
Concurrent Maintenance of Rings

Xiaozhou Li1,2 Jayadev Misra1,3 C. Greg Plaxton1,2

February 2004

Abstract

A central problem for structured peer-to-peer networks is topology maintenance, that is, how to
properly update neighbor variables when membership changes (i.e., nodes join or leave the network,
possibly concurrently). In this paper, we consider the maintenance of the ring topology, the basis of
several peer-to-peer networks, in the fault-free environment. We design, and prove the correctness of,
protocols that maintain a bidirectional ring under both joins and leaves. Our protocols update neighbor
variables once a membership change occurs. Using an assertional proof method, we show that, although
the ring topology may be tentatively disrupted during membership changes, our protocols eventually
restore the ring topology once membership changes subside. Our protocols are simple and our proofs
are rigorous and explicit.

1Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, Texas 78712–0233. Email:
{xli,misra,plaxton}@cs.utexas.edu.

2This material is based upon work supported by the National Science Foundation under Grant No. CCR–0310970.
3This material is based upon work partially supported by the National Science Foundation under Grant No. CCR–0204323.

1 Introduction

In a structured peer-to-peer network, members (i.e., nodes, or interchangeably, processes, that belong to the
network) maintain some neighbor variables. The neighbor variables of all the members collectively form
a certain topology (e.g., a ring). Over time, membership may change: non-members may wish to join the
network and members may wish to leave the network. When membership changes, the neighbor variables
should be properly updated to maintain the topology. This problem, known as topology maintenance, is a
central problem for structured peer-to-peer networks.

1.1 Existing Work

There are two general approaches to topology maintenance: the passive approach and the active approach.
In the passive approach, when membership changes, the neighbor variables are not immediately updated.
Instead, a repair protocol runs in the background periodically to restore the topology. In the active approach,
the neighbor variables are immediately updated. It is worth noting that joins and leaves may be treated using
the same approach or using different approaches (e.g., passive join and passive leave [10], active join and
passive leave [7, 11], active join and active leave [2, 12]).

Despite its importance, topology maintenance has not been adequately addressed. All existing work that
we are aware of has certain shortcomings. For the passive approach (e.g., Chord [10]), since the neighbor
variables are not immediately updated, the network may diverge significantly from its designated topology.
Furthermore, the passive approach is not as responsive to membership changes and requires considerable
background traffic (i.e., the repair protocol). For the active approach, since the topology of a structured
peer-to-peer network is stringently defined, it is often complicated to update the neighbor variables, difficult
to design maintenance protocols, and even more difficult to reason rigorously about their correctness. As
a result, some existing work gives protocols without proofs [12], some handle joins actively but leaves
passively [7, 11], and some handles joins and leaves actively but separately [2] (i.e., a protocol that handles
joins and a separate protocol that handles leaves). It is not true, however, that an arbitrary join protocol
and an arbitrary leave protocol, if put together, can handle both joins and leaves (e.g., the protocols in [2]
cannot; see a detailed discussion in Section 6). Finally, existing protocols tend to be complicated and their
correctness proofs tend to be operational and sketched at a high level. It is well known, however, that
concurrent programs often contain subtle errors and operational reasoning is unreliable for proving their
correctness.

1.2 Our Contributions

In this paper, we address the maintenance of the ring topology, the basis of several peer-to-peer net-
works [6, 9, 14, 19], in the fault-free environment. We design, and prove the correctness of, protocols
that maintain a bidirectional ring under both joins and leaves. Our protocols handle both joins and leaves
actively. Using an assertional proof method, we prove the correctness of a protocol by first coming up with
a global invariant and then explicitly showing that every action of the protocol preserves the invariant. We
show that, although the ring topology may be tentatively disrupted during membership changes, our pro-
tocols eventually restore the ring topology once membership changes subside. Our protocols are based on
an asynchronous communication model where only reliable delivery is assumed. That is, message delivery
takes finite, but otherwise arbitrary, amount of time.

Our protocols in fact restore the ring topology once the (at most four) messages associated with each
pending membership change are delivered, assuming that no new changes are initiated. In practice, it is

1

add remove

v
v

u w wu
after

before

Figure 1: Adding and removing a process from a ring.

likely that message delivery time is much shorter than the mean time between membership changes. Hence,
in practice, even if membership changes never subside, our protocols maintain the ring topology most of the
time.

Unlike the passive approach, which handles leaves as fail-stop faults, we handle leaves actively (i.e.,
we handle leaves and faults differently). Although treating leaves and faults the same is simpler, in many
situations, leaves occur more frequently than faults. In such situations, handling leaves and faults in the same
way may lead to some drawbacks in terms of performance (e.g., delay in response, substantial background
traffic).

The rest of this paper is organized as follows. Section 2 shows how to maintain a unidirectional ring
under joins. Sections 3, 4, and 5 show how to maintain a bidirectional ring under joins, leaves, and both
joins and leaves, respectively. Section 6 discusses related work. Section 7 offers some concluding remarks.

2 Joins for a Unidirectional Ring

We begin by considering joins for a unidirectional ring. We discuss this seemingly simple problem for two
reasons. Firstly, we introduce several key concepts and lemmas as we discuss this problem. Secondly, our
solution to this problem exemplifies our techniques for solving the harder problems discussed later in this
paper.

2.1 Preliminaries

We consider a fixed and finite set of processes denoted by V . Let V ′ denote V ∪ {nil}, where nil is a
special process that does not belong to V . In what follows, symbols u, v, and w are of type V , and symbols
x, y, and z are of type V ′. We use u.x to denote variable x of process u, and u.x.y stands for (u.x).y.
By definition, the nil process does not have any variable (i.e., nil.x is undefined). We call a variable x

of type V ′ a neighbor variable and we call a process u an x process iff u.x 6= nil. We assume that there
are two reliable and unbounded communication channels between every two distinct processes in V , one in
each direction. There is one channel from a process to itself and there is no channel from or to process nil.
Message transmission in any channel takes a finite, but otherwise arbitrary, amount of time.

We first give a formal definition of a ring. In words, for any neighbor variable x, the x processes form
a ring iff for all x processes u and v (which may be equal to each other), there is a path of positive length
from u to v. Formally, we write ring(x) to mean that the x processes form a ring, i.e.,

ring(x) = 〈∀u, v : u.x 6= nil ∧ v.x 6= nil : u
x

↪→ v〉,

where u
x

↪→ v means 〈∃i : i > 0 : u.xi = v〉 and where u.xi means u.x.x · · · x with x repeated i times. We
first state three useful lemmas.

2

Lemma 2.1 If ring(x) holds, then distinct x processes have distinct x neighbors.

Proof: Let k be the number of x processes. Let d−(u) be the number of processes v such that v.x = u.
Then

∑

u∈V d−(u) = k. We observe that d−(u) > 0 iff u.x 6= nil, because d−(u) > 0 implies that
〈∃v :: v.x = u〉 and then ring(x) implies that u.x 6= nil; on the other hand, u.x 6= nil and ring(x) imply
that 〈∃i : i > 0 : u.xi = u〉 (i.e., (u.xi−1).x = u), which implies that d−(u) > 0. Observing that there are
k x processes, we conclude that 〈∀u : u.x 6= nil : d−(u) = 1〉.

Lemma 2.2 Suppose ring(x)∧ u.x = w ∧ v.x = nil holds before the execution of an action. And suppose
that the action changes u.x to v and changes v.x to w, but preserves all other x values. Then ring(x) holds
after the action.

Proof: We first make the key observation that all paths are preserved by the action, though some may
become longer. To see this, consider any two consecutive processes, p and p ′, on the path from q to q′ before
the action (hence p′ = p.x). Note that p 6= v because v.x = nil. Hence, p.x is affected by the action only if
p = u. If p 6= u, then p.x = p′ after this action; if p = u, then p.x2 = p′ after this action. Hence, the path is
preserved. The lemma then follows from the definition of ring(x).

Lemma 2.3 Suppose ring(x) ∧ u.x = v ∧ v.x = w holds before the execution of an action. And suppose
that the action changes u.x to w and changes v.x to nil, but preserves all other x values. Then ring(x)
holds after the action.

Proof: Similar to the proof of Lemma 2.2.

Lemmas 2.2 and 2.3 show how an action may preserve a ring when adding or removing a process.
Figure 1 gives an intuitive explanation of these two lemmas, yet we stress that u and w in Figure 1 need not
be distinct.

2.2 The Join Protocol

We now explain our join protocol for a unidirectional ring. Let r (the right neighbor) be a neighbor variable,
and assume that ring(r) holds initially. When process u wishes to join the ring, we assume that u is able
to find a member v of the ring (if there is no such process, then u creates a ring consisting of only u itself).
Process u then sends a join message to v. Upon receiving the join message, v places u between v and its
right neighbor w (which can be equal to v), by setting v.r to u and sending a grant(w) message back to u.
Upon receiving the grant(w) message, u sets u.r to w.

Figure 2 describes the join protocol. In the protocol, we use jng as a shorthand for joining. We have
written our protocol as a collection of actions, using a notation similar to Gouda’s abstract protocol nota-
tion [5]. An execution of a protocol consists of an infinite sequence of actions. We assume a weak fairness
model where each action is executed infinitely often; execution of an action with a false guard has no ef-
fect on the system. We assume that each action is atomic and we reason about the system state in between
actions.

We assume that the contact() function in action T1 returns a non-out process if there is one, and it
returns the calling process otherwise. Initially all processes are out and all channels are empty. Figure 3
shows an execution of the protocol where a join request is granted. A solid edge from u to v means u.r = v,
and a dashed edge from u to v means that a grant(v) message is in transmission to u, eventually causing u

to set u.r to v.

3

process p

var s : {in, out , jng}; {state}
r : V ′; {right neighbor}
a : V ′ {auxiliary variable}

init s = out ∧ r = nil

begin
�

s = out → {T1}
a := contact();
if a = p → r, s := p, in

�
a 6= p → s := jng ; send join() to a fi

�
rcv join() from q → {T2}
if s = in → send grant(r) to q; r := q

�
s 6= in → send retry() to q fi

�
rcv grant(a) from q → {T3}
r, s := a, in

�
rcv retry() from q → {T4}
s := out

end

Figure 2: The join protocol for a unidirectional ring.

We remark that the retry message is not an essential part of this join protocol. With a slightly different
assumption on the contact() function (i.e., it returns an in process if there is one and returns the calling
process otherwise), then a join request is always granted. The retry message, however, is essential to the
protocols for bidirectional rings. In those protocols, an in process may become busy or lvg (leaving), hence
a join request may be declined. We keep the retry message here in order to maintain a consistent assumption
on the contact () function.

2.3 Notations and Conventions

We now introduce some notations to be used in our correctness proofs.

m(msg , u, v): The number of messages of type msg in the channel from u to v. We sometimes include the
parameter of a message type. For example, m(grant(x), u, v) denotes the number of grant messages
with parameter x in the channel from u to v).

m+(msg , u), m−(msg , u): The number of outgoing and incoming messages of type msg of u, respec-
tively. A message from u to itself is considered both an outgoing message and an incoming message
of u.

