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ABSTRACT
One of the fundamental trade-offs in compact routing
schemes is between the space used to store the routing table
on each node and the stretch factor of the routing scheme
– the maximum ratio over all pairs between the cost of the
route induced by the scheme and the cost of a minimum cost
path between the same pair. All previous routing schemes
required storage that is dependent on the diameter of the
network. We present a new scale-free routing scheme, whose
storage and header sizes are independent of the aspect ratio
of the network. Our scheme is based on a decomposition into
sparse and dense neighborhoods. Given an undirected net-
work with arbitrary weights and n arbitrary node names,
for any integer k ≥ 1 we present the first scale-free rout-
ing scheme with asymptotically optimal space-stretch trade-
off that does not require edge weights to be polynomially

bounded. The scheme uses eO(n1/k) space routing table at
each node, and routes along paths of asymptotically optimal
linear stretch O(k).

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign – Distributed networks; G.2.2 [Discrete Mathematics]:
Graph Theory – Network problems, Graph labeling.

General Terms: Algorithms, Theory.

Keywords: Compact Routing.

1. INTRODUCTION
One of the most basic functionalities of any distributed

network is the ability to route messages between pairs of
nodes. Given that each node has an arbitrary network iden-
tifier, a routing scheme allows any source node to route mes-
sages to any destination node, given the destination’s net-
work identifier. It is natural to consider a weighted network
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in which the cost of routing a message is proportional to the
cost of the path taken from source to destination. In such a
model it is desirable to minimize routing costs by routing on
short paths. In this sense the efficiency of a routing scheme
is measured by its stretch factor, the maximum ratio over all
source destination pairs, between the cost of routing from
the source to the destination and the cost of a minimum
cost path. The trivial solution to routing on shortest paths
with stretch factor 1 is for each node to store a routing table
with (n−1) entries that contains the next hop of an all pairs
shortest path algorithm. This solution is very expensive as
it requires each node to store Ω(n log n) bits. Thus, network
designers are faced with two conflicting goals: reduce both
the stretch factor and the size of the routing tables.

For a weak variant of this problem, called labeled rout-
ing, both lower bounds and asymptotically optimal upper
bounds are known (see [29]). In this version of the prob-
lem, the designer of a solution may pick node names that
contain (bounded size) information about their location in
the network. This variant is useful in many aspects of net-
work theory, but less so in practice: Knowledge of the la-
bels needs to be disseminated to all potential senders, as
these labels are not the addresses by which nodes of an ex-
isting network, e.g., an IP network, are known. Further-
more, if the network may admit new joining nodes, all the
labels may need to be re-computed and distributed to any
potential sender. Finally, various recent applications pose
constraints on nodes addresses that cannot be satisfied by
existing labeled-routing schemes. E.g., Distributed Hash Ta-
bles (DHTs) require nodes names in the range [1..n], or ones
that form a binary prefix.

In this paper we assume a network with arbitrary node
names and arbitrary edge weights. This model is called the
name-independent model because the designer of the rout-
ing scheme has no control over node names. This routing
problem may appear daunting: In order to route to a node,
we must first somehow gain knowledge about its location
in the network, but we must do so without exceeding the
distance to the target.

A fundamental difficulty in all previous schemes is their
heavy dependence on the scale of the network. Let the as-
pect ratio ∆ = max d(u, v)/ minu 6=v d(u, v) be the ratio be-
tween the largest distance and the smallest distance, then
many schemes require memory that tends to infinity as ∆ in-
creases. This suggests that there might exist a lower bound
associated with the aspect ratio. However, the best known
lower bound for name-independent routing [29] does not con-
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tain such dependence. Hence one would hope to remove the
dependence on ∆ altogether. We will say that a routing
scheme is scale-free if its memory requirement is indepen-
dent of the aspect ratio. Obtaining scale-free schemes is
a challenging goal: Until now, the only scale-free schemes
for general graphs have exponential stretch [7, 8, 6]. Specifi-

cally, when each node stores eO(n1/k) bit routing information
the best stretch bound achieved is O(2k). Obtaining such
scale free solutions was raised as an open question in [6,
22]. In this paper we fully answer this problem and provide
an exponential improvement from O(2k) to asymptotically
optimal O(k) stretch.

1.1 Our contribution
We construct for any k ≥ 1 a routing scheme with linear

stretch factor of O(k) and with eO(n1/k)-bit routing tables

per node and eO(1)-bit headers1.

Theorem 1. For each weighted n-node graph, and inte-
ger k ≥ 1, there is a polynomial time constructible name-
independent routing scheme with stretch factor O(k) that

uses O(k2n1/k log3 n)-bit routing tables per node.

1.2 Techniques
Broadly speaking, there are two main techniques used

to construct routing schemes. The first technique is ran-
dom sampling, in which landmark nodes are selected ran-
domly. This technique has been successful in labeled rout-
ing, providing asymptotically optimal space-stretch trade-
offs [29]. For name-independent schemes, random sampling
based schemes were used for optimal trade-offs for stretch 3

schemes with eO(
√

n) space [5]. However, all general schemes

with eO(n1/k) space, based on random sampling, obtained
exponential stretch O(2k) (see [7, 8, 6]).

