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Semantic Social Overlay Networks

Alexander loser, Steffen Staab, and Christoph Tempich

Abstract—Peer selection for query routing is a core task in [3], [1]. Routing algorithms for pure and unstructured P2P
peer-to-peer networks. Unstructured peer-to-peer systems (like networks do not require the active dissemination of index
Gnutella) ‘ignore this problem, leading to an abundance of ntormation describing a peer. They are therefore better suited

network traffic. Structured peer-to-peer systems (like Chord) for highlv dvnamic environments than routing algorithms
enforce a particular, global way of distributing data among the ghly dy g alg

peers in order to solve this problem, but then encounter problems based on structured or partially centralized network organiza-
of network volatility and conflicts with the autonomy of the peer tions [6]. INGA regards each peer in the network as a person
data management. In this paper, we propose a new mechanism, in a social network; facts are stored and managed locally on
INGA, which is based on the observation that query routing in each peer constituting the ‘topical knowledge’ of the peer. A

social networks is made possible by locally available knowledge - .
about the expertise of neighbors and a semantics-based peerpeer responds to a query by providing an answer matching the

selection function. We validate INGA by simulation experiments duery or by forwarding the query to relevant remote peers. The
with different data sets. We compare INGA with competing peer local peer determines the relevance of a remote peer based on

selection mechanisms on resulting parameters like recall, messagea personal semantic shortcut indekhe index is created and

gain or number of messages produced. maintained in a lazy manner, i.e., by analyzing the queries
Index Terms—Content Analysis and Indexing, Information initiated by the local peer and by analyzing the queries that
Search and Retrieval, Semantic Routing, Social Networks. are routed through the local peer.
INGA creates shortcuts on four layers: Té@ntent provider
|. INTRODUCTION layer contains shortcuts to remote peers which have suc-

Finding relevant information from a heterogeneous set oéssfully answered a query; threcommender layeistores
information resources is a longstanding problem in computingformation about remote peers who have issued a query;
Studies of social networks suggest that the challenge of finditige bootstrapping layemaintains shortcuts to well connected
relevant information may be reduced to asking the ‘rightemote peers; and theetwork layerconnects to peers on an
people. ‘The right people’ either have the desired piece ofderlying default network.
information and can directly provide the relevant content This paper proposes a shortcut selection strategy able to
or can recommend ‘the right people’. Milgram’s [4] anddentify and efficiently group peers with similar interests in a
Kleinbergs [5] experiments illustrated that individuals witldynamic setting by semantic means. In order to adapt to the
only local knowledge of the network (i.e. their immediatelynamics of the networks and to bound the local index this
acquaintances) may successfully construct acquaintance chaimger presents an index update policy combining temporal,
of short length, leading to networks with ‘small world’ charsemantic and community locality. The algorithm has been
acteristics. In such a network, a query is forwarded alorayaluated in simulations and real world case studies. This
out going links taking it 'closer’ to the destination. Suclwork presents the results of the simulation studies, while

mechanisms work in social networks although [7] introduces the case studies. Results show that INGA
« people may not respond to requests, outperforms other state-of-the-art approaches significantly in
« people may shift their interests and attention, terms of recall and messages per query.

