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Abstract— Peer selection for query routing is a core task in
peer-to-peer networks. Unstructured peer-to-peer systems (like
Gnutella) ignore this problem, leading to an abundance of
network traffic. Structured peer-to-peer systems (like Chord)
enforce a particular, global way of distributing data among the
peers in order to solve this problem, but then encounter problems
of network volatility and conflicts with the autonomy of the peer
data management. In this paper, we propose a new mechanism,
INGA, which is based on the observation that query routing in
social networks is made possible by locally available knowledge
about the expertise of neighbors and a semantics-based peer
selection function. We validate INGA by simulation experiments
with different data sets. We compare INGA with competing peer
selection mechanisms on resulting parameters like recall, message
gain or number of messages produced.

Index Terms— Content Analysis and Indexing, Information
Search and Retrieval, Semantic Routing, Social Networks.

I. I NTRODUCTION

Finding relevant information from a heterogeneous set of
information resources is a longstanding problem in computing.
Studies of social networks suggest that the challenge of finding
relevant information may be reduced to asking the ‘right’
people. ‘The right people’ either have the desired piece of
information and can directly provide the relevant content
or can recommend ‘the right people’. Milgram’s [4] and
Kleinbergs [5] experiments illustrated that individuals with
only local knowledge of the network (i.e. their immediate
acquaintances) may successfully construct acquaintance chains
of short length, leading to networks with ‘small world’ char-
acteristics. In such a network, a query is forwarded along
out going links taking it ’closer’ to the destination. Such
mechanisms work in social networks although
• people may not respond to requests,
• people may shift their interests and attention,
• people may not have exactly the ‘right’ knowledge, but

knowledge which issemantically closeto the request.
Rephrased in a peer-to-peer (P2P) terminology, peers may find
relevant information in a real-world social network which is
highly dynamicw.r.t. peer availability and expertise on topics
using their local knowledgeenriched by means ofsemantic
similarity measures. In this context local knowledge refers to
locally available information – structured and unstructured –
and to knowledge about remote peers.

A. Searching Dynamic Communities with Personal Indexes

Inspired by these observations this paper presents INGA a
P2P routing algorithm for pure and unstructured P2P networks
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[3], [1]. Routing algorithms for pure and unstructured P2P
networks do not require the active dissemination of index
information describing a peer. They are therefore better suited
for highly dynamic environments than routing algorithms
based on structured or partially centralized network organiza-
tions [6]. INGA regards each peer in the network as a person
in a social network; facts are stored and managed locally on
each peer constituting the ‘topical knowledge’ of the peer. A
peer responds to a query by providing an answer matching the
query or by forwarding the query to relevant remote peers. The
local peer determines the relevance of a remote peer based on
a personal semantic shortcut index. The index is created and
maintained in a lazy manner, i.e., by analyzing the queries
initiated by the local peer and by analyzing the queries that
are routed through the local peer.

INGA creates shortcuts on four layers: Thecontent provider
layer contains shortcuts to remote peers which have suc-
cessfully answered a query; therecommender layerstores
information about remote peers who have issued a query;
the bootstrapping layermaintains shortcuts to well connected
remote peers; and thenetwork layerconnects to peers on an
underlying default network.

This paper proposes a shortcut selection strategy able to
identify and efficiently group peers with similar interests in a
dynamic setting by semantic means. In order to adapt to the
dynamics of the networks and to bound the local index this
paper presents an index update policy combining temporal,
semantic and community locality. The algorithm has been
evaluated in simulations and real world case studies. This
work presents the results of the simulation studies, while
[7] introduces the case studies. Results show that INGA
outperforms other state-of-the-art approaches significantly in
terms of recall and messages per query.

The paper is organized as follows: Section II describes the
infrastructure to maintain the index and the semantic similarity
function to select peers. Section III elaborates on the index
structure and update strategy for each type of shortcut. Section
IV presents the dynamic routing model. Section V discusses
the evaluation results and Section VII concludes the paper.

B. Related Work

Research in routing for P2P networks has devised an in-
ventory of methods to collect index information about peers
in the network. The first approaches for efficient indexing in
P2P architectures were central indices, that have to transmit
either meta data about the available content to central indexing
peers, like e.g. GlOSS [8] orNapster. Current techniques for
indexing P2P systems use structured overlays in the form of
distributed hash tables (DHTs), e.g. [9] or see [10] for a
survey. Structured overlays allow for routing keyword queries
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to particular peers containing the desired data without the need
for a central index. In structured overlays (a reference to)
new content in the network is published at the node for the
respective key, if new data on a peer arrives or a new peer joins
the network. When a peer leaves the network the information
about its content is unpublished. Recent research in [6] shows
that due to the publishing/unpublishing overhead, DHTs lack
efficiency when highly replicated items are requested, thus
perform worse than flooding approaches in practical settings
degrading further if network churn is introduced.