The second technique is sparse covers, in which the graph
is covered by clusters of bounded diameter such that each
node belongs to a small number of clusters. This technique
was used for several name-independent schemes [25, 9, 10,
6, 3]. In all the schemes above that use sparse covers, a
cover with clusters of diameter < 2i is constructed for each
i ∈ {1, . . . , dlog ∆e}, hence these schemes are inherently not
scale-free.

Our scheme is based on a new decomposition into dense
and sparse neighborhoods. It uses a subtle combination of
random sampling and sparse cover routing techniques de-
pending on the density or sparsity of each neighborhood.
This decomposition allows us to remove any dependence on
the aspect ratio. Informally, a sparse neighborhood is one
where the number of nodes does not increase to much if the
radius is increased by a constant factor. For sparse neigh-
borhoods, we use random sampling techniques that turns
out to be efficient in this case. Specifically, nodes main-
tain a tree-routing scheme for all the nearby landmarks.
For dense neighborhoods, we use sparse cover based routing
techniques. Since dense neighborhoods imply that the num-
ber of nodes is multiplied when the diameter is increased by
a constant, the number of dense neighborhood scales a node
belongs to is O(log n). This fact allows to use sparse cover
techniques in a scale-free manner. While our decomposition
was developed independently of [20], it bears some similari-
ties to the “measured decent” approach of Krauthgamer et

1The notation eO(·) indicates complexity similar to O(·) up
to poly-logarithmic factors.

al. [20]. However, using the “measured decent” approach for
routing fails since it chooses scales for each density change.
Hence searching on a ball with Ω(log n) density changes may
incur O(log n) � k stretch which is unacceptable. Our de-
composition circumvents this by decomposing both by den-
sity change and by diameter change.

Our sparse/dense decomposition technique has interest in
its own, as a general approach to remove the aspect ratio
parameter in many other constructions. For example for
labeled and name-independent routing schemes for networks
with low doubling dimension [2].

1.3 Related work
The space-stretch trade-off has been extensively studied

under various models and extensions. We refer the reader
to Peleg’s book [24] and to the surveys of Gavoille and Pe-
leg [17, 18] for comprehensive background.

Peleg and Upfal [25] were the first to study this trade-off
in a parameterized manner. For unit cost networks they
achieve O(k) stretch with a total of O(k3n1+1/k log n) bits
for all routing tables. For weighted networks, Awerbuch et
al. [7, 8] present a scale-free routing scheme with exponen-

tial stretch of O(k29k) that requires eO(n1/k) bits per node.
Arias et al. [6] improve the stretch to O(k22k) with the same
memory bound.

More recently, constant stretch routing schemes have been
designed for networks whose induced metric space has a low
doubling dimension [2, 19], and for unweighted graphs ex-
cluding a fixed minor [4] (including trees and planar graphs).
These schemes require a polylogarithmic space, hidding a
multiplicative constant depending on the doubling dimen-
sion, or on the minor excluded.

Awerbuch and Peleg use sparse covers [9] in order to build
a hierarchal routing scheme [10]. Their scheme is based on
tree covers with geometrically increasing radii. Therefore
there is an inherent geometric factor in their memory re-

quirement. They achieve stretch O(k2) with eO(n1/k log ∆)-
bit routing tables, and O(log ∆) headers, where ∆ is the
maximum weighted distance between any two nodes di-
vided by the minimum weighted distance between any two
unique nodes. Abraham, Gavoille, and Malkhi [3] improve
the stretch factor to O(k) with the same memory require-
ment. This solution is adequate if the network weights are
polynomial in the number of nodes. However for arbitrary
networks the diameter may be arbitrarily large, for instance
∆ = Ω(2n), and solutions based on the aspect ratio of the
network may become unusable.

A weaker variant of compact routing is based on the la-
beled routing model. Instead of assuming nodes have arbi-
trary names, in this model, the network designer is allowed
to name the nodes in a topology dependent manner. This
paradigm does not provide for a realistic network design,
however, the tools devised for its solution have proven use-
ful as building blocks of full routing schemes.

Eilam et al. [14] present a stretch 5 labeled scheme witheO(n1/2) memory, whereas Cowen [13] presents a stretch 3

labeled scheme with eO(n2/3) memory. Later, Thorup and

Zwick [29] improve to stretch 3 using eO(n1/2) bits. These
three schemes uses O(log n)-bit node names. Thorup and
Zwick also give in [29] a generalization of their scheme and
using techniques from their distance oracles [30], achieve la-
beled schemes with stretch 4k−5 (and even 2k−1 with hand-
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shaking) using eO(n1/k)-bit routing tables and o(k log2 n)-bit
node names. Labeled routing on a trees is explored in [15,
29], achieving stretch 1 with O(log2 n/ log log n) bits for lo-
cal tables and for headers, and this is tight [16].

