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On the Fundamental Tradeoffs between Routing
Table Size and Network Diameter in Peer-to-Peer

Networks
Jun Xu, Member, IEEE, Abhishek Kumar, and Xingxing Yu

Abstract— In this work, we study a fundamental tradeoff
issue in designing distributed hash table (DHT) in peer-to-peer
networks: the size of the routing table v.s. the network diameter.
It was observed by Ratnasamy et al. that existing DHT schemes
either (a) have a routing table of size

���������
	���
and network

diameter of
��������� 	 ��

, or (b) have a routing table of size � and
network diameter of

������������
. They asked whether this represents

the best asymptotic “state-efficiency” tradeoffs. Our first major
result is to show that there are straightforward routing algo-
rithms which achieve better asymptotic tradeoffs. However, such
algorithms all cause severe congestion on certain network nodes,
which is undesirable in a P2P network. We then rigorously define
the notion of “congestion” and conjecture that the above tradeoffs
are asymptotically optimal for a congestion-free network. We
show that the answer to this conjecture is negative in the
strict sense. However, the answer becomes positive if the routing
algorithm is required to eliminate congestion in a “natural” way
by being uniform. Our second major result is to prove that the
aforementioned tradeoffs are asymptotically optimal for uniform
algorithms. Furthermore, for uniform algorithms, we find that
the routing table size of

��������� 	 ��
is a magic threshold point that

separates two different “state-efficiency” regions. Our third result
is to study the exact (instead of asymptotic) optimal tradeoffs
for uniform algorithms. We propose a new routing algorithm
that reduces the routing table size and the network diameter of
Chord both by 21.4% without introducing any other protocol
overhead, based on a novel number-theoretical technique. Our
fourth and final result is to present Ulysses, a congestion-free
non-uniform algorithm that achieves a better asymptotic “state-
efficiency” tradeoff than existing schemes in the probabilistic
sense, even under dynamic node joins/leaves.

Index Terms— Modeling, Communication system routing,
Routing, System analysis and design.

I. INTRODUCTION

As peer-to-peer (P2P) file sharing systems become increas-
ingly popular in recent years, scalability has been recognized
as the central challenge in designing such systems. Early
systems such as Napster and Gnutella all have some design
limitations that prevent them from being scalable: Napster uses
centralized directory service and Gnutella employs flooding
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Fig. 1. Asymptotic tradeoff curve between the routing table size and the
network diameter

when searching for objects. To meet this challenge, various
distributed hash table (DHT) schemes have been proposed in
different P2P systems [1], [2], [3], [4], [5]. The basic idea of
a DHT scheme is to use a hash table-like interface to locate
the objects, and to distribute the duty of maintaining the hash
table data structure, in the face of node joins/leaves, to all
participating P2P nodes. In DHT schemes, each node stores
objects that correspond to a certain portion of the key space,
and uses a routing table (referred to as a “finger table” in
Chord [4]) to forward the request for an object not belonging
to its key space to appropriate “next-hop” nodes. The request
will eventually be forwarded to a node responsible for the key
of the object through a chain of such “next-hops”.

This paper studies a fundamental tradeoff issue in designing
DHT: the number of neighbors (equivalently the size of the
routing table) vs. the network diameter, the number of hops
a request needs to travel in the worst case. In a network
consisting of � nodes, it is straightforward to see that when
� neighbors are maintained (the “full directory” case) at
each node, the search cost is ������� , and when each node
only maintains one neighbor (essentially a “logical ring”), the
search cost is ��� �!� . This plots two end points on the tradeoff
curve1 shown in Fig. 1. In practical systems, neither extreme is
desirable: the “full directory” approach involves heavy main-
tenance cost due to frequent joins and leaves of the P2P nodes,

1Note that the curve is symbolic in the sense that the coordinates are in
asymptotics rather than in exact values.
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and the ��� �!� diameter incurs intolerable network delay. Such a
tradeoff has been referred to as the “state-efficiency” tradeoff2

in [7]. It was observed in [7] that existing DHT schemes
either (a) have a routing table of size ����������� �!� and network
diameter of �����	�
� � �!� , which includes Chord [4], Tapestry [1],
Plaxton et. al. [2], and Pastry [3], or (b) have a routing table of
size � and network diameter of ��� ������ � , which includes CAN
[5]. It was asked in [7] whether �����	�
� � �!� and ��� ��������� are
the asymptotic lower bounds for the network diameter when
the routing table sizes are ��������� � �!� and � , respectively. We
clarify and rigorously formulate this interesting question, and
answer it in a comprehensive way. Since the answer to the
above questions in the strict sense is negative, as we will
show later, the existing algorithms [1], [2], [3], [4], [5] are
not placed on the optimal tradeoff curve in Fig. 1.

The first major result of this paper is to clarify the tradeoff
problem. We first formally characterize the metrics involved in
the tradeoff. Then we show that there are routing algorithms
which achieve better asymptotic tradeoffs than both (a) and (b)
above3. However, these algorithms all cause severe congestion
on certain network nodes even when the load is assumed to
be uniform. Based on this observation, we define the notion
of “congestion”. We initially conjecture that if the network is
required to be “congestion-free”, the aforementioned tradeoffs
(a) and (b) are asymptotically optimal. However, the answer
to this conjecture is negative in the strict sense. As pointed out
by Karp [8], the butterfly network4 can achieve better bounds
than both (a) and (b). However, if the algorithms are required
to be congestion-free “in a natural way” by being uniform
(defined later), the answer to this conjecture becomes positive.
In studying this conjecture, we will thoroughly clarify the role
that “congestion-free” plays in this “state-efficiency” tradeoff.

The second major result of this paper is that, if the routing
algorithms are uniform, we prove that the aforementioned
tradeoffs (a) and (b) are indeed optimal. This result is practi-
cally important since almost all existing DHT schemes [4],
[1], [2], [3], [5] are uniform. Furthermore, we show that
��������� � �!� is a magic threshold point for the routing table size.
If the routing table size is asymptotically smaller or equal to
��������� � �!� , then for any algorithm, “congestion-free” constraint
prevents it from achieving the smaller network diameter. When
the routing table size is asymptotically larger than �����	�
� � �!� ,
however, the “congestion-free” condition no longer plays this
“bottleneck” role. This may explain why many existing DHT
algorithms [1], [2], [3], [4] stay around this magic threshold.

Our third major result is to study the exact (contrary to
asymptotic) tradeoff between the routing table size and the
network diameter. We first formulate this tradeoff problem as
an optimization problem and explain that finding its solution
can be prohibitively expensive in terms of computational
complexity for large-size networks. Then we propose a new
routing algorithm that reduces the routing table size and
the network diameter of Chord [4] both by 21.4% without
introducing any other protocol overhead, based on a novel

2The term was originally introduced in [6] in a similar but different context.
3This is the reason why, in Fig. 1, we deliberately do not put any of the

existing DHT schemes on the optimal asymptotic tradeoff curve.
4Introduced first in parallel computing.

number-theoretical technique.
Our fourth and final result is Ulysses, a congestion-free

DHT scheme that achieves better “state-efficiency” tradeoffs
than both (a) and (b) mentioned above, by giving up the
uniformity constraint. In particular, with an average routing
table size of �����	�
� � �!� , Ulysses can reach the diameter of
��� � �������� ������� ������� � , as compared to ��������� � �!� in existing schemes
[1], [2], [3], [4] with the same asymptotic routing table size.
Our design is based on the butterfly network, suggested to
us by Karp [8] as a counterexample to the aforementioned
conjecture. However, three challenges need to be addressed in
order to design a low-diameter DHT based on the butterfly
network: (a) the butterfly still has edge congestion, (b) a
sparse network needs to be “mapped” to the “fully-meshed”
static butterfly, and (c) a self-stabilization scheme is needed
to handle dynamic node joins/leaves, without degrading the
size of the routing table. We will discuss how to address these
challenges in Sec. VI.

The rest of the paper is organized as follows. In Section II,
we discuss the background and related work. The aforemen-
tioned four major results are established in Sections III, IV, V,
and VI, respectively. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we survey the routing aspects of the existing
DHT schemes. Throughout this paper, other aspects will be
discussed only when they become relevant to routing. In a
P2P system using a DHT scheme, each node is responsible
for storing certain parts of the key space. The routing and
self-stabilization (reacting to node joins/leaves) algorithms
running on each node collectively implement a hash table-like
interface that allows each node to perform lookup, insertion,
and deletion of objects.