While the management of keys and objects in the same
name space used in structured overlays provides an elegant
and clean solution to routing within logarithmical bounds,
it comes at significant costs destroying the locality of the
content: Content at a user’s desktop is co-located with other
relevant items. Opportunities for browsing and pre-fetching are
lost in structured overlays [11]. Routing approaches for pure
unstructured networks, such as Gnutella, retain locality, but
may produce many messages per query. In order to improve
the routing efficiency in pure unstructured P2P networks cur-
rent routing approaches use local index information (cf. [12]
for an overview). They store information related to the success
of past queries locally and utilize this information to route
queries. The approaches may be distinguished, among other
dimensions, according to their information gathering strategy,
their information evaluation strategy and their index update
strategy. The routing approach presented in [13] exploits
interest-based locality and builds up indexing information
about remote peers only at the querying peer. This information
is not shared with remote peers, nor is it utilized for queries
routed through the local peer. To update the index it employs a
LRU strategy. The routing approaches of [14] and [15] return
answers on the query path enabling remote peers on that path
to profit from other peers queries. This information is also
used to route queries from remote peers. Additionally, in [14]
a peer disseminates obtained information to its neighbors and
considers the number of responses of a remote peer for ranking
purposes. In contrast, [15] uses a probability based evaluation
function. Alternative routing algorithms like [16] introduce
improvements on the evaluation of conjunctive queries or the
dissemination procedure [17].

INGA differs from existing routing algorithms, because it
uses queries routed through a peer to build up indexing infor-
mation in contrast to responses, it uses semantic information
to evaluate the index information for forwarding purposes and
it uses semantic information to update the index.

II. SYSTEM ARCHITECTURE

The INGA peer selection strategies described in section III
may be implemented for any unstructured P2P network. For
evaluation purposes, though, we use the SWAP infrastructure
[18]. It provides all standard peer-to-peer functionality such
as information sharing, searching and publishing of resources.

A. Building Blocks

The building blocks of an INGA node responsible for the
content and index information are thelocal content database,

the content managementcomponent, thelocal shortcut index
and theshortcut managementcomponent. The user interacts
with the system by means of thequery/result interface. The
routing logicselects remote peers to send and forward queries
to. Finally, the network managementhandles the physical
network traffic assuming that each peer provides a unique
peer identifer (PID). The components are described with more
detail in the following.

Similar to file sharing networks each peer may publish all
resources from itslocal content database, thus remote peers
can discover them on request (this also applies to resources
downloaded from other peers). All information is wrapped as
RDF statements and stored in an RDF repository [19]1. RDF
is a light-weight ontology representation language offering,
among others, constructs to type information (”isInstanceOf”)
and to relate information items (”subTopicOf”). In this format
each resource representing the local data (Nick isExecutiveEd-
itorOf JSAC2005) is assigned a topic(JSAC isInstanceOf
IEEEJournal) and hierarchical information about the topic
(IEEEJournal subTopicOf Journal). The topics a peer stores
resources for are subsequently referred to as the peer’s own
topics. INGA supports exact match queries which come in two
flavours: single predicate queries and conjunctive queries. The
shortcut managementextracts information about answering
and forwarding peers from queries to create, update or remove
shortcuts in thelocal shortcut index. Contrary to related ap-
proaches, such as DHTs, INGA peers only index ‘egoistically’,
i.e. they decide based on local information which shortcuts to
store. Therouting logicselects ‘most suitable’ peers to forward
a query to, for all local queries or queries forwarded from
remote peers. The selection depends on the knowledge a peer
has already acquired and the similarity between the query and
locally stored shortcuts.

B. Query and Result Messages

INGA uses a query message model which is similar to the
structure of a Gnutella query message. Each query message is
a quadruple:QM(q, b,mp, qid) whereq is a SERQL query2).
INGA supports conjunctive SERQL queries. From a query
INGA uses for routing purposes only information, which is
shared among all peers. From a query for allIEEEJournalwith
editor-in-chiefNick, only IEEEJournalis utilized for routing.
b is the bootstrapping capability of the querying peer to allow
the creation of bootstrapping shortcuts.mp is the message path
of a query message containing the unique PIDs of the peers,
which have forwarded the query to the receiving peer. Finally,
qid refers to a unique query ID to ensure that a peer does not
respond to a query it has already answered. INGA computes
unique query IDs using a random number generator that has
sufficiently high probability of generating unique numbers. A
result message is a tuple:RM(r,mp, qid) wherer represents
the answer to the query. The message pathmp is copied to
the answer message to allow the creation of recommender and
content provider shortcuts.

1http://www.openrdf.org/
2SERQL is a SQL like query language for RDF.
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C. Similarity Function

INGA analyzes the locally stored shortcuts to determine
remote peers to route a query to. If no shortcuts exist which
exactly match a query, INGA evaluates the shortcuts based
on their similarity to the query. Depending on the query type
INGA chooses from the following similarity functions:
Single predicate query using a common topic hierarchy.
If the peers in the network share a common topic hierarchy
INGA exploits the semantic similarity between a query and a
shortcut. In this case a query consists of a single predicate,
which represents a topic in a common topic hierarchy, INGA
utilizes the similarity functionsimTopic(qt, st) presented in
[20]. The similarity between the extracted topicqt from a
SERQL queryq and the extracted topicst from a shortcut,
which are both given by query topics in the same topic
hierarchy is calculated according to equation 1.

simTopic(qt, st) =

{
e−αl · eβh−e−βh

eβh+e−βh if q 6= sc

1 otherwise
(1)