« people may not have exactly the ‘right’ knowledge, but The paper is organized as follows: Section Il describes the
knowledge which issemantically closé¢o the request.  infrastructure to maintain the index and the semantic similarity
Rephrased in a peer-to-peer (P2P) terminology, peers may fiHaction to select peers. Section Ill elaborates on the indgx
relevant information in a real-world social network which i$tructure and update strategy for each type of shortcut. Section
highly dynamiow.r.t. peer availability and expertise on topicdV presents the dynamic routing model. Section V discusses
using theirlocal knowledgeenriched by means afemantic the evaluation results and Section VII concludes the paper.
similarity measures. In this context local knowledge refers to
locally available information — structured and unstructured B Related Work
and to knowledge about remote peers. _ . _ _
Research in routing for P2P networks has devised an in-
A. Searching Dynamic Communities with Personal Indexesventory of methods to collect index information about peers
. . . in_the network. The first approaches for efficient indexing in
Inspired by these observations this paper presents ING g : o .
) ; P architectures were central indices, that have to transmit
P2P routing algorithm for pure and unstructured P2P networ S : . )
either meta data about the available content to central indexing
Manuscript submitted December 15, 2005. peers, like e.g. GIOSS [8] dWapster Current techniques for
éfr’i(st’;df]rgﬁriicsh"i"sitcvilt-’h”il\ﬁi\slgi’sgf B?Cl?;‘ﬁ;?gzeBer"”- indexing P2P systems use structured overlays in the form of
y P y ' distributed hash tables (DHTs), e.g. [9] or see [10] for a
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This paper is largely based on [1], [2], [3]. survey. Structured overlays allow for routing keyword queries
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to particular peers containing the desired data without the neeé content managememiomponent, théocal shortcut index
for a central index. In structured overlays (a reference tahd theshortcut managemerdomponent. The user interacts
new content in the network is published at the node for tiweith the system by means of treuery/result interfaceThe
respective key, if new data on a peer arrives or a new peer jomsiting logic selects remote peers to send and forward queries
the network. When a peer leaves the network the informatitm Finally, the network managementandles the physical
about its content is unpublished. Recent research in [6] shometwork traffic assuming that each peer provides a unique
that due to the publishing/unpublishing overhead, DHTs lagleer identifer (PID). The components are described with more
efficiency when highly replicated items are requested, thdetail in the following.
perform worse than flooding approaches in practical settingsSimilar to file sharing networks each peer may publish all
degrading further if network churn is introduced. resources from it$ocal content databasehus remote peers
While the management of keys and objects in the sarpen discover them on request (this also applies to resources
name space used in structured overlays provides an elegéswnloaded from other peers). All information is wrapped as
and clean solution to routing within logarithmical boundsRDF statements and stored in an RDF repository [1BDF
it comes at significant costs destroying the locality of thig a light-weight ontology representation language offering,
content: Content at a user’s desktop is co-located with othemong others, constructs to type information ("isinstanceOf")
relevant items. Opportunities for browsing and pre-fetching as@d to relate information items ("subTopicOf"). In this format
lost in structured overlays [11]. Routing approaches for puesach resource representing the local dhligk isExecutiveEd-
unstructured networks, such as Gnutella, retain locality, bitorOf JSAC2005 is assigned a topidJSAC isInstanceOf
may produce many messages per query. In order to imprda#&EEJournal) and hierarchical information about the topic
the routing efficiency in pure unstructured P2P networks cyitEEEJournal subTopicOf Journal)The topics a peer stores
rent routing approaches use local index information (cf. [12¢sources for are subsequently referred to as the peer's own
for an overview). They store information related to the succespics. INGA supports exact match queries which come in two
of past queries locally and utilize this information to routélavours: single predicate queries and conjunctive gueries. The
queries. The approaches may be distinguished, among otslesrtcut managemengxtracts information about answering
dimensions, according to their information gathering strategynd forwarding peers from queries to create, update or remove
their information evaluation strategy and their index updatortcuts in thdocal shortcut index Contrary to related ap-
strategy. The routing approach presented in [13] exploitgoaches, such as DHTs, INGA peers only index ‘egoistically’,
interest-based locality and builds up indexing informatione. they decide based on local information which shortcuts to
about remote peers only at the querying peer. This informatistore. Theouting logicselects ‘most suitable’ peers to forward
is not shared with remote peers, nor is it utilized for queries query to, for all local queries or gqueries forwarded from
routed through the local peer. To update the index it employsemote peers. The selection depends on the knowledge a peer
LRU strategy. The routing approaches of [14] and [15] retuttmas already acquired and the similarity between the query and
answers on the query path enabling remote peers on that fatially stored shortcuts.
to profit from other peers queries. This information is also
used to route queries from remote peers. Additionally, in [14]
a peer disseminates obtained information to its neighbors d&d Query and Result Messages
considers the number of responses of a remote peer for rankingNGA uses a query message model which is similar to the
purposes. In contrast, [15] uses a probability based evaluatign,cture of a Gnutella query message. Each query message is
function. Alternative routing algorithms like [16] introducey quadrupleQM (¢, b, mp, gid) whereq is a SERQL quer).
improvements on the evaluation of conjunctive queries or thRRGA supports conjunctive SERQL queries. From a query
dissemination procedure [17]. INGA uses for routing purposes only information, which is
INGA differs from existing routing algorithms, because ishared among all peers. From a query folBEEJournalwith
uses queries routed through a peer to build up indexing infQfgitor-in-chiefNick, only IEEEJournalis utilized for routing.
mation in contrast to responses, it uses semantic informatipf the bootstrapping capability of the querying peer to allow
to evaluate the index information for forwarding purposes anfe creation of bootstrapping shortcutsp is the message path

it uses semantic information to update the index. of a query message containing the unique PIDs of the peers,
which have forwarded the query to the receiving peer. Finally,
[I. SYSTEM ARCHITECTURE qid refers to a unique query ID to ensure that a peer does not

The INGA peer selection strategies described in section Igspond to a query it has already answered. INGA computes
may be implemented for any unstructured P2P network. Pépique query IDs using a random number generator that has
evaluation purposes, though, we use the SWAP infrastructgtéficiently high probability of generating unique numbers. A
[18]. It provides all standard peer-to-peer functionality sucigsult message is a tupl&\ (r, mp, gid) wherer represents

as information sharing, searching and publishing of resourcé¢ answer to the query. The message pathis copied to
the answer message to allow the creation of recommender and

A. Building Blocks content provider shortcuts.

The building blocks of an INGA node responsible for the 1. /mww.openrdt.org/
content and index information are thecal content database 2SERQL is a SQL like query language for RDF.
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C. Similarity Function D

INGA analyzes the locally stored shortcuts to determine "
remote peers to route a query to. If no shortcuts exist which .

exactly match a query, INGA evaluates the shortcuts based -

on their similarity to the query. Depending on the query type ‘\ 5
INGA chooses from the following similarity functions: \} 1_ - > D
Single predicate query using a common topic hierarchy. \\ s==" -

