
EPFL Technical Report IC/2002/71

Gridella: an open and efficient
Gnutella-compatible Peer-to-Peer

System based on the P-Grid
approach

(Master’s Thesis at the Technical University of Vienna)

Roman Schmidt

October 2002

Advisor: Dr. Manfred Hauswirth (EPFL)

c© 2002 Laboratoire de Systèmes d’Information Répartis (LSIR)
http://lsirwww.epfl.ch/

Kurzfassung

Diese Diplomarbeit beschreibt die Peer-to-Peer Applikation Gridella. Der dezen-
trale Aufbau von P2P Systemen erlaubt es jedem Knoten Suchabfragen alleinig
mit lokalen Interaktionen zu beantworten. Das in dieser Arbeit beschriebene
System skaliert für hohe Knotenzahlen und Datenmengen und bleibt auch trotz
fehlerhafter Knoten verfügbar. Weiters können die Wahrscheinlichkeiten für er-
folgreiche Suchabfragen angegeben werden.

Gridella beruht auf dem P-Grid Ansatz [1, 5] und ist kompatibel zu Gnutella
ausgelegt, um die vorhandene Gnutella-Infrastuktur

”
infiltrieren“ zu können und

damit eine einfache Migration zu ermöglichen. Durch P-Grid kann sowohl die Ef-
fizienz bei Suchabfragen gesteigert werden, als auch die erforderliche Bandbreite
für die Systemerhaltung reduziert werden.

Nach einer Analyse der bestehenden Gnutella-Infrastruktur und deren Proble-
me, werden die Grundlagen von P-Grid präsentiert. Die entwickelte Applikation
unterstützt sowohl das bestehende Gnutella- als auch das neue Gridella- Proto-
koll. Danach werden die Architektur und Kommunikation innerhalb des Systems
ausführlich beschrieben.

Abstract

This thesis describes the Peer-to-Peer Application Gridella. The decentralized
architecture of P2P systems enables each peer to fulfill search requests solely by
local interactions. The system described in this thesis scales to high numbers
of peers and data items and remains available in spite of failing peers. Further,
probabilities for successful search requests can be given. Gridella is based on the
P-Grid approach [1, 5] and is designed to be compatible with Gnutella “ infiltrate”
the existing Gnutella infrastructure and enable an simple migration. P-Grid in-
creases the efficiency of search requests, and reduces the required bandwidth for
system maintenance. On the basis of an analysis of the existing Gnutella infras-
tructure and its problems I describe the foundations of P-Grid. The developed
application supports the existing Gnutella and the new Gridella protocol. Then
the architecture and the communication between the systems are described in
detail.

Acknowledgments

First of all I want to thank my mother Annemarie and my father Franz for their
support during the last years. They have made it possible for me with there
patience and financial support to finish my studies and this master thesis.

Secondly I want to thank Manfred Hauswirth for his support during the whole
work. I am especially grateful for the many hours that he spent as advisor as
well as reviewer for this thesis. I would also like to mention his engagement for
me in some financial matters.

Further I want to thank the whole team around Manfred Hauswirth at the
EPFL in Lausanne, including Karl Aberer and Magdalena Punceva, for their
work on the mathematical foundations of P-Grid.

Last but not least I want to thank my fellow student and friend Hannes Stratil
for his support and humor during the last years.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 3

1.3 Organization of the Thesis . 3

2 Problem Statement 5

2.1 State-of-the-Art . 5

2.2 Gnutella . 6

2.2.1 Discussion of Gnutella . 8

3 Conceptual Foundations 11

3.1 The P-Grid Approach . 11

3.1.1 The P-Grid Search Structure and Algorithm 12

3.1.2 Extended Examples . 15

3.2 P-Grid Construction . 18

3.3 Mapping File Names into Binary Keys 21

3.3.1 Experiments . 24

i

ii CONTENTS

4 Architecture 25

4.1 Component Model . 26

4.2 Communication Model . 27

4.2.1 Searching . 27

4.2.2 Meetings . 28

4.2.3 Downloading . 29

5 Protocol Design 31

5.1 Requirements . 31

5.2 The Gridella Protocol . 31

5.2.1 Exchange . 33

5.2.2 Query . 34

5.2.3 QueryReply . 35

5.3 The Protocol Automaton . 37

5.4 A typical Protocol Interaction . 37

5.4.1 First Meeting . 38

5.4.2 Search Request . 38

6 Component Design 41

6.1 Client Package . 41

6.2 General Package . 42

6.3 Server Package . 43

6.4 P-Grid Package . 44

6.5 Communication Package . 44

CONTENTS iii

6.6 Protocol Package . 46

6.6.1 Gnutella messages . 47

6.6.2 Gridella messages . 47

6.6.3 HTTP messages . 48

6.7 A typical Interaction . 49

7 Implementation 53

7.1 Client Package . 54

7.2 General Package . 54

7.3 Server Package . 55

7.4 P-Grid Package . 55

7.5 Communication Package . 58

7.6 Protocol Package . 60

8 Related Work 63

9 Evaluation and Future Work 67

9.1 Evaluation . 67

9.2 Future Work . 69

10 Conclusions 71

A Sample Gridella Configuration File 73

A.1 General settings . 73

A.2 Download . 74

iv CONTENTS

A.3 Network . 74

A.4 Library . 75

A.5 Players . 75

A.6 Network tab . 76

A.7 Monitor tab . 76

B P-Grid Routing Table 79

C Managed P-Grid Files 81

D HTTP Messages 83

D.1 HTTP GET Message . 83

D.2 HTTP GIV Message . 84

D.3 HTTP OK Message . 85

List of Figures

2.1 FastTrack architecture with SuperNodes 6

3.1 Example P-Grid . 12

3.2 Example P-Grid network . 13

3.3 P-Grid search algorithm . 14

3.4 P-Grid construction algorithm . 20

3.5 Trie construction algorithm . 22

3.6 Mapping strings into binary keys 23

3.7 Key frequencies in steps of 25 . 24

4.1 Gridella core system components 26

4.2 A Gridella Search interaction . 27

4.3 A Gridella Exchange interaction 28

4.4 A Gridella Download interaction 29

5.1 The Gridella message DTD . 32

5.2 The Exchange message DTD . 33

5.3 The Query message DTD . 35

5.4 The QueryReply message DTD 36

v

vi LIST OF FIGURES

5.5 The protocol automaton . 37

5.6 Example Exchange Interaction . 39

5.7 Example Search Request Interaction 40

6.1 The Server architecture . 43

6.2 The P-Grid architecture . 44

6.3 The Communication architecture 45

6.4 The Gnutella Protocol Messages 47

6.5 The Gridella Protocol Messages 48

6.6 The HTTP Protocol Messages . 49

6.7 Sequence diagram for a user search requests 50

6.8 Establishing a Gridella connection 50

7.1 Using the XML Parser . 54

7.2 Global Unique Identifier generation 56

7.3 Find matches between local files and query string 57

7.4 Find a string of bits to extend the path 59

B.1 The syntax of the routing table file 79

B.2 Example routing table file . 80

C.1 The syntax of the P-Grid Files file 81

C.2 Example P-Grid Files file . 82

D.1 HTTP GET message syntax . 84

D.2 HTTP GET message example . 84

LIST OF FIGURES vii

D.3 HTTP GIV message syntax . 85

D.4 HTTP GIV message example . 85

D.5 HTTP OK message syntax . 85

D.6 HTTP OK message example . 86

viii LIST OF FIGURES

List of Tables

2.1 Message types in the Gnutella protocol 7

9.1 Performance comparison of Gridella and Gnutella 68

ix

x LIST OF TABLES

Chapter 1

Introduction

The limitations of client/server-based systems become evident in an Internet-
scale distributed environment: Resources are concentrated on a small number of
(virtual) nodes which must apply sophisticated load-balancing and fault-tolerance
algorithms to provide users with continuous and reliable access. Additionally,
network bandwidth to/from successful Internet servers must be increased steadily
because no “a priori” caching and replication strategies exist. These concepts
were introduced “a posteriori” when the WWW as the most successful Internet
service developed into a network bandwidth nightmare. A considerable amount
of scientific work (HTTP, caching infrastructures) now goes into remedying these
problems.

If the provider of a service wants to stay “in power” in terms of confidential-
ity of data and access control the client/server (C/S) approach is still the best
one despite its problems. For several other application domains Peer-to-Peer
(P2P) systems offer an alternative to traditional client/server systems: Every
node (peer) of the system acts as a client and server (servent) and provides a
(possibly replicated) part of the overall information available from the system.
Each peer “pays” its participation by providing access to its computing resources.
P2P systems can be characterized by the following properties:

• no central coordination

• no central database

• no peer has a global view of the system

• global behavior emerges from local interactions

1

2 CHAPTER 1. INTRODUCTION

• all existing data and services should be accessible

• peers are autonomous

• peers and connections are unreliable

Several P2P systems exist and have proven successful. This thesis presents
a P2P system based on the P-Grid approach [1] which addresses several of the
inefficiencies and problems of current systems.

1.1 Motivation

The P2P approach is intriguing because it circumvents many problems of C/S
systems in a very simple fashion. However, it pays for this simplicity with con-
siderably higher complexity for searching, node organization, security, etc. That
is the reason why successful systems “neglected” such problems. For example,
Napster [24], which made the P2P idea popular, in fact is a centralized database
holding references to files on peers. This means that taken the above properties of
a P2P system it is not strictly a P2P system. Gnutella [14] solves this and other
problems, but at the cost of using a communication-intensive search mechanism.
A considerable amount of research exists in the related areas of distributed and
cooperative information systems which is not exploited by the P2P community
yet. Still P2P systems are based on very simple approaches which are easy to
deploy but suffer from problematic shortcomings.

Gnutalla is a very good example for such P2P systems. Its protocol is very
simple and this leads to several problems. As it will be shown later in Chap-
ter 2, its communication-intensive search mechanism leads to high bandwidth
consumption for every peer. This has already caused problems, because peers
with low speed connections could not keep up as traffic increased. Another (so-
cial) problem are the so-called free riders. They do not share files and resources
but only produce search requests. If the number of free riders increases further,
Gnutella be transformed from a P2P into a C/S-like system with a backbone
structure. These servers could then be attacked easily by query-flooding or simi-
lar attacks. Gnutella also implies total trust in the network, because there are no
mechanism to prove the identity of peers or the contents of shared files. Shared
files with popular filenames could be misused to distribute a virus or a trojan to
attack the downloading host.

These were some of the motivations for us to develop a more advanced P2P
system in which we try to address all P2P properties and take into account recent

1.2. GOALS 3

research results from related areas. In this thesis I describe Gridella, our Gnutella
compatible P2P system which is based on the P-Grid approach [1]. We wanted
Gridella to be compatible with Gnutella to “infiltrate” the existing Gnutella
infrastructure and gradually replace standard Gnutella nodes with Gridella nodes.
This approach brings together the best of both worlds: Gridella can communicate
with existing Gnutella nodes but can offer advanced services when communicating
with other Gridella nodes. By using the Gnutella protocol [14] as one of Gridella’s
communication protocols we try to offer a simple and smooth migration path.

1.2 Goals

The main goal of this work is to develop the Gridella application with a modular
architecture, which then can be used to construct the P-Grid infrastructure. Once
the infrastructure is created, the software can be used to perform user-queries,
handle the results and enable the user do download the found information.

Gridella supports the Gnutella protocol to interact with Gnutella. Addition-
ally a special Gridella XML-based protocol is designed and implemented that
supports Gridella’s additional capabilities for efficient searches. The protocol
used to communicate with other servents is chosen in the handshake process af-
ter establishing the connection. Gridella is the default protocol and Gnutella the
alternative. Other P2P protocols can be added later easily because of Gridella’s
modular design.

Gridella has a state-of-the art graphical user interface (GUI) to present all its
activities to the user in an adequate form.

1.3 Organization of the Thesis

The thesis is structured as follows: Chapter 2 defines the current problems and
describes Gnutella’s underlying architecture and communication patterns to un-
derstand its benefits and problems which motivated the development of a new
P2P system. To provide a direct comparison with Gridella this is followed by a
presentation of Gridella’s essential algorithmic foundations: P-Grid (Section 3.1),
the process of constructing the P-Grid (Section 3.2), and a mapping scheme for
search keys (Section 3.3). Chapter 4 then provides the details of Gridella’s ar-
chitecture and interaction patterns and compares it with Gnutella. Chapter 5

4 CHAPTER 1. INTRODUCTION

presents the Gridella protocol, followed by the component design of the software
in Chapter 6. Chapter 7 presents the implementation of the Gridella application.
I relate Gridella to other approaches in the field in Chapter 8, present an evalua-
tion (Section 9.1) and possible future work (Section 9.2) and give the conclusions
in Chapter 10.

Chapter 2

Problem Statement

2.1 State-of-the-Art

The first popular P2P system was Napster [24] which could only be used to share
mp3 and wma files. In fact it is not strictly a P2P system because it uses a
central server to index all shared files. As this server is also necessary to locate
files Napster could be shutdown easily by order of the court.
Audiogalaxy [7] and iMesh [19] are very similar to Napster and thus have the
same problems.

The FastTrack [11] P2P stack is used by several applications such as KaZaA
or Grokster to create a file sharing network. Its protocol is not open and all
applications are licensed by FastTrack. They support a metadata search for any
type of media files like audio, video, images, documents, and software. If possi-
ble, this information are derived automatically from the file, or entered by the
user via the application’s file import wizard. While FastTrack is largely a decen-
tralized system, the speed of its query engine rivals that of centralized systems
like Napster. A central server is still responsible for maintaining user registra-
tions, logging users into the system (in order to maintain active user statistics,
etc.), and bootstrapping the peer discovery process [29]. After a peer is authen-
ticated to the server, the server provides IP addresses and ports (always 1214)
of one or more “SuperNodes” to which the peer then connects. A SuperNode
acts like a local search hub, building an index of the media files being shared
by each peer connected to it, and proxying search requests on behalf of these
peers. SuperNodes are connected among themselves to forward search requests

5

6 CHAPTER 2. PROBLEM STATEMENT

of connected peers. This scheme as shown in Figure 2.1 greatly reduces search
times in comparison to a broadcast query algorithm like that employed on the
Gnutella network. Peers are elected automatically to become SuperNodes if they
have sufficient bandwidth and processing power (a configuration parameter al-
lows users to opt out of running their peer in this mode). Search results contain
the IP addresses of peers sharing the files that match the search criteria, and file
downloads are done via the HTTP protocol in a peer-to-peer way [29].