In equation (1),l is the length of the shortest path betweenqt
andst in the graph spanned by the sub topic relation andh is
the minimal level in the topic hierarchy of eitherqt or st. α
andβ are parameters scaling the contribution of shortest path
length l and depthh, respectively. Based on the benchmark
data set given in [20], we choseα = 0.2 andβ = 0.6.
Conjunctive queries. Each query may include several pred-
icates, e.g.Select all resources that belong to the topic
semantic web and to the topic p2p. Using a common
topic hierarchy this query can be rewritten asFind any
resource having topics /computer/web/semanticweb and /com-
puter/distributed/TourismTechnology. An exact match ap-
proach routes a query only to a peer that matchesall predicates
of the query using a simple exact match paradigm. Too specific
query predicates under the exact match paradigm often lead to
empty result sets and do not appropriately consider negation.
The notion of best matches and relative importance of predi-
cates can be a good alternative to satisfy a user’s information
needs independently of the individual peer instances. In [2]
we investigated metrics to determine the best peers to route
a query using multi predicate queries in shortcut networks.
We observed satisfying results using the selection function
described in [16] which uses an equation similar to equation
(2) to combine query hits for distributed document retrieval.
We refer to this strategy asMultiply.

Rp(q) =
#t∏

i=1

qp
i (2)

INGA calculates the relevanceR for a peerp for a queryq
using equation (2), where#t represents the number of topics
in the query,qp

i represents the query hits per topici of each
peer matching at least one of the topics of the query. INGA
selects the remote peers with the highest relevance.

III. B UILDING AND MAINTENANCE OF THE INDEX

Each peer is connected to remote peers in the network
via uni-directional shortcuts. A peer can link to any remote
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Fig. 1. Recommender shortcut creation

peer in the network if it knows its PID. Following the social
metaphors outlined in section I, INGA distinguishes between
the following shortcut types:

A. Content Provider and Recommender Shortcuts

Content Provider Layer. The design of the content provider
shortcut overlay extends interest-based locality [13]. If the
local peer receives answers from remote peers, these are po-
tential candidates to be added to the content provider shortcut
list. Each time the querying peer receives an answer from a
remote peer, INGA creates content provider shortcutssc to
the responding remote peers in the form:sc(topic, pid, query
hits,’c’, update), wheretopic is the query topics taken from the
query message,pid is the unique identifier of the answering
peer, query hits is the number of returned statements,’c’
represents a type of shortcut, viz. ‘content provider shortcut’
and updateis the time, when the shortcut was created or the
last time, when the shortcut was used. Subsequent queries
of the local peer or of a remote peer are matched against
the topic column of the content provider shortcut list. If a
peer cannot find suitable shortcuts in the list, INGA uses
the bootstrapping or default network layer to select remote
peers. In Figure 1 Peer 2 discovers shortcuts for the topic
/Education/UMLby flooding the default network (TTL=3) and
it creates two content provider shortcuts to peer 3 and peer 5.
Recommender Layer. The recommender layer main-
tains the recommender shortcuts. A recommender shortcut
sc(topic,pid,query hits, maxsim, ‘r’, update)is created if a
query is routed through the local peer.Topic is the set of query
topics from the queryq. Thepid refers to the unique identifier
of the querying remote peer. Since there is no information
about the number of results retrieved for the query, we set
the number of query hits to 1.maxsimindicates the similarity
between thetopicof the shortcut and the locally stored content.
Finally ’r’ indicates the shortcut is a recommender shortcut
and updateis the time, when the shortcut was created or the
last time, when the shortcut was used. In Figure 1 Peer 2 issues
the query /Top/Education/UML. Peer 8 creates a shortcut to
peer 2 since this query was routed through peer 8.
Content Provider and Recommender Index.The volatility
of the peers in the network and their interest shifts require to
update the local indices. INGA assumes that each peer may
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only store a limited number of shortcuts, viz. only knows a
limited set of topic specific neighbors it can route a query
to. If the local index size is reached a peer decides, which
shortcuts should be deleted from the index. For each shortcut
in the index INGA computes a rank based on the following
types of localities:

Semantic locality.INGA measures the maximum semantic
similarity maxsim between the topic of a shortcut and the
topics represented by the local content of a peer according to
equation 1. Hence, INGA retains a shortcut about topict to a
remote peer, ift is close to its interests.

LRU locality. To adapt to changes in the content and
interests INGA uses a LRU replacement policy [21]. Each
local shortcut comes with a time stamp reflecting the latest
point in time at which it was created or used by the local peer
for query forwarding. Thus, each peer has an ‘oldest’ and a
‘most recent’ shortcut, for whichupdate values of0 and1 are
assigned, respectively. Time points in between receiveupdate
values by linear interpolation between the two extremes.

Community locality.The community locality takes into
account the minimal distance between a shortcut and the
respective content. Content provider shortcuts marked with a
c provide a one hop distance to the content, viz.type = 1.
Recommender shortcuts, marked with anr require at least two
hops to reach a peer with relevant documents, viz.type = 0.5.