In DHT schemes, a routing algorithm is characterized by
the routing tables employed at each node. Like in Chord [4],
we assume that both the name space and the key space of
the network are ������� �!�!�!� �#" � . We let $ denote the size of
the routing table at each node. At a node of identification% � , the routing table basically consists of a set of entries& �('*) � + ),�.-�) � + ) ��/ ��0 ) 021 . The routing algorithm is simply the
following: forward a request for key 3 to node 4 � % �657-8) � + ) �
if 39" % �;:<'*) � + ) . Here 4���= � is the node currently (subject to
changes due to node joins/leaves) responsible for the key = ,
and the arithmetic is in the cyclic sense (i.e., modulo � ). To
draw an analogy between this routing table and the forwarding
table in an IP router, we can view '>) � + ) as IP prefixes and
-
) � + ) as “next hops” at node

% � . For the correctness of routing,
- ) � + )@?A - ) � + B and ' ) � + )�C ' ) � + B AED when

% ?AGF , and H
��0 ) 021

' ) � + )
consists of all the keys not handled by the node

% � . A analogy
to IP routing will be that all IP addresses should be covered
by the union of IP prefixes in the forwarding table. In uniform
DHT algorithms (defined rigorously later in Definition 2),
where ' ) � + ) and - ) � + ) are all independent of

% � , we simply
write them as ' ) and - ) .

In Chord [4], � AJI 1 , ' ) ALK I )�M �N� I ) � , and - ) AOI )�M � , where% A ��� I �!� �!�.��$ . The size of the routing table is exactly �	�
� � � ,
and the network diameter is also ����� � � . Algorithms used in
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[1], [2], and [3] are similar, except that they use different basis
(Chord uses 2). In Tapestry [1], for example, � A ��� , ' )�� � � B A
K F�� � ) ��� F 5 ��� � � ) � , - )�� � � B A F�� � ) , where

% A ��� ��� �!� ���	� " �
and F A ��� I �!� �!�.��� " � . Pastry [3] is similar to Tapestry except
that � is chosen as a exponential of 2. In both algorithms,
the network diameter ( ����� � � ) is smaller than Chord’s, but the
routing table size is larger ( ��� " ���8�	�
� � � ). However, in terms
of asymptotics, these algorithms all maintain a routing table of
size ��������� � �!� and achieve a network diameter of �����	�
�8� �!� .
CAN [5], on the other end, maintains no more than a constant
number � of neighbors. In CAN, '>) A K � )�M � �	� ) � and -�) A
� )�M � , where � � A � . The network diameter is ��� �������� .

It is asked in [7] whether ( ��������� � �!� , �����	�
� � �!� ) and ( � ,
��� ��������� ) are the optimal asymptotic tradeoffs between the
routing table size (first coordinates) and the network diameter
(second coordinates). We clarify and answer this question
in the next four sections. The closest work to ours in the
theoretical computer science domain is [6], which studies
“state-efficiency” tradeoff in a general network. However, they
do not address the important issue of congestion. Also they
use the storage cost to gauge the routing table size, while
we use the self-stabilization overhead. Both issues make a
major difference in the tradeoff results and also the techniques
needed to derive such results.

Viceroy, also based on butterfly, is proposed in [9] to
achieve �����	�
� � �!� network diameter with a constant routing
table size. The expected diameter of the Viceroy network is
about


 �	�
� � � , which is larger than many existing schemes
[1], [2], [3], [4]. There is no straightforward way to port
the “mapping” (mentioned in Sec. I) and self-stabilization
techniques of Viceroy to Ulysses, in which the routing table
size is ��������� � �!� .

III. RIGOROUS CHARACTERIZATION OF THE TRADEOFF

PROBLEM

In this section, we first rigorously characterize the metrics
involved in the tradeoff. Then we show that ��������� � �!� and
��� ��������� are not the asymptotically optimal network diameter
values when the routing table size is constrained by ��������� � �!�
and � respectively. We show, however, that the schemes which
achieve better tradeoffs all cause severe congestion to certain
network nodes. After we define the notion of congestion, we
conjecture that if “congestion-free” is added as an additional
constraint, ��������� � �!� and ��� ��������� will be the asymptotically
optimal network diameter values.

A. Characterization of the metrics involved in the tradeoff

In this section, we formally characterize the notion of the
routing table size in the DHT context. Recall from Sec. II that
a routing table consists of entries

& �(' ) � + ),�!-
) � + ) ��/ ��0 ) 0*1 and
we use $ to denote the “size” of routing table. In other words,
in measuring the routing table size, we count the number of
different “next-hops” (neighbors). This is different from the
way they are counted in [6] (counting the storage cost of
' ) � + ) ) and in IP routers (counting the number of IP prefixes).
Counting the number of neighbors makes sense in DHT, since
there are frequent joins and leaves of nodes, and the cost of

maintaining the routing table is directly proportional to the
number of neighbors. In other words, the number of neighbors
measures the cost of self-stabilization for adapting to node
joins/leaves. The storage cost metric used in [6] and in IP
routers, on the other hand, become irrelevant in the DHT
context given today’s storage price and technology.

Counting the number of neighbors, however, is the correct
measure only for stateless routing algorithms. A stateless
routing algorithm makes a routing decision based only on the
destination address (i.e., object key in the request). Therefore,
in a stateless routing algorithm, a node does not need to know
about node joins/leaves other than those that change some of
its “next-hop” values (i.e., identity of the neighbors), since
they will not affect its routing decision. All existing DHT
schemes are stateless. Contrary to stateless routing is to let
the routing decision be based on both source and destination
addresses. In such algorithms, a node

% � may have to react
to the join and leave of a node even though it does not
affect

% ���� neighboring relationship with other nodes. This
certainly would add more complexity to both the routing
and the self-stabilization aspects of the DHT. Whether such
“stateful routing” will bring some performance benefit (e.g.,
better load balancing) and hopefully outweigh its overhead
remains an interesting topic for future research. Throughout
this paper, we will only study “stateless” algorithms.

Recall that � denotes the size of the name space. In Sections
III and IV we assume that the network under consideration
consists of � nodes, ������� �!�!�!� �9" � , handling the key spaces& ��/ ,

& ��/ , �!�!� , and
& � " ��/ , respectively. Clearly, we implicitly

assume here that every node in the name space exists and is
alive5 (i.e., “everywhere dense”). This assumption is accept-
able since we only establish “negative results” in Sections III
and IV: no way for an algorithm to achieve a lower diameter
than the bound even if it does not need to deal with node
joins/leaves. In Sections V and VI where we establish “positive
results”, however, we will no longer use this assumption and
will address the issue of stabilization under joins/leaves.

Tradeoff analysis is essentially to study the lower bound
of one metric while fixing the other. All lower bound results
target worst-case performance. Assuming certain traffic or
join/leave patterns, one can design routing algorithms that
employ heuristics (e.g., route caching) to enhance average
performance. Such heuristics, however, will not be able to
improve the performance lower bound in the worst case. So
our worst-case tradeoff results do not conflict with better
(average) tradeoff results achieved using such heuristics.

B. Network diameter lower bounds

It has been asked in [7] whether ��������� � �!� and ��� � � ��� �
are the best achievable network diameters when the routing
table sizes are ��������� � �!� and � respectively. Our answers to
both questions are “no”. We show that there are networks of
diameter ��� � �������� ������� � �����
��� � and ��������� � �!� when the routing table
sizes are ��������� � �!� and � respectively.

5This assumption, however, sounds a little ironic: if we know that all the
nodes exist and are alive, why not send the request for key � to the node �
directly? Note however that in this case, the routing table size for a node is
actually ������� .
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We formulate a DHT scheme as a directed graph ��� ��� � ,
where � is the set of all participating DHT nodes and � is the
neighbor relationships among them. There exists an edge from
a node

%
to a node F if node F is one of node

% �  neighbor
in the DHT. We further require the network to be strongly
connected (i.e., every one can reach everyone else), which is
clearly required of all DHT schemes. Under this formulation,
the questions above become whether ��������� � �!� and ��� ���������
are the best achievable network diameters when the out-degree
of each node is bounded by ��������� � �!� and � , respectively. The
following proposition shows otherwise.

...
...

log(n)

levels... ... ......
log(log(n)−1)

Fig. 2. The constructive proof of Proposition 1

Proposition 1 (Reachable lower bounds): There exists a
strongly-connected directed graph of diameter ��� � �������� ����� � � ����� ��� �
in which the out-degree of any node is no more than �	�
� � � .
There also exists a strongly-connected directed graph of diam-
eter ��������� � �!� in which the out-degree of any node is no more
than � . The network diameter lower bound is ��� � ��� � �� ��� � � � ��� � ��� � or
��������� � �!� when the routing table size is no more than ����� � �
or � respectively.

Proof: We prove the first assertion first. Fig. 2 shows such
a graph that satisfies the aforementioned condition. There is a
pseudo “root” in this graph and a directed perfectly-balanced
( ������� � -1)-ary tree6 grows from this “root”. This allows the
“root” to reach everyone else in at most �	�
� � � ��� � � M � � � A� ����� �� ����� � � ������� M � � steps. Also every node other than the root has
a directed edge back to the root7. This allows every node
to reach every other node through the root. So the network
diameter is at most

� ��� � �� ������� � �����
� M � � 5 � = ��� � ��� � �� ����� � � ����� ��� � . Note
that the maximum out-degree at each node is no more than
�	�
� � � . The second assertion follows by similar arguments.