Thorup [28] showed that planar graphs support stretch
1 + ε labeled routing schemes with polylogarithmic space.
This has been generalized by Abraham and Gavoille [1] to
graphs excluding a fixed minor with same stretch and space
bounds. For low doubling dimension networks, strech 1 + ε
labeled schemes exist [27, 12, 26], but all of them have a
dependency in the aspec ratio ∆ in the memory bounds.

A variation of our sparse-dense decomposition was re-
cently used to provide some scale-free labeled and name-
independent routing schemes for networks with low doubling
dimension [2], this solved a question raised by Slivkins [26].
While the decomposition in that paper is superficially sim-
ilar, the techniques used in this paper are significantly dif-
ferent. Specifically, the sparse level case uses a landmark
property of Lemma 3 together with a new error-reporting
tree routing scheme of Lemma 4. The dense level case is
based on applying spares covers of [9] with the routing ex-
tensions of [3].

2. SPARSE AND DENSE
NEIGHBORHOOD DECOMPOSITION

2.1 Preliminaries
Given is a weighted graph G = (V, E, ω) of size n = |V |

with a non-negative weight function ω : E → R+. Let
the cost of a path be the sum of the weights of its edges.
For any two nodes u, v ∈ V let d(u, v) denote the cost
of a minimum cost path between u and v. Let ∆ de-
note the aspect ratio (normalized diameter) of G, ∆ =
maxu 6=v d(u, v)/ minu 6=v d(u, v). In order to avoid drag-
ging a normalization constant, from here on assume that
minu 6=v d(u, v) = 1. Define the radius r ball around node
u, B(u, r), as the set of nodes whose distance is at most r
from u, B(u, r) = {v | d(u, v) ≤ r}. For any node u, let
T (u) denote a minimum cost path spanning tree rooted at
u. Given a lexicographic order on the nodes, for any node
u ∈ V , set Z ⊆ V , and integer m > 0 define N(u, m, Z)
as the m closest nodes from Z to node u, i.e., as the set
N(u, m, Z) = N such that N ⊆ Z, |N | = m and for
all x ∈ N and y ∈ Z \ N either d(u, x) < d(u, y) or
d(u, x) = d(u, y) and x is lexicographically smaller than y.
Let I denote the set I = {0, 1, . . . , dlog ∆e}. Given a param-
eter k, let K denote the level set K = {0, 1, 2, . . . , k}. Each
node has an arbitrary unique network identifier consisting
of polylog(n) bits. Using standard hashing techniques it
is possible to generalize the model and assume nodes have
arbitrarily long unique labels.

Our solution is based on using a new decomposition into
a series of balls around each node that have a combined
combinatorial and geometric restriction. Each ball has at
least n1/k more nodes than the previous and its radius is at
least twice the radius of the previous.

Definition 1. For all u ∈ V and i ∈ K define the range
a(u, i) as follows. Let a(u, 0) = 0. Then recursively let
a(u, i + 1) be the smallest positive integer j > 0 such that

|B(u, 2j)| ≥ n1/k|B(u, 2a(u,i))|

(or let a(u, i + 1) = log ∆ if there does not exist such an
integer).

For all u ∈ V and i ∈ K denote the neighborhood ball
A(u, i) as the ball who’s radius is 2a(u,i) around u. Formally,

A(u, i) = {u} for i = 0 and A(u, i) = B(u, 2a(u,i)) for i > 0.
Intuitively, if the gap between a(u, i) and a(u, i + 1) is

small, then the neighborhood A(u, i + 1) is “dense” relative
to the neighborhood A(u, i), otherwise A(u, i+1) is “sparse”
relative to A(u, i). A central definition capturing this intu-
itive notion is the following.

Definition 2 (Dense level). For u ∈ V and i ∈ K,
define that i is a dense level for node u if

a(u, i) < a(u, i + 1) ≤ a(u, i) + 3

Define that i is a sparse level for node u if it is not a dense
level. In words, in a dense level, we find at least n1/k times
as many nodes as the current level by looking at a ball whose
radius is at most 23 times the current level.

2.2 Dense Levels
For every u ∈ V define the range set of node u, denoted

L(u), as L(u) = {a(u, i) | i ∈ K} and define the extended
range set R(u) as,

R(u) = {i ∈ I | ∃a ∈ L(u),−1 ≤ a− i ≤ 4} .

Define F (u, i) = B(u, 2a(u,i)−1). The main property of
dense levels is captured in the following lemma.

Lemma 2 (Dense neighborhoods).
If i is a dense level for u and v ∈ F (u, i), then a(u, i) ∈ R(v).

Proof. Recall that F (u, i) = B(u, 2a(u,i)−1). Let v ∈
F (u, i), then B(v, 2a(u,i)−1) ⊆ A(u, i) (see Figure 1), and
hence

|B(v, 2a(u,i)−1)| ≤ |A(u, i)| .