INGA determines the relevance of an index entry by a
weighted sum of its different locality values (equation 3).
Shortcuts with the lowest relevance are discarded first.

relevance =
a ∗maxsim + b ∗ type + c ∗ update

a + b + c
(3)

B. Bootstrapping Shortcuts

Bootstrapping shortcuts link to peers which are well con-
nected in the network. INGA determines the bootstrapping
capability by analyzing the in-degree and out-degree of a peer.
The out-degree of a peer is a measure for its ability to discover
remote peers. The in-degree of a peer measures its popularity.

In order to disseminate the bootstrapping capability of a peer
its queries include this information. While a peer is online it
continually updates its content/recommender index based on
incoming queries and stores additional bootstrapping shortcuts
in the formsc(pid, bo), wherepid is the PID of the querying
peer andbo its bootstrapping capability. Once an initial set
of bootstrapping nodes is found, a peer may route its queries
to the nodes with the highestbo value, which is calculated
according to Equation 4.

Bo = (1 + |outdegree|)× (1 + |indegree|) (4)

In Equation 4 out-degreerefers to the number of distinct
remote peers a peer knows. To compute thein-degreeINGA
counts the number of distinct remote peers that route a query
through the peer. INGA extracts this information from the
message pathmp.

A peer stores bootstrapping information only about remote
peers which are part of the content provider or recommender
layer. This ensures that not all peers use the same bootstrap-
ping peer, because the selection of remote peers partly depends
on the local content.

C. Default Network Shortcuts

When a new peer enters the network, it has not yet stored
any specific shortcuts in its index. Default network shortcuts
connect each peerp to a set of other peers (p’s neighbors)
chosen at random, as in typical Gnutella-like networks (e.g.
using rendezvous techniques).

IV. DYNAMIC SHORTCUT SELECTION

The basic principle laying behind the shortcut mechanism
consists of dynamically adapting the topology of the P2P
network so that the peers that share common interests spon-
taneously form well-connected semantic communities. [22]
shows that each user is only interested in a limited number
of different topics. Therefore being part of a community that
shares common interests is likely to increase search efficiency
and success rate. To optimize the overall message traffic this
paper propose a dynamic shortcut selection strategy, where
each peer selects only a certain numberk of most promising
shortcuts for query forwarding.

A. Overview

INGA consists of several steps executed locally and across
the network when recommending peers for a query and
retrieving or returning results. If a query is submitted to the
P2P network the following process is executed:
• Across the network: Recommending. Whenever a

peer receives a query message, it first extracts meta-
information about the querying peer and updates its
bootstrapping and recommender index if needed. Then
the INGA forwarding strategy is invoked to select a set of
k peers that appear most promising to successfully answer
the query . The original query message is forwarded to
thesek peers.

• Across the network: Answering Queries.When a peer
receives a query, it will try to answer the query with local
content. INGA only returns non-empty, exact results and
routes them directly to the querying peer. If the maximum
number of hops is not yet reached, the query is forwarded
to a set of remote peers selected as described above.

• Locally: Receiving Results. On the arrival of result
items a querying peer analyzes the message path and
the respective number of results to create or update local
content provider shortcuts.

B. Selecting best matching shortcuts

The INGA shortcut selection algorithm determines the can-
didate peers that are most promising to forward the given query
to. The INGA strategy is based on the local knowledge about
the query topic as stored in the index of the peer:
• INGA only forwards a query via itsk best matching

shortcuts.
• INGA prefers content and recommender shortcuts over

bootstrapping and default network shortcuts.
• The INGA strategy is a greedyk best-search heuristics.

As such it might be led astray into a subnetwork of peers
that appear to be the optimal choice from a local point
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of view, but that do not yield all the appropriate answers.
To let the search escape such local optima, some queries
are forwarded to a random set of peers.
This randomness will later on show two major beneficial
effects: First, it allows the individual peer to have a larger
overview of the whole network and, hence, to establish
the appropriate short distanceand long distance short-
cuts.3 Second, it facilitates accommodation to volatility
(especially in the form of new joining peers).

Algorithm 1 defines the basic peer selection procedure for
choosingk peers: In step 1 it selects at mostk peers from
content or recommender shortcuts that match the topic of the
query with the highest similarity. To avoid forwarding queries
along shortcuts with only low topic similarity a minimum simi-
larity thresholdtgreedy is required to hold between the topic(s)
of the query and the shortcut. If less thenk shortcuts have been
found, the algorithm selects the top bootstrapping shortcuts
(step 3). Finally, remaining slots for query forwarding are
filled by a random selection from the default network. The
algorithm terminates if the query has reached its maximum
number of hops. Furthermore, the algorithm is constrained
such that a query is not forwarded to a peer if this peer has
already occurred in the message path of the query (step 6).

Algorithm 1 Dynamic
Require: Query q, MsgPath mp, int k, float tGreedy, float f,

Set topicDependentShortcuts, SetbootstrappingShortcuts,
Set defaultNetworkShortcuts

Ensure: TTLq < maxTTL
1: Sets← TopGreedy(q,topicDependentShortcuts,k,tGreedy)
2: if (|s| < k) then
3: s← TopBoot(s, bootstrappingShortcuts, k)
4: end if
5: s← RandomFill(s,defaultNetworkShortcuts,f,k)
6: s← removeAlreadyVisitedPeers(s,mp)
7: Return s.

The remainder of this section describes the subroutines of
the INGA algorithm with more details.