Supernode

peer 1 peer 2 peer 3

file 1
file 2

...
file n

file 1
file 2

...
file n

file 1
file 2

...
file n

peer 1: file 1, file 2, ..., file n
peer 2: file 1, file 2, ..., file n
peer 3: file 1, file 2, ..., file n

search query

peer 2
: fil

e 1

GET file 1

Supernode

Supernode Supernode

peer 2

peer 1

Figure 2.1: FastTrack architecture with SuperNodes

Two interesting features of FastTrack are its so-called SmartStream and Fast-
Stream technologies. SmartStream implements a type of fail-over system that
attempts to locate another peer sharing the same file, and automatically tries
to resume an incomplete download. FastStream is intended to solve another is-
sues of primary concern in P2P file-sharing systems: slow downloads. When the
search engine finds that more than one active peer is serving a particular file, the
download task is shared among these peers to improve the download performance.

2.2 Gnutella

The Gnutella system is a decentralized file-sharing system whose participants
form a virtual network communicating in a P2P way via the Gnutella proto-
col [9]. The Gnutella protocol is a simple protocol for distributed file search.
To participate in Gnutella a peer first must connect to a known Gnutella host
(servers such as gnutellahosts.com:6346 return lists of hosts to get started; this
is outside the Gnutella protocol specification). The protocol consists of 5 basic
message types shown in Table 2.1.

2.2. GNUTELLA 7

Type Description Contained Information

Ping Announce avail-

ability and probe

for other servents

None

Pong Response to a

Ping

IP address and port number of the

responding servent; number and to-

tal kB of files shared

Query Search request Minimum network bandwidth of re-

sponding servent; search criteria

QueryHit Returned by ser-

vents that have

the requested file

IP address, port number, and net-

work bandwidth of responding ser-

vent; number of results and result

set

Push File download

requests for ser-

vents behind

firewalls

Servent identifier; index of re-

quested file; IP address and port to

send file to

Table 2.1: Message types in the Gnutella protocol

8 CHAPTER 2. PROBLEM STATEMENT

These messages are routed by all servents using a constrained broadcast mech-
anism: Upon receipt of a message the servent will decrement the message’s time-
to-live (TTL) field. If the TTL (typically by default set to 7 initially) is greater
than 0 and it has not seen the message’s identifier before (loop detection) it
resends the message to all the peers it knows. Additionally the servent checks
whether it should respond to the message. For example, if it receives a Query
message it checks its local file store and if it can satisfy the request, responds
with a QueryHit message. Responses are routed along the same path as the
originating message.

A simplified Gnutella “session” would work as follows: Servent A connects to
servent B and sends a Ping message. B responds with a Pong and forwards the
Ping as described above (e.g., it forwards it to its peers C and D who respond
with another Pong, and so on). After some time A knows a number of servents
and vice versa. It routes messages as described above and may initiate queries.
When it receives a QueryHit for one of its queries it tries to connect directly
to the servent specified in the QueryHit and runs a simplified HTTP GET [12]
interaction to retrieve the file. In case the requested servent is behind a firewall
it may send a Push message (along the same way as it received the QueryHit) to
the firewalled servent. The Push message specifies were the firewalled servent can
contact the requesting servent to run a “passive” GET session. If both servents
are behind firewalls then the download is impossible.

2.2.1 Discussion of Gnutella

From a user’s perspective Gnutella is a simple yet effective protocol: Hit rates
for search queries are reasonably high, it is fault-tolerant towards failures of
servents, and adopts well to dynamically changing “peer populations.” However,
from a networking perspective, this comes at the price of very high network
bandwidth consumption: Search requests are “broadcast” over the network and
each node receiving a search request scans its local database for possible hits.
This is extremely costly in terms of network bandwidth and causes high search
costs and long response times.

For example, assuming a TTL of 7 and an average of 4 connections C per
peer (i.e., each peer forwards messages to 3 other peers) the total number of
messages originating from one Gnutella message (including the responses) can be
calculated as 2∗∑TTL

i=0 C ∗ (C − 1)i = 26240. Recent experiments [27] have shown
that in a real-world setting this adds up to a network bandwidth consumption
of 3.5Mbps (or 353,396 queries in 2.5 hours as another experiment’s result given

2.2. GNUTELLA 9

by the same author). To remedy this [27] suggests to apply caching which can
reduce the traffic up to 3.7 times.

Also, no estimates on the durations of queries and no probability for success-
ful search requests can be given. Very little is known about the topology of the
Gnutella network which would provide the foundation for an accurate mathemat-
ical model and would aid the development of new algorithms by allowing them to
exploit structural properties and thus be more efficient. As a first step a recent
study [21] investigated Gnutella’s topology and has shown that it exhibits strong
small-world properties [22] and a power law distribution of node degrees.

Besides these technical problems non-technical ones such as “free riding” chal-
lenge Gnutella [6]. “Free riding” means that most Gnutella users do not provide
files to share and if, only a very limited number is interesting, i.e., being down-
loaded. [6] shows that nearly 70% of Gnutella users share no files and nearly
50% of all responses are returned by the top 1% of the sharing hosts. This social
problem starts to transform Gnutella into a C/S like system which soon may
have to face the technological (degradation of performance, vulnerability, etc.)
and legal problems of Napster.

Another “social” issue which is not addressed by Gnutella is reputation: In a
P2P system peers frequently have to “meet” unknown peers and have no possi-
bility to judge their reputation, i.e., to what extent they can trust the peers and
the data provided by them. As shown in [3] Gridella’s P-Grid approach may also
be used to address this issue efficiently.

These shortcomings of the Gnutella approach—despite its undoubtable merits
and the very short development time of the system—motivated the development
of the P-Grid-based Gridella system as described in the following sections.

10 CHAPTER 2. PROBLEM STATEMENT

Chapter 3

Conceptual Foundations

3.1 The P-Grid Approach

The underlying idea of the P-Grid approach [1] is to create a virtual binary search
structure with replication that is distributed over the peers and supports efficient
search, i.e., search time and number of generated messages grow O(log n) with
the number of nodes n in the network. This approach is comparable to other
approaches such as [20, 25, 31] to construct scalable, tree-based, distributed
indexing structures. However, a main innovation is that the construction and the
search/update operations can be performed without any central control and/or
global knowledge in an unreliable environment. This is achieved by applying
randomized, distributed algorithms. All algorithms for creating and using the
search structure are realized through completely decentralized cooperation among
the peers. Consequently this search structure exhibits the following properties:

• it is completely decentralized;

• all peers serve as entry points for search;

• interactions are strictly local;

• it uses randomized algorithms for access and search;

• probabilistic estimates for the success of search requests can be given;

• search is robust against failures of nodes; and

• it scales gracefully in the total number of nodes and data items.

11

12 CHAPTER 3. CONCEPTUAL FOUNDATIONS

3.1.1 The P-Grid Search Structure and Algorithm

P-Grid is a virtual distributed binary search tree which is distributed among a
community of peers. This means that each peer only holds part of the overall
tree which comes into existence only through the cooperation of the individual
peers. The position of every participating peer is determined by its “path,” i.e.,
the binary bit string representing the subset of the overall information in the tree
that the peer is responsible for. For example, the path of peer4 in the example
P-Grid shown in Figure 1 is ‘10’ which means that it is responsible for all data
items whose key begins with ‘10’, i.e., stores them.

Routing table
(route keys with prefix P to peer X)

Legend:

Peer X

Data store
(keys have prefix P)

stores data
with key

01 : 2
1 : 5

prefix 00

query(6, 100)

query(5, 100)

stores data
with key
prefix 00

01 : 2
1 : 3

stores data
with key
prefix 01

00 : 6
1 : 4

stores data
with key

0 : 6

stores data
with key
prefix 10

11 : 5
0 : 2

11 : 5

prefix 10

stores data
with key
prefix 11

10 : 4
0 : 6

"virtual binary search tree"

0

00 01 10 11

1

query(4, 100), found!

1 6 2 3 4 5

X

P

P:X

Figure 3.1: Example P-Grid

The paths implicitly partition the search space and define the structure of the
virtual binary search tree. Its construction will be explained in the next section.
As can be seen from Figure 3.1 multiple peers can be responsible for the same
path. For example, peer1 and peer6 are both responsible for keys beginning with
‘00’. Such replication is up to the individual peers and improves the robustness
and responsiveness of the P-Grid since we assume that peers are not online all
the time but with a certain, possibly low probability.

As each peer should be able to serve as entry point for any search query, the
peers must also store routing information. This means that if a peer is presented
with a binary query string and cannot satisfy the query itself, it must forward
the query to a peer which is “closer” to the result. P-Grid’s routing approach is
simple but efficient: For each bit in its path each peer stores the address (Global
Unique Identifier + IP address + port number; 1 computer can host multiple

3.1. THE P-GRID APPROACH 13

peers) of at least one other peer who is responsible for the other side of the
binary tree at this level.

For example, peer1 will forward queries starting with ‘1’ to peer3 which is in
peer1′s routing table and whose path starts with ‘1’. Peer3 may either be able
to satisfy the query or forward it to another peer depending on the following bits
of the query. If peer1 gets a query starting with ‘0’ then it could be responsible
since its path also starts with ‘0’. To decide this, peer1 looks at the next bit of
the query and if it is ‘0’ it is responsible for the query. Otherwise it will check its
routing table and forward the query to peer2 whose path starts with ‘01’ which
matches the prefix of the query. Figure 3.1 shows the routing tables as grey
boxes.

The P-Grid construction algorithm which will be explained in the next section
guarantees that the routing tables of the individual peers are constructed in a
way that there always exists at least one path between any two peers of a P-Grid
which means that any query can be satisfied regardless which peer is queried.
This property must be seen “relative” to replication: For example, in Figure 3.2
that visualizes this property for the P-Grid of Figure 3.1, no path between peer3
and peer1 exists, but there is a path from peer3 to peer6 which holds the same
data as peer1.

00

00

Data store
(keys have prefix P)

Legend:

Peer X

Routing of prefix P

1

01

01 10

10

11

1

0

11

01

00

1

0

0

10

11
4

5

1

2

6

3

X

P

P

Figure 3.2: Example P-Grid network

A search request in P-Grid works as follows: The query is sent to an arbitrary
peer. In Figure 3.1 a query for ‘100’ is sent to peer6. Since peer6 is responsible
for keys starting with ‘00’ it checks its routing table for the longest common
prefix with the query which is ‘1’ and forwards the query to peer5 that is given
in the routing table. In a real setup multiple peers would be listed for each
prefix in the routing table and the peer to forward the query to would be chosen
randomly. Without constraining general applicability we assume in this simple
example that each prefix is “serviced” by one peer entry in the routing table.

14 CHAPTER 3. CONCEPTUAL FOUNDATIONS

Upon receiving the query peer5 that is responsible for prefix ‘11’ does the same
checks as peer6 before and finds out that the query is to be forwarded to peer4
which is the longest common prefix in peer6′s routing table. Peer4 in turn has
no longer common prefix in its routing table so it is clear that it must search in
its local data store for data with the key ‘100’. If the key exists a reference to the
associated data is returned to the original requester peer6 that may then request
the data. This example demonstrates that the order of the search is equivalent
to a binary tree search regardless of the entry point of the query.

The algorithm to process a query is shown in Figure 3.3.

�

�

�

�

1 search (peer, query, index) {

2 found = NULL; /* found: the address of the responsible peer */

3 rempath = sub_path(path(peer), index+1, length(path(peer)));

4 compath = common_prefix_of(query, rempath);

5 IF length(compath)=length(query) OR length(compath)=length(rempath) THEN

6 found = peer;

7 ELSE

8 new_query = sub_path(query, length(compath) + 1, length(query));

9 refs = get_refs(index + length(compath) + 1);

10 WHILE |refs| > 0 AND NOT found

11 ref = random_select(refs);

12 IF online(ref)

13 found = search(ref, new_query, index + length(compath));

14 RETURN found;

15 }

Figure 3.3: P-Grid search algorithm

The parameter peer indicates the address of the peer to send the query to,
query is the search string, and index indicates the progress of the search, i.e.,
how many bits of the query have already been processed. Initially index is
0. sub_path(string, from, to) returns the substring of string that starts
at position from and ends at position to. common_prefix_of(str1, str2) re-
turns the common prefix of the two strings str1 and str2. get_refs(index)

returns the list of addresses in the routing table for a prefix of length index.
random_select(refs) returns an address from this list and removes it from
refs. online(ref) returns true if the referenced peer is online.

The algorithm first compares the common prefix of the peer’s path and the
query submitted. As the query string could already be truncated by the first
index bits, the path of the peer must also be adapted. This is an optimization
because at level index of the virtual search tree the equality of the first index

3.1. THE P-GRID APPROACH 15

bits is guaranteed. Only the following bits are relevant (line 3) and must be
compared with the query to find their common prefix (line 4). If the common
path (compath) is as long as the query or the remaining path then the peer that
is responsible for this query was found (line 5).

Otherwise the query must be forwarded. The common prefix is stripped off
the query (line 8), the routing table is queried for the list of peers to forward the
query to (line 9) and then the remaining query new query is forwarded recursively
to a random peer from this list (if it is online) until the list is exhausted or the
search has succeeded (lines 10–13).

3.1.2 Extended Examples

Two simple examples are given in the following to demonstrate the the search al-
gorithm in greater detail. These examples assume the P-Grid given in Figure 3.1.

At first, the query ‘00’ is submitted to peer1. addr1 indicates the address of
peer1. Index is 0 for the initial call.

�

�

�

�
search(addr1, ’00’, 0) {

In the next step the remaining path rempath will be computed by the function
sub_path in line 3. The path of peer1 is ‘00’ and therefore the length of the path
is 2. sub_path will return the bits from 1 (index + 1) to 2 of the path, this is
‘00’, the whole path.

�

�

�

�

rempath = sub_path(’00’, 0 + 1, 2); // rempath = ’00’

Then rempath will be compared with the submitted query query to find a
common prefix. The function common_prefix in line 4 will return ‘00’.

�

�

�

�

compath = common_prefix_of(’00’, ’00’); // compath = ’00’

In line 5 the common path compath is compared for equality with the query
query and the remaining path rempath. In this example both pairs are equal,
which means that this peer is responsible for the submitted query.

16 CHAPTER 3. CONCEPTUAL FOUNDATIONS

�

�

�

�

IF length(’00’)=length(’00’) OR length(’00’)=length(’00’) THEN

found = addr1;

At last, the processing peer returns its address to the calling routine in line
14.

�

�

�

�
RETURN found;

As a second example, the query ‘10’ is submitted to peer6. The lines 1, 3 and
4 will be computed as in the first example.

�

�

�

�

search (addr6, ’10’, 0) {

rempath = sub_path(’00’, 0 + 1, 2); // rempath = ’00’

compath = common_prefix_of(’10’, ’00’); // compath = ’’

As we see in this example their will be no equality in line 5. This means, that
this peer is not responsible for the query, and it must send it to another peer
(else branch).

�

�

�

�

IF length(’’)=length(’10’) OR length(’’)=length(’00’) THEN

First, the new remaining query which is sent to other peers is constructed in
line 8, depending on the common prefix of the processing peer. In this example,
the new query new_query will be the original query, because there is no common
prefix.