Since a(u, i+1) ≤ a(u, i)+3, then B(v, 2a(u,i)+4) ⊇ A(u, i+
1), and hence

|B(v, 2a(u,i)+4)| ≥ |A(u, i + 1)| ≥ |A(u, i)| · n1/k .

A(u,i)

F(u,i)=B(u,2a(u,i)-1)

A(u,i+1)

B(v,2a(u,i)+4)

u
v

B(v,2a(u,i)-1)

Figure 1: Example of a level i dense neighborhood
for node u and a node v ∈ F (u, i).
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Together, these imply |B(v, 2a(u,i)+4)| ≥ n1/k ·
|B(v, 2a(u,i)−1)|. Therefore, there exists some index a(v, j)
such that a(u, i)− 1 ≤ a(v, j) ≤ a(u, i) + 4.

2.3 Sparse Levels
We use a low discrepancy cover of ‘landmark’ nodes. We

use k + 1 sets V = C0 ⊇ C1 ⊇ · · · ⊇ Ck = ∅ of land-
marks defined as follows. Let C0 = V . For i = 1 to
k − 1 iteratively set Ci to contain each element of Ci−1

independently, with probability (n/ ln n)−1/k. The random-
ized procedure can be de-randomized using the method of
conditional probabilities and pessimistic estimators. Let
B =

�
B(u, 2i) | u ∈ V, i ∈ I

	
, note that |B| ≤ |V |2. We

will use two simple properties.

Claim 1. With high probability, for any B ∈ B, if
4(ln n)(k−j)/knj/k ≤ |B| for j ∈ K then B ∩ Cj 6= ∅.

Proof. Union bound and Pr[B ∩ Cj = ∅] ≤ (1 −
(n/ ln n)−j/k)4(ln n)(k−j)/knj/k

≤ e4 ln n.

Claim 2. With high probability, for any B ∈ B, if
|B| < 4(ln n)(k−(j+1)/k)n(j+2)/k for j ∈ K then |B ∩ Cj | ≤
16n2/k ln n.

Proof. Union bound, Chernoff bound and
E[|B ∩ Cj |] ≤ 4(ln n)(k−(j+1)/k)n(j+2)/k(n/ ln n)−j/k ≤
4n2/k(ln n)(k−1)/k.

If x ∈ Cj , and x 6∈ Cj+1, define that node x has rank j.
For every u ∈ V and i ∈ K define the nearby landmarks
S(u, i) to be the n2/k log n closest nodes in Ci.

S(u, i) = N(u, 16n2/k log n, Ci)

and define S(u) =
S

i∈K S(u, i). Define m(u, i) as the high-
est rank of any node in A(u, i). Formally,

m(u, i) = max {` ∈ K | A(u, i) ∩ C` 6= ∅} .

Define the center c(u, i) as the closest node to u from

Cm(u,i). Let E(u, i) = B(u, 2a(u,i+1)/6). The main property
of sparse levels is captured in the following lemma.

Lemma 3 (Sparse neighborhoods).
Let i be a sparse level for u, i.e., a(u, i + 1) > a(u, i) + 3. If
v ∈ E(u, i), then c(u, i) ∈ S(v).

Proof. Recall that E(u, i) = B(u, 2a(u,i+1)/6) and
m(u, i) is the highest rank of any node in A(u, i). Formally,

m(u, i) = max {` ∈ K | A(u, i) ∩ C` 6= ∅} .

Let j ∈ K be the index such that 4(ln n)(k−j/k)nj/k ≤
|A(u, i)| < 4(ln n)(k−(j+1)/k)n(j+1)/k then from Claim 1 it
follows that m(u, i) ≥ j. For any v ∈ E(u, i), we have (see
Figure 2)

c(u, i) ∈ A(u, i) ⊆ E(u, i) ⊆ B(v, 2a(u,i+1)/3) ⊆ B(u, 2a(u,i+1)/2) .

Since level i is sparse for u, by definition there are strictly
fewer than n1/k|A(u, i)| nodes in B(u, 2a(u,i+1)/2). There-
fore

|B(v, 2a(u,i+1)/3)| < n1/k|A(u, i)| ≤ 4(ln n)(k−(j+1)/k)n(j+2)/k .

From Claim 2 and since m(u, i) ≥ j it follows that

there are less than 16n2/k log n nodes of rank m(u, i) in

B(v, 2a(v,i+1)/3). Since c(u, i) ∈ B(v, 2a(v,i+1)/3) then
c(u, i) ∈ S(v) as required.

A(u,i)

E(u,i)=B(u,2a(u,i+1)/6)

B(u,2a(u,i+1)/2)

A(u,i+1)=B(u,2a(u,i+1))

u
v

B(v,2a(u,i+1)/3)

Figure 2: Example of a level i sparse neighborhood
for node u and a node v ∈ E(u, i).

