
Emulating Small-World Networks on
Content-Addressable Networks

Po-An Chen
Institute of Information Science

Academia Sinica
poanch@iis.sinica.edu.tw

Yih-Kuen Tsay
Department of Information Management

National Taiwan University
tsay@im.ntu.edu.tw

Abstract

Distributed Hash Tables (DHTs) are prevalently used
in resolving the routing problem in peer-to-peer net-
works. Many schemes achieve short routing paths with
small state per node, considering dynamic networks, yet
performs in a complicated way except CAN. Kleinberg’s
small-world networks are a family of random graphs al-
lowing short routing paths. We emulated small-world
networks on CAN to catch merits from both peer-to-
peer routing networks and small-world networks. Our
small-world CANs are simple and efficient at handling
node arrivals and departures while maintaining short
routing paths and ensuring load-balance inherently by
clustering. Greedy routing is used first on our small-
world CANs to show a competitive performance com-
pared with many other schemes’ logarithmic length of
average routing paths with logarithmic size of state per
node, and then a routing algorithm modified from greed
routing is devised to arrive at a better result in reducing
the state size by aO(

√
log n) factor or the cost of node

joining and exiting by aO(log n) factor.

1. Introduction

Since the seminal PRR scheme [12] lit up a way for
locating digital objects or routing messages on large-
scale networks, many schemes such as Chord [15],
Tapestry [18, 2], Pastry [14], and Content-Addressable
Networks (CANs) [13, 17] have emerged for the same
purpose in the context of peer-to-peer overlay networks.
Their approaches can be more generally described by
Distributed Hash Tables (DHTs) where the object identi-
fier space is partitioned among all the participant nodes.
The tradeoff between short routing path and small state
is a basic concern in designing DHTs [16]. When the

network is dynamic with frequent arrivals and depar-
tures of nodes, the design problem is further complicated
by a requirement of achieving small cost for state up-
dates. Fault-tolerance, load balancing and locality are
also other important issues. Recent schemes like Sim-
plified PRR [6], Viceroy [7], and Koorde [3] strive for
small state (O(log n) or O(1)) while maintaining the
same routing cost ofO(log n) hops (with high proba-
bility or on average). They may seem successful in the
performance measures but they work in a complicated
way and fail to keep simple the network construction
and maintenance or even routing.

On the other hand, Kleinberg’s construction of small-
world networks [4, 5] brought up a family of random
graphs that allow short routing paths ofO(log2 n) hops
with only one long-range contact per node using greedy
routing. The goal of such small-world networks is im-
mediately recognized to coincide with that of the fore-
mentioned peer-to-peer routing networks in the sense of
ensuring short routing paths. For example, Aspnes et al.
[1] extend Kleinberg’s result to a more general family of
random graphs and derive both lower bounds and upper
bounds on greedy routing given different sizes of rout-
ing state and probability of failure. Symphony [9] adapts
Kleinberg’s construction to arrive at a randomized peer-
to-peer routing network by placing nodes in a ring and
equipping each node with multiple long-range links. A
major challenge of adapting small-world networks for a
dynamic peer-to-peer setting is how to keep some desir-
able link properties of the random graphs, since nodes
constantly come and go.

We observed that a relatively simple yet efficient and
scalable randomized routing scheme for dynamic peer-
to-peer networks can be obtained by emulating Klein-
berg’s small-world networks on an existing DHT imple-
mentation. For the overall routing scheme to be as sim-
ple as small-world networks, the underlying DHT imple-

mentation has to be simple as well. In fact, a similar idea
is applied in Symphony, which used a Chord-like ring
as the underlying DHT. However, there are DHT imple-
mentations with a more suitable model, other than a ring
which Symphony used, to absorb small-world networks
so we aims at a more elegant emulation taking arrivals
and departures into a good consideration. A natural
choice of the underlying DHT implementation is CAN, a
scheme that is not only similar to small-world networks
in the model ofd-dimensional spaces, onto which the
physical Internet may be most directly mapped, where
d ≥ 1 but also is simple enough and good at dealing
with arrivals and departures of nodes.

Our Contributions. The scheme of a DHT imple-
mentation (a peer-to-peer routing network) can be di-
vided into two parts: the formation of the overlay
network and a routing algorithm operated on the net-
work. Our emulation of small-world networks on CAN
concentrates on the first part. By three different ap-
proaches with incremental considerations, we emulate
small-world networks on the CAN scheme, and demon-
strate greedy routing as an example of routing algo-
rithms on our small-world CAN to achieve average rout-
ing paths ofO(log2 n

`) hops with` long-range links per
node. The point-based naı̈ve approach is simply con-
venient for dynamic networks. The cluster-based ap-
proximation approach is designed for dynamic networks
considering load-balance and is based on the node-based
approximation with the help of clustering. In the naı̈ve
approach, node joining requires2d + ` nodes to change
their states and constructing2d + ` state, which induces
routing ofO(log2 n) hops on average; node exiting re-
quires2d + ` nodes to change their states, which in-
duces routing ofO(log2 n) hops on average. In the ap-
proximation approach, node joining requires2d nodes to
change their immediate CAN neighbors without routing
and constructing2d + ` state, which induces routing of
O(log2 n) hops on average; node exiting requires2d+ `
nodes to change their states, which induces routing of
O(log2 n) hops on average.