Algorithm TopGreedyallows for selecting the top peers
above a similarity threshold. The algorithm browses trough the
index of all topic dependent shortcuts (step 3) and identifies
the most similar shortcuts for a query (step 4) abovetgreedy

(step 5). If two shortcuts have the same similarity, it selects
the shortcut with the higher value of query hits (not shown
in the algorithm below). The algorithm selects the top-k peers
for a query (step 7).TheTopBootAlgorithm works similarly
to theTopGreedyAlgorithm, but selects the peers with highest
known bootstrapping capability (line 3).

The task of algorithmRandomFill is twofold: if the other
subroutines fail to discover k peers for a query, it fills up
remaining peers until k is reached. The second task of the
algorithm is to contribute some randomly chosen peers to the
selected set of k peers to avoid overfitting of the selection
process as known from simulated annealing techniques. De-
pending on the probabilityf the algorithm exchanges already

3‘short’ and ‘long distance’ as seen from the default underlying network.

Algorithm 2 TopGreedy
Require: Query q, Set topicDependentShortcuts, int k, float

tgreedy

1: Set topShortcuts←{}
2: Set s tmp← topicDependentShortcuts
3: while (s tmp is not empty)∧ (|topShortcuts| < k) do
4: Next← argmaxp∈s tmp simTopic(q, p)
5: if simTopic(q,Next) ≤ tgreedy then
6: break
7: end if
8: s tmp← s tmp− {Next}
9: topShortcuts← topShortcuts∪ {Next}

10: end while
11: Return topShortcuts

Algorithm 3 TopBoot
Require: Set topShortcuts, Set bootstrappingShortcuts, int k

1: Set s tmp← bootstrappingShortcuts
2: while (s tmp isnot empty)∧ (|topShortcuts| < k) do
3: Next← argmaxp∈s tmp topBoot(p)
4: s tmp← s tmp− {Next}
5: topShortcuts← topShortcuts∪ {Next}
6: end while
7: Return topShortcuts

selected peers with randomly chosen ones. [3] elaborates on
the effects of different random contribution levels and finds
that f = 20% produces the best results.

V. EXPERIMENTAL SETUP

INGA was conceptually evaluated in a real world case study
[18] while different parameter settings were compared using a
simulation environment (the focus of this paper). This section
describes the experimental setup while Section VI presents the
evaluation results.

A. Content Distribution

Three different data sets – one synthetic and two data
sets from real-world observations – build the basis of the
evaluation. The data sets exhibited different characteristics
with regard to dimensions like size, relational structure (i.e.
being able to be used for simulation runs with conjunctive
queries) and ‘being natural’ for the task at hand. All three
data sets had a low level of replication, i.e. few data items
were assigned to multiple peers, and all data sets exhibited a
hyperbolic (Zipf-like) distribution of topics.
Open directory project. The first data set is based on the
open directoryDMOZ.org. DMOZ.orgconstitutes alarge data
set of content distributed among a substantial community of
content editors. The data set was so large that for the purpose
of our simulations we have selected a subset consisting of the
first three levels of the DMOZ hierarchy.

Each editor is responsible for one or several content topics
and maintains the corresponding topic pages. At the first three
levels we found 1657 topics. There is a Zipf-like skew in
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the distribution of editors to topics: 991 editors only maintain
content about one topic, 295 about two, 128 about three, ...
one editor about 20, and one editor maintains content about
22 topics. Vice versa: 755 topics are dealt with by 1 editor,
333 by 2, 204 by 3, . . . , 44 by 6, . . . ,14 by 10, and 1
topic has 32 editors. Thus, mapping an individual editor onto
an individual peer and the topic content of the editor onto
the local content database of the corresponding peer appears
to be a rather natural, realistic choice for a basic data set.
This data set does contain very few relational structures, and
predominantly information about instantiation of one topic,
e.g. ‘AirplaneArrivals2004.pdf ′ is an instance of topic
topic ′/TourismActivity/TravelDistribution/docs′. It is
thus not possible to test conjunctive queries on this data set,
as only 96 of the 43894 different instances are assigned to
more than one topic.
Synthetic data. The number of classes, the number of prop-
erties and the number of sub-class relationships together with
their respective distributions determine the schema of the
ontology. The number of instances and the number of relations
between instances determine the distribution of the instance
data. The distributions are modeled as a Zipf distribution with
parameter settings according to observations from real world
data sets. The parameter settings for the schema generation
are based on [23] while the parameter settings for instance
generation are based on [24]. Data distribution on the peers
follow the model presented in [22].

For the schema we choose to generate an ontology with
1.000 classes and each class was assigned a popularity based
on a Zipf distribution with skew factor 1. The popularity of
a class influences its number of instances, its replication in
the network and its connectivity with other classes through
properties. We selected the number of sub-classes and the
number of properties of a class (Zipf with skew factor 1.1).
This resulted in 357 properties.

200,000 instances were generated and assigned to one
class based on the popularity of the different classes.
TotalNoPropertyInstances = 100 ∗ TotalNoProperties
many properties between instances were generated. Likewise
to classes, a property schema (one could also call it a binary
relation), had a popularity based on a Zipf distribution with
skew factor 1 that was considered when generating properties
between instances (i.e. when populating the binary relations).