3. A SCALE-FREE ROUTING SCHEME
The goal of this section is to present the construction for

the following upper bound:

Theorem 1. For each weighted n-node graph, and inte-
ger k ≥ 1, there is a polynomial time constructible name-
independent routing scheme with stretch factor O(k) that

uses O(k2n1/k log3 n)-bit routing tables per node.

The high level view of the routing scheme is a simple it-
erative protocol. For phases i = 1 to k, search for v as
follows: If A(u, i) is sparse, use the sparse neighborhood
routing strategy. If A(u, i) is dense, use the dense neigh-
borhood routing strategy. We begin by describing the two
routing strategies.

3.1 Sparse neighborhood routing strategy
For every center c(u, i) define T (c(u, i)) as a minimum

cost path tree rooted at c(u, i) that spans all nodes v such
that c(u, i) ∈ S(v). Routing on these trees is done using
the following name-independent tree-routing scheme, which
is an enhancement of Laing’s algorithm [21].

Lemma 4. For any k ≥ 1, and for any weighted tree T =
(V, E, ω) and for any designated root r ∈ V , there exists a
name-independent error-reporting tree-routing scheme with
the following properties:

1. Each node stores O(kn1/k log2 n) bits of routing infor-
mation.

2. For any j ∈ K, the root can perform a j-bounded
search for destination v.

A j-bounded search for v has the following properties:

(a) If v ∈ N(r, nj/k, V ) then it reaches v with stretch
2j − 1;

(b) Otherwise it returns a negative response to
the root incurring a cost of at most (2j −
2)max

n
d(r, v) | v ∈ N(r, n(j−1)/k, V )

o
.
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Proof. Given a tree T = (V, E) with m ≤ n nodes and
a root t ∈ T . We give each node v ∈ V three names. Let
a0, . . . , am−1 denote the nodes of T sorted by increasing dis-
tance from the root. Formally, for any two indexes, if i < j
then dT (r, ai) < dT (r, aj) or dT (r, ai) = dT (r, aj) and ai is
lexicographically smaller than aj . The first name we give
nodes, called their primary name, makes use of words of

the alphabet Σ =
n

0, 1, 2, . . . n1/k − 1
o

. Specifically, name

a0 = r as the empty word (ε). Then name a1, . . . , an1/k

respectively with one digit in Σ in increasing order
(0), (1), . . . , (n1/k − 1) respectively. Then name each of the

next n2/k nodes a1+n1/k , . . . , a1+n1/k+n2/k by a name in Σ2

in increasing lexicographic order, (0, 0), (0, 1), . . . , (0, n1/k −
1), (1, 0), (1, 1), . . . , (1, n1/k−1), . . . , (n1/k−1, 0), . . . , (n1/k−
1, n1/k − 1) respectively. Let ji =

Pi
j=0 nj/k. Continue this

naming process, naming nodes aji−1+1, . . . , aji respectively

by a name in Σi until all nodes in T are exhausted, up to at
most a k-digit node name in Σk. For 0 ≤ j ≤ k let Vj de-
note the set of nodes whose name contains at most j digits.
Next, we give v its name based on the labeled tree routing
of Thorup and Zwick [29] and Fraigniaud and Gavoille [15]:

Lemma 5. [15, 29] For every integer k > 1 and every
weighted tree T with m nodes there exists a labeled routing
scheme that, given any destination label, routes optimally on
T from any source to the destination. The storage per node
is O(m1/k log m) bits, the label size, and the header size are
O(k log m) bits.

For a tree T containing a node v, let µ(T, v) denote the
routing information of node v and λ(T, v) denote the desti-
nation label of v in T as required from Lemma 5. We require
from each node v to store µ(T, v). The second name we as-
sign v is λ(T, v). The third node-name makes use of a hash
function h : T → Σk. We require that, for all 0 ≤ j ≤ k,
maxu∈Σj−1 | {v ∈ Vj | u is a prefix of h(v)} | ≤ |Σ| log n =

n1/k log n. This requirement can be fulfilled with high prob-
ability using a Θ(log n)-wise independent hash function that
requires Θ(log2 n) bits of storage [11, 23]. A node u ∈ V
with name (x1, . . . , xj) stores:

1. Information for labeled tree routing µ(T, u). This re-

quires O(n1/k log n) bits.

2. The labels λ(T, v) of all the nodes v whose name
is (x1, . . . , xj , y) for all y ∈ σ. This requires

O(kn1/k log n) bits.

3. The map v → λ(T, v) of the n1/k log n closest nodes
v (from the root) whose first j indexes of their hash
h(v) equal x1, . . . , xj . Formally, define Z = {z |
h(z)[1 . . . j] = x1, . . . , xj} and store v → λ(T, v) for all

v ∈ N(r, n1/k log n, Z). This requires O(kn1/k log2 n)
bits.

To search from the root r for a node t whose hash is
y1, . . . , yk on a j-bounded search, do the following:

1. current := r; round := 1;

2. if round = j and current does not know of t then
return to root r with negative response.