#msg : The total number of messages of type msg in all channels.

↑, ↓, l: Shorthand for “before this action”, “after this action”, and “before and after this action”, respec-
tively.

In our reasoning, we often need to describe how a predicate is affected by an action. We use the verb
“truthify” to mean that a predicate is changed from false to true by an action, “falsify” to mean that a

4

w

w

u

u

u

wv

v

v

v u w

in join

grant(w)
in

in

jng

change of topology exchange of messages

Figure 3: Joining a unidirectional ring.

predicate is changed from true to false, “preserve” to mean that the truth value of a predicate is unchanged,
and “establish” to mean that a predicate is true after the action (the predicate can be either true or false
before the action). We sometimes also use “preserve” to mean that the value of a variable or an expression
is unchanged.

An action affects variables by assignments and it affects channel contents by sending or receiving mes-
sages. For the sake of brevity, as a convention, if a predicate, variable, or expression is unaffected by an
action, then we omit stating so. However, if it is affected (although not necessarily changed) by an action,
then we state so. For example, expression m+(join , p) + m−(grant , p) is unaffected by an action if the
action preserves both the first term and the second term, but the same expression is affected and preserved
by an action if the action decrements the first term by 1 but increments the second term by 1.

2.4 Proof of Correctness

We now prove the correctness of the join protocol. We prove certain safety and progress properties. Proving
safety properties often amounts to proving invariants. What is an invariant of this protocol? It is tempting to
think that this protocol maintains ring(r) at all times. This, however, is not true. For example, consider the
moment when v has set v.r to u but u has yet to receive the grant message. At this moment, v.r = u but
u.r = nil (i.e., the ring is broken). In fact, no protocol can maintain ring(r) at all times, simply because
the joining of a process requires the modification of two variables (e.g., v.r and u.r) located at different
processes. This observation leads us to consider an extended ring topology, defined as follows. Let u.r ′, an
imaginary variable, be

u.r′ =

{

x if m−(grant , u) = 1 ∧ m−(grant(x), u) = 1
u.r otherwise.

In fact, r′ is a function on V , but due to the strong connection between r and r ′, we write r′ as a variable.
Intuitively, a process with a non-nil r ′ value is either a member or a non-member for which the join request
has been acknowledged with a grant message, although the grant message has yet to arrive. This definition
of r′ allows a single action to change the r ′ values of two different processes, solving the aforementioned
problem. We now claim that ring(r′) holds at all times. To prove this claim, we find it useful to introduce a

5

function f : V → N, where N denotes nonnegative integers, defined as:

f(u) = m+(join , u) + m−(grant , u) + m−(retry , u),

and some additional conjuncts. Let I = A ∧ B ∧ C ∧ ring(r ′), where

A = 〈∀u :: (u.s = jng ≡ f(u) = 1) ∧ f(u) ≤ 1〉,

B = 〈∀u :: u.s = in ≡ u.r 6= nil〉,

C = #grant(nil) = 0.

Theorem 2.1 invariant I .

Proof: It can be easily verified that I is true initially. It thus suffices to check that every action preserves
I . We first observe that C is preserved by every action, simply because T2 is the only action that sends a
grant message and B implies that p.r 6= nil. We itemize below the reasons why each action preserves the
other conjuncts of I .

{I} T1 {I}: Suppose T1 takes the first branch (i.e., a = p). This action preserves A ∧B because it changes
p.s from out to in and changes p.r from nil to p. This action preserves ring(r ′) because

contact() returns p

⇒ {def. of contact(); A; B; def. of r′}
↑ 〈∀u :: u.s = out ∧ u.r′ = nil〉 ∧ #grant = 0

⇒ {action}
↓ p.r′ = p ∧ 〈∀u : u 6= p : u.r′ = nil〉.

{I} T1 {I}: Suppose T1 takes the second branch (i.e., a 6= p). This action changes p.s from out to jng and
increases f(p) from 0 to 1.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., s = in). This action preserves A∧B because it preserves
f(q) and p.r 6= nil. Let w be the old p.r; B thus implies w 6= nil. This action changes p.r ′ from w to q and
q.r′ from nil to w because

↑ p.r = w ∧ p.s = in ∧ m(join , q, p) > 0
⇒ {A; B; def. of r′}

↑ p.r′ = w ∧ m−(grant , p) = 0 ∧ q.r′ = nil ∧ m−(grant , q) = 0
⇒ {action; p 6= q because p.r′ 6= q.r′; def. of r′}

↓ p.r′ = q ∧ q.r′ = w.

Lemma 2.2 thus implies that ring(r′) is preserved by this action.

{I} T2 {I}: Suppose T2 takes the second branch (i.e., s 6= in). This action preserves f(q).

{I} T3 {I}: This action changes p.s from jng to in , decreases f(p) from 1 to 0, and truthifies p.r 6= nil. It
preserves p.r′ because l p.r′ = x.

{I} T4 {I}: This action changes p.s from jng to out and decreases f(p) from 1 to 0.

6

Therefore, invariant I .

Given the simplicity of this protocol, the reader may wonder if it is necessary to use assertional reason-
ing: instead, an argument based on operational reasoning is perhaps convincing enough. The convincing
power of operational reasoning, however, quickly diminishes as the number of messages and actions of
the protocol increase. Since our ultimate goal is to prove the correctness of the more involved protocols
discussed later in this paper, we use assertional reasoning from the beginning.

We now turn to proving some progress properties. As discussed above, although ring(r ′) is always true,
ring(r) may sometimes be false. In fact, if processes keep joining the network, the protocol may never be
able to establish ring(r). The following theorem states the progress property of the protocol.

Theorem 2.2 If joins eventually subside, then ring(r) eventually holds, and once joins subside, ring(r) is
stable.

Proof: Similar to the proof of Theorem 5.2.

3 Joins for a Bidirectional Ring

If we consider both joins and leaves, then maintaining a unidirectional ring no longer suffices, because in
a unidirectional ring, when a process leaves, it is difficult and inefficient (though possible) to inform the
process whose neighbor is the leaving process to update its neighbor variable. This task is much easier if we
are maintaining a bidirectional ring.

3.1 Formal Definition of Bidirectional Rings

We first give a formal definition of a bidirectional ring. For any neighbor variables x and y, we write
biring(x, y) to mean that the x processes and the y processes form a bidirectional ring, i.e.,

biring(x, y) = ring(x) ∧ ring(y) ∧ 〈∀u : u.x 6= nil : u.x.y = u〉 ∧ 〈∀u : u.y 6= nil : u.y.x = u〉.

Note that biring(x, y) is a stronger condition than simply ring(x)∧ ring(y); the strengthening prevents the
situation of two separate rings. The following two lemmas are analogous to Lemmas 2.2 and 2.3.

Lemma 3.1 Suppose biring(x, y) ∧ u.x = w ∧ v.x = nil holds before the execution of an action (hence
w.y = u ∧ v.y = nil). And suppose that the action changes u.x to v, w.y to v, v.x to w, and v.y to u, but
preserves all other x and y values. Then biring(x, y) holds after the action.

Lemma 3.2 Suppose biring(x, y) ∧ u.x = v ∧ v.x = w holds before the execution of an action (hence
v.y = u∧w.y = v). And suppose that the action changes u.x to w, w.y to u, v.x to nil, and v.y to nil, but
preserves all other x and y values. Then biring(x, y) holds after the action.

The proofs to the above two lemmas are similar to those of Lemmas 2.2 and 2.3 and hence are omitted.
Figure 4 gives an intuitive explanation of these two lemmas, yet we stress that u and w in Figure 4 need not
be distinct.

7

remove

v
v

u w u w

add
before

after

Figure 4: Adding and removing a process from a bidirectional ring.

3.2 The Join Protocol

We begin by considering joins for a bidirectional ring. We consider leaves and both joins and leaves in
subsequent sections. Our design guideline is to make the join protocol symmetric to the leave protocol, so
that the combined protocol, which handles both joins and leaves, is a simple merge of the two protocols.

Maintaining a bidirectional ring is, not surprisingly, more complicated than maintaining a unidirectional
one. The main idea of our join protocol is to view a bidirectional ring as two unidirectional rings, the r

ring and the l ring. When a process joins the bidirectional ring, it first joins the r ring and then the l ring.
Figure 5 describes the join protocol and Figure 6 shows an execution of the protocol where a join request is
granted. To facilitate our correctness proof, we introduce an auxiliary variable t in the protocol to keep the
old value of r. We remark that in this join protocol, although a join request may be declined, it is declined
because another join is in progress. Again, we assume that the contact() function returns a non-out process
if there is one, and it returns the calling process otherwise.

At first sight, our join protocol may appear straightforward: after all, it is only a four-message protocol.
We remark, however, that there are numerous ways to design a join protocol. For example, we show in
Section 3.4 an alternative join protocol. Also, our join protocol only assumes reliable, but not ordered,
delivery of messages, yet it includes a busy state. We show in Section 3.5 a join protocol that assumes
reliable and ordered delivery of messages but does not include a busy state.

3.3 Proof of Correctness

We prove safety and progress properties similar to those in Section 2. Our technique again is to first define
r′ and l′ and then come up with a global invariant I . The intuition behind the definitions of r ′ and l′ is
straightforward: the r′ and l′ values of the processes involved are changed once a grant message is sent.
For example, consider the moment when v has just sent a grant(u) message to w. At this moment, although
v.r = u, w.l = v, u.r = nil, and u.l = nil, the definition of r ′ and l′ yields v.r′ = u, u.l′ = v, u.r′ = w,
and w.l′ = u. Define u.r′, u.l′ to be

u.r′ =







v if #grant(u) = 1 ∧ m−(grant(u), v) = 1
v if #grant(u) = 0 ∧ m−(ack , u) = 1 ∧ m(ack , v, u) = 1
u.r otherwise,

u.l′ =















v if #grant(u) = 1 ∧ m+(grant(u), v) = 1
x if #grant(u) = 0 ∧ m−(ack , u) = 1 ∧ m−(ack(x), u) = 1
x if #grant(u) + m−(ack , u) = 0 ∧ m−(grant , u) = 1 ∧ m−(grant(x), u) = 1
u.l otherwise,

and define f, g, h : V → N to be:

f(u) = m+(join , u) + #grant(u) + m−(ack , u) + m−(retry , u),

g(u) = m+(grant , u) + m−(done , u) + h(u),

8

process p

var s : {in, out , jng , busy}; {state}
r, l : V ′; {neighbors}
t, a : V ′ {auxiliary variables}

init s = out ∧ r = nil ∧ l = nil ∧ t = nil

begin
�

s = out → {T1}
a := contact();
if a = p → r, l, s := p, p, in

�
a 6= p → s := jng ; send join() to a fi

�
rcv join() from q → {T2}
if s = in → send grant(q) to r; r, s, t := q, busy , r

�
s 6= in → send retry() to q fi

�
rcv grant(a) from q → {T3}
send ack(l) to a; l := a

�
rcv ack(a) from q → {T4}
r, l, s := q, a, in ; send done() to l

�
rcv done() from q → {T5}
s, t := in,nil

�
rcv retry() from q → {T6}
s := out

end

Figure 5: The join protocol for a bidirectional ring.

h(u) =

{

m(ack , u.t, u.r) + m(ack , u.r, u.t) if u.t 6= nil ∧ u.r 6= nil

0 otherwise.