�

�

�

�

new_query = sub_path(’10’, 0 + 1, 2); // new_query = ’10’

In line 9, references to peers which could be responsible for this query are
selected. This is stored in the routing table of the peer (3.1). For this peer, it is
only the address of peer5 at position 1.

�

�

�

�

refs = get_refs(0 + length(’’) + 1, addr6); // refs = {addr5}

3.1. THE P-GRID APPROACH 17

Because there is at least one reference and the search is not finished success-
fully yet (line 10), one of the references is selected randomly (line 11). In this
case this can only be addr5. After selecting it is removed from the list of possible
peers to contact.

�

�

�

�

WHILE |{addr5}| > 1 AND NOT found

r = random_select({addr5}); // r = addr5

If peer5 is online (line 12), the new query new_query is sent. The index will
be still 0, because there is no common path between this peer’s path and the
submitted query.

�

�

�

�

IF online(addr5)

found = query(addr5, ’10’, 0 + length(’’));

Since there are no more peers to contact, the result of the search algorithm
at peer5 will be returned to the calling routine at line 14.

�

�

�

�
RETURN found;

The following search routine will be processed at peer5.

�

�

�

�

search(addr5, ’10’, 0) {

found = FALSE;

rempath = sub_path(’11’, 0 + 1, 2); // rempath = ’11’

compath = common_prefix_of(’10’, ’11’); // compath = ’1’

IF length(’1’) = length(’10’) OR length(’1’) = length(’11’) THEN

This peer is not responsible for the query either, so it must create a new query
and forward it to the available peers stored in the routing table. In this example,
the resulting new query is ‘0’ because there is a common prefix with the path of
peer5 and the original query. So new_query is sent to peer4 with index 1, which
means, that we are already at the first level of the search tree.

18 CHAPTER 3. CONCEPTUAL FOUNDATIONS

�

�

�

�

IF length(’11’) > 0 + length(’1’) THEN

new_querypath = sub_path(’10’, 1 + 1, 2); // new_query = ’0’

refs = get_refs(0 + length(’1’) + 1, addr5); // refs = {addr4}

WHILE |{addr4}| > 1 AND NOT found

r = random_select({addr4}); // r = addr4

IF online(addr4)

found = query(addr4, ’0’, 0 + length(’1’));

RETURN found;

As peer5 was not responsible for the original query ‘10’ either it replys the
answer of peer4 to its caller peer6. The processed search routine at peer4 is
shown below.

�

�

�

�

query(addr4, ’0’, 1) {

found = FALSE;

rempath = sub_path(’10’, 1+1, 2); // rempath = ’0’

compath = common_prefix_of(’0’, ’0’); // compath = ’0’

IF length(’0’) = length(’0’) OR length(’0’) = length(’0’) THEN

found = addr4;

Finally peer4 is found to be responsible for query ‘10’ and it responds to peer5,
which calls the routine on peer4, with its address addr4 to indicate that peer4
is responsible for this query. The received address of peer4 addr4 is forwarded
to peer6, which is the starting point of the search request. At last peer6 returns
the address of peer4 to the calling routine.

3.2 P-Grid Construction

Having introduced the access structure and the search algorithm an important
question remains: How is the P-Grid to be constructed? As there exists no global
control this has to be done by using exclusively local interactions. The idea is
that whenever two peers meet, they use the opportunity to create a refinement of
the access structure. At this point we do not care why and how peers meet. They
may meet randomly because they are involved in other operations or because they
systematically want to build the access structure. But assuming that by some
mechanisms they meet frequently the process works as follows.

Initially, all peers are responsible for the whole search space, i.e., all search
keys. At that stage, when two peers meet initially, they decide to split the search

3.2. P-GRID CONSTRUCTION 19

space into two parts and take over responsibility for one half each. They also
store the reference to the other peer in order to cover the other part of the search
space. The same happens whenever two peers meet that are responsible for the
same path. While the P-Grid develops also other cases occur: Peers will meet
whose paths share a common prefix or whose paths are in a prefix relationship.
In the first case the peers can initiate new exchanges by forwarding each other
to peers they are referencing themselves. In the second case the peer with the
shorter path can specialize by extending its path. To obtain a balanced P-Grid it
will specialize in the opposite way the other peer has already done at that level.
The other peer remains unchanged.

These considerations give rise to the algorithm in Figure 3.4 that two peers
peer1 and peer2 execute when they meet. count(data) returns the num-
ber of data items. select(data, key) returns the data with the given key.
merge(refs1, refs2) returns the union of the references refs1 and refs2. If
more references are available than the peer wants to manage, a randomly selected
fraction is returned.

The algorithm initially constructs the union of the data items managed by
the two peers, and counts the data items (line 2 and 3). If a peer’s path is empty
and the amount of data items is greater than the amount every peer wants to
store, the peer extends its path by a random bit (line 4 to 7). Thereby peers only
specialize when the amount of data items makes it necessary. The random bit is
returned by a function, that guarantees that each peer will extend with inverse
bit the other peer would extend. This guarantees the construction of a balanced
tree. Now the common prefix of the two paths and its length can be created (line
8 and 9). If the paths are equal and the amount of data with a key of the common
prefix is greater than a peer wants to manage, the peers specialize by appending
their paths with a random bit (line 10 to 13). Again, the two extension-bits are
inverse. If one path is a prefix of the other path, the shorter path must specialize
(line 16). Therefore a string of random bits is generated with the length of the
difference between the two paths (line 16 and 24). This string is now compared
with the longer path ignoring the leading common prefix, and the common prefix
of these two strings is appended to the shorter path (line 19, 20 and 25, 26). If
the shorter path is still shorter than the longer path, it is further extended by
the next bit of the generated string of random bits, which is not equal to that of
the longer path (line 21, 22 and 27, 28).
For example, let path1 be ‘01001010011’ and path2 be ‘01001’, then ‘01001’ is the
common prefix and path2 is a prefix of path1. The generated string of random
bits (ext) could be ‘010110’. Now this string must be compared with the substring
‘010011’, the rest of path1 after the common prefix. The common prefix (comExt)
for these two string is ‘010’, which will be appended to path2. As path2 is still
shorter than path1, the next bit of the generated string of random bits (ext) is

20 CHAPTER 3. CONCEPTUAL FOUNDATIONS

�

�

�

�

1 exchange(peer1, peer2) {

2 data = is the union of the data items managed by the two peers

3 items = count(data)

4 IF path(peer1) is empty AND items > the peer wants to manage

5 extend path(peer1) with a random bit

6 IF path(peer2) is empty AND items > the peer wants to manage

7 extend path(peer2) with the inverse random bit

8 compath = common prefix of the two paths

9 len = the length of the compath

10 IF path(peer1) = path(peer2) /* paths are equal */

11 IF count(select(data, compath)) > the peer wants to manage

12 extend path(peer1) with a bit

13 extend path(peer2) with the inverse random bit

14 len1 = length(path(peer1)) - len

15 len2 = length(path(peer2)) - len

16 IF len1 = 0 OR len2 = 0 /* one path is a prefix of the other */

17 IF len1 < len2

18 ext = a string of random bits of length len2

19 comExt = the common prefix of ext and the rest of path(peer2) after compath

20 extend path(peer1) with comExt

21 IF ext != comExt

22 extend path(peer1) with the next bit of ext after compath

23 IF len2 < len1

24 ext = a string of the inverse random bits of length len1

25 comExt = the common prefix of ext and the rest of path(peer1) after compath

26 extend path(peer2) with comExt

27 IF ext != comExt

28 extend path(peer2) with the next bit of ext after compath

29 len = the length of the common prefix of the (changed) two paths

30 IF len > 0 /* common prefix exists */

31 FOR i = 0 TO len

32 refs(peer1)[i] = merge(refs(peer1)[i], refs(peer2)[i])

33 refs(peer2)[i] = merge(refs(peer2)[i], refs(peer1)[i])

34 IF path(peer1) = path(peer2) /* paths are equal */

35 replicas(peer1) = merge(replicas(peer1), {peer2, replicas(peer2)})

36 replicas(peer2) = merge(replicas(peer2), {peer1, replicas(peer1)})

37 ELSE

38 refs(peer1)[len] = merge(refs(peer1)[len], {peer2, replicas(peer2)})

39 refs(peer2)[len] = merge(refs(peer2)[len], {peer1, replicas(peer1)})

40 data(peer1) = select(data, path(peer1))

41 data(peer2) = select(data, path(peer2))

42 try to exchange to all new hosts found in the references and replicas

43 }

Figure 3.4: P-Grid construction algorithm

3.3. MAPPING FILE NAMES INTO BINARY KEYS 21

also appended, in this case ‘1’. So path2 is now ‘010010101’.
After the paths have been changed, the new length of the common path of the
two paths is calculated (line 29). If a common prefix exists, the references of
the two peers are merged at all levels of the common prefix (line 30 to 33). If
the two paths are equal, the peers reference each other in their list of replicas.
Additionally the replicas of the other peer are added. (line 34 to 36). If the paths
are not equal, the peers reference each other and the replicas of the other peer at
the level the first bit of the paths differ (line 37 to 39). At last each peer selects
the data items with keys matching its path from the initially constructed union
of data items (line 40 and 41).
The peers use the list of references and replicas of the other peer to initiate further
exchanges with previously unknown peers (line 42).

The path of peers joining the P-Grid structure the first time is empty and is
only extended when the amount of data items of both peers makes it necessary,
i.e., two peers with an empty path and no or too few data items keep their empty
paths. If the amount of data items of both peers is sufficient, then the paths are
extended by a random bit to guarantee a balanced P-Grid tree. If the P-Grid
tree is extremely unbalanced, the number of messages used to process a query
still scales gracefully. [2] demonstrates that the use of balanced tree structures
for data indexing is not necessarily required in a P2P environment.

3.3 Mapping File Names into Binary Keys

In the P-Grid approach we assume that search keys have a binary representation
and are uniformly distributed. Both assumption, however, do not hold for real
filenames. Thus we provide a mapping scheme that calculates a binary repre-
sentation from a filename string. To support search on these binary keys this
mapping has to satisfy a prefix property for strings s1 and s2:

s1 prefix s2 ⇒ key(s1) prefix key(s2).

The construction algorithm is given in Figure 3.5.

The algorithm proceeds by first constructing a balanced trie structure based
on a sample database of search strings. The trie structure is then used to compute
the binary keys for search keys. If the sample database is big enough and repre-
sents the distribution of all search strings well and since the trie is balanced, the

22 CHAPTER 3. CONCEPTUAL FOUNDATIONS

�

�

�

�

1 MakeTrie(sampledb) {

2 /* sort the sampledb in lexicographical order */

3 SortLex(sampledb)

4 /* find the common prefix for all the strings from sampledb */

5 commonprefix = CommonPrefix(sampledb)

6 /* We choose the middle string from sampledb and take the prefix of

7 length commonprefix+1, which is enough to split the sampledb into two

8 approximately equal parts. It is possible to explore different

9 alternatives at this point, in order to achieve a more balanced split */

10 IF Size(sampledb) > MaxLeafStore

11 mid = Prefix(sampledb[Quotient(Size(sampledb), 2)], Length(commonprefix) + 1)

12 FOR j = 1 TO Size(sampledb)

13 IF sampledb[j] is lexicographically smaller than mid

14 lowpart = Append(lowpart,sampledb[j])

15 IF sampledb[j] is lexicographically greater than mid

16 highpart = Append(highpart,sampledb[j])

17 IF Size(lowpart) > MaxLeafStore

18 left = MakeTrie(lowpart)

19 ELSE

20 left = null

21 IF Size(highpart) > MaxLeafStore

22 right = MakeTrie(highpart)

23 ELSE

24 right = null

25 root = mid

26 TrieSet(root, left, right)

27 }

Figure 3.5: Trie construction algorithm

3.3. MAPPING FILE NAMES INTO BINARY KEYS 23

�

�

�

�

1 FindKey (trie, filename) {

2 key = {}

3 IF trie = null OF filename is prefix or equal to trie.root

4 return key

5 ELSE

6 IF filename is lexicographically smaller than trie.root

7 key = Append(key, 0)

8 key = Append(key, FindKey(trie.left, filename)

9 ELSE

10 key = Append(key, 1)

11 key = Append(key, FindKey(trie.right, filename)

12 }

Figure 3.6: Mapping strings into binary keys

resulting distribution of encoded binary search strings should be approximately
uniform.

Function MakeTrie is used for building the trie structure and has one parame-
ter sampledb which is the sample search string database. The sample database
sampledb contains unique strings of length len which are substrings of actual
search strings. As a result MakeTrie returns the trie structure. The trie structure
is built in the following way: First sampledb is sorted in lexicographical order and
then is split into two approximately equally sized parts. The split is performed by
taking the shortest possible string such that the lower part contains the strings
that are lexicographically smaller than the string and the higher part contains
the strings that are lexicographically greater than the string. Then the value
of this shortest string is stored in the root of the tree and the function is called
recursively for both resulting parts of sampledb where the lower part corresponds
to the left branch and the higher part corresponds to the right branch of the tree.
The splitting proceeds until there are less or equal than MaxLeafStore strings in
the database.

Once the trie has been constructed, it can be used for mapping strings (file-
names) into binary keys as shown in Figure 3.6.

Function FindKey has two parameters: the trie structure trie and the string
filename. It returns the binary key that corresponds to filename. The binary
key is calculated in the following way: The string is lexicographically compared
to the root value of the trie and if it is prefix of or equal to the root then the
calculation terminates returning the binary key; otherwise if it is smaller, then ‘0’
is appended to the key and the function is called recursively with the left subtree;
if it is greater ‘1’ is appended to the key and FindKey is called with the right

24 CHAPTER 3. CONCEPTUAL FOUNDATIONS

subtree.

3.3.1 Experiments

We implemented the mapping algorithm in Java and modified the open source
Gnutella client Furi [30] to monitor and log all queries that were routed through it.
We used this data to construct a large database of Gnutella queries to evaluate
the quality of the mapping algorithm. From the query database we derived a
sample database that we used for constructing the trie structure. Then we tested
the trie structure by encoding the complete set of search strings and verifying
that resulting keys were uniformly distributed. We give one exemplary result to
illustrate this: Of 33799 search strings of length 4 (len = 4) which were logged
with Furi we randomly selected 1951 strings for the sample database. We used
this set to construct the trie using MaxLeafStore = 30 which resulted in 99
different keys. When generating the keys for all search strings, the maximum
number of strings mapped to one key is 798. A perfectly uniform distribution
would result in a maximum of 342 search strings per key such that in the worst
case slightly more than twice the number of search strings are encoded into the
same key as with a perfectly uniform encoding. Thus the resulting distribution
is of fairly good quality with respect to uniformity and the workload for peers for
storing data and answering queries will be distributed approximately uniformly
as well. This is also illustrated by the frequency histogram shown in Figure 3.7.
It shows that we achieve almost a normal distribution.

200. 400. 600. 800.