If the peers in the network share a common topic hierarchy 2 ¥

INGA exploits the semantic similarity between a query and a

shortcut. In this case a query consists of a single predicate, _ '

which represents a topic in a common topic hierarchy, II_\IG.&”“-en‘Emvﬂer-Sh"ﬁC“‘-) PeYIvry nIiiTy
utilizes the similarity functionsimypc(gt, st) presented in _ _

[20]. The similarity between the extracted topj¢ from a Fig- 1. Recommender shortcut creation

SERQL queryq and the extracted topist from a shortcut,

which are both given by query topics in the same topic . . ) ) )
hierarchy is calculated according to equation 1. peer in the network if it knows its PID. Following the social

metaphors outlined in section I, INGA distinguishes between
the following shortcut types:

—al P _e—Bh

‘ el e —e — jf sc
SiMmTopic(qt, st) :{ 1 e otgefwise @

In equation (1)/ is the length of the shortest path betwegn A. Content Provider and Recommender Shortcuts

andst in the graph spanned by the sub topic relation ansl  Content Provider Layer. The design of the content provider
the minimal level in the topic hierarchy of eithet or st. «  shortcut overlay extends interest-based locality [13]. If the
and g are parameters scaling the contribution of shortest pagtal peer receives answers from remote peers, these are po-
length/ and depthh, respectively. Based on the benchmartential candidates to be added to the content provider shortcut
data set given in [20], we chose= 0.2 and 3 = 0.6. list. Each time the querying peer receives an answer from a
Conjunctive queries. Each query may include several predremote peer, INGA creates content provider short@ats$o
icates, e.g.Select all resources that belong to the topighe responding remote peers in the fosa(topic, pid, query
semantic web and to the topic p2pJsing a common hits,c’, update) wheretopicis the query topics taken from the
topic hierarchy this query can be rewritten &nd any query messageid is the unique identifier of the answering
resource having topics /computer/web/semanticweb and /copeer, query hitsis the number of returned statements,
puter/distributed/TourismTechnolagyAn exact match ap- represents a type of shortcut, viz. ‘content provider shortcut’
proach routes a query only to a peer that matetilesredicates and updateis the time, when the shortcut was created or the
of the query using a simple exact match paradigm. Too specifigt time, when the shortcut was used. Subsequent queries
query predicates under the exact match paradigm often leadtothe local peer or of a remote peer are matched against
empty result sets and do not appropriately consider negati@ie topic column of the content provider shortcut list. If a
The notion of best matches and relative importance of pre@ieer cannot find suitable shortcuts in the list, INGA uses
cates can be a good alternative to satisfy a user’s informatigie bootstrapping or default network layer to select remote
needs independently of the individual peer instances. In [gers. In Figure 1 Peer 2 discovers shortcuts for the topic
we investigated metrics to determine the best peers to royjucation/UMLby flooding the default network (TTL=3) and

a query using multi predicate queries in shortcut networkig.creates two content provider shortcuts to peer 3 and peer 5.
We observed satisfying results using the selection functigecommender Layer. The recommender layer main-
described in [16] which uses an equation similar to equati@gins the recommender shortcuts. A recommender shortcut
(2) to combine query hits for distributed document retrievagc(topic,pid,query hits, maxsim, ‘r', updaté created if a

We refer to this strategy adultiply. query is routed through the local pe@apicis the set of query
#t topics from the query. Thepid refers to the unique identifier

R,(q) = qu 2) of the querying remote peer. Since there is no information

iy about the number of results retrieved for the query, we set

the number of query hits to maxsimindicates the similarity
between thaopic of the shortcut and the locally stored content.
SFinally 'r' indicates the shortcut is a recommender shortcut
nd updateis the time, when the shortcut was created or the
ast time, when the shortcut was used. In Figure 1 Peer 2 issues
the query /Top/Education/lUML. Peer 8 creates a shortcut to
peer 2 since this query was routed through peer 8.
Content Provider and Recommender Index.The volatility
Each peer is connected to remote peers in the netwarkthe peers in the network and their interest shifts require to
via uni-directional shortcuts. A peer can link to any remotepdate the local indices. INGA assumes that each peer may

INGA calculates the relevanck for a peerp for a queryq
using equation (2), whergt represents the number of topic
in the query,¢” represents the query hits per topiof each
peer matching at least one of the topics of the query. ING
selects the remote peers with the highest relevance.

IIl. BUILDING AND MAINTENANCE OF THEINDEX
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only store a limited number of shortcuts, viz. only knows &. Default Network Shortcuts

limited set of topic specific neighbors it can route a query wnen a new peer enters the network, it has not yet stored
to. If the local index size is reached a peer decides, whighy specific shortcuts in its index. Default network shortcuts
in the index INGA computes a rank based on the followinghosen at random, as in typical Gnutella-like networks (e.g.

types of localities: _ _using rendezvous techniques).
Semantic localityINGA measures the maximum semantic

similarity maxsim between the topic of a shortcut and the

topics represented by the local content of a peer according to h ic princiole lavi hind the sh hani
equation 1. Hence, INGA retains a shortcut about tegit a T e basllccdprlnCIp_e "aymé] be_ mdht €s olrtcut Teﬁ anism
remote peer, it is close to its interests. consists of dynamically adapting the topology of the P2P