Again we find it useful to introduce some additional conjuncts. An invariant of this protocol is shown in
Figure 7. For the sake of brevity, we also write, for example, A1 to stand for 〈∀u :: (u.s = jng ≡ f(u) =
1) ∧ f(u) ≤ 1〉; the same convention applies to the other conjuncts in I . The reader may notice that the
invariant in Figure 7 contains some redundancy. For example, C1 can be derived from A1. We include such
redundancy in order to make the invariant of the join protocol and that of the leave protocol symmetric. It
follows from I that

E : 〈∀u :: m−(grant , u) ≤ 1〉,

because A1 implies that 〈∀u :: #grant(u) ≤ 1〉, and

m−(grant (x), u) > 0 ∧ m−(grant(y), u) > 0
⇒ {D; def. of r′}

x.r′ = u ∧ y.r′ = u

⇒ {R; Lemma 2.1}
x = y.

Theorem 3.1 invariant I .

9

u

wv

u

wv

u

wv

u

wv

v u w

busy

in
jng

in

in
done

join

grant(u)

ack(v)

change of topology exchange of messages

Figure 6: Joining a bidirectional ring.

Proof: It can be easily checked that I is true initially. It thus suffices to check that I is preserved by each
action. Conjunct D is trivially preserved because the only action that sends a grant message is T2 and
q 6= nil.

{I} T1 {I}: Suppose T1 takes the first branch (i.e., a = p). [A,B] This action changes p.s from out to in

and truthifies both p.r 6= nil and p.l 6= nil. [C1] This action preserves p.s 6= jng . [C2,3] This action does
not falsify the consequent because ↑ p.t = nil. [C4] Unaffected. [R] We observe that

contact() returns p

⇒ {def. of contact(); A1; D}
↑ 〈∀u :: u.s = out〉 ∧ #ack + #grant = 0

⇒ {def. of r′ and l′; B1}
↑ 〈∀u :: u.r′ = nil ∧ u.l′ = nil〉

⇒ {action}
↓ p.r′ = p ∧ p.l′ = p ∧ 〈∀u : u 6= p : u.r′ = nil ∧ u.l′ = nil〉.

{I} T1 {I}: Suppose T1 takes the second branch (i.e., a 6= p). [A,B] This action changes p.s from out

to jng and increases f(p) from 0 to 1. [C1] This action establishes both m+(join, p) > 0 and p.s = jng .
[C2,3,4] Unaffected. [R] Unaffected.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., s = in). Let w be the old p.r; B1 thus implies that
w 6= nil. Hence, the grant message is sent to a non-nil process. Note that p 6= q because ↑ p.s = in∧q.s =
jng . [A,B] This action changes p.s from in to busy , p.r from w to q, and p.t from nil to w. It decreases
m(join, q, p) by 1 and increases m(grant(q), p, w) by 1. Hence, it preserves f(q) and increases g(p) from
0 to 1. [C1] This action removes a join message and preserves p.s 6= jng . [C2] This action establishes both
m(grant , p, w) > 0 and p.t = w. We observe that before this action

10

I = A ∧ B ∧ C ∧ D ∧ R

A = 〈∀u :: A1 ∧ A2〉
A1 = (u.s = jng ≡ f(u) = 1) ∧ f(u) ≤ 1
A2 = (u.s = busy ≡ g(u) = 1) ∧ g(u) ≤ 1
B = 〈∀u :: B1 ∧ B2〉

B1 = (u.s = in|busy ≡ u.r 6= nil ∧ u.l 6= nil) ∧ (u.r 6= nil ≡ u.l 6= nil)
B2 = u.s = busy ≡ u.t 6= nil

C = 〈∀u, v, x :: C1 ∧ C2 ∧ C3 ∧ C4〉
C1 = m+(join, u) > 0 ⇒ u.s = jng

C2 = m(grant , u, v) > 0 ⇒ u.t = v ∧ v.l = u

C3 = m(ack(x), u, v) > 0 ⇒ x.t = u ∧ x.r = v

C4 = m−(done , u) > 0 ⇒ u.t 6= nil

D = #grant(nil) = 0
R = biring(r′, l′)

Figure 7: An invariant of the join protocol.

p.s = in

⇒ {A1; B2 implies p.t = nil; C3}
m+(grant , p) + #grant(p) + m−(ack , p) + #ack(p) = 0

⇒ {def. of r′ and l′; R}
p.r′ = w ∧ w.l′ = p

⇒ {w.l′ takes “otherwise” in the def. of l′}
w.l = p ∧ #grant(w) + m−(ack , w) + m−(grant , w) = 0.

This action does not falsify the consequent because ↑ p.t = nil. [C3,4] This action does not falsify either
of the consequents because ↑ p.t = nil. [R] This action changes p.r ′ from w to q, q.r′ from nil to w, w.l′

from p to q, and q.l′ from nil to p, because

↑ m(join , q, p) > 0
⇒ {A1; B2; C2}

↑ q.r = nil ∧ q.l = nil ∧ #grant(q) + m−(ack , q) + m−(grant , q) = 0
⇒ {reasoning in C2 above; def. of r′ and l′}

↑ p.r′ = w ∧ w.l′ = p ∧ q.r′ = nil ∧ q.l′ = nil

⇒ {action; reasoning in C2 above; w 6= q}
↓ p.r′ = q ∧ q.r′ = w ∧ w.l′ = q ∧ q.l′ = p.

Lemma 3.1 thus implies that R is preserved.

{I} T2 {I}: Suppose T2 takes the second branch (i.e., s 6= in). This action decrements m(join , q, p) by 1
and increments m(retry , p, q) by 1, preserving f(q). It trivially preserves I .

{I} T3 {I}: It follows from D that the ack message is sent to a non-nil process. Furthermore, a 6= p because
B1 and C2 imply that a.l = nil∧p.l 6= nil, and a 6= q because A1 and B2 imply that q.s = busy∧a.s = jng .
We then observe that before this action

11

m(grant(a), q, p) > 0
⇒ {C2; def. of r′ and l′; R; q.s = busy}

q.t = p ∧ a.l′ = q ∧ q.r′ = a ∧ a.r′ = p ∧ #grant(q) + m−(q, ack) = 0
⇒ {def. of r′; q.r′ takes “otherwise”}

q.t = p ∧ q.r = a.

[A,B] This action preserves p.l 6= nil. It decreases
m(grant(a), q, p) by 1 and increases m(ack , p, a) by 1, preserving f(a) and g(q). Note that since q.t 6= q.r,
sending the ack message only increases h(q) by 1. This action also preserves g(u) for every u 6= q, because
before this action

(u.r = a ∧ u.t = p) ∨ (u.r = p ∧ u.t = a)
⇒ {A1; B2; def. of r′}

u.s = busy ∧ (u.r′ = a ∨ u.r′ = p)
⇒ {q.r′ = a ∧ a.r′ = p; R; Lemma 2.1}

u = q ∨ u = a

⇒ {u 6= q; a.r = nil; u.r 6= nil}
false.

[C1,4] Unaffected. [C2] This action may falsify the consequent only if v = p. But E implies that ↓
m−(grant , p) = 0. [C3] This action establishes m(ack(q), p, a) > 0 and we have shown that l q.t =
p ∧ q.r = a. [R] This action preserves a.r ′, a.l′, and p.l′ because

↑ a.r′ = p ∧ a.l′ = q ∧ #grant(a) > 0
⇒ {A1; R; C3}

↑ p.l′ = a ∧ m+(grant , a) + #ack(a) = 0
⇒ {p.l′ takes third branch in the def. of l′; action}

↓ a.r′ = p ∧ a.l′ = q ∧ p.l′ = a.

{I} T4 {I}: It follows from C3 that the done message is sent to a non-nil process. We then observe that

m(ack(a), q, p) > 0
⇒ {C3; A1; def. of r′ and l′; R}

a.t = q ∧ p.l′ = a ∧ a.r′ = p ∧ p.r′ = q

⇒ {a.s = busy ; def. of r′}
a.t = q ∧ a.r = p.

Furthermore, a 6= p because a.s = busy ∧ p.s = jng , and p 6= q because a.r = p ∧ a.t = q ∧ g(a) ≤ 1.
[A,B] This action changes p.s from jng to in and truthifies both p.r 6= nil and p.l 6= nil. This action
decrements m(ack , q, p) by 1 and increments m(done , p, a) by 1; it thus decreases f(p) from 1 to 0 and
preserves g(a). Note that since p 6= q, removing an ack message only decreases h(a) by 1. This action also
preserves g(u) for every u 6= a, because before this action

(u.r = p ∧ u.t = q) ∨ (u.r = q ∧ u.t = p)
⇒ {A1; B2; def. of r′}

u.s = busy ∧ (u.r′ = p ∨ u.r′ = q)

12

⇒ {a.r′ = p ∧ p.r′ = q; R; Lemma 2.1}
u = a ∨ u = p

⇒ {u 6= a; p.r = nil; u.r 6= nil}
false.

[C1] This action falsifies p.s = jng . But A1 and ↑ m−(ack , p) > 0 imply that l m+(join, p) = 0. [C2]
This action does not falsify the consequent because ↑ p.l = nil ∧ p.t = nil. [C3] This action removes
an ack message and does not falsify the consequent because ↑ p.r = nil. [C4] This action establishes
m−(done , a) > 0. It follows from C3 that a.t 6= nil. [R] This action preserves p.r ′ and p.l′ because
l p.r′ = q ∧ p.l′ = a. Note that C2 and ↑ p.l = nil imply that l m−(grant , p) = 0.

{I} T5 {I}: [A,B] This action changes p.s from busy to in , falsifies p.t 6= nil, and decreases g(p) from 1
to 0. [C1] This action preserves p.s 6= jng . [C2] This action may falsify the consequent only if u = p. But
A2 and ↑ m−(done , p) > 0 imply that l m+(grant , p) = 0. [C3] This action may falsify the consequent
only if x = p. But A2 and ↑ m−(done , p) > 0 imply that ↑ m(ack , p.t, p.r) = 0. [C4] This action removes
a done message. It may falsify the consequent only if u = p. But A2 implies that ↓ m−(done , p) = 0. [R]
Unaffected.