2

4

6

8

10

Figure 3.7: Key frequencies in steps of 25

Chapter 4

Architecture

Gridella is our Gnutella compatible P2P system which is based on the P-Grid
approach described in the previous section. It is intended to gradually evolve the
existing Gnutella infrastructure into a technologically more advanced system.
The goals of the Gridella system are:

• compatibility with Gnutella

• a smooth migration path to a fully Gridella based infrastructure

• a more efficient distributed data storage and search strategy

• reduction of network traffic

• a modular design which supports reuse and extensibility

• support for multiple communication protocols

Several proof-of-concept implementations and simulations were done before
the current Gridella implementation written in Java. It will be released to the
public domain under the GNU General Public License and can be installed and
used easily by users of other Gnutella clients. Developers wanting to use the
current implementation (e.g., to develop some nice GUIs) can get it upon request.

25

26 CHAPTER 4. ARCHITECTURE

4.1 Component Model

Figure 4.1 shows the main components of the Gridella system.

Gridella
Server

Gridella
Client

Comm

GridellaConfig

*

1

Protocol

P−Grid
Query algorithm
Data structure &

binary representations
Maps query strings to

Mapping
Scheme

Figure 4.1: Gridella core system components

The components fall into two categories: The Gridella client which provides all
user-related functionality and the Gridella server that handles data management
and communication. A GUI is not included in Figure 4.1 because I want to
provide a high-level library that abstracts from and handles all Gridella related
functionality (the implementation includes a GUI, of course). Such I have a
simple 2-layer architecture that enables multiple GUI implementations. Inside
the core system I follow this rationale, too, so that only the client or the server
could be reused by other software.

The main task of the Gridella client is to interface the user with the server
and provide special services to the user (e.g., to play the shared and downloaded
media files). The server part implements the P-Grid algorithm and communicates
with other peers via the communication subsystem which provides communica-
tion abstractions for any number of on-the-wire protocols. At the moment I
support the Gnutella protocol and the internal Gridella protocol. By separating
communication from the protocols I offer a simple way to include new protocols
without having to change the overall system. Thus Gridella may use existing
protocols, for example, of other P2P systems or provide tunneling via HTTP,
or benefit from new, possibly more efficient protocols. As a side effect this en-
ables Gridella to communicate with multiple different systems at the same time
which means that it also offers some kind of gateway functionality. The Map-
ping Scheme subsystem of P-Grid maps all user search requests into requests the
search algorithm of P-Grid can process.

4.2. COMMUNICATION MODEL 27

4.2 Communication Model

4.2.1 Searching

The communication model of Gridella is shown in Figure 4.2 for the special case
of a search interaction between two Gridella peers.

CommComm

System

border

(Internet)

newWorker()

Map ASCII

string to a unique

binary string

Mapping
Scheme

P−Grid
Gridella
Server

Gridella
Client

Submit the query

to a responsible

peer

Use the mapped

binary string for

routing the searchCheck if this

peer is responsible

for this query

Gridella
Server

XXX.mp3

The user enters

a new query, e.g.,

newWorker()

processQuery(aStr)

checkResponsibility(bStr)

bStr = mapQuery(aStr)

remoteQuery(aStr, bStr, peer)

[not responsible]

sendQuery(aStr, bStr, peer)
search(aStr, bStr)

search(aStr)

search(aStr)

Figure 4.2: A Gridella Search interaction

The user initiates the query by providing a query via the GUI. The GUI
calls the according method of the Gridella client which creates a new worker
thread, forwards the query to the worker, and again waits for further requests.
The worker in turn forwards the request to the Gridella server component, which
initiates the actual search process by requesting a search operation from the P-
Grid component.

At first the P-Grid component creates a new worker to handle the request.
The worker in turn requests the mapping described in Section 3.3 to convert the
original query into a binary representation feasible for P-Grid. Then it checks
if it is responsible for the query, i.e., whether it has the requested information
available locally. If so, it returns it. If not, it determines which peer to contact
according to the P-Grid algorithm as described in Section 3.1 and contacts this
peer via the communication subsystem. The communication subsystem contacts
its counterpart at the requested peer using the defined protocol, e.g., via the
P-Grid protocol, and sends the query. At the recipient the query is forwarded to
the Gridella server and the same interaction occurs again.

Interacting with a non-Gridella peer, for example a Gnutella peer, is also sim-
ple: In this case the Gridella peer would forward the original query (not mapped)
to the Gnutella peer via the Gnutella protocol. In terms of Figure 4.2 this means

28 CHAPTER 4. ARCHITECTURE

that the Gridella server would not request a mapping, check local availability of
the requested information and possibly instruct the communication subsystem to
contact the Gnutella peer via the Gnutella protocol. This would be the standard
interaction pattern of a Gnutella peer employing Gnutella’s undirected search
approach. To distinguish Gridella-enabled peers which can employ the advanced
capabilities of Gridella the system keeps lists of its communication partners and
their capabilities.

As stated above, if the search was successful the requested information is
returned. This requires a little bit of further consideration since it depends on
the employed protocols. For example, in Gnutella a reference would be returned
first and then the information download would be done via a HTTP-like GET
request or a PUSH operation as described in Section 2.2. This works if at least
one of the peers is not behind a firewall. Other protocols might simply return a
URL where the information could be downloaded or transfer the information via
the connection that already had been established by the remote query request
(this would solve the firewall problem of Gnutella). We plan to include a flexible
mechanism so that Gridella can benefit from the advantages of specific protocols.

4.2.2 Meetings

The meeting of two peers leads to the second interesting interaction, shown in
Figure 4.3.

P-Grid

exchange(peer)

Comm

sendExchange(refs, data)

Comm

sendExchange(refs, data)

P-Grid

exchange(refs, data)

newWorker()

newWorker()

Gridella
Server

exchange(refs, data)

processExchange()

sendExchange(refs, data)

sendExchange(refs, data)

sendExchange(refs, data)

recvExchange(refs, data)

processExchange()

A new peer
was found

Send local
informations
to new peer

Process the
Exchange
Algorithm

Respond immediately
with local informations

System
border
(Internet)

Figure 4.3: A Gridella Exchange interaction

Whenever a new peer is found an Exchange is done to evolve the P-Grid

4.2. COMMUNICATION MODEL 29

infrastructure. In P-Grid peers must exchange periodically after the first meeting
to continuously evolve and maintain the P-Grid structure. Thereby the references
of peers are kept up-to-date and new data items spread out over the peers and
become accessible for search requests. Peers joining the P-Grid structure (the first
time, or each application startup) extend the exchanged list of locally managed
files (a part of all files shared in the P-Grid infrastructure) with the local shared
files. Thereby new peers initially register their files and possible “lost” files are
registered again. A file can get unavailable, when the only managing peer becomes
offline. The period between two Exchanges of two peers depends on the number
of already successfully processed Exchanges. “Newer” peers with shorter paths
exchange more frequently than “older” hosts with very specialized paths. First
an Exchange message containing the path, all references and all managed data
items of the local peer is sent over the communication subsystem. Its counterpart
at the requested peer will forward the received Exchange request to the P-Grid
component and responds immediately with its local P-Grid information (path,
references, and data items). To speed up the Exchange interaction, the response
is sent immediately by the requested peer before it starts the Exchange algorithm
(described in Section 3.2). Thereby the requesting peer receives the response
sooner and can start its Exchange algorithm sooner to shorten execution time.
This allows the peers to process more exchanges in a shorter time and to be
available for incoming exchange requests (before the request raises a timeout at
the requesting host).

4.2.3 Downloading

A download can be requested for all files found by a previous search request of a
user. The interactions to perform a download are shown in Figure 4.4.

Gridella
Client

download(file)

Gridella
Server

download(file)

Trans
Manager

Comm

newWorker()

Comm

HTTP GET file

User requests
a download The download (HTTP

GET) request including
the file name and file
index

System
border
(Internet)

download(file)

download(file, local_file)
newWorker()

The remote file to
download and a local
file to store the
received data

File
Manager

getLocalFile(file_index)

Figure 4.4: A Gridella Download interaction

30 CHAPTER 4. ARCHITECTURE

A user’s download requests are forwarded from the Gridella Client to the
Gridella Server, and then to the Transmission Manager. The manager creates a
temporary file to store the received data of the download and calls the download
method of the Communication component with the file to download and the lo-
cal temporary file. The Communication component starts a new worker for the
download and contacts peer storing the file. A HTTP GET message containing
the filename and file index indicates the file at the contacted peer. The Commu-
nication component of the storing peer uses the File Manager to get the requested
file by the file index. Then the Communication components can process the ac-
tual download by transferring the file data. The receiving component stores the
data into the temporary file and returns this file to the Transmission Manager
upon completion. The user is being informed about the download status via the
GUI during the whole process.

Chapter 5

Protocol Design

5.1 Requirements

Gridella is designed for interoperability with Gnutella and the long-term goal is to
replace the existing Gnutella infrastructure with Gridella. So Gridella implements
the existing Gnutella protocol [9] as well as the new Gridella protocol. To achieve
full compatibility, the Gnutella protocol was not extended and Gridella could
also be used as stand-alone Gnutella servent. Since the software can forward
queries between the two protocols Gridella is also a gateway between these two
infrastructures.

5.2 The Gridella Protocol

A Gridella servent joins the P-Grid infrastructure by establishing a connection
with another servent currently on the network. If the servent joins the network
the first time it contacts the servent www.p-grid.org:1805 to receive addresses
of other servents. At the next startups the peer uses the addresses stored in the
routing table of the last session. After the connection is established, the following
Gridella connection request string is sent:

GRIDELLA CONNECT/<protocol version>\n\n

31

32 CHAPTER 5. PROTOCOL DESIGN

where <protocol version> is currently defined as “1.0”.

A servent wishing to accept the connection request must respond with:

GRIDELLA OK\n\n

Any other response indicates the servent’s unwillingness to accept the con-
nection. If the connection is refused, Gridella tries to connect via the Gnutella
protocol (see the Gnutella Protocol [9] specification for details) to establish a
connection to the Gnutella network. If this fails too the servent is no Gridella or
Gnutella servent or currently not accepting incoming connections.
Once a servent has connected successfully, it communicates with the other ser-
vents by sending and receiving Gridella protocol messages. All Gridella messages
are XML-based. There DTDs are given in the following.
All Gridella messages must start with a <Gridella> tag which must contain at
least a <Host> element. The message type is given by the next element. This
could be <Exchange>, <FileRegister>, <Query>, <QueryReply> or <Push>. Fig-
ure 5.1 shows the DTD for a minimal Gridella message.

�

�

�

�

<!DOCTYPE Gridella [

<!ELEMENT Gridella (Host, (Exchange|FileRegister|Query|QueryReply|Push)*)>

<!ATTLIST Gridella

Version STRING #REQUIRED>

<!ELEMENT Host EMPTY>

<!ATTLIST Host

IP STRING #REQUIRED

Port INTEGER #REQUIRED>

]>

Figure 5.1: The Gridella message DTD

The attributes of <Gridella> are:

• Version is the version of the protocol version, currently “1.0”.

The attributes of <Host> are:

• IP is the sending host’s IP address.

• Port is the port for Gridella messages of the sending host.

5.2. THE GRIDELLA PROTOCOL 33

5.2.1 Exchange

An Exchange message is used by peers of the P-Grid network to establish and
evolve the network. That means that every peer gets its path and its data items
to manage. When two peers meet the first time an Exchange message is sent
to the other peer, and then repeatedly after a certain interval. A peer receiving
an Exchange message must response with an Exchange message. The message
contains the path, all stored references to other peers of the sending host and the
managed data items. The path is given bitwise for each level (Index) of the P-
Grid structure (see Section 3.1.1), and for each level the corresponding references
are given. There could also be references to replicas included.

�

�

�

�

<!DOCTYPE Exchange [

<!ELEMENT Exchange (Path*, Replica?)>

<!ELEMENT Path (Peer*)>

<!ATTLIST Path

Index INTEGER #REQUIRED

Value {0,1} #REQUIRED>

<!ELEMENT Replica (Peer*)>

<!ELEMENT Peer EMPTY>

<!ATTLIST Peer

IP STRING #REQUIRED

Port INTEGER #REQUIRED>

<!ELEMENT Data (File*)>

<!ELEMENT File EMPTY>

<!ATTLIST File STRING #REQUIRED

IP STRING #REQUIRED

Port INTEGER #REQUIRED

Key STRING #REQUIRED

Index INTEGER #REQUIRED

Size INTEGER #REQUIRED

Info STRING>

]>

Figure 5.2: The Exchange message DTD

The Exchange message contains a <Path> element for each bit of the sending
host’s path. For example, a message from a host with a path ‘011’ contains
the elements <Path Index=0 Value=0>, <Path Index=1 Value=1>, and <Path

Index=2 Value=1>. If the host has replicas the message further contains the
<Replica> element. Each <Path> and <Replica> element contains one or more
references to other hosts represented by the <Peer> element. If the sending host
manages data items of the P-Grid item, the message contains the <Data> element

34 CHAPTER 5. PROTOCOL DESIGN

and a <File> element for each managed file.

The attributes of <Path> are:

• Index is the level of the P-Grid structure represented by this element. The
first index is ‘0’.

• Value is the bit at index Index of the sending host’s path. Index ‘0’ repre-
sents the most significant bit of the path.

The attributes of <Peer> are:

• IP is the IP address of the referenced peer.

• Port is the port at which Gridella listens of the referenced peer.

The attributes of <File> are:

• The file name.

• IP is the IP address of the peer storing this file.

• Port is the port at which Gridella listens at the peer storing this file.

• Key is the key (the binary representation) of the file name.

• Index is the index of this file at the storing peer, unique at this host, used
in a download request to indicate the file.

• Size is the size of this file in bytes.

• Info may hold additional informations about this file (e.g. bit rate, reso-
lution, track length in seconds, ...)

5.2.2 Query

A Query message defines a search request. Query messages are only sent to
peers, which could be responsible for this query (see the P-Grid search algorithm
in Figure 3.3). Peers receiving a query message use the Key attribute to decide,
if they are responsible for this query or not. The Key represents the binary
representation of the search string used to route the request to the responsible

5.2. THE GRIDELLA PROTOCOL 35

peer. The Key is truncated of the first Index bits, when the request was already
processed by another peer. Thereby the receiving peer can not verify if its path is
a prefix of the original Key and therefore verify if it is responsible for this query.
If it is responsible it replys with a QueryReply message, otherwise it is forwarding
the Query message to a maybe responsible peer.

�

�

�

�

<!DOCTYPE Query [

<!ELEMENT Query EMPTY>

<!ATTLIST Query STRING #REQUIRED

Index INTEGER #REQUIRED

Key STRING #REQUIRED

MinSpeed INTEGER>

]>

Figure 5.3: The Query message DTD

The attributes of <Query> are:

• The query string (e.g., “Madonna”, “The Who mp3”, ...).

• Index defines the search progress, the number of truncated leading bits
of the Key. The search starts with index ‘0’, which means that the Key

represents the original binary representation of the query string, and is
increased with every processed bit of the Key derived from the query.