LRU locality. To adapt to changes in the content anBetwork so that the peers that share common interests spon-

interests INGA uses a LRU replacement policy [21]. Eadiineously form well-connected semantic communities. [22]
local shortcut comes with a time stamp reflecting the lat ows that eac;h user is only mterested in a limited .number
point in time at which it was created or used by the local pegf different topics. Therefore being part of a community that

for query forwarding. Thus, each peer has an ‘oldest andSgares common interests is likely to increase search efficiency
‘most recent’ shortcut. for V\;hicbpdate values of0 and1 are and success rate. To optimize the overall message traffic this

assigned, respectively. Time points in between recejx&ite paper propose a dynamic Shqrtcut selection strateg.y,. where
values by linear interpolation between the two extremes. €ach peer selects only a certain numkef most promising

Community locality. The community locality takes into ShOrtcuts for query forwarding.
account the minimal distance between a shortcut and the
respective content. Content provider shortcuts marked withAa Overview
¢ provide a one hop distance to the content, ¥izoe = 1. |NGA consists of several steps executed locally and across
Recommender shortcuts, marked withrarequire at least two the network when recommending peers for a query and
hops to reach a peer with relevant documents, tyige = 0.5.  retrieving or returning results. If a query is submitted to the
INGA determines the relevance of an index entry by pop network the following process is executed:

weighted sum of its different locality values (equation 3). Across the network: Recommending. Whenever a
Shortcuts with the lowest relevance are discarded first. peer receives a query message, it first extracts meta-

a* maxsim + b * type + ¢ * update 3) information about the querying peer and updates its
atb+c bootstrapping and recommender index if needed. Then
. the INGA forwarding strategy is invoked to select a set of
B. Bootstrapping Shortcuts k peers that appear most promising to successfully answer
Bootstrapping shortcuts link to peers which are well con-  the query . The original query message is forwarded to
nected in the network. INGA determines the bootstrapping thesek peers.
capability by analyzing the in-degree and out-degree of a peer, Across the network: Answering Queries.When a peer
The out-degree of a peer is a measure for its ability to discover recejves a query, it will try to answer the query with local
remote peers. The in-degree of a peer measures its popularity. content. INGA only returns non-empty, exact results and
In order to disseminate the bootstrapping capability of a peer oy tes them directly to the querying peer. If the maximum
its queries include this information. While a peer is online it ymber of hops is not yet reached, the query is forwarded
continually updates its content/recommender index based on g 5 set of remote peers selected as described above.
incoming queries and stores additional bootstrapping shortcut§ | gcally: Receiving Results. On the arrival of result
in the formsc(pid, bo) wherepid is the PID of the querying items a querying peer analyzes the message path and

peer andbo its bootstrapping capability. Once an initial set  the respective number of results to create or update local
of bootstrapping nodes is found, a peer may route its queries content provider shortcuts.

to the nodes with the highesb value, which is calculated
according to Equation 4.

IV. DYNAMIC SHORTCUT SELECTION

relevance =

B. Selecting best matching shortcuts
Bo = (1 + |outdegree|) x (1 + |indegree|) 4) The INGA shortcut selection algorithm determines the can-

In Equation 4out-degreerefers to the number of distinct didate peers that are most promising to forward the given query
remote peers a peer knows. To Compute |mdegree|NGA to. The INGA Strategy is based on the local knOWIedge about
counts the number of distinct remote peers that route a qué¢ dquery topic as stored in the index of the peer:
through the peer. INGA extracts this information from the « INGA only forwards a query via itk best matching
message patimp. shortcuts.

A peer stores bootstrapping information only about remotes INGA prefers content and recommender shortcuts over
peers which are part of the content provider or recommender bootstrapping and default network shortcuts.
layer. This ensures that not all peers use the same bootstrap- The INGA strategy is a greedy bestsearch heuristics.
ping peer, because the selection of remote peers partly depends As such it might be led astray into a subnetwork of peers
on the local content. that appear to be the optimal choice from a local point
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of view, but that do not yield all the appropriate answerdlgorithm 2 TopGreedy

To let the search escape such local optima, some quefRequire: Query g, SettopicDependentShortcytt k, float
are forwarded to a random set of peers. Lgreedy

This randomness will later on show two major beneficiall: SettopShortcuts—{}

effects: First, it allows the individual peer to have a larger2: Sets_tmp « topicDependentShortcuts

overview of the whole network and, hence, to establists: while (s.tmpis not empty)A (JtopShortcuts < k) do
the appropriate short distan@d long distance short- 4:  Next« argma¥es_imp SiMropic(q, )

cuts® Second, it facilitates accommodation to volatility 5:  if Simpopic(d.Nex) < tgrceay then