{I} T6 {I}: This action decrements m(retry , q, p) by 1, decreasing f(p) from 1 to 0, and changes p.s

from jng to out . It trivially preserves I except C1. This action preserves C1 because although it falsifies
p.s = jng , A1 and ↑ m−(retry , p) > 0 imply that l m+(join , p) = 0.

Therefore, invariant I .

Theorem 3.2 If joins eventually subside, then biring(r, l) eventually holds, and once joins subside, biring(r, l)
is stable.

Proof: Similar to the proof of Theorem 5.2.

3.4 An Alternative Join Protocol for Bidirectional Rings

Figure 8 shows an execution of an alternative join protocol. Constructing the protocol from this figure is
straightforward and we omit doing so. Compared with the join protocol in Section 3, although this join
protocol uses one more message, it is likely to take less time to complete a join. But as remarked before, we
do not use this protocol in view of the leave and combined protocols. It is possible, however, that one may
design other leave and combined protocols that work with this join protocol.

3.5 A Join Protocol on FIFO Channels

The join protocol presented in Figure 5, henceforth referred to as the non-FIFO join protocol, only assumes
reliable, but not ordered, delivery of messages, but it includes a busy state. We present in this section a join
protocol, henceforth referred to as the FIFO join protocol, that does not have the busy state, but requires
reliable and ordered message delivery. Figure 9 describes the FIFO join protocol and Figure 10 shows an
execution of this protocol. In this protocol, every process has two neighbor variables r and l, also denoted
by n[1] and n[0], respectively. We use two symbols to denote the same variable in order to improve the
symmetry between the joining of the r ring and that of the l ring, and to shorten the invariant. Each process
has two state variables, s[1] and s[0], which represent the state of the process with respect to the r ring and

13

w

u

v

u

wv

u

wv

u

wv

v u w

join

in
in

jng

jng

grant(w)

left

ack

done
busy

in

change of topology exchange of messages

Figure 8: An alternative way to join a bidirectional ring.

the l ring, respectively. We have used some shorthands in the presentation of the protocol. For example,
n[0..1] := p means n[0], n[1] := p, p and s[0..1] = out means s[0] = out ∧ s[1] = out . Define u.r ′ and
u.l′ to be:

u.r′ =







v if #grant(u) = 1 ∧ m−(grant (u), v) = 1
v if #grant(u) = 0 ∧ m−(ack (1), u) = 1 ∧ m(ack(1), v, u) = 1
u.r otherwise,

u.l′ =







x if m−(grant , u) = 1 ∧ m−(grant(x), u) = 1
v if m−(grant , u) = 0 ∧ m−(ack(0), u) = 1 ∧ m(ack (0), v, u) = 1
u.l otherwise.

Define f0, f1 : V → N to be:

f0(u) = m+(join, u) + m−(ack(0), u) + m−(retry , u),

f1(u) = m+(join, u) + #grant(u) + m−(ack(1), u) + m−(retry , u).

Figure 11 shows an invariant of the FIFO join protocol. In the invariant, d ranges from 0 to 1 and d̄ stands
for 1 − d.

We assume that the contact() function returns u if there exists a u such that u.s[0] 6= out∨u.s[1] 6= out ,
and it returns the calling process otherwise. Again, we remark that with a slightly different assumption on
the contact() function (i.e., the contact() function returns a process with s[1] = in if there is one, and
returns the calling process otherwise), every join request is granted and hence the retry message is not
needed. It follows from I that

F : 〈∀u :: m−(grant , u) ≤ 1〉

because A implies that 〈∀u :: #grant(u) ≤ 1〉 and

14

process p

var s[0..1] : {in , out , jng}; {state}
n[0..1] : V ′; {neighbors}
a : V ′ {auxiliaryvariable}

init s[0..1] = out ∧ n[0..1] = nil

begin
�

s[0..1] = out → {T1}
a := contact();
if a = p → n[0..1], s[0..1] := p, in

�
a 6= p → s[0..1] := jng ; send join() to a fi

�
rcv join() from q → {T2}
if s[1] = in → send grant(q) to r; send ack(0) to q; r := q

�
s[1] 6= in → send retry() to q fi

�
rcv grant(a) from q → {T3}
send ack(1) to a; l := a

�
rcv ack(d) from q → {T4}
n[d], s[d] := q, in

�
rcv retry() from q → {T5}
s[0..1] := out

end

Figure 9: The FIFO join protocol.

m−(grant (x), u) > 0 ∧ m−(grant(y), u) > 0
⇒ {E; def. of r′}

x.r′ = u ∧ y.r′ = u

⇒ {R; Lemma 2.1}
x = y.

Theorem 3.3 invariant I .

Proof: It can be easily checked that I is true initially. It thus suffices to check that I is preserved by each
action. Conjunct E is trivially preserved because the only action that sends a grant message is T2 and
q 6= nil.

{I} T1 {I}: Suppose T1 takes the first branch (i.e., a = p). [A,B] This action changes p.s[0..1] from out

to in and truthifies p.n[0..1] 6= nil. [C1] This action preserves p.s[0..1] 6= jng . [C2,3,4] This action does
not falsify any of the consequents because ↑ p.n[0..1] = nil. [D] Unaffected. [R] We observe that

contact() returns p

⇒ {def. of contact()}
↑ 〈∀u :: u.s[0..1] = out〉

⇒ {A; E; def. of r′ and l′}
↑ #grant = 0 ∧ #ack = 0 ∧ 〈∀u :: u.r′ = nil ∧ u.l′ = nil〉

⇒ {action}
↓ p.r′ = p ∧ p.l′ = p ∧ 〈∀u : u 6= p : u.r′ = nil ∧ u.l′ = nil〉.

15

u

wv

u

wv

u

wv

u

wv

u

wv

v u w

jng

grant(u)

jng

ack(1)

ack(0)

in

in

in
join

in

change of topology exchange of messages

Figure 10: Joining a bidirectional ring on FIFO channels.

{I} T1 {I}: Suppose T1 takes the second branch (i.e., a 6= p). The grant thus is sent to a non-nil process.
[A,B] This action changes u.s[0..1] from out to jng and increases both f0(u) and f1(u) from 0 to 1. [C1]
This action truthifies both u.s[0..1] = jng and m+(join , u) > 0. [C2,3,4] Unaffected. [D] Unaffected. [R]
Unaffected.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., s[1] = in). Let w be the old p.r; B implies that w 6= nil.
[A,B] This action decrements m+(join , q) by 1 and increments both m+(ack(0), q) and #grant(q) by 1,
preserving f0(q) and f1(q). [C1] This action removes a join message. [C2] This action may truthify the
antecedent only if ↑ m(ack(0), p, w) = 0. If that is the case, then we observe that before this action

p.s = in

⇒ {A}
#grant(p) = 0 ∧ m−(ack (1), p) = 0

⇒ {def. of r′; R}
p.r′ = w ∧ w.l′ = p

⇒ {w.l′ takes “otherwise”; m(ack (0), p, w) = 0}
w.l = p.

[C3] This action establishes m+(grant , p) > 0, and B implies that this action preserves p.r 6= nil. [C4]
This action establishes m+(ack(0), p) > 0, and B implies that this action preserves p.n[1] 6= nil. [D] It
suffices to show that ↑ m−(grant , q) = 0. Suppose ↑ m(grant(x), u, q) > 0, then

↑ m(grant(x), u, q) > 0 ∧ m+(join , q) > 0
⇒ {def. of l′; A; B}

16

I = A ∧ B ∧ C ∧ D ∧ E ∧ R

A = 〈∀u, d :: (u.s[d] = jng ≡ fd(u) = 1) ∧ fd(u) ≤ 1〉
B = 〈∀u, d :: u.s[d] = in ≡ u.n[d] 6= nil〉
C = 〈∀u, v, d :: C1 ∧ C2 ∧ C3 ∧ C4〉

C1 = m+(join, u) > 0 ⇒ u.s[0..1] = jng

C2 = m(grant , u, v) > 0 ∧ m(ack(0), u, v) = 0 ⇒ v.l = u

C3 = m+(grant , u) > 0 ⇒ u.r 6= nil

C4 = m+(ack(d), u) > 0 ⇒ u.n[d̄] 6= nil

D = No ack(0) follows grant

E = #grant(nil) = 0
R = biring(r′, l′)

Figure 11: An invariant of the FIFO join protocol.

↑ q.l′ = x ∧ x.r′ = q ∧ q.r = nil ∧ #grant(q) + m−(ack(1), q) = 0
⇒ {R}

false.

[R] This action changes p.r′ from w to q, q.r′ from nil to w, q.l′ from nil to p, and w.l′ from p to q, because

↑ p.s[1] = in ∧ m(join, q, p) > 0
⇒ {A; B; m−(grant , q) = 0 by D above}

↑ #grant(p) + m−(ack(1), p) = 0 ∧ #grant(q) + m−(ack(1), q) + ∧m−(ack (0), q) = 0 ∧
m−(grant , q) = 0

⇒ {def. of r′ and l′; R}
↑ p.r′ = w ∧ w.l′ = p ∧ q.r′ = nil ∧ q.l′ = nil

⇒ {action}
↓ p.r′ = q ∧ w.l′ = q ∧ q.r′ = w ∧ q.l′ = p.

Lemma 3.1 thus implies that R is preserved.

{I} T2 {I}: Suppose T2 takes the second branch (i.e., p.s[1] 6= in). This action decrements m+(join, q) by
1 and increments m−(retry , q) by 1, preserving f0(q) and f1(q). Thus, it trivially preserves I .

{I} T3 {I}: [A,B] This action decrements #grant(q) by 1 and increments m−(ack(1), q) by 1, preserving
f1(q), and C2 and D imply that this action preserves p.l 6= nil. [C1] Unaffected. [C2] This action may
falsify the consequent only if v = p, but F implies that ↓ m−(grant , p) = 0. [C3] This action removes
a grant message. [C4] This action establishes m+(ack (1), p) > 0, and it preserves p.l 6= nil. [D] This
action removes a grant message. [R] This action preserves p.l ′ and a.l′, because l p.l′ = a ∧ a.r′ = p.
Note that ↑ m−(ack(0), p) = 0 because ↑ p.l 6= nil.

{I} T4 {I}: [A,B] This action changes p.s[d] from jng to in and decreases fd(p) from 1 to 0. [C1] This
action falsifies p.s[d] = jng . But it follows from A and ↑ m−(ack(d), p) > 0 that l m+(join , p) = 0.
[C2] This action may truthify the antecedent if d = 0 and before this action, the second message in the
channel from q to p is a grant message, and this action clearly establishes p.l = q. This action does not
falsify the consequent because ↑ p.n[d] = nil. [C3] This action truthifies p.n[d] 6= nil. [C4] This action

17

does not falsify the consequent because ↑ p.n[d] = nil. [D] This action removes an ack message. [R] If
d = 1, then this action preserves p.r ′ because l p.r′ = q. If d = 0, then this action preserves p.l′ because if
↑ m−(grant , p) > 0, then removing an ack(0) message does not change p.l ′, if ↑ m−(grant , p) = 0, then
l p.r′ = q.