• Key is the key (the binary representation) of the query string, or a substring
of the key if Index > 0.

• MinSpeed indicates the minimum speed (in kB/second) responding peers
should be able to communicate with.

5.2.3 QueryReply

A QueryReply message is sent in response to a received Query message, if a peer
is responsible for the Query, i.e., can answer it. QueryReply messages can hold
three different results (Code element):

• 200 is returned if files where found for the received query string. Then the
QueryReply message must also include a result set of found files.

36 CHAPTER 5. PROTOCOL DESIGN

• 400 is returned if a erroneous Query message was received. The QueryReply
element is empty.

• 404 is returned if no files where found for this query string. The QueryReply
element is empty.

�

�

�

�

<!DOCTYPE QueryReply [

<!ELEMENT QueryReply (Result*)>

<!ATTLIST QueryReply

Code INTEGER #REQUIRED>

<!ELEMENT Result EMPTY>

<!ATTLIST Result STRING #REQUIRED

IP STING #REQUIRED

Port INTEGER #REQUIRED

Index INTEGER #REQUIRED

Size INTEGER #REQUIRED

Info STRING>

]>

Figure 5.4: The QueryReply message DTD

The attributes of <QueryReply> are:

• Code indicates the type of the message (200, 400, or 404).

The attributes of <Result> are:

• The file name.

• IP is the IP address of the peer storing this file.

• Port is the port at which Gridella listens at the peer storing this file.

• Key is the key (the binary representation) of the file name.

• Index is the index of this file at the storing peer, unique at this host, used
in a download request to indicate the file.

• Size is the size of this file in bytes.

• Info may hold additional informations about this file (e.g. bit rate, reso-
lution, track length in seconds, ...)

5.3. THE PROTOCOL AUTOMATON 37

5.3 The Protocol Automaton

The protocol automaton in Figure 5.5 shows the sequence of messages sent and
received by a peer. Depending on how the connection was created, by the local
host (outgoing) or by another host (incoming), the connection is connected or
accepted. Connecting connections send the Init message and wait for a response.
Accepting connections receive the Init message, reply with the Init response mes-
sage and wait for further messages. As soon as the connecting host receives the
Init response message, it also waits for further messages. In this state, only an
Exchange message can be sent or received, or a Query message is sent or re-
ceived. When a message is received by the other host, the corresponding reply is
sent - an Exchange message in reply to an Exchange message, and a QueryReply
message in reply to an Query message. If a message is sent from the local host
the corresponding reply message is received - an Exchange message in reply to
an Exchange message, and a QueryReply message in reply to an Query message.
After any of these message interactions it waits for further messages.

NEW
CONNECTION

Outgoing Connection

send Init

Incoming Connection

Init received

HANDSHAKE
OUTGOING

HANDSHAKE
INCOMING

WAIT

Connection connected

InitResponse received

wait for message

Connection accepted

send InitResponse

wait for message

EXCHANGING

EXCHANGED

SEARCHED

SEARCHING

send Exchange

starting Exchange

Exchange received

wait for message

Exchange received

starting Exchange

send Exchange

wait for message

send QueryReply

wait for message

Query received

starting Search

send Query

starting Search
QueryReply received

wait for message

Figure 5.5: The protocol automaton

5.4 A typical Protocol Interaction

This section shows two typical Protocol Interactions to demonstrate how the
Gridella protocol works. The first example shows what happens, when two peers

38 CHAPTER 5. PROTOCOL DESIGN

meet the first time. The second example shows a simple search request and its
response.

5.4.1 First Meeting

When two peers meet for the first time, each of the two peers sends an Exchange
message. Thereby each peer gets to know the other peer’s path, its references and
managed data items. This is necessary for all peers to construct the Gridella grid
and to be able to satisfy all user search requests. A peer’s path is accompanied
by a list of peers known to this peer. This enables all peers to detect new peers.

In Figure 5.6 two peers, peer1 with IP address 128.132.127.1 and peer2

with IP address 128.132.127.2 both listening at port 1805 meet the first time
and send Exchange messages. The path of peer1 is ‘11’ and peer2’s is ‘10’.
Therefore both messages contains two <Path> elements, each representing one bit
of the path, and the corresponding references. Each of them knows two further
peers, as mirrored by their routing tables. Peer1 manages the files Tori.jpg and
Tennis.jpg, peer2 manages Mozart.jpg and Mozart.bmp, which are represented
by a File element in the Data element of the messages. As the two paths are
not equal or are a prefix of each other, the Exchange algorithm will only lead to
an extended routing table, as shown by the changed routing tables. So each peer
gets to know two further peers and can contact other peers.

When two peers with the same path meet, the total number of data items man-
aged by these two peers together determines if the two paths are being specialized
by appending a random bit. The bits are inverse to each other to construct a
balanced grid. Then the data items are divided among the peers according to
the key of the files. Each peer manages only files, if the peer’s path is a prefix of
the key. If the number of data items is to small to specialize, the peers become
replicas by merging the references and data items.
Each peer receiving an Exchange message uses all references of the message to dis-
cover new peers and exchange with them. Further the data items of the sending
host are searched for files the receiving peer’s path is a prefix of the file key.

5.4.2 Search Request

Every time a user enters a search request, this will result in Query and QueryRe-
ply messages. When a peer is not able to fulfill a request locally, it sends a Query
message to a peer which could be responsible for this query.

5.4. A TYPICAL PROTOCOL INTERACTION 39

128.132.127.1

0 : 128.132.127.3
10: 128.132.127.4

<Gridella Version="1.0">
 <Host IP="128.132.127.1" Port=1805/>
 <Exchange Recursion=0>
 <Path Index=0 Value=1>
 <Peer IP="128.132.127.3" Port=1805/>
 </Path>
 <Path Index=1 Value=1>
 <Peer IP="128.132.127.4" Port=1805/>
 </Path>
 <Data>
 <File IP="128.132.127.1" Port=1805
 Key=110101 Index=2 Size=4587>
 Tori.jpg</File>
 <File IP="128.132.127.3" Port=1805
 Key=110010 Index=4 Size=84675>
 Tennis.jpg</File>
 </Data>
 </Exchange>
</Gridella>

<Gridella Version="1.0">
 <Host IP="128.132.127.2" Port=1805/>
 <Exchange Recursion=0>
 <Path Index=0 Value=1>
 <Peer IP="128.132.127.5" Port=1805/>
 </Path>
 <Path Index=1 Value=0>
 <Peer IP="128.132.127.6" Port=1805/>
 </Path>
 <Data>
 <File IP="128.132.127.2" Port=1805
 Key=101010 Index=2 Size=15757>
 Mozart.jpg</File>
 <File IP="128.132.127.5" Port=1805
 Key=101010 Index=4 Size=546887>
 Mozart.bmp</File>
 </Data>
 </Exchange>
</Gridella>

128.132.127.2

0 : 128.132.127.5
11: 128.132.127.6

Routing Table

Routing Table

0 : 128.132.127.3
 128.132.127.5
10: 128.132.127.2
 128.132.127.4

0 : 128.132.127.3
 128.132.127.5
11: 128.132.127.1
 128.132.127.6

Figure 5.6: Example Exchange Interaction

40 CHAPTER 5. PROTOCOL DESIGN

Figure 5.7 shows two peers with their routing tables. As peer1 is not responsi-
ble for the search request ‘Mozart’ (key ‘101010’), it sends a Query message to
peer2 and waits for a QueryReply message. After peer2 receives the request
from peer1 it tries to fulfill the query locally. As peer2 is responsible for this
search request, it responds with a QueryReply message including all found files
matching the query string.

128.132.127.1

0 : 128.132.127.3
10: 128.132.127.4

<Gridella Version="1.0">
 <Host IP="128.132.127.1" Port=1805/>
 <Query Index="1" Key="01010">Mozart</Query>
</Gridella>

128.132.127.2

0 : 128.132.127.5
11: 128.132.127.6

<Gridella Version="1.0">
 <Host IP="128.132.127.2" Port=1805/>
 <QueryReply Code="200">
 <Result IP="128.132.127.8" Port="1805" Index="45" Size="4458">Mozart.jpg</Result>
 <Result IP="128.132.127.9" Port="1805" Index="23" Size="1241">Mozart.bmp</Result>
 </QueryReply>
</Gridella>

Routing Table Routing Table

Figure 5.7: Example Search Request Interaction

Chapter 6

Component Design

The architecture of Gridella introduced in Chapter 4 consists of four main com-
ponents - Client, Server, P-Grid, and Communication - which were designed as
self-contained units to support reusability. The Communication component in-
cludes two subclasses for each supported protocol (Gnutella and Gridella). The
given hierarchical dependencies of the components influenced also the interac-
tions between the components. This allows the replacements of a component
without affecting other components. This chapter presents the class diagrams of
the component’s classes, which can be found in the packages.

6.1 Client Package

The Client package provides the possibility to interact with the Server pack-
age. Any user requests received by a user interface (e.g., the included GUI) are
tunneled by the Client to the Server package. Thus the Client component in
the Client package provides lot of services to connect/disconnect other peers,
add/remove searches, add/remove downloads and to monitor the Server itself.

The Client package also contains all components used by a user interface.
Gridella contains a Player component, which allows the user to open a shared
or recently downloaded file with certain applications, e.g., Winamp, RealPlayer,
Windows Media Player, or Acrobat Reader. The player application must have
been parameterized with a file-extension for a certain type to support this func-
tionality.

41

42 CHAPTER 6. COMPONENT DESIGN

6.2 General Package

The General package contains data structures for communication between certain
components and packages. Further it provides global constants, other configura-
tion parameters and useful utilities.

The Configuration (Cfg) component provides all global constants and all
configuration parameters used by nearly all components. Global constants are
the standard listening port for Gridella, the used Gridella protocol version, the
rate to perform exchanges with other hosts, or the number of data items re-
quired to specialize the P-Grid path. The listening port can be configured by a
command line argument. All other configuration parameters are read from the
configuration file (gridella.properties) and can be accessed by the Configu-
ration component.

The Connection (Connection) component represents a connection to an-
other host over the network. The connection can be a Gridella, Gnutella, or
HTTP connection with a certain status (connecting, accepting, connected, not
connected, error). Each connection belongs to a Host component. A Connec-
tion is created by the Communication Manager before connecting or accepting
a host, and provides informations about the start time of the connection, the
sent/received messages and bytes. Each Connection provides a send and receive
queue, used by the Communication package to communicate between the differ-
ent components. For example, the Communication Reader reads messages from
the network and put them into the queue. This messages where then taken and
processed by the Communication Workers. They transform the received messages
into intern data structures and call the corresponding components for further pro-
cessing. To send a message to another host, a component puts the message into
the send queue, which will be taken and written by the Communication Writer.

The Global Unique Identifier (GUID) component is used to identify objects
globally unique, i.e., hosts, files, and messages.

The Host (Host) component contains general informations, e.g., the host
address, the type (Gridella or Gnutella), the path (only for Gridella hosts), the
number of shared files, shared kBytes, the connection speed or if the host is behind
a firewall. The component is used by P-Grid to represent a reference to peers,
by files to determine the storing host, or by the Host Manager to administrate
Gnutella hosts.

The package further contains data structures only used intern to represent
different messages (Exchange, Query, Query Hit), shared and managed data items
(files), and downloads/uploads.

6.3. SERVER PACKAGE 43

6.3 Server Package

The Server package provides the possibility for other packages to interact with the
Server and its defined services using the Server component. The requested ser-
vices are then processed by one of the subclasses of the Server. The architecture
of the Server package is given in Figure 6.1.

Server

File
Manager

Host
Manager

Transmission
Manager

P-Grid
Package

Comm
Package

Figure 6.1: The Server architecture

The File Manager component (FileManager) manages all local shared files
and is responsible for all incoming Gnutella search requests. It searches for files
matching the query string and informs the Message Manager if matches are found.
All files are identified uniquely by the file index given by the File Manager.
The index is used in common with the file name by other hosts to request file
downloads.

The Host Manager component (HostManager) manages all Gnutella and
Gridella hosts. It administrates lists of both types, which can be used by a
GUI to display the network status of the local servent. To be informed about
changes of host properties, components can register as “host listeners”. Every
time a host property changes, all registered listeners are informed. Gnutella hosts
can be contacted manually, e.g., a user enters a host address, or automatically.
The user only gives the number of requested established Gnutella connections.
Erroneous hosts can also be removed automatically.

The Transmission Manager component (TransManager) manages all down-
loads and uploads to/from the local host. Transmissions can be added, removed,
aborted, or cleared. Informations about transfers, for example: the average trans-
mission speed or if the manager is busy, can be requested. A download/upload
bandwidth limit is not yet implemented, but would also be managed by this
component. Components can register as “transmission listener” to be informed
about new downloads/uploads and changes of their status.

44 CHAPTER 6. COMPONENT DESIGN

6.4 P-Grid Package

The P-Grid package is a subpackage of the Server Package. The main PGrid class
handles all parameters of the P-Grid network: the local path, the references to
other hosts for each level of the path, and locally managed files. Initially these
files are the files managed by the File Manager. To reduce the complexity of
PGrid essential processes are handled by subclasses, as shown in Figure 6.2.

P-Grid

Exchange
Thread

P-Grid
Tree

Search
Thread

Figure 6.2: The P-Grid architecture

The Exchange Thread class (ExchangeThread) performs the P-Grid con-
struction algorithm described in Section 3.2.

The P-Grid Tree class (PGridTree) performs the mapping of filenames into
binary strings described in Section 3.3.

The Search Thread class (SearchThread) performs the P-Grid search algo-
rithm described in Section 3.1.1.

6.5 Communication Package

The Communication package includes all components required for communicating
with other hosts. It is a subpackage of the Server package and is also used directly
by the P-Grid package. The class diagram is given in Figure 6.3.

The Communication Acceptor (CommAcceptor) is started by the Com-
munication Manager for each incoming connection request of another host. The
Acceptor tries to decide the requested protocol, accepts the connection and re-
turns the Connection to the Communication Manager.

The Communication Connector (CommConnector) is started by the Com-
munication Manager to establish a connection to another host. The requested

6.5. COMMUNICATION PACKAGE 45

Comm
Package

Comm
Acceptor

Comm
Listener

Comm
Connector

Gridella
Worker

Message
Manager

Comm
Manager

HTTP
Worker

Gnutella
Worker

Gridella
Writer

Gridella
Reader

Gnutella
Writer

Gridella
Reader

HTTP
Writer

HTTP
Reader

Comm
Writer

Comm
Reader

Protocol
Package

Figure 6.3: The Communication architecture

protocol is given by the Connection component. After protocol handshake the
Connection is returned to the Communication Manager.

The Communication Listener (CommListener) is started at system startup
and listens at the given default port to accept incoming connections. Every
connection is then handled by the Communication Manager.