3. Otherwise if current knows of t’s label then route to
t.

4. Otherwise route to the node whose name is
(y1, . . . , yround), set round := round + 1, and update
current to be the current node.

5. goto 2;

Suppose the destination is a node t whose hash is
y1, . . . , yk and whose name has length i (t ∈ Vi and t /∈ Vi+1).
The destination will be found after at most i iterations of
the algorithm. This is true since if i = 1, then the root
knows about the destination. Otherwise, at the i − 1th it-
eration we reach the node x whose name is (y1, . . . , yi−1)
and due to the properties of the hash function we know that
|{v ∈ Vi | (y1, . . . , yi−1) is a prefix of h(v)}| ≤ |Σ| log n and
hence x stores the label of t.

Since all the nodes that are visited have smaller names
than i, it is easy to see that the stretch is bounded by 2i−1 ≤
2k − 1.

If a j-bounded search is performed and j < i then t may
not be found. At the (j−1)th iteration, a node whose name
is (y1, . . . , yj−1) will report the error to the root. Since all
nodes visited have names with at most j − 1 digits then the
total cost is bounded by (2j − 2)maxv∈Vj−1{d(r, v)}.

The storage per node v is O(log2 n) + O(|Σ| log n) +

O(k|Σ| log n) + O(k|Σ| log2 n) = O(kn1/k log2 n), for the
hash function h, routing information µ(T, v), the primary
name entries, and the hash name entries respectively.

For all u ∈ V and i ∈ K recall that E(u, i) =

B(u, 2a(u,i+1)/6). Given a sparse level i the algorithm routes
to the root c(u, i). We prove that E(u, i) ⊆ T (c(u, i)) and
hence searching from c(u, i) for v ∈ E(u, i) on the tree
T (c(u, i)) will succeed with stretch of at most 2k−1. In order
to bound the cost incurred if v 6∈ E(u, i) every node u ∈ V
stores for every i ∈ K the index b(u, i). Where b(u, i) is the
minimal integer j such that a j-bounded search on T (c(u, i))
of any node in E(u, i) succeeds. Since b(u, i) is defined as the
minimal index to find in T (c(u, i)) all nodes of E(u, i) then
we prove that a negative result from this search has cost
proportional at most to the diameter of E(u, i). More pre-
cisely, we now define the information stored by every node,
and the routing algorithm for sparse neighborhoods.

3.2 Storage for sparse neighborhood strategy
For any tree T and node u ∈ T , let τ(T, u) denote

the information stored on u that is induced by the name-
independent tree-routing scheme of Lemma 4. Every node
u ∈ V stores τ(T (v), u) for all v ∈ S(u). In addition, for
every i ∈ K, u records c(u, i) and b(u, i).

3.3 Routing algorithm for sparse
neighborhood strategy

1. route to the root c(u, i).

2. Perform a b(u, i)-bounded search on T (c(u, i)) for des-
tination v.

3. If destination is not found, continue to iteration i + 1.

3.4 Dense neighborhood routing strategy
If i is a dense level, the routing strategy uses tree covers

that have a bounded radius. A source of difficulty in arbi-
trarily weighted graphs is that the logarithm of the diame-
ter may be arbitrarily large (� n, for example ∆ = 2n).
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Hence, tree covers of geometrically increasing radii, e.g.,
as used in [9, 3], require each node to participate in too
many partition levels any may require Ω(n) bits per node.
Our solution for general graphs is to let each node main-
tain routing information only for a limited number of radii
that surround its range set. However, special care must be
taken to make sure that the destination and all the nodes
along the way store information for the same radius that
the source is using. Recall that the range set is defined as
L(u) = {a(u, i) | i ∈ K}, and the extended range set R(u) is
defined as, R(u) = {i ∈ I | ∃a ∈ L(u),−1 ≤ a− i ≤ 4}. For
every i ∈ I define Gi = (Vi, Ei) as the subgraph induced
by the nodes Vi = {u | i ∈ R(u)}. We prove that in a dense

level i for u, if v is in B(u, 2a(u,i)−1) then i ∈ R(v) and more-
over both source and destination are connected in Gi. Hence
a tree cover in Gi may be used for routing. The tree cover
is built using the construction of [9] with the improvements
of [3].

Lemma 6. [9, 3] For every weighted graph G =
(V, E, ω), |V | = n and integers k, ρ ≥ 1, there exists a poly-
nomial algorithm that constructs a collection of rooted trees
TCk,ρ(G) such that:

1. (Cover) For all v ∈ V , there exists T ∈ TCk,ρ(G) such
that B(v, ρ) ⊆ T .

2. (Sparse) For all v ∈ V , | {T ∈ TCk,ρ(G) | v ∈ T} | ≤
2kn1/k.

3. (Small radius) For all T ∈ TCk,ρ(G), rad(T ) ≤ (2k −
1)ρ, where rad(T ) = maxu {dT (r, u)}.