Nevertheless, greedy routing is not the only choice
so we also explore other possibilities of routing algo-
rithms besides greedy routing and some optimal ones on
randomized routing networks (the NoN-GREEDY rout-
ing algorithm [10] and the optimal randomized proto-
col of [8]) facilitated by our emulation of small-world
networks on CAN. We simply devise a routing algo-
rithm, which is modified from greedy routing and per-
forms between greedy routing and optimal routing algo-
rithms, to arrive at average routing paths ofO(log2 n

d`)

hops with 2d + ` state per node on average. With
d = Θ(

√
log n) and ` = Θ(

√
log n), average routing

paths become ofO(log n) hops withΘ(
√

log n) state
per node, which reduces node joining and exiting cost
from O(log2 n) to O(log n

√
log n); with d = Θ(log n)

and` = Θ(1), node joining and exiting cost is further
reduced toO(log n) while the same average path length
is attained withΘ(log n) state per node. So, this result
is better than many other schemes’ load-balanced result
of O(log n) hops withΘ(log n) state per node.

Road Map. In Section 2, we highlight some essential
preliminaries about CAN for a basis of following discus-
sion. In Section 3 and Section 4, we present small-world
CANs considering different approaches for different re-
quirements, and performances are analyzed for each way
of emulation. In Section 5, we search for other routing
algorithms feasible in small-world CAN. In Section 6,
some other related work mentoined in the itroduction of
Section 1 is highlighted for reference. In Section 7, con-
clusions and future work are given.

2. Preliminaries: CAN

Our scheme is built on the CAN scheme of [13] for
its generality, simplicity, and advantages of dealing with
nodes joining and exiting. We briefly review it here
and leave other essential background knowledge about
Kleingerg’s construction of small-world networks intro-
duced later when necessary along our discussion.

In the CAN scheme, there is a virtuald-dimensional
Cartesian coordinate space on ad-torus as a key space,
which is dynamically partitioned among all the nodes in
the network such that every node is assigned and there-
after owns its individual, distinct zone. The virtual coor-
dinate space is targeted to store (key,value) pairs where,
in the context of object location, a key is an object iden-
tifier and a value is an object pointer to a copy of this
object, i.e., the hosting node of this object. Thus, a key
is deterministically mapped to a destination pointP in
the virtual space by a uniform hash table and, along with
its value, stored at the indexing node that is assigned the
zone containingP for later being accessed by any other
node using the same hash function to getP . By the
routing table consisting of immediate CAN neighbors
with adjacent zones, a node sends a message towards
the node whose zone contains the destination point by
greedy routing: A node forwards the message to one of
the neighbors with the zone of coordinate spans closest
to the coordinates of the destination point.

2

There are two optimizing algorithms necessary in the
following discussion going to be briefly reviewed here:
The more uniform partitioning requires a node under a
partition request for a new node’s joining to render the
partition request induced by the new node to one of its
CAN neighbors with the largest zone. The background
zone reassignment is periodically executed when a node
that temporarily handle zones more than one seeks to
hand-off the zone that is not originally its own. A depth-
first search in the subtree of the partition tree rooted at
the sibling of the zone that is going to be handed-off
will find two sibling leaves in the subtree. The merger
of these two zones makes one of the two nodes origi-
nally responsible for the two zones available for taking
over the handed-off zone. Both algorithms prevent small
zones from being further partitioned and therefore con-
tribute to a more uniform zone assignment.

Consequently, in the CAN scheme, for ad dimen-
sion virtual space shared byn nodes, the number of net-
work nodes can grow without increasing the expected
state per node, which isO(d), if d is set independent of
n while the expected routing path grows in the rate of
O(d · n 1

d) hops. Also, node joining and exiting requires
2d nodes to change their state on average without any
routing, which is quite efficient.

3. Small-World CAN

We present two approaches in this section to emulate
small-world networks on CAN, considering arrivals and
departures of nodes, i.e., dynamic networks. A point-
based näıve approach is directly a modification from
Kleinberg’s construction of small-world networks and
uses a mechanism adapted from CAN for node arrivals
and departures . A node-based approximation approach
ignores the need for long-range link changes caused by
node arrivals and still results in a small-world competi-
tive network. It is the basis of a cluster-based approx-
imation approach presented in the next section where
load-balancing issues are inherently considered using a
clustering method. Our small-world CANs can be gen-
eralized to an arbitrary dimension. However, we fo-
cus on a 2-dimensional space spanned by coordinatesx
andy for the sake of clarity.

3.1. Point-Based Näıve Approach

In this approach, it is emphasized to distinguish a
point, denoted as(i, j), in the virtual space from a node
in the network wherei, j ∈ {1, 2, ..,m

1
2 }. We define

the virtual space in integers.m
1
2 is the number of points

along a dimension in the virtual space and the total num-
ber, the whole virtual space size, ism. It is required
that m ≤ c · n for some constantc. This means that
the size of object identifiers is bounded by the num-
ber of nodes in the network, which is a crucial con-
dition for this approach to attain a performance bound
in the analysis later. A node is responsible for all the
points in its assigned zone. To make feasible the em-
ulation of a small-world network on CAN, we modify
the definition of distance in our scheme from “lattice
distance” in Kleinberg’s grid model, where nodes are
uniformly distributed, to “point distance” in CAN’s vir-
tual space. The lattice distance and our point distance
are actually the Manhattan distance measured in nodes
and measured in points, respectively. Specifically, the
point distancebetween two points(i, j) and (k, l) is
d((i, j), (k, l)) = |i − k| + |j − l|. A node’s long-
range contacts are decided with the probability in terms
of such point distance instead of lattice distance.