Assignment of data to peers is done based on the conjecture
that users are generally interested in a small subset of the
entire content available in a peer-to-peer network. We have
modeled that the interests are more likely in only a limited
number of content classes and thus users would be more
interested in some classes while less in others. The maximum
number of classes that a peer is interested in and its content is
computed byClassesOfInterest = ln(NoOfClasses) ∗ 2.
The actual number of classes is chosen randomly from a
uniform distribution. Observing the studies in [24] all peers do
not share the same amount of data and also do not exhibit the
same ‘social behaviour’. For instance, a large number of users
are so-called free riders or freeloaders who do not contribute
anything to the network but essentially behave like clients.
On the other hand, a small number of users (less than 5%)

provide more than two thirds of the totally available amount
of data and thus behave like servers. Considering the study in
[25] the following storage capacity was assigned to the peers
in the network: 70% of the peers do not share any instances
(free riders); 20% share 100 instances or less; 7% share 101
up to 1000 instances and finally, only 3% of the peers share
between 1001 and 2000 instances.
Bibster data set.This data set bases on real captured query
data from the peer-to-peer bibliography network ‘Bibster’ [18].
The data set contains27.037 distinct bibliographic entries.
These are categorized according to the ACM topic hierarchy
for computer science.4

B. Query Distribution

For the different data sets and their assignments to peers,
we generated queries in the simulation runs as follows:
Open directory project. Queries were generated in the exper-
iments by instantiating the blueprint query(∗; rdf:type; topic)
with topics arbitrarily chosen from the set of topics that had at
least one document. We generated 30000 queries, uniformly
distributed over the 1657 different topics. We choose a uniform
query distribution instead of a ZIPF-distribution, which is
typically observed in file sharing networks [26]. This simulates
the worst case scenario, where we do not take advantage of
often repeated queries for popular topics.
Synthetic data. The query set for the synthetic ontology
is based on a special type of queries that request instances
satisfying a varying number of constraints. The basic concept
for the queries is built on the following schema:

(instance; rdf:type; class)∧ (instance; owl:hasProperty; instance2)∧
(instance2; rdf:type; class2) ∧ (instance; owl:hasProperty; instance3)

∧ (instance3; rdf:type; class3).
Informally, this concept requests allinstances of a certain

class with the constraint that theinstances have two partic-
ular properties pointing to otherinstances. An example of
a SeRQL query is:

construct * from {instance}
<!http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

{<!http://swap.simulation#class0>};
<!http://swap.simulation#property2> {}

<!http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
{<!http://swap.simulation#class51>},

{instance}
<!http://swap.simulation#property1> {}

<!http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
{<!http://swap.simulation#class37>}

The built query set only contains queries that can be answered
by the network and is uniformly distributed .
Bibster data set.The extracted queryset for the Bibster-based
ontology contains several types of queries that request in-
stances satisfying different constraints. It is worth mentioning
that the queryset was adopted the way it was originally created
and therefore, it also consists of non-conjunctive queries.

C. Peer-to-Peer Network Setup

Gnutella style network. The simulation is initialized with a
network topology which resembles the small world properties

4The ACM-Index file is available online at:
http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/acmtopics.rdf
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Parameter Value
Queries 30.000
Queries per peer ca. 30
Query time to life 6
Selected peers per query (k) 2
Greedy search threshold (tGreedy) 15 %
Random contribution (f ) 20 %
Index size (if no other size is mentioned) 40
Open Directory data set
Topics 1646
Before interest shift 823
After interest shift 823
Simulated peers 1024
Bibster data set
Topics 1293
Simulated Peers 520
Synthetic data set
Topics 1000
Simulated Peers 1024

TABLE I

SIMULATION PARAMETER SETTING

of file sharing networks5 with 1024 peers. In the simulation,
peers were chosen randomly and they were given a randomly
selected query to question the remote peers in the network. The
peers decide on the basis of their local short cut index which
remote peers to send the query to. Each peer uses INGA to
select up topmax = 2 peers to send the query to. Each query
was forwarded until the maximal number of hopshmax = 6
was reached — unless the peer selection algorithm choose not
to forward further also at an earlier point in time.

Volatile network and interest shifts. We implemented the
dynamic network model observed for Gnutella networks of
[26]: 60% of the peers have a availability of less then 20%,
while 20% of the peers are available between 20 and 60%
and 20 % are available more then 60%. Hence only a small
fraction of peers is available more than half of the simulation
time, while the majority of the peers is only online a fraction
of the simulation time. Users’ interests may change over time,
e.g. to account for different search goals. To simulate changing
interests, after 15 queries, equal to ca. 15.000 queries over
all peers, each peer queries a completely different, previously
unused set of topics.

D. Simulator setup and simulation statistics

We used a round based simulation framework which was
setup using the parameter setting listed in Table I. In total we
simulated 1024 peers. To determine the standard error of our
observations of 95 percent confidence interval (p<0.05) each
simulation was executed six times. We set the greedy search
threshold for algorithm to 0.15 and the amount of random
contribution to 0.20

E. Evaluation Measures

INGA is evaluated using the following metrics:
• Recall describes the proportion between all relevant doc-

uments in peer network and the retrieved ones. Hereby,

5We used the Colt libraryhttp://nicewww.cern.ch/ ∼hoschek/
colt/

we defined ‘relevant’ as ‘matches the query’. We did not
use any gold standard document set where relevance to a
query would be assigned by a user. Therefore,precision
would have been meaningless in our evaluation.