{I} T5 {I}: This action changes p.s[0..1] from jng to out . It removes a retry message, decreasing f0(p)
and f1(p) from 1 to 0. Therefore, it trivially preserves I .

Therefore, invariant I .

Theorem 3.4 If joins eventually subside, then biring(r, l) eventually holds and once joins subside, biring(r, l)
is stable.

Proof: Similar to the proof of Theorem 5.2.

4 Leaves for a Bidirectional Ring

4.1 The Leave Protocol

We now consider leaves. The main idea of the leave protocol is similar to that of the join protocol, that is, a
process first leaves the r ring and then the l ring. Figure 12 describes the leave protocol and Figure 13 shows
an execution of the protocol where a leave request is granted. The reader may notice that there is some
redundancy in the protocol. For example, the ack message need not have a parameter. The motivation for
incorporating such redundancy is to improve the symmetry between the join protocol and the leave protocol.
Another redundancy, which is much less obvious, is that the conjunct r = q in T2 is in fact unnecessary
if we only consider leaves, but is necessary if we consider both joins and leaves. This demonstrates that
handling joins and leaves together is a more subtle problem than handling them separately.

4.2 Proof of Correctness

The technique for proving the correctness of the leave protocol is similar to that for the join protocol. Define
u.r′ and u.l′ to be:

u.r′ =

{

nil if #grant(u) + m−(ack , u) = 1
u.r otherwise,

u.l′ =







nil if #grant(u) + m−(ack , u) = 1
v if #grant(u) + m−(ack , u) = 0 ∧ m−(grant , u) = 1 ∧ m(grant , v, u) = 1
u.l otherwise,

and define f to be:

f(u) = m+(leave, u) + #grant(u) + m−(ack , u) + m−(retry , u).

The definitions of g and h are the same as before. It follows from I that

E : 〈∀u :: m−(grant , u) ≤ 1〉

because A2 implies that 〈∀u :: m+(grant , u) ≤ 1〉 and

18

process p

var s : {in, out , lvg , busy}; {state}
r, l : V ′; {neighbors}
t, a : V ′ {auxiliary variables}

init s = out ∧ r = nil ∧ l = nil ∧ t = nil

begin
�

s = in → {T1}
if l = p → r, l, s := nil,nil, out

�
l 6= p → s := lvg ; send leave(r) to l fi

�
rcv leave(a) from q → {T2}
if s = in ∧ r = q → send grant(q) to a; r, s, t := a, busy , r

�
s 6= in ∨ r 6= q → send retry() to q fi

�
rcv grant(a) from q → {T3}
send ack(nil) to a; l := q

�
rcv ack(a) from q → {T4}
send done() to l; r, l, s := nil,nil, out

�
rcv done() from q → {T5}
s, t := in,nil

�
rcv retry() from q → {T6}
s := in

end

Figure 12: The leave protocol for a bidirectional ring.

m(grant(x), v, u) > 0 ∧ m(grant(y), w, u) > 0
⇒ {C2; A2}

v.r = u ∧ w.r = u ∧ v.s = busy ∧ w.s = busy

⇒ {A1; def. of r′}
v.r′ = u ∧ w.r′ = u

⇒ {R; Lemma 2.1}
v = w.

Theorem 4.1 invariant I .

Proof: It can be easily checked that I is true initially. Hence, it suffices to check that each conjunct of I

is preserved by each action. Conjunct D is trivially preserved because the only action that sends a grant

message is T2 and q 6= nil.

{I} T1 {I}: Suppose T1 takes the first branch (i.e., l = p). Let w be the old p.r; B1 implies that w 6= nil.
We first observe that w = p, because before this action,

p.s = in ∧ p.l = p

⇒ {A; C2}
#grant(p) + m−(ack , p) + m−(grant , p) = 0

⇒ {def. of r′ and l′; R}
p.l′ = p ∧ p.r′ = p ∧ p.r = p.

19

wv

u

wv
u

wv

u

v u w

busy

in

in
done

leave(w)

lvg

grant(u)

ack(nil)

change of topology exchange of messages

wv

u

out

Figure 13: Leaving a bidirectional ring.

[A,B] This action changes p.s from in to out and changes p.r and p.l from p to nil. [C1] This action may
falsify the consequent only if u = p. But A1 and ↑ p.s = in imply that l m+(leave , p) = 0. [C2] This
action may falsify the consequent only if x = p, u = p, or v = p. In any case, we have u = p because
↑ p.r = p ∧ p.l = p. But A2 and ↑ p.s = in imply that l m+(grant , p) = 0. [C3] This action may falsify
the consequent only if v = p or v.l = p. In either case, we have v.l = p because ↑ p.l = p. But ↑ p.t = nil.
[C4] Unaffected. [R] We have shown that ↑ p.r ′ = p ∧ p.l′ = p. Hence,

↑ p.r′ = p ∧ p.l′ = p

⇒ {R}
↑ p.r′ = p ∧ p.l′ = p ∧ 〈∀u : u 6= p : u.r′ = nil ∧ u.l′ = nil〉

⇒ {action}
↓ 〈∀u :: u.r′ = nil ∧ u.l′ = nil〉.

{I} T1 {I}: Suppose T1 takes the second branch (i.e., l 6= p). [A,B] This action changes p.s from in to
lvg and increases f(p) from 0 to 1. [C1] This action establishes both m+(leave(p.r), p) > 0 and p.s = lvg .
[C2,3,4] Unaffected. [R] Unaffected.

{I} T2 {I}: Suppose T2 takes the first branch (i.e., s = in ∧ r = q). It follows from B1 and C1 that the
grant message is sent to a non-nil process. [A,B] This action changes p.s from in to busy , changes p.r

from q to a, and changes p.t from nil to q. It decreases m(leave , q, p) by 1 and increases m(grant(q), p, a)
by 1. Hence, it preserves f(q) and increases g(p) from 0 to 1. [C1] This action removes a leave message and
does not falsify the consequent because ↑ p.s = in . [C2] This action establishes both m(grant(q), p, a) > 0
and p.r = a ∧ p.t = q. We observe that before this action

p.s = in ∧ m(leave(a), q, p) > 0
⇒ {A1}

#grant(p) + m−(ack , p) + m+(grant , p) + #grant(q) + m−(ack , q) + m+(grant , q) = 0

20

I = A ∧ B ∧ C ∧ D ∧ R

A = 〈∀u :: A1 ∧ A2〉
A1 = (u.s = lvg ≡ f(u) = 1) ∧ f(u) ≤ 1
A2 = (u.s = busy ≡ g(u) = 1) ∧ g(u) ≤ 1
B = 〈∀u :: B1 ∧ B2〉

B1 = (u.s = in|busy |lvg ≡ u.r 6= nil ∧ u.l 6= nil) ∧ (u.r 6= nil ≡ u.l 6= nil)
B2 = u.s = busy ≡ u.t 6= nil

C = 〈∀u, v, x :: C1 ∧ C2 ∧ C3 ∧ C4〉
C1 = m+(leave(x), u) > 0 ⇒ u.s = lvg ∧ u.r = x

C2 = m(grant(x), u, v) > 0 ⇒ u.t = x ∧ u.r = v ∧ v.l = x ∧ x.l = u

C3 = m(ack(x), u, v) > 0 ⇒ x = nil ∧ v.l.t = v ∧ v.l.r = u

C4 = m−(done , u) > 0 ⇒ u.t 6= nil

D = #grant(nil) = 0
R = biring(r′, l′)

Figure 14: An invariant of the leave protocol.

⇒ {def. of r′; R}
p.r′ = q ∧ q.r′ = a ∧ q.l′ = p ∧ a.l′ = q

⇒ {q.l′ and a.l′ take “otherwise”}
q.l = p ∧ a.l = q.

This action does not falsify the consequent because ↑ p.t = nil. [C3,4] This action does not falsify either of
the consequents because ↑ p.t = nil. [R] This action changes p.r ′ from q to a, q.r′ from a to nil, q.l′ from
p to nil, and a.l′ from q to p, because by the reasoning in C2 above

↑ p.r′ = q ∧ q.r′ = a ∧ q.l′ = p ∧ a.l′ = q

⇒ {action}
↓ p.r′ = a ∧ q.r′ = nil ∧ q.l′ = nil ∧ a.l′ = p.

Lemma 3.2 thus implies that R is preserved.

{I} T2 {I}: Suppose T2 takes the second branch (i.e., s 6= in ∨ r 6= q). This action decrements
m(leave , q, p) by 1 and increments m(retry , p, q) by 1, preserving f(q). It trivially preserves I .

{I} T3 {I}: It follows from D that the ack message is sent to a non-nil process, and it follows from C2

that ↑ q.r = p ∧ q.t = a. Furthermore, a 6= q because ↑ q.s = busy ∧ a.s = lvg , and a 6= p because
↑ p.l = a ∧ a.l = q. [A,B] This action preserves p.l 6= nil. It decreases m(grant (a), q, p) by 1 and
increases m(ack , p, a) by 1, preserving f(a) and g(q) because l q.r = p ∧ q.t = a. Note that since p 6= a,
sending the ack message only increases h(q) by 1. This action also preserves g(u) for every u 6= q, because

(u.r = a ∧ u.t = p) ∨ (u.r = p ∧ u.t = a)
⇒ {A1; B1; def. of r′; a 6= nil}

u.s = busy ∧ (u.r′ = a ∨ u.r′ = p)
⇒ {q.r′ = p; a.r′ = nil; R; Lemma 2.1; u 6= q}

false.

21

[C1] Unaffected. [C2] This action removes a grant message. It may falsify the consequent only if x = p

or v = p. If x = p, then u = a. But B2 and ↑ a.s = lvg imply that ↑ a.t = nil. If v = p, then x = a

and u = q. But A2 implies that ↓ m(grant , q, p) = 0. [C3] This action establishes m(ack(nil), p, a) > 0.
Since ↑ a.l = q ∧ q.t = a ∧ q.r = p and a 6= p, we have ↓ a.l.t = a ∧ a.l.r = p. This action may falsify
the consequent only if v = p. But A2 and ↑ p.l = a ∧ a.s = lvg imply that ↑ p.l.t = nil. [C4] Unaffected.
[R] This action preserves p.l′, a.r′, and a.l′ because

↑ m(grant(a), q, p) > 0
⇒ {A2; C2}

↑ #grant(q) + m−(ack , q) = 0
⇒ {def. of r′ and l′; R}

↑ q.r′ = p ∧ p.l′ = q ∧ a.r′ = nil ∧ a.l′ = nil

⇒ {p.l′ takes second branch; E; action}
↓ a.r′ = nil ∧ a.l′ = nil ∧ p.l′ = q.

