Figure 6 depicts a querying routing
example. Node A starts the query for the file f with the key k stored on node F. It first sends the
query to node B with the nearest key. Node B then forwards to its best neighbor C. C reports the
failure back to node B because C does not have any other neighbor. B then forwards the query to
its second best neighbor D. D forwards the query to its best neighbor F. The file is found in F. F
then returns the file to A through the path F -> D -> B -> A. After this query, nodes A, B, D all
have the file f in their datastores and entries for the key k in their routing tables.

To insert a file f with key k , the inserting node first issues a query for the key k to avoid duplicate
keys. This search request for k is processed as a regular query. If an existing file with key k is
found, the file is returned to the inserting node. All nodes except the last one on the search path
cache the file and add an entry for the key k in their routing tables. The inserting node will retry
the insertion with a different key. If the search fails, the last node on the search path sends a “no-
collision” message back to the inserting node. The inserting node then sends an insert message to
its neighbor on the path established by the initial search for duplicate keys. On receiving the
insert message, the neighbor adds the new file into its own datastore and a new entry for the new
file into its routing table. The neighbor then forwards the insert message to the next node on the
initial search path. The insert message is normally propagated along the initial search path. If
some node on the search path fails, the upstream node forwards the insert message to the
neighbor with the second nearest key, etc. The insertion terminates successfully when a TTL limit
is reached and fails when the message is backtracked to the original inserter. To provide data
anonymity, any node on the insert path may change the insert message and claim itself or another
node as the data source. Freenet does not support persistent data storage. Unpopular files with
few requests are purged from the datastores by the LRU algorithm.

Freenet’s query routing improves over time as more queries are answered and more files are
inserted. Nodes tend to locate collections of similar keys. Once a node is listed in the routing
table under a key, it will receive many requests for keys similar to that key. As the node builds up
its routing table, it gets more informed about the locations of similar keys. Nodes also tend to
store files with clusters of keys. Forwarding a successful query causes a node to keep a copy of
the sought file with key k . File insertion normally follows the query path. Therefore files with
similar keys are inserted along the same query path. The nodes on the query path accumulate files
of similar keys in their datastores. Consequently, the routing tables of these nodes also contain
entries with similar keys.

A new node joins the Freenet by sending messages to some existing nodes discovered through
out-of-band means. The new node announces its presence using a random walk. The key

A B

C

D
Sought

file

Figure 6. A sample of querying processing in Freenet.

E

F

data request path data reply path data request failure path

27

associated with the new node is the XOR of the random seeds generated by all nodes on the
random walk. A cryptographic protocol is used during the random walk for verifying the truth of
each random seed.

4.2 Searching the power-law graph overlay

In a power-law graph, node degrees follow a power-law distribution [14]. This means that the
probability of a node with the degree k , kP , is

??? ckPk
where, ? is a positive integer, c is a constant. In many networks, ? is close to 2. Freenet [34]
and Gnutella [15] tend to evolve into a power-law graph with a power-law exponent close to 2.
An efficient strategy for searching power-law overlays is proposed in [14]. The scheme tries to
utilize high-degree nodes. First, each node forwards the query to a neighbor with a higher degree.
This rule continues until the node with the highest degree is reached. After the highest-degree
node is accessed, the node of approximately second highest degree will be selected. Following
this procedure, the searching algorithm approximately visits nodes with degrees in the decreasing
order across the entire graph.

The approach in [40] makes a power-law overlay “organically” emerge by guiding the node-join
process through preferences. The new node prefers connecting to existing nodes with high
degrees. Specifically, when a new node joins the system, it gets a list of live nodes using a
rendezvous mechanism. Then, the new node divides this node list into two sets: random
neighbors and friend neighbors. Next, the new node sends a TTL-1 ping message to each friend.
Each friend returns its own neighbors in a pong message to the new node. Each friend also
forwards the ping message to its own neighbors. On receiving the ping message, the friend’s
neighbors add the new node to their own special lists. The new node’s friends and the friends’
neighbors form a candidate list of the new node. The candidate list is then sorted based on the
decreasing order of the number of node appearances. The top c number of nodes in this list is
selected as the preferred list of the new node. The new node then creates connections to all nodes
in its random list and preferred list. The new node also periodically contacts the neighbors in its
preferred list for possible backward connections. A preferred neighbor increases its counter each
time it is contacted by the new node. If the counter reaches a constant value r, the preferred
neighbor decreases the counter by r and adds a backward connection to the new node. The work
in [40] is intended for a generic overlay topology independent of the application. Searching on the
resulting power-law overlay can be any scheme suitable for the specific application.