As to the third assertion (the lower bound), note that when
each node’s out-degree is bounded by � , a node can only reach
��� other nodes using paths no longer than � . If � is the diameter,
then � ��� �9" � since there are � nodes in the graph. When
� A ����� � � , we get � �

� ��� � �	� M � �� ������� ����� � ; when � A � , we get
� � ����� � � � " ��� .

6For simplicity of discussion, we omit the use of floors and ceilings when
appropriate.

7Note that the “pointers” in DHT are unidirectional. In Fig. 2, although the
in-degree of the root is ������� , its out-degree, which is also its routing table
size, is only 	�
� 	 ����� .

Remark: In later discussion, we refer to the proof of the
third assertion (lower bound) as the reachability argument.

We can see that the routing algorithm used in the network
shown in Fig. 2 is hierarchical: the root has a high in-
degree and handles most of the traffic. This is undesirable
in P2P networks since the root will become the performance
bottleneck and central point of failure. Our initial hypothesis
was that if we bound the degree sum (in-degree plus out-
degree) at each node to ��������� � �!� and � , the network diameter
bounds �����	�
� � �!� and ��� �� ��� � should become optimal. This
is unfortunately false, as shown by the following proposition.

...
...

log(n)

levels... ... ......
log(log(n)/2)

Fig. 3. The constructive proof of Proposition 2

Proposition 2: There exists a strongly-connected directed
graph of diameter ��� � ����� �� ������� � ����� ��� � in which each node’s degree
sum (in-degree plus out-degree) is no more than �����	�
��� �!� .
There exists a strongly-connected directed graph of diameter
��������� � ��� � � �!� in which each node’s degree sum is no more
than � .

Proof: We only prove the first assertion since the
arguments for the second assertion are similar. Fig. 3 shows
such a graph that satisfies the aforementioned condition. There
is again a pseudo “root” in this graph and a directed perfectly-
balanced (

� ����� �
� )-ary tree grows from this “root”. This allows

the “root” to reach everyone else in at most ����� ��� ��� ���� � � A� ��� � �� ��� � � � ��� � �� � steps. Also, every node other than the root has a

directed edge to its parent. This allows every node to reach ev-
ery other node in I � ��� � �� ����� � � ��� � �� � = ��� � ��� � �� ��� � � � ��� � � � � steps (through

their lowest common ancestor). Clearly, in this network, no
node’s degree sum is more than ����� � � 5 I , which is �����	�
� � �!� .

Observant readers can see that the network construction in
Fig. 3 is still a “cheat”: intuitively, the root is still the point of
congestion. This leads us to the conjecture that if we impose
an additional “congestion-free” constraint, the aforementioned
diameter lower bounds �����	�
��� �!� and ��� ��� ����� might actually
be optimal. In the next section, we define the notion of
congestion and introduce this conjecture.

C. The notion of congestion and our main conjecture

In this section we precisely define the notion of “conges-
tion” and use that to formulate our conjecture. Note that it
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makes sense to talk about congestion only when a communi-
cation load is specified. We artificially impose a uniform all-to-
all communication load. In other words, for each pair of nodes% � F ,

% ?A F , we impose a unit of traffic from
%

to F . Altogether,
a load of � � � " ��� units is imposed on the network. With this
artificial load imposed, we define the notion of congestion-free
as follows.

Definition 1: We say that a network is � -congestion-free
( ��� � ) if it is both � -node-congestion-free and � -edge-
congestion-free. A network is said to be c-node-congestion-
free if no node is handling more than � times the average
traffic per node. Likewise, a network is said to be c-edge-
congestion-free if no edge is handling more than � times the
average traffic per edge. When � A � , we simply say that the
network is node-congestion-free or edge-congestion-free.

These definitions need to be carefully explained. Suppose
the average path length from a random node

%
to another

random node F is � . We have the following proposition stating
that the average load on a node is � � " ��� � and its proof
is essentially a Little’s Law [10] argument. This means that,
if a network is � -node-congestion-free, no node should route
more than � � � " ��� � traffic. Likewise, if a network is � -edge-
congestion-free, no edge should carry more than

� ���	� M � � �� ���
traffic, where � ��� is the number of edges/links in the network.
It can be shown that all existing DHT schemes [1], [2], [3],
[4], [5] are congestion-free, when all nodes in the identification
space exist and are alive. The node-congestion-free part can
be proven from Theorem 1 in the next section.

Proposition 3: The average amount of traffic going through
a node is � � " ��� � .

Proof: We write down all � � �<" ��� sequences of node
identifications corresponding to the communications paths
between all pairs of nodes. Each occurrence of a node in a
sequence in which it is not the source node constitute a unit
load to that node. The total number of such occurrences for
all � nodes are � � � " ��� � , since the average path length is
� and the first node (source) in each sequence should not be
counted. So the average load on each node is � �9" ��� � .

Based on the intuition we have obtained from Propositions
1 and 2, we initially have the following conjecture on the role
that congestion-free plays in the tradeoff between the network
diameter and the routing table size.

Conjecture 1: When the network is required to be � -
congestion-free for some constant � � � , ���������8� �!� and
��� ��������� are the asymptotic lower bounds for the network
diameter when the routing table sizes are no more than
��������� � �!� and � , respectively.

Unfortunately, the answer to this conjecture is negative in
the strict sense. Karp [8] points out to us that the static
butterfly network8 can be configured to reach the diameter
of ��� � ��� � �� ������� ������� � , when the routing table size is no more
than �	�
� � � . Note that this is exactly the lower bound when
the congestion has not become a factor. Although the static
butterfly is free of node congestion, it has edge congestion.
Also, there is no straightforward way to apply the static
butterfly network to the real P2P networks that are “sparse” (in

8It was originally proposed in the context of parallel computing.

the name space) and has dynamic node joins/leaves. In Sec.
VI, we introduce the static butterfly network and show how to
address the above design issues.

Interestingly, as we will show in the next section, the answer
to the Conjecture 1 is positive for a class of routing algorithms
known as uniform. We show that uniform algorithms eliminate
node-congestion in a natural way. This result is both theoreti-
cally and practically important: all existing DHT9 algorithms
[1], [2], [3], [4], [5] are uniform.

IV. ASYMPTOTIC TRADEOFFS FOR UNIFORM

ALGORITHMS

In this section, we show that when the routing algorithms are
weakly uniform (defined below), �����	�
� � �!� and ��� �� ����� are
the lower bounds of the diameter for any network with routing
table size �����	�
� � �!� and � , respectively. This result is practi-
cally important since all existing schemes [1], [2], [3], [4], [5]
except Viceroy [9] are uniform. In other words, as uniform
algorithms, these algorithms all have achieved the optimal
asymptotic “state-efficiency” tradeoffs. Then we show that, for
uniform algorithms, ���������8� �!� is a magic threshold point for
the routing table size. If the routing table size is asymptot-
ically smaller than or equal to ��������� � �!� , “congestion-free”
constraint prevents the algorithm from achieving the smaller
(optimal) network diameters established through reachability
argument in Proposition 1. However, when the routing table
size is asymptotically larger than �����	�
� � �!� , the “congestion-
free” condition no longer plays this “bottleneck” role. This
may explain why many existing DHT algorithms [1], [2], [3],
[4] stay around this magic threshold.

We again assume that the name space is
&
0, 1, � �!� , � " � / and

all the nodes in the name space exist and are alive. We recall
from Sec. II that the routing table at node

% � consisting of
entries

& � ' ) � + ) �.-
) � + ) ��/ ��0 ) 021 . We also recall that ' ) � + ) and -
) � + )
are analogous to “

%
	��
IP prefix” and corresponding “next hop”

in the forwarding table of an IP router respectively. At node% � , a request for key 3 is forwarded to node
% � 5G- ) � + ) (equal

to 4�� % � 5 -
) � + ) � under our “all-exist all-alive” assumption) if
3 " % �;:<' ) � + ) . Note that all the arithmetic is in the cyclic sense
(i.e., modulo � ). The concepts of weak and strong uniformity
are defined in the following. For the correctness of routing,
- ) � + )@?A - ) � + B and ' ) � + )
C ' ) � + B AOD when

% ?A F , and H
��0 ) 0�

' ) � + )
consists of all the keys not handled by the node

% � .
Definition 2: A routing algorithm is said to be weakly

uniform, if for any pair of nodes
% � and

% ��� , -
) � + ) A -
) ����+ )
for all ��� % � $ . A routing algorithm is said to be strongly
uniform if it is weakly uniform, and for any pair of nodes

% �
and

% ��� , '*) � + ) A '*) ��� + ) for all ��� % �7$ .
Intuitively, the weak uniformity only requires the “jump

sizes” to be the same at all nodes. Strong uniformity, in
addition, requires all “routing tables” to be homogeneous. All
existing algorithms [1], [2], [3], [4], [5], except Viceroy [9],
are strongly uniform and therefore node-congestion-free, due
to the following Theorem 1.