{I} T4 {I}: It follows from B1 that the done message is sent to a non-nil process. Let w be the old p.l. It
follows from C3 that w.t = p ∧ w.r = q. Hence, w 6= p because ↑ w.s = busy ∧ p.s = lvg , and p 6= q

because ↑ w.t = p∧w.r = q∧ g(w) ≤ 1. [A,B] This action changes p.s from lvg to out and falsifies both
p.r 6= nil and p.l 6= nil. This action decrements m(ack , q, p) by 1 and increments m(done , p, w) by 1.
Hence, it decreases f(p) from 1 to 0, and preserves g(w). Note that since p 6= q, removing an ack message
only decreases h(w) by 1. This action also preserves g(u) for every u 6= w, because before this action

(u.r = p ∧ u.t = q) ∨ (u.r = q ∧ u.t = p)
⇒ {A1; B2; def. of r′}

u.s = busy ∧ (u.r′ = p ∨ u.r′ = q)
⇒ {w.r′ = q; p.r′ = nil; R; Lemma 2.1; u 6= w}

false.

[C1] This action may falsify the consequent only if u = p. But A1 and ↑ m−(ack , p) > 0 imply that
l m+(leave, p) = 0. [C2] This action may falsify the consequent only if x = p, u = p, or v = p. If
x = p, then u = w. But A2 and ↑ m(ack , w.r, w.t) > 0 imply that l m+(grant , w) = 0. If u = p, but
B2 and ↑ p.s = lvg imply that ↑ p.t = nil. If v = p, then x = w. But A2 and ↑ w.s = busy imply that
l #grant(w) = 0. [C3] This action removes an ack message and may falsify the consequent only if v = p

or v.l = p. If v = p, then A1 implies that ↓ m−(ack , p) = 0. If v.l = p, then B2 and ↑ p.s = lvg imply that
l p.t = nil. [C4] This action establishes m(done, p, w) > 0, and C3 implies that l w.t 6= nil. [R] This
action preserves p.r′ and p.l′ because l p.r′ = nil ∧ p.l′ = nil. Note that l m−(grant , p) = 0 because

m(ack , q, p) > 0 ∧ m−(grant(x), p) > 0
⇒ {C2,3; B2; A1}

p.l.t = p ∧ p.l.s = busy ∧ p.l = x ∧ x.s = lvg

⇒ {a process can be in only one state}
false.

{I} T5 {I}: [A,B] This action changes p.s from busy to in , truthifies p.t = nil, and decreases g(p)
from 1 to 0. [C1] This action preserves p.s 6= lvg . [C2] This action may falsify the consequent only if
u = p. But A2 and ↑ m−(done , p) > 0 imply that l m+(grant , p) = 0. [C3] This action may falsify

22

the consequent only if v.l = p; hence u = p.r and v = p.t. But A1 and ↑ m−(done , p) > 0 implies that
↑ m(ack , p.r, p.t) = 0. [C4] This action removes a done message and may falsify the consequent only if
u = p. But A2 implies that ↓ m−(done , p) = 0. [R] Unaffected.

{I} T6 {I}: This action decrements m(retry , q, p) by 1, decreasing f(p) from 1 to 0, and changes p.s from
lvg to in . It trivially preserves I except C1. It preserves C1 because A1 and ↑ m−(retry , p) > 0 imply that
l m+(leave, p) = 0.

Therefore, invariant I .

Theorem 4.2 If leaves eventually subside, then biring(r, l) eventually holds, and once leaves subside,
biring(r, l) is stable.

Proof: Similar to the proof of Theorem 5.2.

It is desirable that an out process has no incoming message because a process that has left the ring is not
obligated to respond to the messages associated with the maintenance of the ring. This property, however, is
not provided by our protocol if we only assume reliable, but not ordered, delivery of messages. To see this,
consider the scenario where two adjacent processes send out their leave requests simultaneously. Assume
that the leave request of the left process is granted and the leave request of the right process reaches the
left process even after the ack message. However, if we assume ordered delivery as well, then our protocol
guarantees that an out process has no incoming message.

Theorem 4.3 If message delivery is reliable and ordered, then an out process has no incoming message.

Proof: It follows from I that it suffices to show that P = 〈∀u : u.s = out : m−(leave, u) = 0〉 holds at
all times. Clearly, P is true initially. Hence, it suffices to show that if an action truthifies u.s = out , then
it also establishes m−(leave , u) = 0, and if an action falsifies m−(leave , u) = 0, then it also establishes
u.s 6= out .

The only action that truthifies u.s = out is T4, where process p receives an ack message and changes its
state from lvg to out . We show that when p receives an ack message from q, then there is no leave message
in any incoming channel of p. We first observe that as long as m(ack , q, p) > 0, then no in process will
send a leave message to p, because suppose v sends a leave message to p, then

m(ack , q, p) > 0 ∧ v.l = p ∧ v.s = in

⇒ {def. of l′; I}
#grant(p) + m−(ack , p) + m+(grant , p) = 0 ∧ #grant(v) + m−(ack , v) = 0

⇒ {def. of l′}
p.l′ = nil ∧ v.l′ = p

⇒ {R}
false.

Hence, it remains to show that if the first message in the channel from q to p is an ack message, then
there is no leave message in any other incoming channel of p. Suppose this is not true. Assume that
m(leave , w, p) > 0. Note that w 6= q because q does not send a leave message to p as long as m(ack , q, p) >

0. By the argument above, w sends the leave message to p before q sends the ack message to p. Consider
the moment t1 right before w sends the leave message to p. We observe that at t1, w has no incoming
grant message, because I implies that if w has an incoming grant message, then the message is a grant(p)

23

message, but q has an incoming grant(p) message later. Hence, two actions send grant(p) messages,
truthifying p.l′ = nil twice. But p.l′ = nil is stable. Hence, at t1, w has no incoming grant message,
which implies w.l′ = p at t1. Consider the moment t2 right before q sends p the ack message. At t2, I

implies that p.l′ = nil. Hence, w.l′ 6= p. Hence, between t1 and t2, an action falsifies w.l′ = p. Since
m+(leave , w) > 0 between t1 and t2, an action that changes w.l′ can only be w receiving a grant(p)
message. But we have argued above that this is not possible.

The only action that falsifies m−(leave, u) = 0 is the sending of a leave message, say, from w to p.
If grant(p) = 0 at that moment, then w.l′ = p. Hence p.l′ 6= nil ∧ p.s 6= out . If grant(p) > 0 at that
moment, then p.s 6= out .

Therefore, P holds at all times.

Our leave protocol, however, does not provide the progress property that if a process intends to leave,
then eventually it is able to do so. To see this, consider a scenario where all processes decide to leave
simultaneously, and their leave requests are all declined because the left neighbor of every process is also
leaving. This scenario can repeat forever. Hence, the system may get into a livelock. Lynch et al. [12] have
noted the likely difficulty of providing this progress property. The leave protocol by Aspnes and Shah [2]
attempts to provide this property but does not seem to succeed. See a detailed discussion in Section 6. In
practice, a system can use other techniques to avoid this scenario. For example, as in the Ethernet protocol,
a process may delay a random amount of time before sending out another leave request.

5 Joins and Leaves for a Bidirectional Ring

5.1 The Combined Protocol

Exploiting the strong symmetry between the join protocol and the leave protocol, the combined protocol,
described in Figure 15, is a simple merge of the two protocols. The only subtlety is that, upon receiving a
grant message, a process has to tell whether the message is granting a join or a leave request, and the way
to do so is to check whether l = q. As we show in the proof, l = q iff a join is granted. The definitions
of r′ and l′, as well as the invariant I , are simple merges of their respective definitions in the previous two
protocols.

5.2 Proof of Correctness

Figure 16 shows the definitions of u.r ′ and u.l′. Define f to be:

f(u) = m+(join, u) + m+(leave , u) + #grant(u) + m−(ack , u) + nm−(retry , u).

The definitions of g(u) and h(u) are the same as before. It follows from I that

E : 〈∀u :: m−(grant , u) ≤ 1〉.

To see this, suppose u has two incoming grant messages. It follows from D that their parameters are non-
nil. If the parameters in the two grant messages are in the same state (i.e., both jng or both lvg), then the
reasoning in join and leave can be reused. If they are in different states, then

m(grant(x), v, u) > 0 ∧ x.s = jng ∧ m(grant (y), w, u) > 0 ∧ y.s = lvg

⇒ {def. of r′; A2}
x.r′ = u ∧ w.r′ = u

24

process p

var s : {in, out , jng , lvg , busy}; {state}
r, l : V ′; {neighbors}
t, a : V ′ {auxiliary variables}

init s = out ∧ r = nil ∧ l = nil ∧ t = nil

begin
�

s = out → {T j
1
}

a := contact();
if a = p → r, l, s := p, p, in

�
a 6= p → s := jng ; send join() to a fi

�
s = in → {T l

1}
if l = p → r, l, s := nil,nil, out

�
l 6= p → s := lvg ; send leave(r) to l fi

�
rcv join() from q → {T j

2
}

if s = in → send grant(q) to r; r, s, t := q, busy , r
�

s 6= in → send retry() to q fi
�

rcv leave(a) from q → {T l
2}

if s = in ∧ r = q → send grant(q) to a; r, s, t := a, busy , r
�

s 6= in ∨ r 6= q → send retry() to q fi
�

rcv grant(a) from q → {T3}
if l = q → send ack(l) to a; l := a

�
l 6= q → send ack(nil) to a; l := q fi

�
rcv ack(a) from q → {T4}
if s = jng → r, l, s := q, a, in; send done() to l

�
s = lvg → send done() to l; r, l, s := nil,nil, out fi

�
rcv done() from q → {T5}
s, t := in,nil

�
rcv retry() from q → {T6}
if s = jng → s := out

�
s = lvg → s := in fi

end

Figure 15: The combined protocol.

25

u.r′ =















v if u.s = jng ∧ #grant(u) = 1 ∧ m−(grant(u), v) = 1
v if u.s = jng ∧ #grant(u) = 0 ∧ m−(ack , u) = 1 ∧ m(ack , v, u) = 1
nil if u.s = lvg ∧ #grant(u) + m−(ack , u) = 1
u.r otherwise

u.l′ =































v if u.s = jng ∧ #grant(u) = 1 ∧ m+(grant (u), v) = 1
x if u.s = jng ∧ #grant(u) = 0 ∧ m−(ack , u) = 1 ∧ m−(ack(x), u) = 1
nil if u.s = lvg ∧ #grant(u) + m−(ack , u) = 1
x if #grant(u) + m−(ack , u) = 0 ∧ m−(grant , u) = 1 ∧ m−(grant(x), u) = 1 ∧ x.s = jng

v if #grant(u) + m−(ack , u) = 0 ∧ m−(grant , u) = 1 ∧ m(grant(x), v, u) = 1 ∧ x.s = lvg

u.l otherwise

Figure 16: Definitions of r′ and l′ for the combined protocol.