(especially in the form of new joining peers). 6: break

Algorithm 1 defines the basic peer selection procedure for: end if

choosingk peers: In step 1 it selects at mdspeers from 8  stmp« stmp — {Next

content or recommender shortcuts that match the topic of th&  topShortcuts— topShortcuts) {Next
query with the highest similarity. To avoid forwarding queries0: end while

along shortcuts with only low topic similarity a minimum simi- 11: Return topShortcuts

larity thresholdt g,.c.q, IS required to hold between the topic(s)

of the query and the shortcut. If less tHeshortcuts have been Algorithm 3 TopBoot

found, the algorithm selects the top bootstrapping shortc%quire: SettopShortcutsSet bootstrappingShortcutsnt k
(step 3). Finally, remaining slots for query forwarding are;. Sets.tmp < bootstrappingShortcuts

filled by a random selection from the default network. The,. \ynile (stmp isnot empty)A (topShortcuts < k) do
algorithm terminates if the query has reached its maximum.  Next— argmaXc._sm, topBootp)

number of hops. Furthermore, the algorithm is constrained. g tmp .« stmp — {Next

such that a query is not forwarded to a peer if this peer has. topShortcuts— topShortcutsJ {Next
already occurred in the message path of the query (step 6).5. end while

7: Return topShortcuts

Algorithm 1 Dynamic
Require: Query g, MsgPath mp, int k, float ¢¢rceqy, float f,
SettopicDependentShortcytSetbootstrappingShortcuts
Set defaultNetworkShortcuts
Ensure: TTL, < maxTTL
1: Sets — TopGreedyq,topicDependentShortcukst grcedy)
if (|s| < k) then

selected peers with randomly chosen ones. [3] elaborates on
the effects of different random contribution levels and finds
that f = 20% produces the best results.

2:

3. s« TopBoot6, bootstrappingShortcujs:) V. EXPERIMENTAL SETUP

4: end if INGA was conceptually evaluated in a real world case study
5: s «— RandomFill§,defaultNetworkShortcuts,f,k) [18] while different parameter settings were compared using a
6: s — removeAlreadyVisitedPeessnp) simulation environment (the focus of this paper). This section
7: Return s. describes the experimental setup while Section VI presents the

evaluation results.

The remainder of this section describes the subroutines of
the INGA algorithm with more details. A. Content Distribution

Algorithm TopGreedyallows for selecting the top peers . .
above a similarity threshold. The algorithm browses troughtheThree different data sets — one syn_thet|c and _tWO data
index of all topic dependent shortcuts (step 3) and identifig§ s frqm real-world observatpn's - b,u'ld the basis Of, the
the most similar shortcuts for a query (step 4) abtye., eyaluatlon. The _data _sets exhlb_lted dlﬁgrent characterls_tlcs
(step 5). If two shortcuts have the same similarity, it selec‘f\é't_h regard to dimensions I|I§e size, relatlonal_ structure (|_.e.
the shortcut with the higher value of query hits (not sho eing able to‘be. used for '5|mu|at|on runs with conjunctive
in the algorithm below). The algorithm selects the top-k pee?s“e”es) and ‘being natural’ for the t_ask .at hand. Al t.hree
for a query (step 7).Th@opBootAlgorithm works similarly data sets had a low Igvel of replication, i.e. few datallt.ems
to the TopGreedyAlgorithm, but selects the peers with higheszere assigned to multiple peers, and all data sets exhibited a
known bootstrapping capability (line 3).

hyperbolic (Zipf-like) distribution of topics.
The task of algorithnRandomFillis twofold: if the other Open directory project. The first data set is based on the
subroutines fail to discover k peers for a query,

it fills quen directoryDMOZ.org DMOZ.org constitutes darge data

remaining peers until k is reached. The second task of thgt Of content distributed among a substantial community of

algorithm is to contribute some randomly chosen peers to thgntent editors. The data set was so large that for the purpose
selected set of k peers to avoid overfitting of the selecticﬂ{ our simulations we have selegted a subset consisting of the
process as known from simulated annealing techniques. E%§t three levels of the DMOZ hierarchy.

pending on the probability the algorithm exchanges already Each_edi'_tor is responsible f_or one or several content topics
and maintains the corresponding topic pages. At the first three