We let a nodeu choose a most central point in its
assigned zone[a, b]× [c, d] as this node’s representative
point, denoted asp(u) = (ba+b

2 c, b c+d
2 c). A node has

2d immediate CAN neighbors on average and` long-
range contacts, each of which is chosen independently.
A long-range link of nodeu to a pointx not in its zone
is built with probability proportional to[d(p(u), x)]−2.
Note that a long-range contact is still a node though it
is identified by the point to which this long-range link
is pointing. In short, we change the atomic unit in the
model from a node in [4] to a point in the virtual space of
CAN, and thereby resolves the problem of conformance
to the condition of uniform (grid) distribution of atomic
units for applying Kleinberg’s construction. Therefore,
long-range link probabilities can be accordingly defined
in terms of point distance.

Node Joining and Exiting. The advantage of this ap-
proach is immediately found in handling node joining
and exiting. The algorithms for node joining and exiting
in CAN can be adapted by taking each node’s long-range
links into consideration. Because long-range link proba-
bilities are defined using points which are assumed static
not like nodes, existing long-range links except those
pointing to the points in the splitting zone for node join-
ing or those pointing to the taken-over zone for node
exiting can stay unchanged without affecting the link
probabilities defined above. Since CAN’s algorithms for
node joining and exiting need no further discussion, we
put more attention to considering long-range links.

Assume a new nodev joins at some point that is in
nodeu’s zone[a, b] × [c, d]. So, the zone[da+b

2 e, b] ×

3

[c, d] is reassigned to nodev if nodeu partitions its zone
along coordinatex; the zone[a, b] × [d c+d

2 e, d] is reas-
signed to nodev if the partition is along coordinatey.
CAN’s algorithm for node joining can be run for nodev,
nodeu, and its old immediate CAN neighbors to learn or
update their immediate CAN neighbors. For long-range
contacts, the nodes whose long-range links are pointing
to the points in the half zone reassigned to nodev are
notified to change their long-range contacts to nodev.
Node v choose a long-range contact to pointx with
probability in proportion to[d(p(v), x)]−2 and routes to
find the node whose zone contains pointx. This process
of constructing a long-range contact is repeated` times
to get` long-range links independently.

Node exiting results in a taken-over zone. A taken-
over zone is a zone that is under control of a node want-
ing to hand-off its zone or one of its zones. It can appear
when the zone of a leaving node can be merged with a
neighbor’s zone to become a valid zone. Also, it can ap-
pear twice during one run of the background zone reas-
signment mentioned in the preliminaries. Again, CAN’s
algorithm for exiting node is applied for updating the
immediate CAN neighbors of the affected nodes. For
long-range contacts, the nodes whose long-range links
are pointing to the points in the taken-over zone are no-
tified to change their long-range contacts to a node that
takes over such taken-over zone.

Performance Analysis. The performance analysis for
our small-world CAN in point-based naı̈ve approach is
analogous to the analysis for Kleinberg’s construction of
small-world networks but in a point-based perspective.
We discuss greedy routing in this section as an example
of routing algorithms on our small-world networks to
arrive at a result between the original CAN and Klein-
berg’s small-world networks with a grid model and leave
other possibilities of routing algorithms in Section 5 to
achieve an even better result.

Theorem 1 Greedy routing on small-world CANs con-
structed by the point-based naı̈ve approach achieves av-

erage routing paths ofO(log2 n
`) hops wherè ≤ log n.

PROOF OFTHEOREM 1. By this approach, we get a
network where each nodeu is linked to its 4 immediate
CAN neighbors on average and has` long-range con-
tacts. The probability that nodeu chooses pointx not in
its zone[a, b]× [c, d] as one of its long-range contact is

[d(p(u), x)]−2

∑
x[d(p(u), x)]−2 −∑

x∈[a,b]×[c,d][d(p(u), x)]−2

where
∑

x[d(p(u), x)]−2− ∑
x∈[a,b]×[c,d][d(p(u), x)]−2

≤ ∑
x6=p(u)[d(p(u), x)]−2 ≤ ∑2m

1
2−2

a=1 (4a)(a−2) ≤
4 ln(6m

1
2) ≤ 4 ln(6c

1
2 ·n 1

2). The last step is bym ≤ c·n
for some constantc. Therefore, pointx is chosen with
probability of at least[4 ln(6c

1
2 · n 1

2)d(p(u), x)2]−1.
Greedy routing is considered in phases: Forj > 0,

the routing is said in phasej when the “point distance”
from the current point to a target pointt is greater than2j

and at most2j+1; the routing is said in phase 0 when the
point distance tot is at most 2. If the routing is in phasej
where0 ≤ j ≤ log m

1
2 and the current node isu, we

can calculate the probability that phasej will end at this
node, i.e., the probability that the point to which the next
hop leads enters the setBj of points within point dis-
tance2j from t. There are more than22j−1 points inBj ,
each is within point distance2j+1+2j < 2j+2 fromu so
each point inBj is a long-range contact ofu with prob-
ability of at least[4 ln(6c

1
2 · n 1

2)22j+4]−1. Thus, if each
node has only one long-range link, the probability that
the point to which the next hop leads enters the setBj

with probability of at least

22j−1

4 ln(6c
1
2 · n 1

2)22j+4
≥ 1

128 ln(6c
1
2 · n 1

2)

and the expected total number of hops needed in phasej
will be at most128 ln(6c

1
2 · n 1

2).
Let Xj denote the total number of hops needed in

phasej where0 ≤ j ≤ log m
1
2 . If each node only

has one long-range link, it has only one trial for the
nect hop to enterBj and since each node has` long-
range links instead of one, it has` trials. If ` ≤ log n,
E[Xj] is at most onè th of the expected total number
of hops needed in phasej with one long-range link per
node, which we have known. So, we concludeE[Xj] ≤
128 ln(6c

1
2 ·n 1

2)
` . In sum, if let X =

∑log m
1
2

j=0 Xj be
the number of hops of a routing path, thenE[X] ≤
(1 + log m

1
2) · 128 ln(6c

1
2 ·n 1

2)
` ≤ c′ · log2 n

` wherec′ is
a suitable constant.2

Theorem 2 In small-world CANs constructed by the
point-based näıve approach, node joining requires2d+`
nodes to change their states and constructing2d + `
state, which induces routing ofO(log2 n) hops on aver-
age; node exiting requires2d + ` nodes to change their
states, which induces routing ofO(log2 n) hops on av-
erage.