⇒ {R; Lemma 2.1; w.s = busy}
false.

Theorem 5.1 invariant I .

Proof: It can be easily checked that I is true initially. Hence, it suffices to check that each conjunct of
I is preserved by each action. Most of the reasoning below reuses the proofs for the join protocol and the
leave protocol. In what follows, we use “Similar to join” (“Similar to leave”) to indicate that the reasoning
is almost, if not entirely, identical to the reasoning in the join protocol (the leave protocol). Conjunct D is
trivially preserved, for reasons similar to those mentioned in join and leave.

{I} T
j
1
{I}: Suppose T

j
1

takes the first branch (i.e., a = p). [A,B] Similar to join. [C1] For C
j
1
, similar

to join. For C l
1, this action preserves p.s 6= lvg . [C2] For C

j
2
, similar to join. For C l

2, this action preserves
p.s 6= lvg and does not falsify the consequent because ↑ p.r = nil∧ p.l = nil. [C3] For C

j
3
, similar to join.

For C l
3, this action preserves p.s 6= lvg and it does not falsify the consequent because ↑ p.r = nil∧p.l = nil.

[C4] Similar to join. [R] Similar to join.

{I} T
j
1
{I}: Suppose T

j
1

takes the second branch (i.e., a 6= p). [C j
2,3] This action truthifies p.s = jng , but

A2 and ↑ p.s = in imply that l #grant(p) = 0∧m−(ack , p) = 0. [C l
1,2,3] This action preserves p.s 6= lvg .

The rest of the reasoning is similar to join.

{I} T l
1 {I}: Suppose T l

1 takes the first branch (i.e., l = p). Let w be the old p.r. Similar to leave, we have
w = p. [A,B] Similar to leave. [C1] For C l

1, similar to leave. For C
j
1
, this action preserves p.s 6= jng . [C2]

For C l
2, similar to leave. For C

j
2
, this action preserves p.s 6= jng and it may falsify the consequent only if

v = p. Thus, u = p because ↑ p.r = p. But B2 and ↑ p.s = in imply that ↑ p.t = nil. [C3] For C l
3, similar

to leave. For C
j
3
, this action preserves p.s 6= jng and it does not falsify the consequent because ↑ p.t = nil.

[C4] Similar to leave. [R] Similar to leave.

{I} T l
1 {I}: Suppose T l

1 takes the second branch (i.e., l 6= p). [A,B,C l
1, C4, R] Similar to leave. [C j

1,2,3]
This action preserves p.s 6= jng . [C l

2,3] This action truthifies p.s = lvg , but A1 and ↑ p.s = in imply that
l #grant(p) = 0 ∧ m−(ack , p) = 0.

26

I = A ∧ B ∧ C ∧ D ∧ R

A = 〈∀u :: A1 ∧ A2〉
A1 = (u.s = jng |lvg ≡ f(u) = 1) ∧ f(u) ≤ 1
A2 = (u.s = busy ≡ g(u) = 1) ∧ g(u) ≤ 1
B = 〈∀u :: B1 ∧ B2〉

B1 = (u.s = in|busy |lvg ≡ u.r 6= nil ∧ u.l 6= nil) ∧ (u.r 6= nil ≡ u.l 6= nil)
B2 = u.s = busy ≡ u.t 6= nil

C = 〈∀u, v, x :: C
j
1
∧ C l

1 ∧ C
j
2
∧ C l

2 ∧ C
j
3
∧ C l

3 ∧ C4〉

C
j
1

= m(join, u, v) > 0 ⇒ u.s = jng

C l
1 = m+(leave(x), u) > 0 ⇒ u.s = lvg ∧ u.r = x

C
j
2

= m(grant(x), u, v) > 0 ∧ x.s = jng ⇒ u.t = v ∧ v.l = u

C l
2 = m(grant(x), u, v) > 0 ∧ x.s = lvg ⇒ u.t = x ∧ u.r = v ∧ v.l = x ∧ x.l = u

C
j
3

= m(ack(x), u, v) > 0 ∧ v.s = jng ⇒ x.t = u ∧ x.r = v

C l
3 = m(ack(x), u, v) > 0 ∧ v.s = lvg ⇒ x = nil ∧ v.l.t = v ∧ v.l.r = u

C4 = m−(done , u) > 0 ⇒ u.t 6= nil

D = #grant(nil) = 0
R = biring(r′, l′)

Figure 17: An invariant of the combined protocol.

{I} T
j
2
{I}: Suppose T

j
2

takes the first branch (i.e., s = in). [A ∧ B] Similar to join. [C1] For C
j
1
, similar

to join. For C l
1, this action preserves p.s 6= lvg . [C2] For C

j
2
, similar to join. For C l

2, this action does not
truthify the antecedent because l q.s 6= lvg , and it does not falsify the consequent because ↑ p.t = nil.
[C3] For C

j
3
, similar to join. For C l

3, this action preserves p.s 6= lvg , and it does not falsify the consequent
because ↑ p.t = nil. [C4] Similar to join. [R] Similar to join.

{I} T
j
2
{I}: Suppose T

j
2

takes the second branch (i.e., s 6= in). Similar to join.

{I} T l
2 {I}: Suppose T l

2 takes the first branch (i.e., s = in ∧ r = q). [A,B] Similar to leave. [C1] For C l
1,

similar to leave. For C
j
1
, this action preserves p.s 6= jng . [C2] For C l

2, similar to leave. In that reasoning,
in order to conclude that a.l′ takes “otherwise” in the definition of l′, we observe that p.l′ does not take
the second branch, because otherwise C

j
3

implies that q.t 6= nil, contradicting q.s = lvg . For C
j
2
, this

action does not truthify the antecedent because it preserves q.s 6= jng , and it does not falsify the consequent
because ↑ p.t = nil. [C3] For C l

3, similar to leave. For C
j
3
, this action preserves p.s 6= jng , it does not

falsify the consequent because ↑ p.t = nil. [C4] Similar to leave. [R] Similar to leave.

{I} T l
2 {I}: Suppose T l

2 takes the second branch (i.e., s 6= in ∨ r 6= q). Similar to leave.

{I} T3 {I}: It follows from D and A1 that a.s = jng |lvg . If a.s = jng , then C
j
2

implies that p.l = q. If
a.s = lvg , then C l

2 implies that p.l 6= q because p.l = a ∧ q.s = busy ∧ a.s = lvg . Thus, if T3 takes the
first branch (i.e., l = q), then a.s = jng . If it takes the second branch, then a.s = lvg . Suppose T3 takes the
first branch. Since ↑ a.s = jng , we have ↑ a.r ′ = p ∧ p.l′ = a. [A,B] Similar to join. [C1] For C

j
1
, similar

to join. For C l
1, unaffected. [C2] For C

j
2
, similar to join. For C l

2, this action may falsify the consequent only
if x = p or v = p. If x = p, but l #grant(p) = 0 because ↑ p.l 6= nil ∧ p.l ′ 6= nil. If v = p, then E

implies that ↓ m−(grant , p) = 0. [C3] For C
j
3
, similar to join. For C l

3, this action preserves a.s 6= lvg and

27

it may falsify the consequent only if v = p, but ↑ p.l ′ 6= nil implies that l m−(ack , p) = 0 ∨ p.s 6= lvg .
[C4] Similar to join. [R] Similar to join.

{I} T3 {I}: Suppose T3 takes the second branch (i.e., l 6= q). We have a.s = lvg . [A,B] Similar to leave.
[C1] For C l

1, similar to leave. For C
j
1
, unaffected. [C2] For C l

2, similar to leave. For C
j
2
, this action may

falsify the consequent only if v = p. But E implies that ↓ m−(grant , p) = 0. [C3] For C l
3, similar to leave.

For C
j
3
, this action preserves a.s 6= jng . [C4] Similar to leave. [R] Similar to leave.

{I} T4 {I}: It follows from A1 that p.s = jng |lvg . Suppose p.s = jng . [A,B] Similar to join. [C1] For
C

j
1
, similar to join. For C l

1, this action does not falsify the consequent because ↑ p.s 6= lvg . [C2] For C
j
2
,

similar to join; note that this action falsifies p.s = jng . For C l
2, this action preserves p.s 6= lvg and does not

falsify the consequent because ↑ p.r = nil ∧ p.l = nil. [C3] For C
j
3
, similar to join; note that this action

falsifies p.s = jng . For C l
3, this action preserves p.s 6= lvg and does not falsify the consequent because

↑ p.r = nil ∧ p.l = nil. [C4] Similar to join. [R] Similar to join.

{I} T4 {I}: Suppose p.s = lvg . Let w be the old p.l. [A,B] Similar to leave. [C1] For C l
1, similar to

leave. For C
j
1
, this action preserves p.s 6= jng . [C2] For C l

2, similar to leave; note that this action falsifies
p.s = lvg . For C

j
2
, this action preserves p.s 6= jng and it may falsify the consequent only if v = p, but

l m−(grant , p) = 0 (see R below). [C3] For C l
3, similar to leave; note that this action falsifies p.s = lvg .

For C
j
3
, this action preserves p.s 6= jng and it does not falsify the consequent because ↑ p.t = nil. [C4]

Similar to leave. [R] Similar to leave; in addition, we observe ↑ m−(grant(x), p) = 0 for any x.s = jng ,
because otherwise x.r′ = p ∧ p.l′ = x. But p.l′ = nil.

{I} T5 {I}: Similar to join and leave.

{I} T6 {I}: Similar to join and leave.

Therefore, invariant I .

Theorem 5.2 If membership changes eventually subside, then biring(r, l) eventually holds, and once changes
subside, biring(r, l) is stable.

Proof: We use the techniques in [15] to prove the progress properties. Let c be a global boolean variable
controlled by the environment but not the protocol. We assume that c is initially false and c is stable. We
modify the protocol by adding ¬c as an additional conjunct to the guards of T

j
1

and T l
1 (i.e., the new guards

become s = out ∧ ¬c and s = in ∧ ¬c, respectively). Our goal is to show that c 7→ biring(r, l). Let u be
an arbitrary process. Let Q(u) denote u.s = in|out . Let f ′(u) = f(u) + g(u).

1 f ′(u) = 1 co f ′(u) ≤ 1 ; I

2 transient f ′(u) = 1 ; program text
3 f ′(u) = 1 en f ′(u) = 0 ; def. of en, 1, 2
4 f ′(u) = 1 7→ f ′(u) = 0 ; basis, 3
5 ¬Q(u) 7→ Q(u) ; disjunction, I , 3, 4
6 Q(u) 7→ Q(u) ; implication
7 true 7→ Q(u) ; disjunction, 5, 6
8 stable c ; given
9 c 7→ c ∧ Q(u) ; PSP, 7, 8

28

u

join
v

leave

out

leave

w

Figure 18: An out process may have an incoming message.