3'short’ and ‘long distance’ as seen from the default underlying networklevels we found 1657 topics. There is a Zipf-like skew in
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the distribution of editors to topics: 991 editors only maintaiprovide more than two thirds of the totally available amount
content about one topic, 295 about two, 128 about three,af.data and thus behave like servers. Considering the study in
one editor about 20, and one editor maintains content ab¢25] the following storage capacity was assigned to the peers
22 topics. Vice versa: 755 topics are dealt with by 1 editon the network: 70% of the peers do not share any instances
333 by 2,204 by 3, ...,44 by 6, ... ,14 by 10, and ffree riders); 20% share 100 instances or less; 7% share 101
topic has 32 editors. Thus, mapping an individual editor ontgp to 1000 instances and finally, only 3% of the peers share
an individual peer and the topic content of the editor onteetween 1001 and 2000 instances.
the local content database of the corresponding peer appdiitsster data set. This data set bases on real captured query
to be a rather natural, realistic choice for a basic data sdata from the peer-to-peer bibliography network ‘Bibster’ [18].
This data set does contain very few relational structures, afide data set contain®7.037 distinct bibliographic entries.
predominantly information about instantiation of one topicThese are categorized according to the ACM topic hierarchy
e.g. ‘AirplaneArrivals2004.pdf’ is an instance of topic for computer science.
topic ' /TourismActivity /Travel Distribution/docs’. It is
thus not possible to test conjunctive queries on this data
as only 96 of the 43894 different instances are assigned
more than one topic. For the different data sets and their assignments to peers,
Synthetic data. The number of classes, the number of propve generated queries in the simulation runs as follows:
erties and the number of sub-class relationships together wigen directory project. Queries were generated in the exper-
their respective distributions determine the schema of tigents by instantiating the blueprint quety; rdf:type topic)
ontology. The number of instances and the number of relatiogh topics arbitrarily chosen from the set of topics that had at
between instances determine the distribution of the instarle@st one document. We generated 30000 queries, uniformly
data. The distributions are modeled as a Zipf distribution wiglistributed over the 1657 different topics. We choose a uniform
parameter settings according to observations from real wogdery distribution instead of a ZIPF-distribution, which is
data sets. The parameter settings for the schema generaliigically observed in file sharing networks [26]. This simulates
are based on [23] while the parameter settings for instarfé@ worst case scenario, where we do not take advantage of
generation are based on [24]. Data distribution on the pe&ften repeated queries for popular topics.
follow the model presented in [22]. Synthetic data. The query set for the synthetic ontology
For the schema we choose to generate an ontology wishbased on a special type of queries that request instances
1.000 classes and each class was assigned a popularity bagégfying a varying number of constraints. The basic concept
on a Zipf distribution with skew factor 1. The popularity offor the queries is built on the following schema:
a class influences its number of instances, its replication in(instance; rdf:itype class)A (instance; owl:hasPropertyinstance2)A
the network and its connectivity with other classes througinstance2; rdfitypg class2) A (instance; owl:hasPropertyinstance3)
properties. We selected the number of sub-classes and th@nstance3; rdf:type class3).

number of properties of a class (Zipf with skew factor 1.1)C.l612;°\5mﬁ"t ) ethclgncs?p;iﬁ?ttr:ggltﬁggt?iggégnhcg\feogvx?ocgar\trﬁcn-

This resulted in 357 properties. ular properties pointing to otherinstances. An example of
200,000 instances were generated and assigned to an®eRQL query is:
class based on the popularity of the different class@gnstruct =+ from {instance}
Total NoPropertyInstances = 100 * Total NoProperties <!htt{gm’t‘;""_‘;‘/’-s"\xzorsgiﬁiiagti/gﬁ;ilz;sif;{f‘tax'”5#‘Vpe>
many properties between instances were generated. LikeWiS&ghttp;}/sﬁ'ap.simrfj|anon#property2> I
to classes, a property schema (one could also call it a binary <!htt{g({\w-s‘\ﬂl’v?;Ogﬁgzﬁzi’gﬁg;ifslgax'nS#TYPe>
relation), had a popularity based on a Zipf distribution witfnstance} TipIswap. '
skew factor 1 that was considered when generating properties<!h“PZ//S<VIV§g-S_/imi&g#grfofl'l%f;@gz/{z}z_rdf_s ax-nsHypes
between instances (i.e. when populating the binary relations). ’ {’i'!hnp;//'swa'p_gmu|ation#c|assg7y>} P
Assignment of data to peers is done based on the conjecture . ) i
that users are generally interested in a small subset of 'EFn%e built query set olnly cpntams queres that can be answered
entire content available in a peer-to-peer network. We hag¥ the network and is uniformly distributed .~
modeled that the interests are more likely in only a limiteBibster data se'F.The extracted queryset fo_r the Blbster—base_d
number of content classes and thus users would be m8Riology contains several types of queries that request in-
interested in some classes while less in others. The maximgnces satisfying different constraints. It is worth mentioning
number of classes that a peer is interested in and its conterl{'Rt the queryset was adopted the way it was originally created
computed byClassesO f Interest = In(NoO fClasses) * 2. and therefore, it also consists of non-conjunctive queries.
The actual number of classes is chosen randomly from a
uniform distribution. Observing the studies in [24] all pee.rs.dg_ Peer-to-Peer Network Setup
no:nsh:are ithle bsim\(/ai an:,OLIJ:mr cl)r: q[atna and Ialrso dno rr:]cg ethf'b't t?%nutella style network. The simulation is initialized with a
same 'soclal behaviour. For Instance, a farge humbver o gsﬁestwork topology which resembles the small world properties
are so-called free riders or freeloaders who do not contribute
anything to the network but essentially behave like clients.stpe acM-index file is available online at:
On the other hand, a small number of users (less than 5fip:/mwww.aifb.uni-karlsruhe.de/WBS/pha/bib/acmtopics.rdf

it)’Query Distribution
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P Val - ‘ ’ ‘ ' H
Qfgﬁg”sewr 230,000 we defined ‘relevant’ as ‘matches the query’. We did not
Queries per peer ca. 30 use any gold standard document set where relevance to a
Query time to life 6 qguery would be assigned by a user. Therefprecision
Selected peers per query)( 2 would have been meaningless in our evaluation

Greedy search thresholdd,.ccqy) 15 % g - )

Random contribution f) 20 % « Messagesepresent the required search costs per query
Index size (if no other size is mentioned) 40 thus measuring system scalability_

%’SQSD"EC“’W data set 1646 « Message Gairis defined as the recall per message, hence
Before interest shift 823 we divide the recall of a query with the proportion of
After interest shift 823 messages to achieve the recall.