In the following discussion, we will use the notation - )
(instead of -�) � + ) ) in weakly uniform algorithms, and '>) (instead

9Except for Viceroy [9] which is based on butterfly network.
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of ' ) � + ) ) in strongly uniform algorithms. Also, we will refer
to the set

& - ) / ��0 ) 021 as the jump set and - ) ’s as jump sizes,
since - ) ’s specify how much a request (packet) will advance
(“jump”) in the name space from its current node, during the
next step on its way to the destination.

Theorem 1: A strongly uniform algorithm is node-
congestion-free, when all nodes in the name space exist and
are alive.

Proof: See Appendix.
Remark: From this theorem, we can see that in strongly

uniform algorithms, the node-congestion is not dependent on
the configurations of the routing tables (i.e., '��)  ) and the
jump sets. Edge-congestion, however, will be dependent on
both, to be shown in Part E of Sec. V. Note also that in
general weak uniformity implies neither node-congestion-free
nor edge-congestion-free.

We are now ready to prove two main theorems of this
section, which states that the ��������� � �!� and ��� ��������� are
indeed the optimal achievable network diameters for uniform
routing algorithms, when the routing table sizes are no more
than �����	�
� � �!� and � , respectively. Note that in the following
theorems we only assume weak uniformity, which does not
imply congestion-free in general.

Theorem 2: Let $ be the number of neighbors each node
maintains. Suppose each node in the name space

& ��� ����������� � "
� / exists and is alive, and the network employs a weakly
uniform routing algorithm. The following are true:

(a) The diameter lower bound for the network is
� �� �	�
� � ��� ,

which is ��������� � �!� , if $ � � �� �	�
� � ��� .
(b) The diameter lower bound for the network is ��� � � ����� , if

$ � � , where � � I .
Proof: Let

& - ) / ��0 ) 021 be the set of jump sizes, which are
the same for all nodes due to the weak uniform assumption.
Suppose the network diameter is � . We pick an arbitrary node% � and consider all paths from node

% � to all other nodes.
There are � such paths (including the empty path to itself) and
let � denote the set of those � paths. We define a function�
	 ��� �� H & �8/���1 � � , where  H & ��/ is the set of non-
negative integers, as follows. For any path �#:�� , we denote
as ��� + ) the number of jumps of size � ) used in the path, for

each � � % � $ . We know that
1�
)�� �

��� + ) � � since � is the

network diameter. We define ��� + � A � " 1�
)�� �

��� + ) , and clearly

��� + � � � . Let

� ����� 	 A ����� + � ����� + � � �!�!�!����� + 1 �
We claim that

�
is injective (one-to-one). We prove this

claim by contradiction. Suppose that there are two paths
�>��� :�� , such that � � + ) A ��� + ) , % A �������!� �!����$ . Then clearly� 1)�� � � � + ) � � ) A � 1)�� � ��� + ) � � ) . So starting from the node% � , both paths necessarily end up at the same destination. This
contradicts our definition of � as the set of paths used to reach
different destinations.

The size of the range, which is the number of vectors
� � � �!� � ��� � � �!� �!��� 1 � that satisfy the equation � � 5"� � 5O�!�!��5
� 1 A � and � ) � � ,

% A ��� �
� I ����������$ . We know from elementary

combinatorics that this number is equal to the number of
different ways to put � indistinguishable balls into $ 5 �
different bins, which is equal to # � � 11

$
. Since

�
is injective,

the size of the range should be no smaller than the size of
domain, which is � . Therefore, # � � 11

$ � � . Now we are ready
to prove both (a) and (b)

(a) It suffices to show that � � �� � ����������� . First, we show
that � � $ . We prove by contradiction and suppose �&%7$ .
Note that # � � 11

$
is an increasing function of � . So # � � 11

$ %
# 1 � 11

$
. However, given any ' � � , by Stirling’s formula

( �)(+*�, I�- � � � . �	� ), # 1 � 11
$ � � � 5/' � � I � 1 �0 1 1 % I � 1

� � for large enough � and $ . This contradicts our prior
assumption that # � � 11

$ � � . Therefore � � $ . We proceed
to show � � �� � �	�
� � ��� . We again argue by contradiction.
Suppose �2% �� � �	�
� � ��� . Note that # � � 11

$ �3# � � ��
$

(easy
to verify through combinatorial argument), since � � $ .
However, when �4% �� � �	�
� � ��� , we have # � � ��

$ % � due to
the same argument above. Therefore # � � 11

$ � # � � ��
$ % � ,

a contradiction.
(b) We need to show that � has to be ��� �������� . Since � � 5

� � � � # � � ��
$ � � , we have � 5 � � �	�
� � � and therefore

� � ��� ��� " � , which is ��� ��������� .
Theorem 2(a) essentially shows that the diameter lower

bound is approximately �� �	�
� � � when $ is approximately
�� ����� � � . However, we have not been able to design a new
scheme that achieves the ( �� ����� � � , �� �	�
� � � ) tradeoff10. In
fact, such a tradeoff might not be achievable at all. This is
because in our estimation of the range size in the proof, some
elements in the range may not be the image of any paths.
In other words, there may exist two vectors � � � ��� � ����������� 1 �
?A � ��� � ����� � �������	�!��� 1 � in the range such that

1�
)�� �

� ) -
) A 1�
)�� �

���) -�) .
The (unique) path in � of length

1�
)�� �

� ),-�) will map to at most

one of them, and the other one will not be the image of
any path. Therefore, it can be interesting to further sharpen
the estimate on the constant factor through perhaps more
sophisticated combinatorial arguments.

Using the intermediate result # � � 11
$ � � in the above proof,

we can prove the following result, which is stronger and more
general than Theorem 2(a).

Theorem 3: Let $ be the number of neighbors each node
maintains. Suppose each node in the name space

& ��� �
�5������� � "
� / exists and is alive, and the network employs a weakly
uniform routing algorithm. Then the diameter � is at least
����������� �!� when $ A ��������� ���!� .

Proof: See Appendix.

A. �����	�
� � �!� as a Magic Threshold for Routing Table Size

We can see from Theorems 2 and 3 that $ A ��������� � �!� is
a magic asymptotic threshold. When $ is a constant, # � � 11

$
is approximately �(1 . However, when $ becomes �� �	�
� � � ,
# � � 11

$
is approximately I � 1 . It is also a magic threshold in

10We did however achieve ( 687 9;:=<;> 	�
� 	 � , 687 9;:=<;> 	�
� 	 � ) tradeoff in
Section V.
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the following sense. Recall from Proposition 1 that for a
general network (without assuming uniformity) the diameter
of a network is at least �����	�
� 1 �!� through simple reachability
arguments. Theorems 2 and 3 show that this ideal lower bound
is superseded by the need to achieve congestion-free routing,
when the number of neighbors $ is no larger than ��������� � �!� .
In other words, below the �����	�
� � �!� threshold, congestion
factor dominates the reachability factor. However, we can show
that when the number of neighbors $ is asymptotically larger
than ��������� � �!� , we can indeed achieve the bound dictated by
the reachability argument. In other words, the congestion no
longer plays a “bottleneck” role. This is shown in the following
proposition.

Proposition 4: There exists a strongly uniform network of
diameter �� ( � % 3 % � ) in which the number of neighbors at
each node is bounded by ��� � � � .

Proof: See Appendix.
Remark: Note that the network is automatically node-

congestion-free due to Theorem 1. When � A � � , it can be
shown that the network is also edge-congestion-free.

With the routing table size in Proposition 4, the reachability
argument gives us the diameter lower bound ����� �	��� � � A � � 3 ,
which is equal to the bound established in Proposition 1. This
shows that when the routing table size is asymptotically larger
than �����	�
� � �!� , the congestion no longer becomes a limiting
factor.

In this section, we have shown that when the routing
algorithms are weakly uniform, �����	�
� � �!� and ��� ��������� are
indeed the diameter lower bounds for any network with routing
table size ��������� � �!� and � , respectively. This shows that
existing DHT schemes, as strongly uniform algorithms, have
achieved the optimal asymptotic tradeoffs. We have also shown
that �����	�
� � �!� is a magic asymptotic threshold for the routing
table size, which separates the tradeoff region dominated by
congestion and the region dominated by reachability.