The Communication Manager component (CommManager) handles all con-
nection requests and starts the corresponding workers (Acceptor or Connector).
Successfully established connections are then processed by the corresponding
workers (Gnutella, Gridella, or HTTP). Connections are administrated and can
be accessed to monitor the network status.

The Message Manager component (MsgManager) administrates all received
and sent Gnutella messages. All messages are stored to be able to route back
response messages of other hosts. Moreover they are processed locally, i.e., search
requests are forwarded to the File Manager. Received response messages for
previously received request messages and locally created messages (e.g., Pings
or Queries) are added to the send queue of the corresponding target Connection
(see 6.2). Components can register as “message listener” to be informed when
new messages are received. This can be used to monitor the network traffic.

The Communication Reader (CommReader) provides basic functionality to
read messages from its given connection. It understands Gnutella, Gridella, and
HTTP messages. The Gnutella Reader (GnutellaReader) uses the Commu-
nication Reader to read Gnutella messages and adds these to the receiving queue

46 CHAPTER 6. COMPONENT DESIGN

of the corresponding Connection. The Gridella Reader (GridellaReader)
uses the Communication Reader to read Gridella messages and adds these to
the receiving queue of the corresponding Connection. The HTTP Reader
(HTTPReader) uses the Communication Reader to read HTTP messages and adds
these to the receiving queue of the corresponding Connection.

The Communication Writer (CommWriter) provides basic functionality to
write messages to its given connection. It understands Gnutella, Gridella, and
HTTP messages. The Gnutella Writer (GnutellaWriter) uses the Commu-
nication Writer to write Gnutella messages taken from the send queue of the
corresponding Connection. The Gridella Writer (GridellaWriter) uses the
Communication Writer to write Gridella messages taken from the send queue
of the corresponding Connection. The HTTP Writer (HTTPWriter) uses the
Communication Writer to write HTTP messages taken from the send queue of
the corresponding Connection.

The Gnutella Worker (GnutellaWorker) transforms the received Gnutella
messages by the receiving queue into general data structures and delivers this to
the Message manager for further processing. The Message manager adds gen-
erated response messages autonomously to the send queue of the corresponding
Connection.

The Gridella Worker (GridellaWorker) transforms the received Gridella
messages by the receiving queue into general data structures and delivers this to
the P-Grid component for further processing. The P-Grid component adds gen-
erated response messages autonomously to the send queue of the corresponding
Connection.

The HTTP Worker (HTTPWorker) processes “pushed” downloads from other
hosts and upload requests which were forwarded to the Transmission manager.

6.6 Protocol Package

The Protocol Package supports all message types of the Gnutella, the Gridella,
and the HTTP protocol. This package is a subpackage of the Communication
package and all classes are also only handled by classes of the Communication
package. This allows to add new protocols without interfering in too many classes.

6.6. PROTOCOL PACKAGE 47

6.6.1 Gnutella messages

The Gnutella message types are shown in Figure 6.4.

Gnutella
Messages

Init Ping
Init

Response
Query QueryHit

Header Result

1..*

Pong Push

Figure 6.4: The Gnutella Protocol Messages

The Init message (GnutMsgInit) is sent to establish a Gnutella connection.
The Init Response message (GnutMsgInitResp) is sent as response to a init
message if the requested Gnutella connection is accepted.
The Ping message (GnutMsgPing) is sent to detect other Gnutella hosts.
The Pong message (GnutMsgPong) is sent as response to a received Ping mes-
sage.
The Push message (GnutMsgPush) is sent from a host which wants to download
a file from a firewalled host. The firewalled host is then “pushing” the file to the
requesting host.
The Query message (GnutMsgQuery) represents a search request.
The Query Hit message (GnutMsgQueryHit) is sent as response to a Query mes-
sage and contains information about the found files matching the query string at
a host. Information (file name, file size, file index, ...) about the files themselves
are provided in the message Result part (GnutMsgQueryHitResult).
The Ping, Pong, Push, Query and Query Hit messages further contain a leading
Header (GnutMsgHeader) holding information about the message. All message
classes implement the Gnutella Message Interface (GnutMsgInterface).
For further details about the Gnutella messages see the Gnutella protocol speci-
fication [9] and Section 2.2.

6.6.2 Gridella messages

The Gridella message types are shown in Figure 6.5.

48 CHAPTER 6. COMPONENT DESIGN

Gridella
Messages

Init Exchange
Init

Response
Query QueryHit

Data Item Result

1..*1..*

Figure 6.5: The Gridella Protocol Messages

The Init message (GridMsgInit) is sent to establish a Gridella connection.
The Init Response message (GridMsgInitResp) is sent in response to an init
message if the requested Gridella connection is accepted.
The Exchange message (GridMsgExchange) is sent if two peers meet
and used to maintain the Gridella structure. It contains information about
the path and the references of the sending host. The Data Item part
(GridMsgExchangeDataItem) holds the data items managed by the sending
host.
The Query message (GridMsgQuery) is sent to search for a query string.
The Query Hit message ((GridMsgQueryHit) is sent in response to a Query
message and contains information about found files matching the query string at
a host. Information (file name, file size, file index, ...) about the files themselves
are provided in the message Result part (GridMsgQueryHitResult).
All message classes implement the Gridella Message Interface
(GridMsgInterface).
For further details about the Gridella messages see the Gridella protocol
specification given in Section 5.2.

6.6.3 HTTP messages

The HTTP messages are shown in Figure 6.6.

The GET message (HTTPMsgGet) is sent by a host requesting to download
a file from another host. The message contains the file index (unique at a host,
given by the File manager to identify a file), the filename and the range of bytes
requested.
The GIV message (HTTPMsgGiv) is sent by a host in response to a received
Gnutella Push message, and starts the pushed download. The message contains

6.7. A TYPICAL INTERACTION 49

HTTP
Messages

GIVGET OK

Figure 6.6: The HTTP Protocol Messages

the requested file index (unique at a host, given by the File manager to identify
a file), the servent identifier of the Gnutella Push message, and the filename.
The OK message (HTTPMsgOK) is sent as response to a received GET message
and is followed by the requested file.
For further details about the HTTP messages see the message specifications in
Appendix D.

6.7 A typical Interaction

To illustrate the dependencies between the described packages a user search re-
quest is shown in the following sequence diagrams. Figure 6.7 shows the process-
ing in the Server and P-Grid packages. The search query was entered at the GUI,
which called the addSearch(query) method of the Client component and which
in turn forwarded the request from the Client to the Server component. As shown
in Figure 6.7 the Server then starts a search in the Gnutella network by adding the
query to the Message Manager as well as calling the addSearch(query) method
of the P-Grid component to start the search in the Gridella network. The Message
Manager then requests a list of all currently connected Gnutella hosts to add the
query to the send queues of these connections. For a Gridella search the P-Grid
component starts a dedicated SearchThread for each word of the query string.
This is necessary because P-Grid only supports prefix matches of query strings.
To receive not only files beginning with the first entered key string, the query is
divided into several queries containing only one of the entered key strings. The
user can define this behavior via the GUI.

A search in the Gnutella network is only performed at currently connected
hosts. A search in the Gridella network can lead to the necessary to connect a
Gridella host to process the search request successfully (shown in Figure 6.8).

First the SearchThread finds the responsible host for the query and requests a
connection to that host from the Communication Manager. If the host is already

50 CHAPTER 6. COMPONENT DESIGN

Server

addsearch(query)

Search request by
the user tunneled
form the Client

Msg
Manager

addsearch(query)

Host
Manager

getConnectedHosts()

newWorker()

processSearch()

PGrid
Search
Thread

addsearch(query)

newSearchThread(query)

for (every token in query)

Add query to the
sending queue of
all connected
hosts

Returns all currently
connected Gnutella
hosts

Figure 6.7: Sequence diagram for a user search requests

Search
Thread

newSearchThread(query)

Add query to the
sending queue of
all connected
hosts

Writes all messages
of the send queue

Comm
Manager

connect(host)

findResponsibleHost

openConnection()

makeHandshake()

Gridella
Reader

Gridella
Writer

Gridella
Worker

newGridellaWorker()

newGridellaReader()

newGridellaWriter()
while (host connected)

writeMsg()

while (host connected)
readMsg()

Reads all messages
and put it into the
receive queue

Processes all
messages of the
receive queue

while (host connected)
processMsg()

addQueryMsg

waitForResponse

Comm
Connector

[host not connected]
connect(host)

Figure 6.8: Establishing a Gridella connection

6.7. A TYPICAL INTERACTION 51

connected with the Gridella protocol, this connection is returned. Otherwise a
new connection is established and returned. The new connection is established
by the CommConnector, which opens the connection and makes the protocol
handshake. After successfully establishing the Gridella connection a worker for
reading (Gridella Reader) and writing (Gridella Writer) messages from/to the
host is created and the connection is returned to the SearchThread. The reader
waits for incoming messages and puts them into the receive queue and the writer
sends all messages of the send queue as long as the host is still connected. The
started Gridella worker waits for new messages in the receive queue and performs
them. The SearchThread puts its Query message into the send queue, and waits
for a QueryReply message forwarded by the Gridella Worker. If the QueryReply
message is received the Gridella Worker forwards the message to the waiting
SearchThread which now continuous processing.

52 CHAPTER 6. COMPONENT DESIGN

Chapter 7

Implementation

This chapter describes the Java implementation of the design presented in the
previous chapter. The design has been mapped onto six Java packages:

• gridella.Client contains the Client component for interfacing with the
Server, and a player to open files directly from the application.

• gridella.general contains a configuration facility, utilities and general
data structures which can be accessed and used by all other classes.

• gridella.Server contains the Server component to enable the Client to
interface the Server. To administrate all hosts the package contains a Host
Manager, a File Manager to administrate the shared files, and a Transmis-
sion Manager for all downloads/uploads.

• gridella.Server.PGrid contains the P-Grid component and all its sub-
classes to enable the full P-Grid functionality.

• gridella.Server.Comm contains communication components like man-
agers for connections and messages, workers for all types of supported pro-
tocols and message writers and readers.

• gridella.Server.Comm.Protocol contains the message classes encapsu-
lating the supported protocols.

The remainder of this chapter discusses the implementations of the individual
packages.

53

54 CHAPTER 7. IMPLEMENTATION

7.1 Client Package

The Client class provides methods to interface with and monitor the Server
by forwarding all method calls to the corresponding methods of the Server. A
Graphical User Interface (GUI) as included in the implementation should only
call these methods.
The Player class is used to open local files with applications defined by the user.

7.2 General Package

The configuration facility (Cfg class) provides global constants and access to all
configuration parameters, that were read in at startup from the property file
(gridella.properties) described in Appendix A.
A connection is represented by the (Connection) class. The class uses the
LinkedQueue class of the EDU.oswego.cs.dl.util.concurrent package to real-
ize the send and receive queue used by several classes, possibly concurrent. The
package contains a utility class (Utils) which provides useful methods to con-
vert hexadecimal strings to bytes and back, formating and tokenizing of strings.
Another utility is the XML parser (XMLParser). It is initialized with a string
containing a XML document, e.g., a received Gridella message. The parser is
then able to extract all values of the XML document. In Figure 7.1 the XML
parser is created with a string representing a received Gridella Query message
from which the Key and the Query values are needed for further processing.

�

�

�

�

...

String xmlDoc = new String("<Gridella Version=\"1.0\">

<Host IP=\"128.132.127.24\" Port=1805/>

<Query Index=3 Key=010100011>Madonna Rain</Query>

</Gridella>");

XMLParser parser = new XMLParser(xmlDoc);

String key = parser.getValue("Gridella/Query/@Key");

String query = parser.getValue("Gridella/Query/.");

...

Figure 7.1: Using the XML Parser

Furthermore the package contains data structures used by other classes to
exchange information between the different classes and packages. For example
the GUID class represents a Global Unique Identifier (GUID), which is used in

7.3. SERVER PACKAGE 55

the Gnutella and the Gridella protocols to uniquely identify hosts and messages.
The identifier is created by the (GUIDGenerator) class, shown in Figure 7.2. The
generator can be created with a given digestion algorithm or the default (SHA) is
set. The local Internet address (host name/ip address) is used to create a global
unique string. Then a string containing the current date and time is appended
followed by a random number. The MessageDigest class of the java.security

package is then used with the specified digestion algorithm and the generated
string to generate a new GUID.

7.3 Server Package

The Server class represents the interface to the server for all other classes outside
the Server package and forwards all requests to the responsible classes.
The File Manager (FileManager) manages all local shared files and therefore is re-
sponsible for all incoming Gnutella search requests. Each request is processed by
a new thread (the relevant code is shown in Figure 7.3). The thread is executed by
the PooledExecutor class of the package EDU.oswego.cs.dl.util.concurrent,
and uses the regular expression utility of GNU to find all matches between the
query and the local filenames summarized in the string mFileNames. The
matching files are then delivered to the Message Manager to create the response
message.
The Host Manager (HostManager) fulfills administrative functions to maintain

lists of Gnutella and Gridella hosts, and to keep up Gnutella connections to the
configured number of.
The Transmission Manager (TransManager) administers all locally started down-
loads and all uploads from the local host. It provides not only functions to start
and stop them, but also to restart a download at the aborted position to avoid a
multiple download.

7.4 P-Grid Package

The PGrid class handles all parameters of the P-Grid network: local path, refer-
ences to other hosts, and files managed by the local host. All these data are also
stored in local files (see Appendix B and Appendix C) and read in at startup.
Further it is responsible to keep these information up-to-date by performing Ex-
changes with other peers. Exchanges and search requests are executed by the
PooledExecutor class of the package EDU.oswego.cs.dl.util.concurrent in

56 CHAPTER 7. IMPLEMENTATION

�

�

�

�

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

public class GUIDGenerator {

...

/**

* Creates a unique ID generator and initializes it. The default

* digestion algorithm is set to SHA.

*/

public GUIDGenerator() {

algorithm = "SHA";

}

/**

* Called by the public generation methods; generates the

* seed and digests it (using the algorithm defined in

* this.algorithm); the digest is the unique ID.

* The seed is a random string of the form

* <host>/<ip adress><date><random number> and generated

* new with every call.

* @return the newly created uniqueID.

* @throws NoSuchAlgorithmException if the algorithm is

* not available in the caller’s environment.

*/

private GUID _generate() throws NoSuchAlgorithmException {

try {

seed = InetAddress.getLocalHost().toString();

} catch (UnknownHostException e) {

seed = "localhost/127.0.0.1";

} catch (SecurityException e) {

seed = "localhost/127.0.0.1";

}

seed = seed + new Date().toString();

seed = seed + new Long(new Random(new Date().getTime()).nextLong()).toString();

MessageDigest md = MessageDigest.getInstance(algorithm);

md.update(seed.getBytes());

GUID uid = new GUID(md.digest());

return uid;

}

...

Figure 7.2: Global Unique Identifier generation

7.4. P-GRID PACKAGE 57

�

�

�

�

import gnu.regexp.*;

...

/**

* Constructs a new thread to process the new query.

* @param query the new query to process.