4.3 Searching the small-world model overlay

A small-world graph is a graph in which each node has many local connections and a few random
long-range connections. The diameter of a small-world graph is))((log 2NO [49]. Symphony [31]
employs the small-world graph model to implement the DHT. A data item with a key k is mapped
to a node whose ID is numerically closest to k. Each node has two short-distance links to its
immediate predecessor and successor in the ID ring and m long-distance links to other distant
nodes in the ID ring. These distant nodes are chosen probabilistically. Specifically, when
selecting a long-distance neighbor, a node A draws a random number r based on the probabilistic
distribution function:)ln/(1)(N

N rrp ? , where r is in]1,/1[N and N is the current number of
nodes in the P2P. Then the node A finds another node B that is responsible for the number r. This
node B is selected as one long-distance neighbor of node A. m is determined experimentally. N is
estimated based on the sum of segment lengths managed by a set of distinct nodes.

28

Symphony has a unidirectional routing protocol and a bidirectional routing protocol. In the
unidirectional routing protocol, each node on the query path forwards the query to one of its
immediate or distant neighbors that is clockwise closest to the sought key. In the bidirectional
routing protocol, the query is forwarded to one immediate or distant neighbor that has the
absolutely shortest distance (clockwise or counterclockwise) from the responsible node. The look-
ahead approach is proposed to reduce the query latency even further. In this approach, each node
looks ahead at its neighbors’ neighbors during query forwarding. For example , in the 1-lookahead
approach, each node forwards a query to the neighbor whose neighbor is closest to the sought
key.

In Freenet, the cache replacement policy LRU for datastores can destroy the key clustering in
both the datastores and the routing tables when the number of files stored is huge. The work in
[35] solves this problem by incorporating a small-world model in the datastore cache replacement
policy. Routing tables are tailored by datastores. Integrating a small-world mode l in the datastore
cache replacement policy makes the routing tables emulate a small-world model overlay.
Specifically, each new node selects a random seed from the key space. When a new data item
with a new key k comes in and the datastore is full, the node first compares the new key with the
existing key k’ in its datastore that is farthest from its seed. If the new key k is closer to the seed
than k’, then the node removes the file with key k’, stores the new file with key k , and adds a new
entry for k in the routing table. (This is intended for emulating short links to close neighbors in a
small-world model.) Otherwise, the node probabilistically removes k’, caches k , and adds a new
routing table entry for the new key k . (This is designed for emulating a small number of random
long links to distant neighbors in a small-world model.) This scheme enforces clustering of keys
around the random seed at each node’s datastore and routing table.

5. Conclusion

This chapter discusses various searching techniques in peer-to-peer networks (P2Ps). First, the
concept of peer-to-peer networks is introduced and different schemes are classified. Next,
searching strategies in unstructured P2P systems, strictly structured P2P systems, and loosely
structured P2P systems are presented. Strengths and weaknesses of these approaches are
addressed.

Clearly, significant progress has been made in the P2P research field. However, there are still
many issues left unresolved. First, good benchmarks need to be developed to evaluate the actual
performance of various techniques. The work in [36] [37] made such an initial attempt. Secondly,
schemes amenable to complex queries supporting relevance ranking, aggregates, or SQL are
needed to satisfy the practical requirements of P2P users [3]. An initial work in [51] addressed the
top-K query, the query supporting relevance ranking of query results. It uses a global index and
ranks the result using the term frequency and inverse document frequency. This scheme is not
amenable to large-scale systems. Thirdly, security issues have not been addressed by most current
searching techniques. An initial work in [45] adds security by preferring to forward queries to
friends obtained through third-party services such as instant messenger service. Fourthly, P2P
systems are dynamic in nature. Unfortunately existing searching techniques can not handle
concurrent node join-leave gracefully. Fifthly, good strategies are needed to form overlays that
consider the underlying network proximity. Some initial effort has been made in Coral, Hieras,
and other approaches in [42] [43] [44]. Both Coral and Hieras consider network proximity in the
initial construction of overlays. Coral uses ping-pong messages to estimate round-trip times
between nodes. Hieras employs distributed binning to estimate the proximity between nodes. The
works in [42] [43] [44] try to modify the existing overlay to match the underlying network. The
modification is conducted by deleting inefficient overlay links and adding efficient ones. Sixthly,
almost all existing techniques are forwarding-based techniques. Recently, a study on non-

29

forwarding techniques [39] was done. More effort is required to develop good non-forwarding
techniques and to compare non-forwarding techniques to various forwarding techniques.