V. ON THE EXACT OPTIMAL TRADEOFFS

We have shown in the previous section that, as uniform
algorithms, all existing DHT schemes have achieved the op-
timal asymptotic tradeoffs. However, it is not clear whether
they have achieved the optimal tradeoff down to the con-
stant factor. In particular, we would like to know whether
the ������� � � ���	�
� � �!� tradeoff in Chord [4] is optimal. In this
section, we formulate this tradeoff problem as an optimization
problem: finding the minimum network diameter while fixing
the number of neighbors $ in a network of size � . However,
we are not able to find a closed-form solution or an efficient
algorithm for the problem, even though such a solution ob-
viously exists for each � � ��$�� pair. Nevertheless, we construct
an algorithm that achieves ��� ������� ����� � � ��� ������� ����� � �!� tradeoff
using a novel number-theoretical technique. In other words,
it is 21.4% smaller in diameter than Chord and uses 21.4%
less neighbors (“fingers”). We also introduced a set of novel
mathematical techniques in estimating the increase of the
average hop count and the edge congestion in our new routing
scheme. This result is interesting in two aspects:

1) Since the number of neighbors is directly proportional
to the self-stabilizing overhead, any sizable reduction is

desirable. Moreover, There is no extra fault-tolerance
overhead for this reduction: the network diameter is
also reduced and there is no other protocol overhead.
The increase of the average hop count and the edge
congestion in our new scheme is moderate.

2) Our result shows that, if the low diameter is the only
goal, Chord’s tradeoff is not optimal down to the con-
stant factor, among uniform algorithms. This opens the
door for further optimization.

We have also introduced a set of novel number theoretical
techniques in estimating the worst and average behavior of
the scheme. They are thought-provoking and may lead to the
discovery of a general framework to optimize such tradeoffs.

A. Formulation of the problem

An optimal tradeoff problem can be viewed as an op-
timization problem: optimizing one metric while fixing the
other. In this section, we formulate the tradeoff between the
routing table size and the network diameter as the following
optimization problem. We assume that the network consists
of � nodes ��� ��� I �������	� �9" � , and the routing table is weakly
uniform11. We assume that the jump set consists of $ jumps
� � - � % - � % ����� % - 1 � �J" � . The problem is
to find a best jump sequence

& - ) / ��0 ) 021 that minimizes the
network diameter. Let 	�

� - � �.- � �5�������.- 1 � A & � � � �!� � �!� �!�!�!� 1 �

	
� 1)�� � ��),-
) A� �����N� �!���!��) � ��/ . Then the network diameter� � - � �.- � �!�!� �!�!- � � as a function of

& -�),/ ��0 ) 021 is equal to

�����
��0 
 0 � M �

���������� + � � +������ + ��� � ��!#"���$%� + $ � +�&�&�& + $%� �
1'
)�� �

��)

This is because �(�������� + � � +������ + ��� � ��!#"���$%� + $ � +�&�&�& + $%� �
1�
)�� �

� ) is the min-

imum cost to reach a node that is larger than the source node
by � in the name space. Therefore, we would like to find an
algorithm that, given $ , computes the following:

�#)+*,� % �
���E- � %E- � % ����� %E- 1 � � " � K � �,- � �.- � �!�!� �!�!- 1 � -

Unfortunately, we are not able to find a closed-form solution
to this optimization problem. Also, for large � ��$ , we so far
are not able to find an efficient algorithm (brute-force search
takes �>1 steps) that computes the optimal jump set and the net-
work diameter. Nevertheless, using a novel number-theoretical
technique, we are able to construct a routing algorithm that
achieves better tradeoffs than Chord.

B. Our new “number system”

We have designed a novel uniform routing scheme that
is able to achieve a network diameter of � ������� ����� � � when
the number of neighbors of each node is no more than
� �.�/�#� ����� � � . In other words, it maintains I ��� 0,1 less neighbors
than Chord [4] for the same network size, and achieves 21.4%
less worst-case network delay. The construction of the scheme
is based on the following novel number-theoretical technique.

11Note that a weakly uniform algorithm can be stateful.
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Fig. 4. Our “number system” in a normalized name space

To explain the intuition behind the scheme, we normalize
the name space into a unit interval K ��� ��� , shown in Fig. 4.
In other words, the network nodes in this system are 0, � � � ,I � � ������� , � �6" ��� � � . The jump set used in Chord can be viewed
as 1/2, 1/4, 1/8, 1/16,..., � � � in the normalized name space.
In our scheme, we let � A , I " � * � � 0 �%0 and the jump
set consists of � , � � , � �!� , � 1 , where � 1 * � � � (i.e., $/*
�	�
� � ��� � � � ). Note that � is the root of the equation ��" I � A � � ,
as shown in Fig. 4.

Essentially, the goal here is to approximate every real
number in K ��� ��� using these jump sizes in a “greedy” fashion,
when allowing a “remainder” smaller than � � � . Given a
number � : K ������� to approximate, there are three cases at
the very beginning:

(a) If � : K ���	��� then do nothing for this step.
(b) If � : K �>� I � � , we subtract � from it (a “jump” of size �

in the normalized name space) and the “remainder” � " �
is in K ��� ��� .

(c) If �#: K I �>����� , we subtract � from it for two times, and
the “remainder” � " I � is in K ��� � � � .

The above procedure will be repeatedly executed in a recur-
sive and “greedy” fashion. In other words, such approximation
steps (like (a)–(c)) will be performed in smaller and smaller
intervals K ����� � )�� � , %

=0, 1 , ..., $ , until the remainder is inK ��� � � �!� . The intuition of the steps (a)–(c) is the following. If
a number � belongs to case (a), it is already “better-off” in
terms of path length (so we do nothing in the current step).
This is because, if � belongs to case (b) or (c), 1 or 2 additional
jumps of size � are needed to reduce the remainder to the case
(a). Since case (c) requires one more jump (hop) than case
(b), we compensate this difference by allowing its remainder
to jump to the region K ���	� � � (since � " I � A � � ) instead
of K ��� ��� as in case (b). In this way, we “equalize” the cost
to approximate numbers in regions K ��� I � � and K I ��� ��� . Note
that such equalization is done in a recursive way, spreading
its “equalization” benefit recursively.

C. Our new routing scheme

Now we go back to the original (not normalized) name
space 0,1,2, � �!� , � " � . In our routing scheme, the routing
table consists of the following jump sizes: � � � � , ��� � � � , ...,
��� 1 M � � � AEI , ���21�� � A � . So the number of neighbors in this
network is $ *J����� � ��� � � ��*J� �.�/�#� �	�
��� � , which is 21.4% less
than in Chord [4]. The routing protocol is essentially the same
as in Chord. When a request destined for node

% ��� reaches
node

% � , the current node
% � will forward it to

% �;5�� � ) � �
where � � ) � � � % � � " % � %���� ) � � � � . The maintenance of
the neighbors in the face of node joins/leaves (i.e., self-
stabilization) is also similar to that is used in Chord. In other

words, we only change the jump sizes in the routing table and
leave all other mechanisms intact. It is also easy to see that
our routing algorithm is strongly uniform. So by Theorem 1,
it is node-congestion-free. Compared to Chord, it reduces the
network diameter by 21.4%, shown in the following Theorem.

Theorem 4: Under the routing algorithm shown above,
the network diameter is no more than ���	�
� � ��� � � � � 5 � *
� �.�/�#� ����� � � .

Proof: It suffices to prove the following invariant: for any
� � % � $ " � , if the difference � between the destination node
and the current node in the name space is in K ����� � � )�� � , then
either of the following is true: (a) after no more than one jump,
the remainder falls into the region K ����� � � ) � � � � , or (b) after
two jumps, the remainder falls into the region K ����� � � ) � � � � . In
other words, each jump is rewarded by at least an additional
exponent on � , and after at most ���	�
� � � � � � � � 5 � jumps we
are done.

Given � : K ������� � )�� � , we consider three cases. First, if
�7: K ������� � ) � � � � , then (a) is automatically satisfied and we
are done. Otherwise, suppose � � � ) � � � ��� % I ��� � ) � � � .
Then, a jump of size ��� � ) � � � is made due to “greedy” routing,
and the remainder is � "	� � � ) � � � %
��� � ) � � � , which satisfies
(a). Otherwise, I ��� � ) � � � ��� %�� � � )� . Then the routing
algorithm dictates that two jumps, each of size ��� � ) � � � , be
made. The remainder is � " I ��� � ) � � � %
� � � ) � " I � � � ) � � � �
��� � ) " I � � ) � � � A � � � ) � � � , which satisfies (b).

However, setting the jump sizes to � � ) � � , % A ��� I ��������$ ,
clearly makes them dependent on the size of name space � .
This is undesirable since the name space may need to grow
on demand and we do not want the whole set of jumps be
reconfigured as a result of that. So we would like to find a
set of “universal” jump sizes that do not change with respect
to � and still achieve the equivalent reduction on network
diameter. We found such a set that satisfies these requirements,
characterized by the following theorem. We omit the proof of
the theorem since it is similar to that of Theorem 4.

Theorem 5: When the jump sizes are set to - ) , % A
��� I �������	��$ , where - � A � , - � A I , and -�) � � A I -
) � � 5L-
)
for

% � � , both $ and the network diameter is approximately
� �.�/�#� ����� � � .

Example: When � A �������
�����
��� , the jump sizes are 1, 2, 5,
12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782,
195025, and 470832 according to the theorem.