*/

public processQuery(Query query) {

mQuery = query;

}

/**

* Starts the processing thread.

*/

public void run() {

if (mQuery.getSearchStr().trim().length() == 0)

return; // empty query

if (mQuery.getMinSpeed() > mCfg.getResourceInt("ConnectionSpeed"))

return; // higher connection speed than local required

String[] keys = Utils.tokenize(mQuery.getSearchStr().trim().toLowerCase());

Vector foundFiles = new Vector();

String pattern = new String();

for (int i = 0; i < keys.length; i++) {

pattern = pattern.concat("([^\n]*" + keys[i] + "[^\n]*)");

if ((i+1) < keys.length)

pattern = pattern.concat("|");

}

RE regexp = null;

try {

regexp = new RE(pattern, RE.REG_ICASE);

} catch (REException e) {

e.printStackTrace();

return;

}

REMatch[] matches = regexp.getAllMatches(mFileNames);

for (int i = 0; i < matches.length; i++)

foundFiles.add(mFilesByName.get(matches[i].toString()));

if (foundFiles.size() > 0)

mMsgMgr.queryResponse(mQuery, foundFiles);

}

Figure 7.3: Find matches between local files and query string

58 CHAPTER 7. IMPLEMENTATION

a separate thread.
The P-Grid search requires a mapping of query strings into binary strings, which
is performed by the PGridTree class. To achieve a uniformly distributed match-
ing of query strings to binary strings a balanced trie structure based on a sample
database of search strings is used for this computation (see Section 3.3. To speed
up startup, this trie is stored in binary format to a local file and which is used at
the next startup.
To construct and maintain the P-Grid exchanges are done periodically by the
ExchangeThread. The thread is either started by the PGrid class or because an
Exchange message was received from another host. In the first case, an Exchange
message is sent to the host to exchange and the thread waits for the response,
in the second case, an Exchange message is sent as response immediately. The
exchange algorithm described in Section 3.2 may extend the local path by one or
more random bits created by the method shown in Figure 7.4. The method on
the other host would return a string of the inverse bits.

If a search request is defined by the user or received from another host, a
dedicated thread (SearchThread) is executed for each request. The local path
and the mapped query string are used to determine the responsible host for these
query. If the local host is responsible, it uses the regular expression utility by
GNU as already described in Section 7.3 to find matches with the locally managed
files. If another host is responsible, the query is forwarded and the thread waits
for a response to arrive.

7.5 Communication Package

To accept incoming connections the CommListener class listens at the configured
port (1805 by default) and the connection is then handled by the CommManager.
The CommManager starts an CommAcceptor for each connection to decide the
requested protocol and to perform the protocol handshake. Depending on the
decided protocol, the corresponding worker, reader and writer are started. The
CommManager can also be used to connect a host by starting a CommConnector to
establish the connection and to perform the protocol handshake.

The CommReader class is used by all protocol readers to read messages from the
input stream and the CommWriter class to write messages to the output stream.
The GnutellaReader uses the CommReader to receive Gnutella messages and puts
them into the receive queue of this connection. The GnutellaWriter uses the
CommWriter to send Gnutella messages taken from the send queue of this con-
nection.

7.5. COMMUNICATION PACKAGE 59

�

�

�

�

/**

* Returns the path extension for this host.

* @param locally flag if the exchange was started by the local host or remote.

* @param bit the amount of bits.

* @return the path extension.

*/

private String pathExtension(boolean locally, int bits) {

byte[] lAddr = mCfg.getLocalHost().getAddr().getAddress(); // the local address

byte[] rAddr = mExchange.getHost().getAddr().getAddress(); // the remote address

long val = mCfg.getLocalHost().getPort(); // the local port

val += mExchange.getHost().getPort()+3; // the remote port

// add the bits of the Internet addresses

for (int i = 0; i < lAddr.length; i++)

val += (int)lAddr[i];

for (int i = 0; i < rAddr.length; i++)

val += (int)rAddr[i];

String rev;

if (locally) {

// exchange was started locally => use value

rev = Long.toBinaryString(val);

} else {

// exchange was started remote => use the inverse value

rev = Long.toBinaryString(~val);

// remove the leading ’1’ of negative values

rev = rev.substring(rev.length() - Long.toBinaryString(val).length());

}

String binary = new String();

// create binary string starting with LSB of rev

for (int i = rev.length()-1; i >= 0; i--)

binary = binary.concat(rev.substring(i, i+1));

// append the string by the requested length

while (binary.length() < bits) {

binary = binary.concat(binary);

}

return binary.substring(0, bits);

}

Figure 7.4: Find a string of bits to extend the path

60 CHAPTER 7. IMPLEMENTATION

The GridellaReader uses the CommReader to receive Gridella messages and puts
them into the receive queue of this connection. The GridellaWriter uses the
CommWriter to send Gridella messages taken from the send queue of this connec-
tion.
The HTTPReader uses the CommReader to receive HTTP messages and puts them
into the receive queue of this connection. The HTTPWriter uses the CommWriter

to send HTTP messages taken from the send queue of this connection.

The GnutellaWorker class handles all messages received of a Gnutella con-
nection. To handle all messages in time the worker can start further work-
ers if the amount of messages in the receive queue exceeds a certain thresh-
old. These threads are executed by the PooledExecutor class of the package
EDU.oswego.cs.dl.util.concurrent. Each worker handles a message, checks
its validity and adds it to the Message Manager for further processing.
The GridellaWorker class handles all messages received of a Gridella connec-
tion. It checks the messages for validity and transforms them into a general data
structure to forward the request to the PGrid class for further processing.
The HTTPWorker handles all messages received of a HTTP connection and there-
fore is responsible for accepting upload and Gnutella Push requests, which will
be forwarded to the Transmission Manager.

The Message Manager (MsgManager) administers all received and sent
Gnutella messages, forwards received messages to the corresponding hosts or
multicasts them to all connected hosts if required. Incoming Ping requests are
processed directly by the Message Manager, while search requests are forwarded
to the File Manager. Messages to be sent are simply added to the send queue of
a connection.

7.6 Protocol Package

This package includes classes representing messages of all supported protocols.
All Gnutella message classes implement the GnutMsgInterface interface. The
greeting message (GnutMsgInit) is sent after establishing the connection, and
GnutMsgInitResp is sent in response. All other messages contain a header
represented by the GnutMsgHeader class. Ping messages (GnutMsgPing) are
used to detect new hosts in the network which respond with a Pong message
(GnutMsgPong). A Query Hit message (GnutMsgQueryHit) is sent as response
to a Query message (GnutMsgQuery) and contains one or more instances of class
GnutMsgQueryHitResult representing a file matching the search criteria.

7.6. PROTOCOL PACKAGE 61

All Gridella message classes implement the GridMsgInterface interface. The
greeting message (GridMsgInit) is sent after establishing the connection, and
GridMsgInitResp is sent in response. Exchange messages (GridMsgExchange)
can contain one or more instances of class GridMsgExchangeDataItem represent-
ing a file managed by the sending peer. A Query Hit message (GridMsgQueryHit)
is sent in response to a Query message (GridMsgQuery) and contains one or more
instances of class GridMsgQueryHitResult representing a file matching the search
criteria.

A HTTP GET request (HttpMsgGet) is used to download a file from a remote
host. Therefore the filename as well as the file index are required. To support
resuming of aborted downloads the byte range to download can also be defined. If
a direct download is not possible, because the requested host is behind a firewall,
the Gnutella protocol supports pushed downloads. A host receiving a Gnutella
Push message will open a connection to the host requesting the download and
send the HTTP GIV message (HttpMsgGiv) to initialize the pushed download.
If a download request is accepted a HTTP OK message (HttpMsgOK) is returned
followed by the requested data.

62 CHAPTER 7. IMPLEMENTATION

Chapter 8

Related Work

A number of approaches are described in the literature that address scalable,
decentralized access schemes. All of them differ from our approach because they
exclusively allow exact search for file (or object) identifiers rather than text-based
search for filenames. Also the autonomy of peers is normally severely limited
with respect to the kind of search requests that they have to support whereas our
approach supports considerable freedom. Part of the related work was already
presented in Chapter 2 where current Peer-to-Peer systems like Gnutella were
discussed.

A prototype Query/Advertise system called Quad [17] was developed at the
University of Coloroda using the existing Java-based prototype of the Siena [8]
publish/subscribe middleware to provide a canonical architecture. A client acting
as a resource provider describes his available resources using a filter pattern and
establishes a subscription (advertisement) based on that filter at the nearest
server. The server then forwards the subscription filter to all of its peers. Each
peer notes where the subscription came from, and forwards it to its peers. Later,
some other clients may construct a message describing the resource it is interested
in, inserts the message into the Q/A system and the local copy of the filter is
applied at the contacted server to determine the next server to which the message
should be forwarded. If no filter matches at the local server, then it will not
be forwarded and so no inter-server traffic will be generated. Each advertiser
that receives a message must perform a detailed examination of its resources
and construct a message describing each matching resource in more detail. This
response is then routed back to the query originator. The response must include
some identification for the matching advertiser so that the query originator can
obtain the actual resource. The amount of filters a server must maintain is

63

64 CHAPTER 8. RELATED WORK

reduced by the “Covers” relation over filters. If one filter covers another filter,
only the more general filter must be stored.
Advantages of this system are the anonymity of the users, because only one
server needs to know the IP address of a client. The use of advertisements and
the “Covers” relation results in low network traffic and replies can also be routed
back along the path from advertiser to the query originator. Malformed messages
from a client and clients trying to flood the network can be caught and suppressed
by the servers.
The main disadvantage of this system is the separation of clients and servers and
therefore it is impossible to dynamically extend the network.

OceanStore [26] is a distributed, fault-tolerant, secure storage infrastructure
which was designed for billions of users and exabytes of data. It consists of
millions of individual servers, each cooperating to provide service. A group of
such servers is a pool. Data flows freely between these pools, allowing replicas of
a data object to exist anywhere, at any time. Because OceanStore is composed of
untrusted servers, it utilizes redundancy and client-side cryptographic techniques
to protect data. Although many servers may be corrupted or compromised at
a given time, the complete systems aggregate behavior assures users of stable
storage. Moreover, because client data is encrypted, servers are never able to read
it. Users are assumed to pay for service from one of many possible OceanStore
service providers (OSPs), each of which own some of the OceanStore servers.
Input data is split into fragments and spreaded over many servers, whereas only
a fraction of the fragments is needed to reconstruct the original block. Each
object is identified by a Global Unique Identifier (GUID) which is the result of a
secure hash function over the object’s content. To locate enough servers storing
fragments of a object, an overlaying routing and location layer (Tapestry) on top
of TCP/IP that maps GUIDs to individual servers is used. It uses local neighbor
maps to incrementally route messages to their destination, digit by digit, which
is similar to the routing scheme used by Gridella.
As OceanStore is designed as data storage system for “private” data, it does not
support search algorithms or data sharing for all users.

Freenet [13] is a file sharing application that allows files to be inserted, stored
and requested, while protecting the anonymity of both authors and readers. Each
node contains information about keys (that are analogous to URLs) of other
Freenet nodes and the data addressed by those keys. When a node receives a
query to which it cannot respond, it forwards the query to the node that knows
about keys that are close to the requested query by using a key similarity measure.
If a node receives a query to which it can respond, it sends the data back to the
requesting node in the chain. As responses are routed back along the chain of
nodes to the original requester, each node replicates the data. If cached data is
not requested for some period of time it is discarded. From a system point of

65

view Freenet probably is the approach closest to ours although it supports only
searches for file identifiers.

Chord [10] is a decentralized P2P lookup service that stores key/value pairs
for distributed data items. Given a key, the node responsible for storing the key’s
value can be determined using a hash function that assigns an identifier to each
node and to each key (by hashing the node’s IP address and the key). Each
key k is stored on the first node whose identifier id is equal or follows k in the
identifier space. Each node maintains a routing table with information for only
about O(log N) nodes. With a high probability, the number of nodes that must
be contacted to resolve a query in a network of N nodes is O(log N). Chord
cannot be extended to support searches more general than using key identity.

In [25] a distributed data access scheme is proposed that is structurally similar
to P-Grid. For building the access structure the method relies on global knowl-
edge, in particular, on the total number of participants. The main emphasis is on
determining the most cost-effective access paths, based on a communication cost
function and a detailed probabilistic analysis showing that with high probability
with O(log N) cost, requests for key values can be answered with bounded cost.
No replication is used in this scheme and only search on key identity is possible.

Mariposa [28] is a distributed DBMS designed for the requirements of wide-
area networks (WAN). It uses microeconomic principles, in particular auctions,
for managing query execution and storage management to avoid complex global
solutions. The approach lacks support for indexed data access.

Terminodes [18] (terminal+node) are mobile devices that provide function-
ality of both terminals and nodes of the network. A network of terminodes is
decentralized, autonomous, self-organizing and independent of any infrastructure.
As being a decentralized, self-organizing networking infrastructure it can be used
to implement self-organizing applications on top of it which is part of our future
work.

Besides these related P2P approaches there is also work going on to increase
the interoperability of P2P systems and define a universal architecture for P2P
systems. Project JXTA [15] attempts to provide a network-programming plat-
form for P2P systems. It defines a three layer P2P software architecture, a set
of six XML-based protocols, and a number of abstractions and concepts such as
peer groups, pipes, and advertisements to provide a uniform platform for appli-
cations using P2P technology and for various P2P systems to interact. We are
evaluating it for Gridella.

66 CHAPTER 8. RELATED WORK

Chapter 9

Evaluation and Future Work

9.1 Evaluation

Gridella can be viewed as a layer on top of Gnutella that provides additional
abstractions and functionality: Gnutella provides the basic communication and
Gridella adds directed, efficient search due to its underlying P-Grid approach.
This is superior to Gnutella which searches in a trial-and-error way and thus re-
quires considerably more network bandwidth. In an analytic performance study
the number of messages required to find a specific data item in Gridella and
Gnutella was compared. Peer populations between 20.000 and 200.000 were con-
sidered and peers that are online with a probability of 0.3. The goal was to
achieve a search success probability of 0.99. For Gridella it was assumed that
each peer stores 1000 data items which is necessary to determine the key length.
To achieve a search success probability of 0.99 in Gnutella it is sufficient to create
22 replicas of each data item and to have a search horizon of 70% of all Gnutella
peers, i.e., to reach 70% of the Gnutella population with a search message. Based
on this the required number of search messages (see the formula in Section 2.2.1)
can be computed. For Gridella the number of messages required to traverse the
Gridella search structure in the worst case was determined. The results are shown
in Table 9.1.