• Messagesrepresent the required search costs per query
thus measuring system scalability.

• Message Gainis defined as the recall per message, hence
we divide the recall of a query with the proportion of
messages to achieve the recall.

VI. EXPERIMENTAL RESULTS

INGA was evaluated in a large number of experiments in
order to compare its performance to related state-of-the-art
approaches, to set the optimal parameter setting and to test the
applicability of the algorithm for different scenarios. Before
the presentation of the final evaluation results, the following
list summarizes the major hypotheses that were investigated:

1) Shortcut networks outperform theDefault approach.
2) INGA outperforms state-of the art shortcut networks.
3) Semantic similarity supports the peer selection process.

It helps to improve recall and to reduce the number of
messages. However, shortcut networks perform reason-
ably even without the support of a semantic similarity
function.

4) Each layer contributes to improve routing efficiency.
Depending on the scenario, dynamic bootstrapping peers
help to reduce the number of messages, while recom-
mender peers increase the recall.

5) Our algorithms performs well with a limited index size.
6) Combining different index policies supports efficient

routing much more than relying on a simple LRU
strategy.

7) Shortcut networks are capable to handle conjunctive
queries efficiently.

8) Shortcut networks perform well in both, dynamic and
static, networks.

[27], [28] present a more detailed analysis of the evaluation
results and additionally investigate the influence of different
parameter settings on network characteristics, such as the
clustering coefficient.

A. INGA outperforms state-of-the-art approaches

As a baseline we compare INGA with an index size of 40
entries against the interest based locality strategy (IBL) of [13]
with an LRU strategy and an index size of 40 entries and the
default algorithm of Gnutella (Default).

During the simulation run each peer issues in average
30 queries approximately corresponding to a 2 hour period
in a real file sharing network. After 15 queries the peers
shift interest and choose queries from the second half of
the available set of queries. Studies of interest shift show a
smoother transition between interests positively influencing the
performance of all routing approaches [29].

Figure 2 focuses on the recall achieved by different routing
strategies. The total number of issued queries is plotted against
the achieved recall. The line ‘Online available’ indicates the
maximally achievable recall as not all peers are always online.
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Volatile Network - DMOZ Data Set - Comparision with Related Routing Algorithms

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 5000 10000 15000 20000 25000 30000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

Reihe6

Reihe5

Online available

Kan, 1999 (Naive)

Sripanidkulchai et. al., 2003

INGA
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Fig. 3. Messages: Related Approaches

The recall of INGA increases with the number of queries sent
and levels off at about 25% corresponding to 46% of the
achievable recall. In the event of interest shift the recall nearly
halves. It recovers slightly but does not achieve its former
levels. The continued black line represents the mean of eight
simulations runs with the same parameter setting. The gray
range around it additionally visualizes the 95% confidence
interval for the simulation results. The range shows that INGA
is statistically significantly better than the related approaches.
The IBL strategy produces recall levels of around 18% or 33%
of the achievable recall with a drop in the event of an interest
shift. The naive routing strategy results in circa 10% (19% of
achievable) recall independently of the interest shift.

Figure 3 plots the number of messages per query against
the total number of sent queries. The number of messages per
query produced by INGA decreases over time independently
of the interest shift and levels off at around 45. The number of
messages produced by the naive approach is constant at around
105. The number of messages produced by IBL increases a
little bit and levels off at around 95 messages. The interest
shift does not affect the number of messages produced by the
IBL strategy.

The simulations validate the hypothesis that INGA has a
better performance than related routing approaches for dy-
namic unstructured P2P networks. In a volatile network the
bootstrapping peers correspond to the peers which are most of
the time online. This behavior results in a decreasing number
of messages per query over the entire simulation, but it also
limits the discovery of new peers.

Volatile Network - DMOZ Data Set - Layer Contribution
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B. Layer and semantic similarity function contribution

Figure 4 illustrates the contribution of the different layers to
the performance of INGA. Each chart is the result of using the
indicated layer and all lower layers, e.g., the content provider
layer uses also the default network layer. The figure plots the
message gain against the total number of sent queries. The
default network layer follows a naive routing strategy and
offers a constant but low performance contribution. The use
of content provider layer steadily increases the recall, while
it leaves the number of messages per query unaffected. In
the event of new queries the recall falls back and recovers
only slowly. The recommender layer allows the algorithm
to learn quicker and to achieve a higher recall. Finally, the
bootstrapping layer reduces the number of messages per query,
but slightly decreases the recall. In total, however, the message
gain is at its highest level using all three layers.

The introduction of the recommender layer has the strongest
influence on the performance of INGA. One reason is the
caching of frequent queries issued by the peers in the network.
If the network becomes clustered, especially neighboring
nodes with similar interests will benefit of cached queries.
Furthermore query routing is based on a similarity function, so
queries are routed along shortcuts representing similar queries.
Especially for nodes that are not clustered so far, this similarity
helps to find adequate clusters and route queries to nodes that
have similar interests. Thus, including a similarity in the peer
selection process speeds up the clustering process, however
shortcut networks will exploit small world characteristics even
if an exact match paradigm is used only. In this case shortcut
networks profit in particular from popular queries that are used
to establish topic specific shortcuts between remote peers.