D. Analysis of the average path length

There is one (minor) drawback in this picture, however,
which is the average path length, averaged over all pairwise
communications. In this section, we show that our scheme
increases the average path length by about 22.7%, compared
to Chord. Nevertheless, the proposed routing scheme is still
a bargain, since the scheme reduces both network diameter
and the routing table size by 21.4%. Also, as we have ex-
plained before, given a stochastic model of node joins/leaves,
heuristics such as route caching may be used to enhance the
(average) performance significantly.

In the following, we show the calculation of the increase
in the average path length. Due to the recursive nature of
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our algorithm, the increase in the average path length can
be exactly calculated: no need for simulation. Its derivation
exhibits the beauty of recursion.

Let
� � � � be the exact path length that is needed to reach a

node which is � larger than the source node in the name space
(in the cyclic sense). Then the average path length for the name
space of size � , denoted as

� � �!� , is equal to � � � M �
 � �
� � � � � � � .

Note that the average path length in Chord is exactly �� ��������� .
Therefore, our goal is to find out � � ������

� �	����� � ��� � � , which is how
much worse our scheme did compared to Chord. This is shown
in the next theorem.

Theorem 6: � ��������
� �	����� � ����� � A I � I �O5 ��� � � �	�
� � ��� � � I *

��� I�I � , where � � A 0 � � �� 0 � and � A , I " � . Here we assume
that all nodes in the name space exist and are alive.

Proof: See Appendix.

E. How about edge congestion?

Although the new routing scheme is 1-node-congestion-free
due to Theorem 1, it is not 1-edge-congestion-free. Instead, it
is 1.2336-edge-congestion-free by the following theorem. In
other words, in the worst case, certain logical links carries
1.2336 times more traffic than average. However, when logical
links are mapped to physical paths, the load on a physical
link is typically a superposition of multiple (about ��������� �!� )
logical links of different “jump sizes”, which averages each
other out during the aggregation with high probability. In other
words, with high probability, the physical links are close to 1-
congestion-free in the sense of Definition 1.

Theorem 7: Suppose the jump sizes are as specified in
Theorem 5. Let � AEI � - 1 57- 1 M � " � , which represents the
worst case for edge congestion12. Then the scheme is 1.2336-
edge-congestion-free. Here we assume that all nodes in the
name space exist and are alive.

Proof: See Appendix.
Lemma 1:

�� � % " ��� A I � �� � % � 5 � � �� � % 5 ��� for
% A $ "

����$ " I �������	��� .
This lemma can be proven by the fact that � � 5 I � A � and

standard techniques in calculus such as change of variables in
integration. We omit its proof here due to lack of space.

VI. ULYSSES: A LOW DIAMETER PEER-TO-PEER

NETWORK

In Sec. III, we conjecture that if the network is required to be
congestion-free, ��������� � �!� will be the network diameter lower
bound when the routing table size is no more than ����������� �!� .
In this section, we show that the answer to this question is
negative when we do not consider the overhead of maintaining
the routing invariant under dynamic node joins and leaves: a
static butterfly network achieves a diameter of O(

� �������� ��� � � ��� � � )
and ��������� � �!� when the routing table size is ����� � � and
� respectively. We then provide a succinct description of
Ulysses, a congestion-free DHT scheme that maintains the
routing table size of �����	�
� � �!� with high probability and
always maintains the lower diameter of ��� � ��� � �� ������� ����� � � , in spite

12We omit the proof to this claim, which is involved and less interesting.

of node joins and leaves. Note that the only purpose of
introducing Ulysses here is to show that it is possible to
construct DHT schemes that have optimal diameter, yet are
congestion-free with high probability. This is by no means a
full exploration of its design, fault-tolerance, and performance
evaluation, which can be found in [11]. Finally, it remains
an open question whether or not one can achieve such an
optimal tradeoff in a deterministic way (instead of “with high
probability”), under dynamic joins and leaves.

A. The static butterfly

The general static13 butterfly network can be defined as
follows. A � $*� ) � -butterfly is a directed graph with � A
$ � ) 1 vertices, where $ and ) are referred to as the di-
ameter and the degree, respectively. Note that throughout
this section, $ no longer denotes the routing table size as
before. Each vertex is of the form � � � �	� � �!� �!�.� � 1 M � � % � , where
� � � � � � � �!� �!�.� � 1 M � � ) " � and � � % � $ " � .
For each vertex � � � �	� � � �!� �.�	� 1 M � � % � , we refer to

%
as its

level14 and � � � �	� � �5�����	� � 1 M � � as its row. From each vertex
� � � � � � �!�!� �!� � 1 M � � % � , there is a directed edge to all vertices
of the form � � � � � � � �!� �!�	� ) � �2�	� ) � � �!�!� �!� � 1 M � � % 5 ��� when% ?A $E" � , and ��2�	� � �������	� � 1 M � � �
� when

% A $ " � .
The routing path from vertex � � � �	� � �!� �!� �	� 1 M � � % � to vertex
��� � � � � �!� �!�.� � 1 M � � F � successively changes � ) � � to � ) � � while
going from level

%
to level

% 5 � , � ) � � to � ) � � while going from
level

% 5 � to level
% 5 I , and so on. This process proceeds until

all of the � ’s have been changed to � ’s, and then continues
along row �� � � � � �5������� � 1 M � � to level F .

Note that in the static butterfly, the size of the routing
table is ) since each node � � � � � � �!�!� �!� � 1 M � � % � is connected
to all nodes that have the same coordinates as the node in all
dimensions except for the � % 5 ��� 	�� . The diameter is I $ " �
since a query may, in the worst case, change all coordinates
(there are $ of them) to the right value and then travel another
$6" � steps to go to the right level. Since � A $,)
1 , depending
on the routing table size ) , we have two cases: (1) when
) A ����� � � , we have $ � � ��� � �� ��� � � ��� � � , and (2) when ) A � ,
we have $ � �	�
� � � . In other words, if we do not consider
node joins/leaves, we can achieve ��� � �������� �����
� ������� � and �����	�
� � �!�
network diameter when the routing table size is ����� � � and �
respectively. In this paper, we will only explore the first case
in depth.

As pointed out by Karp [8], the static �($2� ) � butterfly is
node-congestion-free. However, it is not edge-congestion free.
Consider the edges going form a node � � � � � � � �!� �!�	� 1 M � � % � to
� � � � � � �!�!� �!� � 1 M � � % 5 ��� . In the static � � ������ ����� ����� ���	�
� �!� butterfly,
each node has exactly one such horizontal edge, and the
remaining $ " � are non-horizontal edges. However, a query
traverses 1 M �� horizontal links and $ non-horizontal links on
average. Therefore, a horizontal link carries about

� ������ times
as much traffic as a non-horizontal link. In other words, its
edge congestion factor is ��������� � �!� .

13We use the term static to emphasize that this topology works only under
the “all-exist all-alive” condition.

14Throughout this paper, it is assumed that additive operations on level are
modulo k.
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B. The Ulysses butterfly

In Ulysses, we first solve the aforementioned edge conges-
tion problem by adding $ " I “shortcut” links from each node
� � � �	� � � �!� �.�	� 1 �

% � to nodes � � � � � � �!�!� �!� � 1 � F �.� F ?A % � % 5 � .
This way, in the aforementioned butterfly routing, once � ’s
have all become � ’s, only one jump is needed to reach the
destination through one of these “short-cut” links. This has the
additional benefit of reducing the network diameter from I $2" �
to $ 5 � , which is about �

� ������ ���8� ����� � . The increase in the routing

table size is moderate: from ( ����� � � ) to ( �	�
� � � 5 � ����� �� ��� � � ��� � � " I ).
For example, when there are I � � * �
�����
��������� nodes in the
network, this represents an increase from 20 entries to 23
entries in the routing table.

However, for Ulysses to be operational in real-world P2P
environment, where there are dynamic node joins and leaves,
we need to address two additional challenges. First, we must
embed the butterfly structure onto a peer-to-peer network
that changes dynamically due to node joins and departures.
Second, a self-stabilization scheme is needed to handle node
joins/leaves in P2P networks15 without degrading its routing
table size. Since the detailed design is a part of our ongoing
research [11], due to the lack of space, here we will only
provide its succinct description.

The name space of a Ulysses $ -butterfly consists of $ level-
cuboids. Each of these level-cuboids is a $ -dimensional cuboid
and corresponds to one of the $ levels. Each DHT node
represents a zone in the name-space. Let � � be the number
of nodes inside a Ulysses DHT. Then the name space is
partitioned into � � disjoint zones. Each zone is a subcuboid
of a level-cuboid, the level of which is called the level of the
zone. Each node that joins the network is randomly assigned
a level � . The level- � cuboid will then be re-partitioned to
accommodate the new node. For simplicity of discussion, here
we assume that there is at least one node at each level16,
despite joins and leaves.