PROOF OF THEOREM 2. The algorithms for node
joining and exiting include connections and reconnec-
tions of long-range links and CAN’s algorithms for node

4

joining and exiting. CAN’s algorithms for node joining
and exiting only requires2d nodes to change their imme-
diate CAN neighbors, constructing2d immediate CAN
neighbors for the new node on average, and induces no
routing; connections and reconnections of long-range
links requirè nodes to change their states and therefore
induce routing ofO(log2 n

`) hops for each long-range
link, i.e., a total routing ofO(log2 n) hops.2

The point-based naı̈ve approach creates a simple
small-world CAN scheme that performs at least compet-
itively with many other schemes. However, this scheme
does not naturally provide load-balance since the load
(both routing and indexing storage) is proportional to the
area of a node’s zone (the number of points in a node’s
zone) and a random entrance point for a new node’s join-
ing does not necessarily make the ratio between the area
of the largest and that of the smallest zone beO(1). We
still need other load-balancing methods. For example,
a new node can first chooseO(log n) points at random
and then select to join at the point that splits the largest
zone, which is shown to achieve a ratio ofO(1) in [11].

3.2. Node-Based Approximation Approach

We try to deal with the problem of emulating small-
world networks on CAN from another node-based point
of view. The major challenge that stems from a node-
based perspective right away is the immediate impact
of a new node’s joining on long-range link probabilities
formed by the existing nodes. In the point-based ap-
proach, because points are static, node joining and ex-
iting only affects the existing long-range links pointing
to the points in the splitting zone when a node joins and
those pointing to the taken-over zone when a node exits.
The node-based approach, not like the point-based one,
must face and solve the challenge, which may induce a
lot of reconnections for maintaining the desirable link
probabilities if not being handled carefully. Thus, an
approximation may work here as long as the resulting
small-world CAN scheme performs well enough. Our
idea is ignoring all the reconnections needed to adjust
long-range links to conform to the link probabilities in
Kleinberg’s construction of small-world networks, and
showing our small-world CANs by a node-based ap-
proximation approach still permits short routing paths.

We basically follow the link probabilities in Klein-
berg’s construction of small-world networks defined in
terms of lattice distance. Yet, for discussing a network’s
evolving in our approach, we define “node distance” be-
tween two nodes as the number of “node steps” sepa-
rating them and differentiate node distance at different

stages of a network’s evolution. We identify the network
with the number of nodes equal to or greater than2i and
less than2i+1 as at stagei. The node distance between
nodeu and nodev at some current stagei of a network
is denoted asdi(u, v). Then, the node distance between
nodeu and nodev at the jth previous stage isdi−j .
Hence,2j−1di−j(u, v) ≤ di(u, v) ≤ 2j+1di−j(u, v),
which will be useful inequalities relating node distances
at different stages in our analysis. In this approach, a
node has2d immediate CAN neighbors on average and
` independent long-range contacts. If nodeu joins at
stagei of the network, a long-range link of nodeu to
a nodev 6= u is built with probability proportional to
[di(u, v)]−2.

Node joining and exiting. The advantage of this ap-
proach is the ease of handling arrivals of nodes since our
approximation strategy simply ignores reconnections of
long-range links that are affected by a new node’s join-
ing. Because this approach is node-based, not point-
based, CAN’s algorithms for node joining and exiting
can be more conveniently applied when necessary. The
algorithm for node exiting is nearly the same as that in
the point-based naı̈ve approach so we just skip this part
and pay more attention to the algorithm for node joining
in this approach.

Assume a new nodev joins at a point in the zone of
nodeu. Besides the reassignment of a half ofu’s zone
to v and learning or updating the immediate CAN neigh-
bors for nodev, nodeu, and its old immediate CAN
neighbors by CAN’s algorithm, all the work left is con-
structing nodev’s ` long-range links independently. An
existing nodew is chosen as one ofv’s long-range con-
tacts with probability in proportion to[di(v, w)]−2 and
v needs routing to findw if the network is currently at
stagei, and this constructing process is repeated` times.
The probabilities’ dependency on the current node dis-
tance between any two existing nodes precludes the ne-
cessity of considering future nodes’ effect impacting on
link probabilities between any existing nodes.

Everything seems completed but in fact it does not. It
must be noticed howv knows the node distance to some
node. This problem does not exist in the point-based
näıve approach becausev simply can calculate the point
distance to some point if the point is chosen. Yet, the
problem emerges in a node-based approach and has to
be solved for node joining to proceed. We sketch our so-
lution idea borrowed from [8] here: nodes are grouped
into clusters to make each cluster spans nearly equal size
of the virtual space so the point distance between two
nodes in the virtual space can help estimate the number

5

of nodes between them, i.e, the node distance. Never-
theless, we just assume each nodev knows how to get
di(v, w) for each nodew when the network is at stagei
in this section, for the sake of our theory developing of
this node-based approximation approach, which though
may not be actually implemented but will be used as
a basis for developing our cluster-based approximation
approach that can be implemented. In other words, the
node-based approximation approach can be though as
a virtual version of the cluster-based approximation ap-
proach.