4. (Small edges) For all T ∈ TCk,ρ(G), maxE(T ) ≤ 2ρ,
where maxE(T ) = maxe∈E(T ) {ω(e)}.

For every i ∈ I we build a tree cover TCk,2i(Gi) only
on the graph Gi (note that Gi may have several connected
components, so a tree cover is built for each connected com-
ponent separately). Since |R(u)| = O(k) then every node u
participates only in O(k) such tree covers. For all u ∈ V and
i ∈ K, denoting j = a(u, i), define W (u, i) ∈ TCk,2j (Gj) to

be the tree such that B(u, 2j) ⊆ W (u, i). On a dense level i,
routing towards a destination begins by routing to the root
of the tree W (u, i) and then using a name-independent tree-
routing scheme. For all i ∈ I and T ∈ TCk,ρ(Gi) we use the
name-independent error-reporting tree-routing scheme of [3]
with an improved analysis.

Lemma 7. For every tree T = (U, E, ω), |U | = m, U ⊂
V , |V | = n, and integer k there exists a name-independent
tree-routing scheme on T with error-reporting that routes
on paths of length bounded by 4rad(T ) + 2kmaxE(T ), each

node requires O(kn1/k log n) memory bits, and headers are
of length O(log2 n). Moreover, routing for a non-existent
name in T also incurs a (closed) path of length 4rad(T ) +
2kmaxE(T ) until a negative result is reported back to the
source.

Proof sketch. We use the same construction of [3], the
only change is to use Lemma 5 that requires O(k log n) bit
labels instead of O(log2 n/ log log n) bit labels used in [3].
Since each node stores only one such label, the space re-
quirement is only O(kn1/k log n) bits (all other labels used
require only O(log n) bits).

We prove that if i is a dense level for u then ∀v ∈ F (u, i)
we have i ∈ R(v) (Lemma 2) and hence the tree routing
scheme on W (u, i) will reach any node in F (u, i) or report
a negative response at a cost proportional to k times the
radius of F (u, i) (recall F (u, i) = B(u, 2a(u,i)−1)). We now
define the information stored by every node, and the routing
algorithm for dense neighborhoods.

3.5 Storage for dense neighborhood strategy
For any tree T and node u ∈ T , let φ(T, u) de-

note the information stored on u that is induced by
the name-independent error-reporting tree-routing scheme
of Lemma 7. For every u ∈ V and i ∈ R(u) node u stores
φ(T, u) for all T ∈ TCk,2i(Gi) such that u ∈ T . In addi-
tion, every node u ∈ V records w(u, i) the root of the tree
W (u, i).

3.6 Routing algorithm for dense
neighborhood strategy

1. Route to the root w(u, i).

2. Route on the tree W (u, i) to either find destination v
or get a negative response.

3. If destination is not found, continue with iteration i+1.

3.7 Analysis
Throughout the description below, the source node is de-

noted u and the destination node is denoted v. Routing
from u to v is done by iteratively expanding the search
through the neighborhoods of u, A(u, 1), A(u, 2), . . . , A(u, k)
until the destination is found. The routing strategy in each
neighborhood A(u, i) depends on whether level i is sparse
or dense for node u. If A(u, i) is sparse, we use the sparse
neighborhood strategy. If A(u, i) is dense we use the dense
neighborhood routing strategy.

The following technical lemmata are used to prove Theo-
rem 1.

Lemma 8. Let i be a dense level for u, and let v ∈
F (u, i). Then a dense neighborhood routing strategy from
u will reach v.

Proof. Recall that R(u) = {i | ∃` ∈ L(u),−1 ≤ ` − i ≤
4}. Denote a(u, i) = j, by the properties of dense neigh-
borhood stated in Lemma 2, for every x ∈ F (u, i) node x
has a(u, i) ∈ R(x) and hence x ∈ Gj . Recall that the tree
W (u, i) ∈ TCk,2j (Gj) is defined to be the tree such that

BGj (v, 2j) ⊆ W (u, i). Therefore, F (u, a) ⊆ W (u, i) and it
is possible to reach v by routing on W (u, i).

Lemma 9. Let i ∈ K be a dense level for u ∈
V . Then the dense neighborhood routing strategy requires
O(k3n2/k log n) memory bits and incurs a cost of O(k ·
2a(u,i)) either to reach v if v ∈ B(u, 2a(u,i)−1) or otherwise
to return a negative response to the source u.

Proof. Storage: For the dense level routing strategy
every node maintains O(k) ranges. For each range, ev-

ery node participates in O(kn1/k) trees, each tree requires

O(kn1/k log n) bits. For a total of O(k3n2/k log n) bits.
Routing cost : By combining Lemma 6 and Lemma 7 the

cost of searching for v on Ga(u,i) is at most O(k · 2a(u,i)).
From Lemma 8, the destination will actually be found on
Ga(u,i) if v ∈ F (u, i) = B(u, 2a(u,i)−1).
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Lemma 10. Let i be a sparse level for u, and let v ∈
E(u, i). Then the sparse neighborhood routing strategy from
u will reach v.