A new node that would like to join the network first
randomly generates a search key and sends a query for this
key, through a node 3 that is already in the Ulysses network.
To find such an 3 , the new node can use any of the discovery
mechanisms proposed in the literature [12]. This query, routed
through the Ulysses network, will eventually reach the node
currently responsible for the key. This node then splits its zone
of responsibility by two and assigns one half to the new node.
The keys that are stored at the original node and should now
be handled by the new node will be forwarded to the new
node. Due to such “merging” and “splitting” in response to
dynamic node leaves and joins , the “volume” of a bigger
zone is always I ) (

% � � ) times the size of a smaller zone.
Having specified the nodes (the zone-cuboids), we proceed

to define the links between these nodes. A zone-cuboid in
the �

	��
level-cuboid has links to all those zone-cuboids in the

� ��5 ���
	��

level-cuboid which have an “overlap” with it in the
dimensions ��� �
�!�!� ����� ���85 I � �!� �!��$ " � , but not necessarily in

15We assume that all node departures are graceful. This is also an implicit
assumption in many existing DHT schemes, including CAN [5]. Mechanisms
to handle ungraceful node departures will be a part of our future research.

16A straightforward initialization protocol can make this happen.

the � ��5 ���
	��

dimension. The geometric intuition of this linking
relationship is the following. Given any zone at level � , we first
map it to its “shadow” at “the same location” at level �25 � .
Recall that each cuboid (level or zone) is a $ -dimensional
object. Then we “slide” the “shadow” (in a wrap-around way)
along the direction of the ���
5 ���

	��
dimension. This zone will

have a link to all the level- � � 5 ��� zones that its “shadow” will
“pass through” (“touching” does not count). This intuition is
captured precisely in Fig. 5. Additionally, each node also has
links to all nodes that overlap with its shadow (here without
sliding) at each level. These links correspond to the “shortcut”
links discussed earlier. In [11], we show that routing can be
performed through these links in a similar way as in a static
butterfly. The size of the routing table is exactly the out-degree
of a node handling a zone. We have also shown in [11] how
to update a routing table in response to node joins and leaves.

This topology suggests that the routing table size of a
node is approximately proportional to the volume of the
zone handled by the node. Ideally, the sizes/volumes of these
zones/cuboids are identical, and each cuboid keeps about
����� � � neighbors. However, due to dynamic joins and leaves,
there can be certain zones which are larger. In [11], we show
through rigorous mathematical analysis, that even without
further optimization, the volume of a cuboid stays within the
region K ��� � I " ' � � � ��� I 5 ' � ��� - with very high probability.
Here � is the average volume of a cuboid, and ' � ��' � � � are
small constants. So with high probability, each node maintains
a routing table no larger than �����	�
� � �!� . Also, the network
always achieves a low diameter of ��� � �������� ��� � � ��� � � � .

VII. CONCLUSIONS

In this paper, we study the fundamental tradeoffs (both
asymptotic and exact) between the routing table size and
the network diameter. We rigorously formulate this tradeoff
problem and show that there are algorithms which achieve
better tradeoffs than existing DHT schemes. However, all
of these algorithms cause intolerable levels of congestion
on certain network nodes. After formulating the notion of
“congestion”, we conjecture that the tradeoffs achieved by ex-
isting DHT schemes are asymptotically optimal if the network
is required to be “congestion-free”. The exploration of this
conjecture ramifies the role that congestion-free plays in the
“state-space” tradeoff. We then prove that, as uniform algo-
rithms, the existing DHT schemes are indeed asymptotically
optimal. Furthermore, we find that, for uniform algorithms,
��������� � �!� is a magic threshold on the routing table size
that separates the tradeoff region dominated by congestion
and the region dominated by reachability. We also formulate
the exact (instead of asymptotic) “state-efficiency” tradeoff
problem for uniform algorithms. We construct a new routing
scheme based on a novel number-theoretical technique, which
maintains 21.4% less neighbors than Chord and has a diameter
21.4% less than Chord. Finally, we present Ulysses, a non-
uniform algorithm that achieves a better asymptotic “state-
efficiency” than existing schemes in the probabilistic sense,
under dynamic node joins/leaves.
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Fig. 5. A Ulysses butterfly with k=2. Links from only 2 nodes in each level are shown for clarity. It is “wrapped around” with level 0 shown twice. If we
project the zone of node �!6 ���� 6�� on level 1 and slide its “shadow” along the vertical direction (dimension 1), it overlaps with zones �!6 ���� ��� and �!6=6�� ��� .
This explains why node �!6 ���� 6�� has links to nodes � 011,1 � and � 00,1 � . Note that edges from a node at level 0 to nodes at level 1 essentially “slide” in the
“vertical” direction and those from level 1 to level 0 “slide” in the “horizontal” direction.
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APPENDIX

Proof of Theorem 1
Proof: Let 	 � % � F � be the routing path from node

%
to

node F . We define a function ��� % � F �	� � as follows: ��� % � F �	� � A �
if 	 � % � F � contains the node � and

% ?A � . Otherwise, ��� % � F �	� � A
� . Let 
 ��� � be the amount of traffic that goes through the node
� , when the uniform all-to-all communication load is imposed.
Then for any �����	� � � " � and � � ?A � ,


 �� � A '
� 0 ) + B.0 � M �

��� % � F ��� � A '
�!0 ) + B.0 � M �

��� % 5��"�� � � F 5�� "�� � ��� �
A '

� 0 ) + B.0 � M �
��� % � F �	� � � A 
 �� � �

The first and the last equalities are from the definitions of

 and uniform all-to-all communication. The second equal-
ity is due to the standard change of variable technique in
combinatorial summation. The third equality is from the fact
��� % 5�� "�� ��� F 5�� "�� ���	� � A ��� % � F �	� � , which follows from Lemma
2 below.

For any ����� � � " � , since 
 ��� � A 
 ��� � � for any � ?A � � , the
total amount of traffic in the network is

�
� 0 	 0 � M �


 ��� � A ��
 ��� �
and the average per node is 
 ��� � . Therefore, the network is
node-congestion-free.

Lemma 2: For any � � % � F �	��� � � � " � , ��� % � F �	� � A ��� % 5� � F 5 � ���*5 � � .
Proof: Again, let 	 � % � F � be the routing path from node%

to node F as above. We perform induction on � 	 � % � F � � , the
length of 	 � % � F � :
� Initial step: When � 	 � % � F � � A � , we know that

% A F .
So for any � and � ,

% 5 � A F 5 � and ��� % � F ��� � A � A
��� % 5 � � F 5 � �	�25 � � .

� Induction hypothesis: Suppose ��� % � F ��� � A ��� % 5 � � F 5� ����5 � � holds for all � % � F � pairs such that � 	 � % � F � � � � .
� Induction step: Let 	 � % � � F ��� be any path of length �J5 � .

We would like to show that for any � and � , ��� % ��� F � ��� � A
��� % ��5 � � F � 5 � ����5 � � holds. Since ��� % ��� F ���	� � is either 1 or 0,
let us consider the case ��� % � � F � ��� � A � first. Let � denote
the second vertex on the path 	 � % ��� F � � . Then according
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to the definition of strong uniformity, � 5 � must be the
second vertex on the path 	 � % �*5 � � F �*5 � � . We again
consider two cases: (1) if � A � , then �>5 � A � 5 � and
therefore ��� % �!5 � � F ��5 � ���85 � � A � , (2) if � ?A � , then �85� ?A �>5 � and ���� � F ���	� � A � , and by induction hypothesis
(since 	 ��� � F � � is of length � ) ��� % � 5 � � F � 5 � �	�>5 � � A
����� 5 � � F �85 � ����5 � � A ����� � F � ��� � A � . Similarly, when
��� % ��� F ���	� � A � , we can also show ��� % ��5 � � F � 5 � �	��5 � � A � .
Therefore, ��� % ��� F � �	� � A ��� % ��5 � � F � 5 � ����5 � � holds for
all � % ��� F � � pairs such that � 	 � % � � F � � � A � 5 � .

Proof of Theorem 3
Proof: From the above proof we know that # � � 11

$ � � ,
denoted as (*). In the following, we write � and $ as � � �!� and
$ � �!� to emphasize the fact that they are functions of � . Since
$ � �!� A �����	�
� � �!� , there exists ��� � and � � � I such that
$ � �!� � �2�	�
� � � when � ��� � . We then choose � � � � 5 � � I
and fix it. We need to show that there exists � � � � and
� � �7� such that � � �!� � � � ������� � for all � ��� � .