Performance Analysis. Again, we use greedy routing
as an example of routing algorithms on our small-world
CAN by a node-based approximation approach to show
a competitive result just like that in a point-based naı̈ve
approach. The analysis for load-balanced small-world
CANs by a cluster-based approximation approach in the
next section is still relying on the analysis here as a basis
(with substitution of clusters for nodes).

Theorem 3 Greedy routing on small-world CANs con-
structed by the node-based approximation approach

achieves average routing paths ofO(log2 n
`) hops where

` ≤ log n.

PROOF OFTHEOREM 3. Recall that greedy routing
can be considered in phases. Instead of using the def-
inition of phases in a point-based approach, we define
phases in a node-based approach in “node distance at
the current stage”: Forj > 0, the routing is in phasej
when the node distance from the current node to a target
nodet is greater than2j and at most2j+1; the routing is
in phase 0 when the node distance tot is at most 2.

If the routing is now in phasej where0 ≤ j ≤
log n

1
2 and the current node isu, as in the analysis of

Section 3.1, we can still calculate the probability that
phasej will end at this node, i.e., the probability that
the node to which the next hop leads enters the setBj

of nodes within node distance2j from t. We can get the
following useful lemma for this purpose.

Lemma 1 Assume that each node has only one long-
range link instead of̀ . In phasej, if the network is
currently at stagel and the current nodeu joins at the
kth previous stage, phasej ends at this node with prob-
ability of at least

c

2k ln(6n
1
2)

wherec is a suitable constant andn is the current num-
ber of nodes in the network.

PROOF OF LEMMA 1. Let B′
j be the subset of

Bj that node u has probability to choose as long-
range contacts when it joins because at thekth previ-
ous stage there are only part ofBj existing. For some
nodev, we have[dl−k(u, v)]−2 ≥ 22(k+1)[dl(u, v)]−2

and [dl−k(u, v)]−2 ≤ 22(k−1)[dl(u, v)]−2 from the in-
equalities relating node distances at different stages. By
the definition of stages,2k−1|B′

j | ≤ |Bj | ≤ 2k+1|B′
j |

so |B′
j | ≥ |Bj |

2k+1 . At the kth previous stage, nodev is
chosen as a long-range contact ofu with probability of

[dl−k(u, v)]−2

∑
v 6=u[dl−k(u, v)]−2

where
∑

v 6=u[dl−k(u, v)]−2 ≤∑
v 6=u 22(k−1)[dl(u, v)]−2 ≤

22(k−1)
∑2n

1
2−2

a=1 (4a)(a−2) ≤ 22k ln(6n
1
2).

If each node has only one long-range link, the prob-
ability that the node to which the next hop leads enters
the setBj is

[dl−k(u, v)]−2

∑
v 6=u[dl−k(u, v)]−2

· |B′
j | ≥

22(k+1)[dl(u, v)]−2

22k ln(6n
1
2)

· |Bj |
2k+1

≥ c

2k ln(6n
1
2)

wherec is a suitable constant. The last step follows from
the factdl is within 2j+2 and|Bj | is at least22j−1.

We are ready to use Lemma 1 for our proof. In
phasej, the stage at which the current node joins is a
random variable with with some probability distribution.
By the definition of stages, if the network is currently
at stagel, there are at most2l+1 − 2l nodes joining
at this stage and2l−k nodes joining at thekth previ-
ous stage where0 ≤ k ≤ l andk = 0 refers to the
current stage. The current node joins at thekth pre-
vious stage with probability of2

l−k

n > 2l−k

2l+1 = 1
2k+1 .

Therefore, if each node has only one long-range link,
then phasej ends at this node with probability of at
least

∑l
k=0

1
2k+1 · ck

2k ln(6n
1
2)
≥ 1

ln(6n
1
2)

∑l
k=0

ck

22k+1 ≥
c′

ln(6n
1
2)

by Lemma 1 wherec′ is some suitable constant.

In sum, if letX =
∑n

1
2

j=0 Xj be the number of hops of
a routing path whereXj is the number of hops spent in
phasej, thenE[Xj] ≤ log n

` because each node’s` long-
range links gives it̀ trials for ending this phase where
` ≤ log n. At last, E[X] ≤ c′′ · log2 n

` wherec′′ is a
suitable constant.2

The node joining part of Theorem 4 follows from
Theorem 3 for average routing paths ofO(log2

`) hops

6

make constructing̀ long-range links cost routing of
O(log2 n) hops. Besides, the algorithm for node exit-
ing is nearly the same as that in the point-based naı̈ve
approach so the same result as the node exiting part of
Theorem 2 can be attained.

Theorem 4 In small-world CANs constructed by the
node-based approximation approach, node joining re-
quires2d nodes to change their immediate CAN neigh-
bors without routing and constructingO(2d + `) state,
which induces routing ofO(log2 n) hops on average;
node exiting requires2d+` nodes to change their states,
which induces routing ofO(log2 n) hops on average.

4. Load-balanced Small-World CAN

Our load-balanced small-world CAN is built by the
cluster-based approximation approach, which is based
on the node-based approximation presented in Sec-
tion 3.2 with the help of a clustering technique that is
adapted from [8] by replacing nodes with clusters. We
will first introduce the clustering technique that we need
and combine the node-based approximation approach
with clustering to get the cluster-based approximation
approach. This later developed approach also solves the
problem of node distance that was brought up in Sec-
tion 3.2. It also provides load-balance in an inherent
way by clustering.