Proof. Denote c = c(u, i), and recall that c is the clos-
est landmark of highest rank in A(u, i). By the proper-
ties of sparse neighborhoods stated in Lemma 3, every node
v ∈ E(u, i) has c ∈ S(v). Hence, all nodes in E(u, i) store
τ(T (c)), including all nodes on the shortest path of T (c)
from u to c. Since b(u, i) is defined so that a b(u, i)-bounded
search on T (c) will find all nodes in E(u, i) then v ∈ E(u, i)
will be found.

Lemma 11. Let i ∈ K be a sparse level for u ∈
V . Then the sparse neighborhood routing strategy requires
O(k2n3/k log3 n) memory bits and incurs a cost of O(k ·
(d(u, v) + 2a(u,i))) to reach v if v ∈ B(u, 2a(u,i+1)/6) or oth-
erwise returns a negative response to the source at a cost
O(k · 2a(u,i+1)).

Proof. Storage: For the sparse level routing strat-
egy every node maintains k closest landmark sets
S(u, 1), . . . , S(u, k). For each set, a node participates in

16n2/k log n trees, each tree requires O(kn1/k log2 n) bits.

For a total of O(k2n3/k log3 n) bits.

Routing cost : If v ∈ E(u, i) = B(u, 2a(u,i+1)/6), then by
Lemma 10 the routing strategy will route from u to c(u, i)
and then to v. By definition c(u, i) ∈ A(u, i) so the path to

c(u, i) incurs a cost of at most d(u, c(u, i)) ≤ 2a(u,i). Then
by Lemma 4 the b(u, i)-bounded search will find v at cost at
most (2k−1)d(c(u, i), v) ≤ (2k−1)(d(u, v)+d(u, c(u, i))) ≤
(2k − 1)(d(u, v) + 2a(u,i)). So the total cost is bounded by

2a(u,i) + (2k − 1)(d(u, v) + 2a(u,i)) = O(k(d(u, v) + a(u, i)))

as required. Otherwise if v 6∈ E(u, i) = B(u, 2a(u,i+1)/6)
then the round-trip cost of reaching c(u, i) and returning is

at most 2a(u,i)+1. Then by Lemma 4 the cost of a b(u, i)-

bounded search is bounded by (2k − 2)2a(u,i+1)/6. This is

true since b(u, i) is defined so that all the nb(u,i)/k closest
nodes in T (c(u, i)) all belong to E(u, i). Hence the total

cost for a negative answer is 2a(u,i)+1 + (2k − 2)2a(u,i+1) =

O(k · 2a(u,i+1)).

We now prove the main theorem.

Proof of Theorem 1. For storage, by combining
Lemma 11 and Lemma 9 it follows that every node stores
O(k2n3/k log3 n)-bit routing tables. For stretch analysis,
let i ∈ K be the first iteration index in which v is found.
There are two cases to consider.

1. If level i − 1 is sparse for u, then given that v is not
found in iteration i− 1, by Lemma 11, v is not inside
E(u, i− 1), and hence, d(u, v) ≥ 2a(u,i)/6.

2. Otherwise, level i − 1 is dense for u, and again, v is
not found in iteration i− 1. In this case, by Lemma 9,
v is not inside F (u, i − 1) = B(u, 2a(u,i−1)/2). By
density, a(u, i) ≤ a(u, i−1)+3. Putting these two facts

together, we have d(u, v) ≥ 2a(u,i−1)/2 ≥ 2a(u,i)−3/2.

In either case, 2a(u,i) = O(d(u, v)). From Lemma 11 and

Lemma 9, reaching v on level i will cost O(k · 2a(u,i)) if i is

dense or O(k(d(u, v) + 2a(u,i))) if i is sparse. Hence in both
cases, level i searches are bounded by O(k · d(u, v)). For the

cost of the negative responses, note that the highest level
that fails is i−1. From Lemma 11 and Lemma 9 the cost of a
negative response for level j is either O(k ·2a(u,j)) for a dense

level, or O(k · 2a(u,j+1)) for a sparse level. Hence, the total

cost of negative response is at most
Pi−1

j=0 O(k · 2a(u,j+1)) =

O(k · 2a(u,i)) = O(k · d(u, v)).

4. CONCLUSION
Our routing scheme can be adopted to work on strongly

connected directed graphs, this extension will appear in the
full paper. Our upper bounds have asymptotically optimal
stretch with poly-logarithmic storage overhead. There are
two natural open questions. First, what is the exact low-

est stretch obtainable with a eO(n1/k) memory? Even for
the labeled case, the bound is not known to be tight. Sec-
ond, what is memory requirement for schemes with Θ(log n)
stretch? Our upper bounds requires O(log5 n) bits in such
cases. We believe at least one logarithm can be removed by
improving the hash function used by Lemma 5.
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