Acknowledgements

This work was supported in part by US National Science Foundation grants CCR 9900646, CCR
0329741, ANI 0073736, and EIA 0130806.

References

1. H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Looking up data in

P2P systems”, Communications of ACM , Vol.46, No.2, 2003.
2. C. Yang and J. Wu, "A dominating-set-based routing in peer-to-peer networks," Proc. of the

2nd International Workshop on Grid and Cooperative Computing Workshop (GCC'03), 2003.
3. N. Daswani, H. Garcia-Molina, and B. Yang, “Open problems in data-sharing peer-to-peer

systems”, Proc. of the 9th International Conference on Database Theory (ICDT’03), 2003.
4. D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rolins, and

Z. Xu, “Peer-to-peer computing”, HP Lab technical report, HPL-2002-57, 2002.
5. D. Barkai, “Technologies for sharing and collaborating on the net”, Proc. of the 1st

International Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
6. B. Yang, and H. Garcia-Molina, “Improving search in peer-to-peer networks”, Proc. of the

22nd IEEE International Conference on Distributed Computing (IEEE ICDCS’02), 2002.
7. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in unstructured peer-

to-peer networks”, Proc. of the 16th ACM International Conference on Supercomputing
(ACM ICS’02), 2002.

8. A. Crespo, and H. Garcia-Molina, “Routing indices for peer-to-peer systems”, Proc. of the
22nd International Conference on Distributed Computing (IEEE ICDCS’02), 2002.

9. S. C. Rhea, and J. Kubiatowicz, “Probabilistic location and routing”, Proc. of the 21st Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’02),
2002.

10. V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-yazti, “A local search mechanism for peer-
to-peer networks”, Proc. of the 11th ACM Conference on Information and Knowledge
Management (ACM CIKM’02), 2002.

11. D. Tsoumakos, and N. Roussopoulos, “Adaptive probabilistic search in peer-to-peer
networks”, Proc. of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
2003.

12. D. Tsoumakos, and N. Roussopoulos, “Adaptive probabilistic search in peer-to-peer
networks”, technical report, CS-TR-4451, 2003.

13. D. Tsoumakos, and N. Roussopoulos, “A comparison of peer-to-peer search methods”, Proc.
of 2003 International Workshop on the Web and Databases, 2003.

14. L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in power-law
networks”, Physical Review, Vol. 64, 046135, 2001.

15. http://www.gnutella.com
16. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H.

Balakrishnan, “Chord: A scalable peer-to-peer lookup service for internet applications”, Proc.
of the 2001 ACM Annual Conference of the Special Interest Group on Data Communication
(ACM SIGCOMM’01), 2001.

17. A. Rowstron, and P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems”, Proc. of the 18th IFIP/ACM International Conference of
Distributed Systems Platforms, 2001. www.cs.rice.edu/CS/systems?Pastry.

30

18. K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao, “Distributed object location in a
dynamic network”, Proc. of 14th ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 2002.

19. P. Maymounkov, and D. Mazieres, “Kademlia: A peer-to-peer information system based on
the XOR metric.” Proc. of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), Springer-Verlag version, 2002.

20. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network”, Proc. of the 2001 ACM Annual Conference of the Special Interest
Group on Data Communication (ACM SIGCOMM’01), 2001

21. M. F. Kaashoek, and D. R. Karger, “Koorde: a simple degree-optimal distributed hash table”,
Proc. of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03), 2003.

22. D. Xuan, S. Chellappan, and M. Krishnamoorthy, “RChord: an enhanced chord system
resilient to routing attacks”, Proc. of the 2003 International Conference in Computer
Networks and Mobile Computing, 2003.

23. I. Gupta, K. Birman, P. Linga, A. Demers, and R. V. Renesse, “Kelips: building an efficient
and stable P2P DHT through increased memory and background overhead”, Proc. of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS’03), 2003

24. M. J. Freedman, and D. Mazieres, “Sloppy hashing and self-organized clulsters”, Proc. of the
2nd International Workshop on Peer-to-Peer Systems (IPTPS’03), 2003

25. A. T. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structured superpeers: leveraging
heterogeneity to provide constant-time lookup”, Proc. of the IEEE Workshop on Internet
Applications (WIAPP’03), 2003.

26. L. Garces-Erice, E.W.Biersack, P.A. Felber, K.W. Ross, and G. Urvoy-Keller, “Hierarchical
peer-to-peer systems”, Parallel Processing Letters,Vol.13, 2003.

27. KaZaA, http://www.kazaa.com
28. B.Y. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. D. Kubiatowicz, “Brocade: landmark

routing on overlay networks”, Proc. of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS’02), 2002.