4.1. Clustering

In CAN, randomly selecting an entrance point in the
virtual space for node joining does not necessarily result
in a O(1) ratio between the area (or load) of the largest
zone and that of the smallest zone, which has been men-
tioned in Section 3.1. Even the two optimizing algo-
rithms mentioned in Section 2, the more uniform parti-
tioning and the background zone reassignment, which
though are useful heuristics, do not give provable re-
sults about the ratio. Our idea for giving a bound about
routing and indexing load per node is grouping nodes to
make each group responsible nearly equal load.LEMMA

3.3of [8] that is applied in a Chord-like environment can
be adapted to fit our need in a CAN environment. The
lemma is restated as follows.

LEMMA 3.3 of [8]. Let k be such that2k ≤ ε2n
8 ln n .

With probability at least1 − 2
n , the number of points in

each of2k equi-sized non-overlapping sub-intervals of
[0, 1) lies in the range(1±ε)n

2k .
The points in this statement is actually we know as

nodes so it says that if a ring of[0, 1) is divided into

2k equal sized non-overlapping sub-intervals where2k

cannot be not too large, the number of nodes in each
sub-onterval is aboutn

2k . With a little modification, it
can be applied on CAN: CAN’s virtual space can be set
as[0, 1) × [0, 1) if d = 2; 2k equal sized groups can be
done by dividing each dimension into2

k
d = 2

k
2 . We can

use this lemma to group nodes into2k clusters by mak-
ing the zone in each cluster span the size of1

2k . Clus-
tering would be easy if it could be done following this
way yet what has to be noticed is that the network sizen
is unknown. Besides, a clustering scheme must consider
arrivals and departures of nodes. This means we cannot
get a fixedn to group nodes into a fixed number of clus-
ters but have toestimaten to make clusters grow with
n.

We can still adapt the network size estimation scheme
andTHEOREM 3.1 of [8] and use them to get an accu-
rate estimate ofn. The idea is, for a node, measuring
the density of node identifiers close to itself to deduce
n. By the following scheme, we can know the sufficient
number of nearby nodes to look over and the size of in-
terval spanned by these nodes to arrive at an estimate
of n accurate enough: Consider some node with identi-
fier x and letni denote the number of nodes that share
the most significant bits withx; nodex identifies the
largest̀ such thatn` ≥ 16(1± δ)δ−2 ln(2`n`) whereδ
is used in the corresponding theorem, which provides a
bound for this estimate ofn. The theorem is restated as
follows.

THEOREM 3.1of [8]. With probability at least1− 2
n ,

the estimate of network size made by every node lies in
the range n

1±δ .

4.2. Cluster-Based Approximation Approach

The problem about how to get the node distance be-
tween two nodes in the node-based approach can be
solved by transforming the problem to get the “clus-
ter distance” between two clusters, using the clustering
method in Section 4.1. The number of the nodes whose
zones totally span1

2k of the whole virtual space is about
n
2k with high probability wherek is bounded by a func-

tion of n, proportional toε2n
ln n . By the network estima-

tion scheme forn and assumingδ < 1
3 , we can also get a

good estimate ofk, i.e.,k̃ wherek−1 ≤ k̃ ≤ k +1. So,
in the network, there are at most threek̃ values, which
are constantly bounded. Hence, each node can know the
zone boundaries of each cluster that hasΘ(ln n) nodes
and thereby calculate the cluster distance to each cluster.

Our cluster-based approximation approach is now ob-
vious. This approach is based on the node-based approx-

7

imation, i,e., ignoring long-range link changes when a
new node comes, but instead long-range links between
clusters are built with probabilities defined in terms of
cluster distance at an estimate ofk that can be calculated
in the above way. A nodeu has average2d immediate
CAN neighbors and̀ long-range constacts chosen inde-
pendently. If nodeu joins at an estimatẽk which has
at most a difference of1 to k, it chooses a clustery as
one of its long-range contact with probability in propor-
tion to [dk̃(ck̃(u), y)]−2 whereck̃ returnsu’s cluster at
k̃ anddk̃ is the cluster distance between clusterck̃ and
clustery at k̃. Note thatk is simlar to the stage defined
in Section 3.2 that represents the evolution degree of the
network. A long-range contact is one of the nodes in
the identifying cluster to which this long-range link is
leading.

Routing. Routing must be reconsidered. It can per-
form among clusters using long-range links between
clusters just like among nodes, but how it should be
done when the target cluster is entered. The so-called
intra-cluster or local routing toward the target node that
should follow. Since each cluster has onlyΘ(ln n)
nodes, routing among them is quite easy and is nearly
impossible to become a bottleneck for the whole routig
process. Many routing algorithms can do this job. Even
by following the immediate CAN neighbor links, intra-
cluster routing costs onlyO(log n) hops. Therefore, as
our so-called inter-cluster or global routing achieves av-
erage routing paths ofO(log n) hops, we do not have to
do anything, like adding links or choosing sophisticate
routing algorithms, for intra-cluster routing. We can put
our focus back on inter-cluster routing.

Node Joining and Exiting. The algorithms for node
joining and exiting in the node-based approximation ap-
proach can be run here with some modifications de-
scribed as follows. Assume a new nodev joins at a
point within the zone of nodeu when the network is with
k̃. Besides the reassignment of a half ofu’s zone tov
and learning or updating the immediate CAN neighbors
for nodev, nodeu, and its old immediate CAN neigh-
bors by CAN’s algorithm, the main tast is constructing
nodev’s long-range links independently since we still
apply an approximation strategy. With the clustering
technque in Section 4.1, if the network currently has an
estimatek̃, then an existing clustery is chosen as one
of v’s long-range contacts with probability proportional
to [dk̃(c(v), y)]−2 andv needs routing to find a node in
y. Notice that the long-range contacts, each of which is
leading to a cluster, should be uniformly assigned among

all the ln n nodes in this cluster to ensure load-balance.
This can simply be done by traverse all the nodes in the
cluster, which merely induces routing ofO(log n) hops.
Repeating this constructing process` times, nodev can
have` independent long-range links.