Simulated peers 1024

Bibster data set

Topics 1293 VI. EXPERIMENTAL RESULTS

Simulated Peers 520 INGA was evaluated in a large number of experiments in
Synthetic data set .

Topics 1000 order to compare its performance to related state-of-the-art
Simulated Peers 1024 approaches, to set the optimal parameter setting and to test the

applicability of the algorithm for different scenarios. Before
the presentation of the final evaluation results, the following
list summarizes the major hypotheses that were investigated:
1) Shortcut networks outperform thHeefault approach.
2) INGA outperforms state-of the art shortcut networks.
of file sharing network&with 1024 peers. In the simulation, 3) Semantic similarity supports the peer selection process.
peers were chosen randomly and they were given a randomly It helps to improve recall and to reduce the number of
selected query to question the remote peers in the network. The messages. However, shortcut networks perform reason-
peers decide on the basis of their local short cut index which ~ ably even without the support of a semantic similarity
remote peers to send the query to. Each peer uses INGA to function.
select up tprmax = 2 peers to send the query to. Each query 4) Each layer contributes to improve routing efficiency.

TABLE |
SIMULATION PARAMETER SETTING

was forwarded until the maximal number of hopsiaz = 6 Depending on the scenario, dynamic bootstrapping peers
was reached — unless the peer selection algorithm choose not help to reduce the number of messages, while recom-
to forward further also at an earlier point in time. mender peers increase the recall.

Volatile network and interest shifts. We implemented the ~ 5) Our algorithms performs well with a limited index size.
dynamic network model observed for Gnutella networks of 6) Combining different index policies supports efficient
[26]: 60% of the peers have a availability of less then 20%,  routing much more than relying on a simple LRU
while 20% of the peers are available between 20 and 60% Strategy.
and 20 % are available more then 60%. Hence only a small7) Shortcut networks are capable to handle conjunctive
fraction of peers is available more than half of the simulation ~ queries efficiently.
time, while the majority of the peers is only online a fraction 8) Shortcut networks perform well in both, dynamic and
of the simulation time. Users’ interests may change over time,  static, networks.

e.g. to account for different search goals. To simulate changind27], [28] present a more detailed analysis of the evaluation
interests, after 15 queries, equal to ca. 15.000 queries owesults and additionally investigate the influence of different
all peers, each peer queries a completely different, previouglgrameter settings on network characteristics, such as the
unused set of topics. clustering coefficient.

D. Simulator setup and simulation statistics A. INGA outperforms state-of-the-art approaches

We used a round based simulation framework which wasAs a baseline we compare INGA with an index size of 40
setup using the parameter setting listed in Table I. In total vemtries against the interest based locality strategy (IBL) of [13]
simulated 1024 peers. To determine the standard error of euith an LRU strategy and an index size of 40 entries and the
observations of 95 percent confidence intervat@®5) each default algorithm of GnutellaQefaull).
simulation was executed six times. We set the greedy searctburing the simulation run each peer issues in average
threshold for algorithm to 0.15 and the amount of rando®0 queries approximately corresponding to a 2 hour period

contribution to 0.20 in a real file sharing network. After 15 queries the peers
shift interest and choose queries from the second half of
E. Evaluation Measures the available set of queries. Studies of interest shift show a

INGA is evaluated using the following metrics: smoother transition between interests positively influencing the
rformance of all routing approaches [29].

. . e
« Recall describes the proportion between all relevant dog— Figure 2 focuses on the recall achieved by different routing

uments in peer network and the retrieved ones. Here@t’rategies. The total number of issued queries is plotted against
5We used the Colt libranttp://nicewww.cern.ch/ ~hoschek/ the gchleved r.ecall. The line ‘Online available’ indicates t_he
colt/ maximally achievable recall as not all peers are always online.
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B. Layer and semantic similarity function contribution

Figure 4 illustrates the contribution of the different layers to
the performance of INGA. Each chart is the result of using the
indicated layer and all lower layers, e.g., the content provider
layer uses also the default network layer. The figure plots the
message gain against the total number of sent queries. The
default network layer follows a naive routing strategy and