10 stable c ∧ Q(u) ; program text, I

11 c 7→ c ∧ 〈∀u :: Q(u)〉 ; completion, 9, 10
12 c 7→ biring(r, l) ; def. of r′ and l′, I , 11
13 stable c ∧ biring(r, l) ; def. of r′ and l′, I , 10

5.3 The Extended Combined Protocol

We have mentioned in Section 4 that it is desirable for an out process not to have any incoming messages.
However, even with the assumption of reliable and ordered delivery of messages, our combined protocol
does not provide this property. We show in this section a counterexample. We further show that combined
protocol can be made to provide this property with some simple extensions.

Figure 18 shows that, even if we assume reliable and ordered delivery of messages, it is possible for
an out process to have an incoming message in the combined protocol. In the figure, u receives the leave

message from w when u.s = out . To provide the property that an out process does not have any incoming
message, we extend our combined protocol as follows:

• Every process has an additional integer variable, k, initialized to 0.

• When a process grants a join or a leave request, it sets k to 2.

• When a process receives a grant(a) message from q, in addition to sending the ack message to a, it
sends a done message to q.

• A process decrements k by 1 for every done message it receives, and it changes its state (from busy)
to in when k = 0.

We further assume that an out process does not have any incoming join message. Without this assump-
tion, a join request may be directed to an in process by the contact() function, and when the join message

29

is delivered, the in process has left the ring.

Theorem 5.3 If message delivery is reliable and ordered, then an out process does not have any incoming
message in the extended combined protocol.

Proof: As in the proof of Theorem 4.3, it suffices to show that P = 〈∀u : u.s = out : m−(leave, u) = 0〉.
Two actions may truthify u.s = out : T4 when p.s = lvg , and T6 when p.s = jng . One action may falsify
m−(leave , u) = 0: T l

1 when p.l 6= p. We analyze these actions one by one.
Consider T4 when p.s = lvg . As in the proof of Theorem 4.3, it suffices to show that when q sends the

ack message to p, p has no incoming leave message at that time. Suppose this is not true and suppose that
w (note that w 6= q) sends p a leave message right after time t1 and this leave message remains undelivered
until q sends p an ack message right after time t2. Suppose m−(grant , w) = 0 at t1. Then w.l′ = p at t1.
But I and p.l′ = nil at t2 imply that w.l′ 6= p at t2. Hence, between t1 and t2, an action falsifies w.l′ = p

and this action can only be T2, where a grant(x) message is sent to w. Suppose this happens right after
time t3. If x.s = jng , then I implies that this grant message is from p. Hence, p.s = busy at t3. For p.s

to change from busy (at t3) to lvg (at t2), p has to receive the done message from w by the time t2. Since
message delivery is ordered, p receives the leave message from w before it receives the done message from
w. A contradiction to the assumption that m(leave, w, p) > 0 at t2. If x.s = lvg , then I implies that x = p

and I implies that, by the time t2, p has received the ack message from w so that p can have another ack

message from q. Hence, by the order of delivery, p receives the leave message from w by t2. A contradiction
to the assumption that m(leave , w, p) > 0 at t2. Suppose m(grant(x), u, w) > 0 at t1, for some x and u.
Using a similar argument, we reach a similar contradiction.

Consider T6 and p.s = jng . Let m(retry , q, p) > 0. Suppose m(leave , w, p) > 0 at this time. However,
when w sends the leave message to p, w.l = p and I implies that m−(grant , w) = 0. Hence, w.l′ = p. But
p.l′ = nil, violating R.

Consider T l
1. Suppose q sends a leave message to p. At this time, q.s = in∧q.l = p. If m−(grant , q) =

0, then q.l′ = p and I implies that p.l′ 6= nil and hence p.s 6= out . If m(grant (x), u, q) > 0, then x = p or
u = p. In either case, we have p.s 6= out .

Hence, P holds at all times.

6 Related Work

Peer-to-peer networks belong in two general categories, structured and unstructured, depending on whether
they have stringent neighbor relationships to be maintained by their members. Topology maintenance is
thus a non-issue for unstructured peer-to-peer networks. In recent years, numerous topologies have been
proposed for structured peer-to-peer networks (e.g., [2, 6, 9, 13, 16, 19, 17, 18, 20]). Many of them, however,
assume that concurrent membership changes only affect disjoint sets of the neighbor variables. Clearly, this
assumption does not always hold.

Chord [19] takes the passive approach to topology maintenance. Liben-Nowell et al. [10] investigate the
bandwidth consumed by repair protocols and show that Chord is nearly optimal in this regard. Hildrum et
al. [7] focus on choosing nearby neighbors for Tapestry [20], a topology based on PRR [16]. In addition, they
propose an active join protocol for Tapestry, together with a correctness proof. Furthermore, they describe
how to handle leaves (both voluntary and involuntary) in Tapestry. However, the description of voluntary
(i.e., active) leaves is high-level and is mainly concerned with individual leaves. Liu and Lam [11] have
also proposed an active join protocol for a topology based on PRR. Their focus, however, is on constructing

30

a topology that satisfies the bit-correcting property of PRR; in contrast with the work of Hildrum et al.,
proximity considerations are not taken into account.

The work of Aspnes and Shah [2] is closely related to ours. In particular, skip graph maintenance
involves the maintenance of doubly-linked lists, which is similar to ring maintenance. They give a join
protocol and a leave protocol, along with two terse correctness arguments. The correctness arguments is
a step towards assertional proofs because they reason about an invariant that captures the definition of a
skip graph. But their work has some shortcomings. Firstly, the invariant does not capture the system state
when messages are in transmission. As we have seen in this paper, reasoning about the system state during
message transmission is a main part of the proofs. Also, the arguments of [2] are operational and mainly
reason about individual joins or leaves, but the reasoning on concurrency is sketchy. Secondly, the join
protocol and the leave protocol of [2], if put together, cannot handle both joins and leaves. (To see this,
consider the scenario where a join occurs between a leaving process and its right neighbor.) Thirdly, for
the leave protocol, a process may send a leave request to a process that has already left the network. As
we previously discussed, this is undesirable. The problem persists even if ordered delivery of messages is
assumed, and a method like retry does not fix the problem. It is assumed in [2] that a process does not
leave the network if it is waiting for some message associated with a leave. This assumption does not solve
the problem, though, because even if a process u does not have an incoming message from v at a given
moment, process v may later forward a message from w to u. As a result, a process may never know when
it can leave the network. Moreover, in practice, it is likely to be difficult for a process to detect if it has
an incoming message. Fourthly, the protocols rely on the search operation, the correctness of which under
topology change is not established.

Awerbuch and Scheideler [3] propose the hyperring, a low-congestion deterministic dynamic network
topology. The focus of [3] is on the performance bounds (e.g., message bounds) of hyperrings, and the
maintenance of hyperrings is only briefly discussed.

In their position paper, Lynch et al. [12] outline an approach to ensuring atomic data access in peer-to-
peer networks and give the pseudocode of the approach for the Chord ring. The pseudocode, excluding the
part for transferring data, gives a topology maintenance protocol for the Chord ring. Although [12] provides
some interesting observations and remarks, no proof of correctness is given, and the proposed protocol has
several shortcomings, some of which are similar to those of [2] (e.g., it does not work for both joins and
leaves and a message may be sent to a process that has already left the network).

Assertional proofs of distributed algorithms appear in, e.g., Lamport [8], and Chandy and Misra [4]. Our
work can be described in the closure and convergence framework of Arora and Gouda [1]: the protocols
operate under the closure of the invariants, and the topology converges to a ring once membership changes
subside.

7 Concluding Remarks

We have addressed the problem of concurrent maintenance of the ring topology. Numerous issues merit
further investigation. Firstly, it would be interesting to extend the techniques and results in this paper to
a full-scale peer-to-peer network topology. Secondly, it would be interesting to develop machine-checked
proofs for our protocols, using some automatic theorem provers like ACL2 or I/O Automata. Thirdly, it
would be interesting to investigate if certain techniques (e.g., reduction or composition) can help to reduce
our proof lengths. Fourthly, our protocols do not provide the progress property that a leaving process even-
tually is able to leave the network. It would be interesting to design (simple) protocols that provide this
property. Lastly, we have assumed a fault-free environment for our protocols. Of course, a peer-to-peer

31

network should be fault-tolerant. It would be interesting to extend our protocols to faulty environments.

References

[1] A. Arora and M. G. Gouda. Closure and convergence: A foundation for fault-tolerant computing.
IEEE Transactions on Software Engineering, 19:1015–1027, 1993.

[2] J. Aspnes and G. Shah. Skip graphs. In Proceedings of the 14th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 384–393, January 2003. See also Shah’s Ph.D. dissertation, Yale University,
2003.

[3] B. Awerbuch and C. Scheideler. The hyperring: A low-congestion deterministic data structure for
distributed environments. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, January 2004.

[4] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, Reading, MA,
1988.

[5] M. G. Gouda. Elements of Network Protocol Design. John Wiley & Sons, 1998.

[6] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay
network with practical locality properties. In Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems, pages 113–126, March 2003.

[7] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed data location in a dynamic network.
In Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures, pages
41–52, August 2002.

[8] L. Lamport. An assertional correctness proof of a distributed algorithm. Science of Computer Pro-
gramming, 2:175–206, 1982.

[9] X. Li and C. G. Plaxton. On name resolution in peer-to-peer networks. In Proceedings of the 2nd
Workshop on Principles of Mobile Computing, pages 82–89, October 2002.

[10] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the evolution of peer-to-peer systems.
In Proceedings of the 21st ACM Symposium on Principles of Distributed Computing, pages 233–242,
July 2002.

[11] H. Liu and S. S. Lam. Neighbor table construction and update in a dynamic peer-to-peer network. In
Proceedings of the 23rd International Conference on Distributed Computing Systems, pages 509–519,
May 2003.

[12] N. Lynch, D. Malkhi, and D. Ratajczak. Atomic data access in content addressable networks. In
Proceedings of the 1st International Workshop on Peer-to-Peer Systems, pages 295–305, March 2002.

[13] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation of the butterfly.
In Proceedings of the 21st ACM Symposium on Principles of Distributed Computing, pages 183–192,
June 2002.

32

[14] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a small world. In
Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems, pages 127–140,
March 2003.

[15] J. Misra. A Discipline of Multiprogramming. Springer-Verlag, New York, 2001.

[16] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects in a
distributed environment. Theory of Computing Systems, 32:241–280, 1999.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content addressable net-
work. In Proceedings of the 2001 ACM SIGCOMM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, pages 161–172, 2001.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for large-scale
peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Conference on Distributed
Systems Platforms, pages 329–350, November 2001.

[19] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, F. Kaashoek, F. Dabek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for Internet applications. IEEE/ACM Transactions on Network-
ing, 11:17–32, February 2003.

[20] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications,
22:41–53, January 2003.

33