Performace Analysis. We use greedy routing as an
example of routing algorithms for the inter-cluster part.
The analysis for routing paths and node joining and exit-
ing of our load-balanced small-world CANs by a cluster-
based approximation approach is easy to get simply by
substituting2k for n in O(log2 n

`) of Theorem 3 and

O(log2 n) of Theorem 4.2k ≤ ε2n
8 ln n so Theorem 5 and

Theorem 6 immediately follow.

Theorem 5 Greedy routing on small-world CANs con-
structed by the cluster-based approximation approach

achieves average routing paths ofO(log2 n
`) hops where

` ≤ log n.

Theorem 6 In small-world CANs constructed by the
cluster-based approximation approach, node joining re-
quires2d nodes to change their immediate CAN neigh-
bors without routing and constructingO(2d + `) state,
which induces routing ofO(log2 n) hops on average;
node exiting requires2d+` nodes to change their states,
which induces routing ofO(log2 n) hops on average.

The cluster-based approximation approach deals with
load-balancing issues inherently by clustering because
the clustering technique ensures that the zones of the
ln n nodes in a cluster span totally1

2k of the whole vir-
tual space. The ratio between the area of the largest sum-
mation of the zones in a cluster and the area of the small-
est summation of the zones in a cluster should become
O(1). Since the routing and indexing load per node is
proportional to the area of a node’s zone, with the uni-
form selection of a node in a cluster when a long-range
link is constructed for node joining, the ratio between
the largest load per node and the smallest load per node
is O(1).

5. Other Possibilities of Routing Algorithms

Greedy routing is prevalently used in many schemes
such as Chord to achieve short routing paths, i.e., rout-
ing paths ofO(log n) hops withΘ(log n) state per node
(on average or with high probability) and we also use it
as an example of routing algorithms on our small-world
CANs. However, greedy routing has been shown not
optimal on randomized routing networks in the work of

8

[1, 10]. By optimum, we mean routing paths ofO(log n
log `)

hops with ` links per node (on average or with high
probability), i.e., routing paths ofO(log n

log log n) hops with
` = Θ(log n) state. Greedy routing on our small-world

CANs arrives at average routing paths ofO(log2 n
`) with

` links, which isO(log n) hops with` = Θ(log n) state.
So, our scheme is at least competitive with many other
schemes.

There are other routing algorithms that can be cho-
sen such as NoN-GREEDY of [10] and the optimal ran-
domized protocol of [8]. NoN-GREEDY is a routing al-
gorithm that passes messages to the farest one among
the neighbors of a node’s neighbors’greedily toward the
target and has been shown effective on many random-
ized routing networks with small-world properties in
[10]. If we choose to use NoN-GREEDY on our small-
world CANs, it is reasonable to conjecture that aver-
age routing paths are ofO(log n

log log n) hops withΘ(log n)
state per node because a small-world CAN is a result
of emulationing Kleinberg’s construction of small-world
networks on CAN, and NoN-GREEDY on Kleinberg’s
small-world networks (called as small-world percolation
networks in [10]) has been shown to have such routing
paths ofO(log n

log log n) hops with high probability.

NoN-GREEDY lets a node know the neighbors of its
neighbors to get more information without increasing
each node’s state where neighbors may actually be long-
range contacts in the sense of small-world networks.
This gives us an idea of using just the long-range con-
tacts of a node’s immediate CAN neighbors to devise
a routing algorithm though obviously not competitive
with optimal routing yet at least better than greedy rout-
ing. We only use a node’s immediate CAN neigh-
bors’ information because communication with imme-
diate CAN is cheap. This routing algorithm is simply
modified from greedy routing that we have carefully
studied. The first good thing about this modified greedy
routing algorithm is its simplicity no matter whether it
is run or analyzed. We modify greedy routing as fol-
lows: At each node, it not only use its own long-range
contacts to route but ask its immediate CAN neighbors
about their long-range contacts and thereby takesd`
long-range links into consideration to pass messages to
the link leading to a node nearest to the target.

The analysis for the average routing paths using this
routing algorithm is basically like the analysis in Sec-
tion 3 and Section 4 with substitution ofd` for ` in
O(log2 n

`) where d` ≤ log n. As each immediate
CAN neighborv of node u’s is located at nearly at
the same place asu, a nodew will be chosen as a
long-range contact ofv with nearly the same probabil-

ity as the probability thatw is chosen as a long-range
contact ofu. Therefore, average routing paths are of
O(log2 n

d`) hops with 2d + ` state per node on aver-
age. There are two flexibilities. Withd = Θ(

√
log n)

and ` = Θ(
√

log n), attaining average routing paths
of O(log n) hops, this routing algorithm reduces the
state per node toΘ(

√
log n) rather than greedy rout-

ing’s Θ(log n); correspondingly, node joining or exiting
requiresΘ(

√
log n) nodes to change states, which in-

duces routing ofO(log n
√

log n) hops on average. With
d = Θ(log n) and` = Θ(1), attaining average paths of
O(log n) with Θ(log n) state per node, this routing algo-
rithm reduces the number of nodes that need to change
states toΘ(1), therefore reducing routing toO(log n)
hops on average.

6. Related Work

PRR [12], for providing provable locality properties
for a restricted class of metric spaces, makes maintain-
ing a node’s state a nontrivial task, especially when
nodes are constantly joining and exiting from the net-
work. On the other hand, Chord [15] disregards lo-
cality for simplicity. Simplified PRR [6] searches for
combining desirable advantages in both of these extreme
schemes and design a scheme that is simple yet exploits
locality still. Besides an identifier ring, by correlating
the distance in an auxiliary logical ring with the distance
in physical networks, locality can be exploited.