C. Influence of the index size

Figure 5 presents the evaluation results comparing the per-
formance of INGA using different index sizes. The figure plots
the message gain against the total number of sent queries. The
size of the index determines the required resource allocation
for routing purposes at the local peer. The index size is
constantly increased starting from 20, to 40, 100 and finally
unlimited number of shortcuts per peer.

We observe that within a certain range the limit to the
number of shortcuts stored at the local peer does not affect the
results in terms of message gain. Peers store different short-
cuts, because the ranking of the shortcuts partially depends on
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Volatile Network - DMOZ Data Set - Shortcut Index Size Influence

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

e 
G

ai
n

 p
er

 Q
u

er
y

INGA: Index Size 40

INGA: Unlimited Index Size 

INGA: Index Size 100

INGA: Index Size 20

Fig. 5. Message gain for different index size
Volatile Network - DMOZ Data Set - Shortcut Indexing Strategy

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

No. Of Queries

M
es

sa
g

e 
G

ai
n

 p
er

 Q
u

er
y

INGA INGA LRU

INGA Community INGA Similarity

Kan, 1999 (Naive)

Fig. 6. Message gain for different index weights

the local knowledge of the peer. Although the number of local
shortcuts is low, the collective number of different shortcuts is
high. This allows INGA to achieve the performance levels
already with a relatively small index size. An index size
between 40 and 100 is sufficient.

D. Influence of the index weight

Figure 6 plots the message gain against the total number of
sent queries for four different parameter settings and the naive
routing approach. In each simulation only the values set for
a, b, andc are changed. In INGA all three parameters influence
the index management. The parameters are set toa = 0.1, b =
0.8 and c = 0.1. INGA LRU corresponds to the parameter
setting in which only the time is considered to rank shortcuts
for index maintenance (a = 0, b = 0, c = 1). Similarly INGA
community considers only the shortcut type (a = 0, b = 1, c =
0). Finally, INGA similarity considers only the similarity of
shortcuts to the local content (a = 1, b = 0, c = 0). The pure
indexing strategies only based on similarity and time cannot
increase the message gain levels above the levels observed
for the naive algorithm. Only with the community strategy
message gain levels comparable to INGA are achievable. No
parameter setting alleviates the problem that recall levels do
not recover to levels observed during the learning phase. The
bootstrapping peers receive a larger proportion of the queries,
reducing the number of messages but also the recall as they
are not aware of peers able to answer the new set of queries.

The community locality raises the message gain, even after
changing the interests of each peer, while the combined
strategy performs best.

Volatile Network - Synthetic Data Set - Comparision with Related Routing Algorithms
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Fig. 8. Messages for conjunctive queries

E. Performance for conjunctive queries

Figure 7 compares the recall for different routing algorithms
using conjunctive queries on the synthetic data set6. After a
warm up phase of 2.000 queries, or approximately two queries
per peer, INGA constantly reaches around 75% of the available
content. The observed recall for the Gnutella routing algorithm
(Kan, 1999 (Naive)) reaches the same level as for none
conjunctive queries, while the IBL approach (Sripanidkulchai
et. al., 2003) shows a better performance. The different data
distributions in the two data sets explain the difference. Not
all peers are always online, thus the lineOnline Available
represents the maximum available content at query time.

Figure 8 visualizes the number of messages produced to
achieve this recall. The number of messages produced by the
Gnutella approach slightly increases over time. Due to the high
network churn the peers have to discover new remote peers
since the available ones assigned in the setup phase are off line.
Thus, the necessity to send a query to a remote peer which
has not received the query yet increases over time. The IBL
approach produces less messages than the Gnutella approach.
In contrast to the observation made for related approaches the
number of messages produced based on the shortcut selection
decreases significantly. The number of messages decreases
because of the small world properties of the network: queries
are only forwarded to a focused set of peers; and it decreases,
because INGA does not forward queries to peers that have
already received a query (see Section IV and Algorithm 1).

6The results using the Bibster data set are comparable to the results using
the synthetic data set. [27] includes a detailed presentation of those results.
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VII. SUMMARY

The INGA routing algorithm dynamically adapts to the
network topology, building on the history of successful and
semantically similar queries. This is realized using bounded
local shortcut indexes, storing semantically labelled shortcuts,
and dynamically selecting shortcuts. The selection algorithm
forwards queries to a community of peers that are most
promising to successfully answer a query. Shortcuts connect
peers that share similar interests and thus spontaneously form
semantic communities.

Extensive simulations show that the application of the INGA
routing algorithm results in a higher recall or a reduction of
messages per query in comparison to other routing approaches.
INGA is non-intrusive as it is solely based on the observation
of network behavior keeping the load for administration mes-
sages at nil. Thus, INGA exhibits a characteristics of properties
that sets it apart in intriguing ways from structured DHT-
style networks and it may provide a substantial benefit to all
unstructured peer-to-peer networks.
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