offers a constant but low performance contribution. The use
e of content provider layer steadily increases the recall, while
o it leaves the number of messages per query unaffected. In
the event of new queries the recall falls back and recovers
Fig. 3. Messages: Related Approaches only slowly. The recommender layer allows the algorithm
to learn quicker and to achieve a higher recall. Finally, the
bootstrapping layer reduces the number of messages per query,
The recall of INGA increases with the number of queries seigitns?g r::%tge;;ehissislécglrﬁgi&:; glt?rt]?le'ehlzvﬁ\r/se_r' the message
and levels off at about 25% corresponding to 46% of the 1o jntoduction of the recommender layer has the strongest
achievable recall. In the event of interest shift t_he repall nearip(fluence on the performance of INGA. One reason is the
halves. It recovers slightly but does not achieve its forme hing of frequent queries issued by the peers in the network.
Ieyels. The contmugd black line represents the mean of eighty e etwork becomes clustered, especially neighboring
simulations runs with the same parameter setting. The graYyeq with similar interests will benefit of cached queries.
range around it additionally visualizes the 95% confidengg, hormore query routing is based on a similarity function, so
interval for the simulation results. The range shows that ING{ e ies are routed along shortcuts representing similar queries.
is statistically significantly better than the related approaches, o cialy for nodes that are not clustered so far, this similarity
The IBL strategy produce§ recall Ievgls of around 18% or 33?1/%Ips to find adequate clusters and route queries to nodes that
of .the achle\{able regall with a drop in th,e eyent of an INtereghye similar interests. Thus, including a similarity in the peer
shift. The naive routing strategy results in circa 10% (19% QGjection process speeds up the clustering process, however
achievable) recall independently of the interest shift. shortcut networks will exploit small world characteristics even

Figure 3 plots the number of messages per query agaifisin exact match paradigm is used only. In this case shortcut
the total number of sent queries. The number of messages efworks profit in particular from popular queries that are used
query produced by INGA decreases over time independentty establish topic specific shortcuts between remote peers.
of the interest shift and levels off at around 45. The number of
messages produced by the naive approach is constant at ara@indhfluence of the index size
105. The number of messages produced by IBL increases gigyre 5 presents the evaluation results comparing the per-
little bit and levels off at around 95 messages. The interggimance of INGA using different index sizes. The figure plots
shift does not affect the number of messages produced by {hg message gain against the total number of sent queries. The
IBL strategy. size of the index determines the required resource allocation

The simulations validate the hypothesis that INGA hasfar routing purposes at the local peer. The index size is
better performance than related routing approaches for dynstantly increased starting from 20, to 40, 100 and finally
namic unstructured P2P networks. In a volatile network thenlimited number of shortcuts per peer.
bootstrapping peers correspond to the peers which are most Ve observe that within a certain range the limit to the
the time online. This behavior results in a decreasing numbarmber of shortcuts stored at the local peer does not affect the
of messages per query over the entire simulation, but it alssults in terms of message gain. Peers store different short-
limits the discovery of new peers. cuts, because the ranking of the shortcuts partially depends on

B S —e—Kan, 1999 (Naive)
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the local knowledge of the peer. Although the number of Ioc@
shortcuts is low, the collective number of different shortcuts Is’
high. This allows INGA to achieve the performance levels Figure 7 compares the recall for different routing algorithms
already with a relatively small index size. An index sizeising conjunctive queries on the synthetic dat&.safter a
between 40 and 100 is sufficient. warm up phase of 2.000 queries, or approximately two queries
per peer, INGA constantly reaches around 75% of the available
content. The observed recall for the Gnutella routing algorithm
(Kan, 1999 (Naive)) reaches the same level as for none
Figure 6 plots the message gain against the total numbercehjunctive queries, while the IBL approach (Sripanidkulchai
sent queries for four different parameter settings and the naie al., 2003) shows a better performance. The different data
routing approach. In each simulation only the values set fafstributions in the two data sets explain the difference. Not
a, b, andc are changed. In INGA all three parameters influencgl peers are always online, thus the li@mnline Available
the index management. The parameters are setid.1,b = represents the maximum available content at query time.
0.8 andc = 0.1. INGA LRU corresponds to the parameter Figure 8 visualizes the number of messages produced to
Setting in which Only the time is considered to rank Shortcu&;hieve this recall. The number of messages produced by the
for index maintenancea(= 0,6 = 0, ¢ = 1). Similarly INGA  Gnutella approach slightly increases over time. Due to the high
community considers only the shortcut type< 0,6 = 1,c = network churn the peers have to discover new remote peers
0). Finally, INGA similarity considers only the similarity of since the available ones assigned in the setup phase are off line.
shortcuts to the local content & 1,0 = 0,c¢ = 0). The pure Thus, the necessity to send a query to a remote peer which
indexing strategies only based on similarity and time cannghs not received the query yet increases over time. The IBL
increase the message gain levels above the levels obseryggroach produces less messages than the Gnutella approach.
for the naive algorithm. Only with the community strategyn contrast to the observation made for related approaches the
message gain levels comparable to INGA are achievable. N@mber of messages produced based on the shortcut selection
parameter setting alleviates the problem that recall levels ggcreases significantly. The number of messages decreases
not recover to levels observed during the learning phase. T&cause of the small world properties of the network: queries
bootstrapping peers receive a larger proportion of the querigge only forwarded to a focused set of peers; and it decreases,
reducing the number of messages but also the recall as th@tause INGA does not forward queries to peers that have
are not aware of peers able to answer the new set of querigfeady received a query (see Section IV and Algorithm 1).
The community locality raises the message gain, even after

changing the interests of each peer, while the ComblneokThe results using the Bibster data set are comparable to the results using
strategy performs best. the synthetic data set. [27] includes a detailed presentation of those results.

Performance for conjunctive queries

D. Influence of the index weight
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