Combining Chord with de Bruijn graphs, Koorde [3]
looks up a key by contactingO(log n) nodes withO(1)
state per node. To embed a de Bruijn graph on a sparsely
populated identifier ring (of2b identifier space), each
nodem in the network maintains information about two
other nodes, namely its successor on the ring and its first
de Bruijn node. Koorde also achieves routing paths of
O(log n

log log n) hops withO(log n) state per node for fault-
tolerance. Koorde can use the node joining and exiting
algorithm in Chord so it induces as much cost as Chord
does for state updates.

Viceroy [7] uses a composition of an approximate
butterfly network and the connected ring of predecessor
and successor links to achieve a routing path length of
O(log n) hops withO(1) state per node on average. In
Viceroy, each node, located at a level at random among
O(log n) levels, maintains a routing table of five links to
upper, lower, and the same levels in addition to its prede-
cessor and successor. Although a node in Viceroy has a
constant out-degree and a constant average in-degree, a
node can at most have a logarithmic in-degree with high
probability. Nodes joining and exiting in Viceroy induce

9

O(log n) hops and requiresO(1) nodes to change their
state with high probability.

7. Conclusions and Future Work

We emulated small-world networks on CAN to ob-
tain a new scheme of peer-to-peer routing network,
small-world CANs. For CAN is a suitable basis, our
emulation gracefully avoids unnecassary complication.
Small-world CANs preserve CAN’s simplicity and ease
of node arrivals and departures as well as inherit small-
world networks’ short routing paths. With help of clus-
tering, our scheme can ensure load-balance inherently.
We used greedy routing on our small-world CANs to
show a cometitive performance compared with many
other schemes, and also devised a routing algorithm
modified from greedy routing to arrive at a better result.

We are interested in exploring other routing algo-
rithms suitable on small-world CANs, further leveraging
inter- and intra- cluster routing, and considering more
heterogeneity of nodes in the network to generalize the
scheme. Besides, each hop is not weighted in the model
but if it is, how the routing stretch should be considered.
Also, small-world CANs as a practical lightweight peer-
to-peer infrastructure deserves experiments.

References

[1] J. Aspnes, Z. Diamadi, and G. Shah. Fault-tolerant rout-
ing in peer-to-peer systems. InProceedings of the 22nd
ACM Symposium on Principles of Distributed Comput-
ing (PODC’02), pages 223–232, 2002.

[2] K. Hildrum, J. D. Kubiatowicz, S. Rao, and Ben Y. Zhao.
Distributed object location in a dynamic network. InPro-
ceedings of the 14th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA’02), pages 41–52,
August 2002.

[3] M. F. Kaashoek and D. R. Karger. Koorde: A simple
degree-optimal distributed hash table. InProceedings
of the 2nd International Peer To Peer Systems Workshop
(IPTPS’03), 2003.

[4] J. Kleinberg. The small-world phenomenon: An algo-
rithmic perspective. InProceedings of the 32nd ACM
Symposium on Theory of Computing (STOC’00), 2000.

[5] J. Kleinberg. Small-world phenomena and the dynamics
of information. InProceedings of the 15th Annual Con-
ference on Advances in Neural Information Processing
Systems (NIPS’01), 2001.

[6] Xiaozhou Li and C. G. Plaxton. On name resolution in
peer-to-peer networks. InProceedings of the 2002 Con-
ference on Principles of Mobile Computing, pages 82–
89, 2002.

[7] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scal-
able and dynamic emulation of the butterfly. InProceed-
ings of the 22nd ACM Symposium on Principles of Dis-
tributed Computing (PODC’02), 2002.

[8] G. S. Manku. Routing networks for distributed hash ta-
bles. InProceedings of the 23nd ACM Symposium on
Principles of Distributed Computing (PODC’03), July
2003.

[9] G. S. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed hashing in a small world. InProceedings
of the 4th USENIX Symposium on Internet Technologies
and Systems (USITS’03), pages 127–140, 2003.

[10] G. S. Manku, M. Naor, and U. Wieder. Know thy neigh-
bor’s neighbor: the power of lookahead in randomized
p2p networks. InProceedings of the 36nd ACM Sympo-
sium on Theory of Computing (STOC’04), June 2004.

[11] M. Naor and U. Wieder. Novel architectures for p2p ap-
plications: The continuous-discrete approach. InPro-
ceedings of the 15th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA’03), June 2003.

[12] C.G. Plaxton, R. Rajaraman, and A.W. Richa. Accessing
nearby copies of replicated objects in a distributed en-
vironment. Theory of Computing Systems, 32(1/2):241–
280, 1999.

[13] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A
scalable content-addressable network. InProceedings
of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tions, pages 161–172, 2001.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-
to-peer systems. InProceedings of Middleware 2001,
LNCS 2218, pages 329–350, 2001.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. InProceedings of the
2001 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications,
pages 149–160, 2001.

[16] Jun Xu, A. Kumar, and Xingxing Yu. On the fundamen-
tal tradeoffs between routing table size and network di-
ameter in peer-to-peer networks. InProceedings of the
22nd Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM’03), April
2003.

[17] Zhichen Xu and Zheng Zhang. Building low-
maintenance expressways for p2p systems. Technical
Report HPL-2002-41, Internet Systems and Storage Lab-
oratory, HP Laboratories Palo Alto, March 2002.

[18] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location
and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley, Computer Science Division, April 2001.

10