We define � � ��� ��� A �
�
��� �����	��
�
�
� � 
 . Given any ��� � �L� , it is

straightforward to see that, � ���� � � � � � ��� ��� A � . So given � � �7�
as above, there exists � � �O� such that � ��� � � I � � � % , I . We
let � � A � ��� � � I � � � � � ��� I � � � � � � 0���� � � . We claim that when
� ��� � , � � �!� � � � �	�
� � � . We prove this by contradiction.
Suppose there exists � � ��� � such that � � � � � % � � �	�
� � � � .
Without loss of generality (WLOG), we choose � � � such that
� % ��� � % � � and ��� � ����� � � � is a positive integer (recall
that � � � � 5 � � I ). We know that $ � � � � � �2������� � � �
��� � ����� � � � . WLOG, we can also choose � �� such that � � %
���� % I � � and ���� ����� � � � is a positive integer. Then # � �	� � � � 1 �	� � �1 ��� � �

$
= # � �	� � � � 1 ��� � �� �	� � �

$ � # � � � � ��� � � � � � �� � ��� � � �� �� � ��� � � �
$ � I ��� ����� � � ������ �

� ���.� � �
� I � � � � � � I � � � �

� ���.�
� � % I , � � % � � , which contradicts (*)
above. The first inequality holds because # � � 1�

$
is an increasing

function of both � and $ . The second inequality is due to
Lemma 3 in the following. The third inequality holds since
��� �>� � � is an increasing function of both � and � when
�>� � � � . Therefore, � � �!� A �������������!� when � ��� � . Note
that all the complications in choosing � � � and ���� are due to the
fact that the formula # � � � � ����� � � � � �� � ����� � �� �� � ��� � � �

$
needs to be defined.

Lemma 3: Let � � � , � �� , and � � ��� ��� be defined as above. Then
# � � � � ����� � � � � �� � ������� �� �� � ��� � � �

$ � I ��� ����� � � ������ �
� ������� � .

Proof: Let � A � � � �����
��� � and � A ���� �	�
�
��� � . We
know that ��� � � � when � � � � � . Then # � ���� $ A
�
�
��� ���
�
� � � % � , � 1 � � ��� � � �	��
� �����	��
�0 � 1 � � � � � � 0 � 1 � � 
 � � 
 � � � � ��� ��������
	�

�
� � 
 = I ��� �>� � � =

I � ��� � � � � �� �
� ��� � � � . The first inequality is by the extended form

of the Stirling’s formula , I -�� � � ��� ��� % � (&% I , I�-�� � � ��� ��
for � � I and � :  . Here  is the set of natural numbers.
The second inequality uses the fact � � � and � � � .
Proof of Proposition 4

Proof: We let � A �2� for simplicity of discussion (to
avoid getting into floors and ceilings). In our construction,

the jump set at each node is ' A �H)�� �
' ) , where ' ) A

& � � )�M � � I � )�M � �!� �!�.��� � " ��� � )�M � / . The routing algorithm is

essentially a “greedy” one: given a request for a key 3
that arrives at node

% � ,
% � will forward it to

% � 5 F , whereF7A � �/� &  �  : ' �  � 3 " % ��/ . Clearly, this algorithm is
strongly uniform. Now we show why the network diameter is
no more than � . Suppose that a node sends a request to another
node that is � ( � � � � �@"�� ) larger (in the cyclic sense) in the
name space. Since � A �2� , we can write � as an � -ary number
of at most � digits � � M � � � M � ����� � � , where � A � � M �)�� � � ) � ) .
Since � ) � ) : '*)�� ' , the “greedy” routing algorithm will
route this message in at most � jumps: � � M � � � M � , � � M � � � M � ,�!� � , and � � � � .
Proof of Theorem 6

Proof: For simplicity of discussion,, we would like to
avoid “floors” and “ceilings” involved in manipulating the
function

�
, which is defined only on the integer domain. We

instead work on the (approximate) extension of function
�

to * , which is defined on the real domain. * � �!� is defined
as follows. We let � ��� � be the “hop counts” (path length)
needed to represent a real number � , using the jump set � � ,
� � � , � ��� , ... (these are real numbers). We define g(n) as
��! �� � �� � ��� � � . It can be shown (through complicated floor and
ceiling operations) that

� � �!� * * � �!� .
We define

�*����� 	 A � � * ����� (i.e.,
�* is the total while * is

the average). It is much easier to work with
�*��� � . We obtain

the following recurrence relations due to the recursive nature
of the routing algorithm:

�* � �!� A I �*�� � �!�>5 �* � � � �!�>5 � � 5 I � � �
�* � ���!� A I �*�� � � �!�>5 �* � � � �!�>5 � � � 5 I � � �
�*�� � � �!� A I �*�� � � �!�>5 �* � � � �!�>5 � � � 5 I � � �

�����������
We evaluate * � �!� A �� �* � �!� based on the recurrence rela-

tions above. We obtain

* � �!� A 1 M �'
B � �

��� B � B 5 I � B � B
� � �>5 � ���	�
� � �!�

where
& � ),/ ��0 ) 021 is in turn generated by the following recur-

rence relation:

� ) � � AOI � )�5 ��)�M � � % AEI � 
 � �!� ����$ " �
The initial conditions are � � A � and � � A I . Solving this

recurrence relation, we obtain

� ) A � � ) )� 5 � � ) )� � % A �
� I � �!� �.��$ " �
where � � A 0 � � �� 0 � , � � A 0 � M �� 0 � , ) � A � 5 , I , and ) � A

� " , I .
Note that � ) � � % � and � ) � � � � , so ) )� � � when

% �#" .
So � ) * � � ) )� . Also, note that ) � � A ��� 5", I � � , I " ��� A � .
So we have

� �������� � � B � B 5 I � B � B
� � � A � �������� � I � 5 ��� � � � B ) B � A � I � 5 ��� � � �

Therefore

� ��������
� �	����� � ��� � � A � � �� ��� $ �	����� � ��� � � A � ��������

� �&% �'�( � ��� ' � ' � � � ' � ' �
� ��� � ��� � � A

� ��������
� �&% �'�( � ��� ' � ' � � � ' � ' �

� �
1 M � 1 M ��� � �����
� AEI � I � 5 ��� � � �	�
� �� I

* ��� I
I �
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Proof of Theorem 7
Proof: [Sketch] Let � ) denote the set of edges (links) that

are of jump size - ) , i.e., � ) A & F � � F 5G- ) � � ��� F � � " ��/
where F � � F 5#- ) � denotes a link from node F to node F 5#- ) .
We claim that given a uniform all-to-all communication load
(introduced in Part C of Sec. III), all edges in � ) are of the
same load. The proof of this claim is omitted since it is similar
to that of Theorem 1. However, the load of an edge in � ) may
be different from the load of an edge in � B when

% ?A F . Now
let

� ) be the load of an edge in � ) , % A �
� I ����������$ . It is hard
to work with

� ) since it involves complicated “floors” and
“ceilings” operations. Instead, like in the proof of Theorem
6, we work with its “extrapolation” to the real domain (

��
) as

follows.
It is implicitly shown in the proof of Theorem 6 that - ) *

� � � �
�
� � ) , where � � A 0 � � �� 0 � . We define a new set of jump sizes

that are of real values: - �) A � � ���
�
��� ) , % A �
� I ����������$ . Clearly

-
) * - �) for
% A �
� I ����������$ . The new name space in the real

domain, denoted as � , is set to K ��� � � � �
�
��� 1 � � � , where � A

, I " � as in Theorem 6. Similar to our “new number system”
discussed in Part B of Sec. V, the “routing problem” in the
integer domain can be converted to the problem of “greedily
representing” a real number in � using these real jump sizes& - �) / ��0 ) 0*1 . We define

� �� � % � A F if � ’s greedy representation
contains -�) for F times. We know that the possible F values
are 0, 1, and 2, from the aforementioned properties of the
“new number system”. We define

�� � % � A  � ��� � ���2� % � � . We

claim without proof that
�� � % � * � � % � , % A �
� I ����������$ . In the

following we will only work with
��
, the extrapolation of

�

to the real domain.
From simple calculation, we get

�� � $ � A I � � � 5 � � *
� �.���#�/0 � and

�� �($;" ��� A I � � � � 5 � � � �+* � � 0 ��� 
 � . Clearly�� � $9" ��� % �� � $�� . We claim that
�� � $ " ��� % �� � $ " 
 � %�� � $9"��
� % ����� % �� � $ " 0 � % �� � $ " I � % �� �($�� . In other

words, for any
% A $ " �
��$ " I �5������� � ,

�� � % " ��� is between
�� � % �

and
�� � % 5 ��� . To show this, we use the recurrence relations�� � % " ��� AJI � �� � % � 5 � � �� � % 5 ��� , % A $ " ����$ " I �������	��� , from

Lemma 1. Since I �5 � � A � ,
�� � % " ��� is a convex combination

of
�� � % � and

�� � % 5 ��� and must lie between
�� � % � and

�� � % 5 ��� .
Therefore, we know that

�� � $�� A � � � ��0 ) 0*1
�� � % � . We

already know from Theorem 6 that the average hop count is
0.614 per node. Therefore, the average amount of traffic per
node is 0.614 n by Little’s Law argument similar to that of
Proposition 3. Therefore, the edge congestion is no more than�� � $�� � � � � ����0
�!� = � �.��� � 0 � � � ���%0 = 1.2336.
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