29. N. J.A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman, “SkipNet: a scalable
overlay network with practical locality properties”, Proc. of 4th USENIX Symposium on
Internet Technologies and Systems (USITS’03), 2003.

30. J. Aspnes, and G. Shah, “Skip Graphs”, technical report, Yale University, 2003.
31. G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed hashing in a small world”,

Proc. of 4 th USENIX Symposium on Internet Technology and Systems (USITS’03), 2003
32. B. Silaghi, B. Bhattacharjee, and P. Keleher, “Query routing in the TerraDir Distributed

Directory”, Proc. of SPIE ITCom’02, 2002.
33. B. Bhattacharjee, P. Keleher, B. Silaghi, “The design of TerraDir”, technical report, CS-TR-

4299, University of Maryland, College Park, 2001.
34. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anonymous

information storage and retrieval system”, Proc. of ICSI Workshop on Design Issues in
Anonymity and Unobservability, 2000.

35. H. Zhang, A. Goel, and R. Govindan, “Using the small-world model to improve freenet
performance”, Proc. of the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’03), 2003.

36. S. Rhea, T. Roscoe, and J. Kubiatowicz, “Structured peer-to-peer overlays need application-
driven benchmarks”, Proc. of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), 2003.

37. T. Lin, H. Wang, “Search performance analysis in peer-to-peer networks”, Proc. of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS’03), 2003.

38. Z. Xu, R. Min, and Y. Hu, “HIERAS: a DHT based hierarchical P2P routing algorithm”,
Proc. of the 32nd International Conference on Parallel Processing (ICPP’03), 2003.

31

39. B. Yang, P. Vinograd, and H. Garcia-Molina, “Evaluating GUESS and Non-forwarding peer-
to-peer search”, Proc. of the 24th IEEE International Conference on Distributed Computing
Systems (IEEE ICDCS’04), 2004

40. R. H. Wouhaybi, and A. T. Campbell, “Phenix: supporting resilient low-diameter peer-to-
peer topologies”, Proc. of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’04), 2004.

41. E. Cohen, and S. Shenker, “Replication strategies in unstructured peer-to-peer networks”,
Proc. of the ACM Annual Conference of the Special Interest Group on Data Communication
(ACM SIGCOMM’02), 2002.

42. Y. Liu, X. Liu, and L. Xiao, “Location-aware topology matching in P2P systems”, Proc. of
the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’04), 2004.

43. S. Ren, L. Guo, S. Jiang, and X. Zhang, “SAT-Match: a self-adaptive topology matching
method to achieve low lookup latency in structured P2P overlay networks”, Proc. of the
18thIEEE International Parallel & Distributed Processing Symposium (IPDPS’04), 2004

44. Y. Liu, L. Xiao, and L. M. Ni, “Building a scalable bipartite P2P overlay network”, Proc. of
the 18 thIEEE International Parallel & Distributed Processing Symposium (IPDPS’04), 2004.

45. S. Marti, P. Ganesan, and H. Garcia-Molina, “DHT routing using social links”, Proc. of the
3rd International Workshop on Peer-to-Peer Systems (IPTPS’04), 2004.

46. D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: a scalable and dynamic emulation of the
butterfly”, Proc. of Principles of Distributed Computing (PODC) 2002, 2002.

47. H. Shen, C.-Z. Xu, and G. Chen, “Cycloid: a constant-degree and lookup-efficient P2P
overlay network”, Proc. of the 18thIEEE International Parallel & Distributed Processing
Symposium (IPDPS’04), 2004.

48. P. Ganesan, K. Gummadi, and H. Garcia -Molina, “Canon in G major: designing DHTs with
hierarchical structure”, Proc. of the 24th IEEE International Conference on Distributed
Computing Systems (IEEE ICDCS’04), 2004.

49. J. Kleinberg, “The small-world phenomenon: an algorithmic perspective”, Proc. of the 32nd
ACM Symposium on Theory of Computing, 2000.

50. B. Bloom, “Space/time trade-offs in hash coding with allowable errors”, Communications of
ACM, Vol. 13(7), 1970.

51. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen, “PlanetP: using gossiping to
build content addressable peer-to-peer information sharing communities”, Proc. of the 12th
IEEE International Symposium on High Performance Distributed Computing (HPDC’03),
2003.

52. I. Jawhar and J. Wu, "A Two-Level Random Walk Search Protocol for Peer-to-Peer
Networks", Proc. of the 8th World Multi-Conference on Systemics, Cybernetics and
Informatics, 2004.

53. http://www.napster.com