The variations for Gridella are the result of the simulation of the probabilis-
tic process simulating Gridella’s search algorithm. The steps in the results for
Gnutella correspond to the steps in the time-to-live which must be incremented
for higher numbers of peers to meet the 70% requirement. The results clearly

67

68 CHAPTER 9. EVALUATION AND FUTURE WORK

Peers Gridella messages Gnutella messages

20000 61 8744

40000 63 26240

60000 65 26240

80000 65 78728

100000 68 78728

120000 69 78728

140000 68 78728

160000 69 78728

180000 69 78728

200000 72 78728

Table 9.1: Performance comparison of Gridella and Gnutella

demonstrate the benefit of using an access structure even if we have to take into
account some modest storage demand and update overhead in Gridella.

As has been shown in [1] P-Grid offers several additional advantages which can
be exploited by Gridella: It provides analytical proofs on bounds for reliability of
answering search requests, fault-tolerance is high, and the structure of the overall
system can be configured flexibly.

Gridella has been developed in a modular architecture, which allows the re-
placement and expansion of any component. The creation of the P-Grid network
was tested successfully, which allowed the users to find and download all shared
files of the network. The used protocol for Gridella is XML-based and requires
no parts of the Gnutella protocol and is open for further protocols to be added.
Gridella can communicate with other Gridella hosts (hosts that support only the
Gridella protocol) but also with “normal” Gnutella hosts. It is therefore able
to infiltrate the existing Gnutella network. The GUI allows the user to use all
functions available from the Gridella and Gnutella network, as well as monitoring
all network traffic.

9.2. FUTURE WORK 69

9.2 Future Work

Experiments with the current implementation have shown some potential for
further improvements in structure and efficiency. We plan to release an out-of-
the-box set of Gridella components which can be included in other systems or
enriched with new GUIs.

The included GUI could also be extended by further functions, like searching
in search results, specify a maximum file size, search only for specified file exten-
sions or group the search results by filenames. To enhance the performance of
downloads, identical files on different hosts could be identified to support simul-
taneous downloads of parts of a file from different hosts.

Conceptually part our future work will concentrate on the inclusion of reputa-
tion and trust in Gridella based on the approach proposed in [3]. This approach
also relies on P-Grid so that the existing implementation can be reused in multiple
ways. The natural next step then would be to address security issues such as au-
thenticity and confidentiality of information. With these improvements in place
P2P would also be a very interesting new environment for e-commerce. Addi-
tionally we plan to add substring search and support for structured, semantically
self-organized search [4].

As IP addresses have become a scarce resource most computers on the Internet
no longer have permanent addresses. In P-Grid ad-hoc connections to peers have
to be established, which can only be done if the receiving peer has a permanent IP
address. We plan to realize an approach [16] for a completely decentralized, self-
maintaining, light-weight, and sufficiently secure peer identification service that
allows to consistently map unique peer identifications onto dynamic IP addresses
in environments with low online probability of the peers constituting the service.
For security a combination of PGP-like public key distribution and quorum-based
query scheme is applied.

To enrich the availability and performance of the P-Grid network, research
must be done to handle all kinds of attacks like DoS attacks or byzantine hosts.
Methods must be found to detect the attack and algorithms to keep the network
alive, even when a whole part of the network is unusable. Replication will not
last out to avoid this.

Also we intend to apply concepts to remedy the free-riding problem. A pos-
sible solution could be the introduction of economic concepts, where users have
to “pay” for the services they use. By paying we do not necessarily mean the
exchange of monetary values but a more market-driven approach where a micro-
payment system with an artificial currency could be used to balance requests

70 CHAPTER 9. EVALUATION AND FUTURE WORK

with offers as suggested by [23]. Offers and downloads from a peer would earn
the peer credits which it in turn could use for paying for services it requests from
other peers.

Chapter 10

Conclusions

By popularizing the P2P approach in simple yet very successful and influential
systems such as Napster and Gnutella the “Internet Community” has proven
again its incubator capabilities for revolutionary systems and has somewhat “out-
performed” the scientific community. A similar thing has occurred some time ago
with the introduction of the World-wide Web which boosted the Internet into
everyday life. Although such developments are very helpful for spreading and
advancing new technologies we know now that this often comes at the cost of
lacking scientific foundations which impedes development in the long run.

At the moment we still have the opportunity to put P2P systems on firm sci-
entific foundations by combining state-of-the-art methodological and engineering
know-how and thus advancing this paradigm. The work presented in this thesis
is a first step in this direction. It improves the highly chaotic and inefficient
Gnutella infrastructure with directed search and other advanced concepts which
enhance efficiency and provides a consistent mathematical model for further rea-
soning and research. Still a considerable amount of research and experiments
will be necessary to make P2P systems feasible for application domains beyond
mere MP3 and image exchange, for example as a new paradigm for decentralized
e-commerce systems.

To reach the long-term goal to replace the existing Gnutella infrastructure
by the P-Grid infrastructure it is necessary to evolve the implemented prototype
application to deliver a competitive alternative to the existing applications like
KaZaA, Grokster, Morpheus, LimeWire or BearShare. A better infrastructure
leads not automatically to an high number of users and thereby not to an higher
number of available data items. The modular architecture allows the replacement

71

72 CHAPTER 10. CONCLUSIONS

of certain parts of the application, so that a better GUI, additional functionality,
or further protocols can be exchanged or extended easily.

Appendix A

Sample Gridella Configuration

File

The configuration of Gridella is done via the gridella.properties file in the
application directory. It can be opened and edited with a text editor. The file is
structured in several parts and each property is represented by a name=value pair.
To guarantee the correct work of the application, only the properties described
in this manual should be changed and only the described values should be used.

A.1 General settings

1. Look & Feel: Sets the standard Look & Feel for the application.
Possible values for the property Look&Feel are: mLook&Feel.windows,
mLook&Feel.metal and mLook&Feel.motif.
Default: mLook&Feel.metal

2. Window Size: The size of the application window can be set at SizeX

and SizeY.
Default: SizeX=700, SizeY=600

3. P-Grid configuration file: The P-Grid configuration file includes infor-
mation about the Gridella network. The file can be set at CfgFile. If the
given file does not exist a new file will be constructed.
Default: PGridHosts.ini

73

74 APPENDIX A. SAMPLE GRIDELLA CONFIGURATION FILE

4. Minimal storage: This value indicates the maximal number of file ref-
erences Gridella administers. MinStorage can be any valid integer value.
The higher the value the more files are stored and administered.
Default: 100

5. P-Grid files: The local files are stored in the GridFiles file. If this file
does not exists, a new one is created at startup.
Default: PGridFiles.ini

A.2 Download

1. Temporary directory: Sets the temporary directory for all downloads.
TempDir should be an existing directory or a directory that can be created
at startup. Use forward slashes (‘/’) instead of backslashes (‘\’)!
Default: Temp/

2. Download directory: Sets the download directory for all downloads.
DownloadsDir should be an existing directory or a directory that can be
created at startup. Use forward slashes (‘/’) instead of backslashes (‘\’)!
Default: Downloads/

A.3 Network

1. Gnutella hosts: Gnutella service hosts are required to enter the Gnutella
network. A list of this hosts can be given at GnutHosts. The hosts should
be represented by their IP-address or their name and the listening port
(< ip : port > or < name : port >). The hosts should be separated by
whitespace.
Default: gnutellahosts.com:6346 router.limewire.com:6346

gnutella.hostscache.com:6346 connect1.bearshare.net:6346

connect2.bearshare.net:6346 connect3.bearshare.net:6346

connect1.gnutellanet.com:6346 connect2.gnutellanet.com:6346

connect3.gnutellanet.com:6346 connect4.gnutellanet.com:6346

2. Gridella hosts: Gridella service hosts are required to enter the Gridella
network. A list of this hosts can be given at GridHosts. The hosts should
be represented by their IP-address or their name and the listening port
(< ip : port > or < name : port >). The hosts should be separated by

A.4. LIBRARY 75

whitespace.
Default: www.p-grid.org:1805

3. Connection speed: The maximum speed this application can commu-
nicate with. ConnectionSpeed should be a valid integer representing the
speed in kb/second.
Default: 56

4. Firewall: If this host is behind a firewall, the BehindFirewall property
must be set to true, false otherwise.
Default: false

A.4 Library

1. Shared directories: Sets the shared directories. Files in these directories
can be found and downloaded by other users. SharedDirs should be a list
of existing directories separated by ‘;’. Use forward slashes (‘/’) instead of
backslashes (‘\’)!
Default: empty

2. Include sub-directories: If all sub-directories of the shared directories
should also be shared, the IncludeSubDirs property should be set to true,
false otherwise.
Default: true

3. Shared file-extensions: To share only files with certain file-extensions
a list of these extensions could be given via SharedExt. The extensions
should be separated by whitespace.
Default: mp3 wma mpg mpeg mov avi asf jpg gif rm htm html txt

swf wav ram ra qt

4. Share all files: To share all files of any type, the ShareAllExt property
could be set to true. If it is set to false, only files with the given file-
extensions are shared.
Default: false

A.5 Players

To be able to “play” files directly from the application, the serving applications
must be defined. There can be different players for different file types (file

76 APPENDIX A. SAMPLE GRIDELLA CONFIGURATION FILE

extensions). The players are defined by Player followed by the player-index,
e.g., the first player is Player1, the second Player2. The value for the player
is the filename of an application. To associate the player with files, the file
extensions handled by this player are to be set by Player?Ext, where ’?’ stands
for the player-index (1, 2, 3, ...). The list of file extensions should be separated
by whitespace.
Default:
Player1=C:/Programme/Winamp/Winamp.exe

Player1Ext=m3u asx mp1 mp2 mp3

Player2=C:/Programme/Windows Media Player/mplayer2.exe

Player2Ext=wav snd wma mid midi mpeg mpg m1v mpa mpe mov qt avi

wmf asf wmf wma

Player3=C:/Programme/RealPlayer/realplay.exe

Player3Ext=ra rm ram

A.6 Network tab

1. Auto connect: If the application should try to connect to the Gnutella
network at startup the AutoConnect property can be set to true, false
otherwise.
Default: true

2. Auto cleanup: If the application should automatically remove illegal or
erroneous hosts to reduce resource allocation the AutoCleanup property
should be set to true, false otherwise.
Default: true

3. Maximum to connect: If the application tries to connect to the Gnutella
network automatically the MaxConnect property defines the maximum num-
ber of hosts to connect concurrently. The value should be a valid integer.
Default: 10

A.7 Monitor tab

1. Show last searches: The number of the last incoming searches shown can
be set via the ShowLastSearches property. The value should be a valid
integer.
Default: 11

A.7. MONITOR TAB 77

2. Pause show last searches: If incoming searches should not be shown the
property ShowPause should be set to true, false otherwise.
Default: true

78 APPENDIX A. SAMPLE GRIDELLA CONFIGURATION FILE

Appendix B

P-Grid Routing Table

By default Gridella stores the routing table of P-Grid in the local file
PGridHosts.ini. The filename can be set in the configuration file, see Ap-
pendix A. The syntax of the file is given in Figure B.1:

�

�

�

�

. <Global Unique Identifier> <IP address> <port>

<path[0]> <host[0][0]> <host[0][1]> <host[0][2]> ...

<path[1]> <host[1][0]> <host[1][1]> <host[1][2]> ...

<path[2]> <host[2][0]> <host[2][1]> <host[2][2]> ...

...

* <replica[0]> <replica[1]> <replica[2]> ...

Figure B.1: The syntax of the routing table file

The first line begins with a ‘.’ and contains the Global Unique Identifier
(GUID), the IP address and the listening port of the local host. The following
lines begins with a bit of the local path followed by the references at this level
(starting with the most significant bits). The hosts are stored as <ip:port>. The
last line starts with ‘*’ and contains the replicas of the local host (<ip:port>).

Figure B.2 shows an example routing table of a host with the GUID
9E3776F20CC74BACA5983E5627A9186B28CC2B49, at the IP address
128.157.15.92 using port 1805. The local path is 101 and there are three
hosts at level 0 and two hosts at levels 1 and 2. Host 125.156.150.82:1805 is
a replica of the local host.

79

80 APPENDIX B. P-GRID ROUTING TABLE

�

�

�

�

. 9E3776F20CC74BACA5983E5627A9186B28CC2B49 128.157.15.92 1805

1 128.157.13.95:1805 131.157.150.122:1805 120.151.18.2:1805

0 128.127.15.2:1805 123.177.135.56:1805

1 110.137.15.12:1805 112.177.46.34:1805

* 125.156.150.82:1805

Figure B.2: Example routing table file

Appendix C

Managed P-Grid Files

Gridella stores the files it manages for the P-Grid network in the local file
PGridFiles.ini. The syntax of the file is given in Figure C.1:

�

�

�

�

<IP address>TAB<port>TAB<key>TAB<index>TAB<filesize>TAB<filename>TAB<infos>

<IP address>TAB<port>TAB<key>TAB<index>TAB<filesize>TAB<filename>TAB<infos>

<IP address>TAB<port>TAB<key>TAB<index>TAB<filesize>TAB<filename>TAB<infos>

...

Figure C.1: The syntax of the P-Grid Files file

Each file is stored in one line, beginning with the IP address followed by
a tab stop and the port of the storing host. Then comes the key (the binary
representation of the filename), the index of the file on the remote host, the size
of the file, and the filename (separated by tabs). If some extra information is
available for a file, these information (e.g. bit rate, resolution, track length in
seconds, ...) may be appended at the end.

Figure C.2 shows a sample file with three entries. For example, the third file is
on the host with the IP address 125.156.150.82 and port 1805. The key for this
file is 00011000 and the index is 3. The size of the file is 3793209 bytes and the
filename is A-HA - Forever Not Yours.mp3. There are also extra informations
available, i.e., the file’s bitrate is 128kbps.

81

82 APPENDIX C. MANAGED P-GRID FILES

�

�

�

�

128.157.15.92 1805 11101001 4 4978688 The Calling - Wherever You Will Go.mp3

123.177.135.56 1805 11101001 2 4310168 The Cranberries - Time Is Ticking Out.mp3

125.156.150.82 1805 00011000 3 3793209 A-HA - Forever Not Yours.mp3 128kbps

Figure C.2: Example P-Grid Files file

Appendix D

HTTP Messages

HTTP messages are used by the P-Grid network to download files and are iden-
tical with the corresponding Gnutella messages (see [9] for detail). Gridella can
download from Gridella and Gnutella servents, and accept download requests
from Gridella and Gnutella hosts.

D.1 HTTP GET Message

A HTTP GET message is sent by a host requesting to download a file from
another host, and can be received and sent at any time. The message contains
the File Index (unique at a host, assigned by the File manager to identify a
file), the File Name and the range of bytes requested. The range is given by
Range Begin and Range End. If the whole file is requested, the range is Range:
bytes=0-. The message syntax is shown in Figure D.1.

Figure D.2 shows an example of a download request. The index of the re-
quested file named Tori.mp3 is 458, which allows the receiving peer to identify
the file. Only a part of the file is requested as defined in the range attribute.

83

84 APPENDIX D. HTTP MESSAGES

�

�

�

�

GET /get/<File Index>/<File Name>/ HTTP/1.0\r\n

User-Agent: Gridella\r\n

Referrer: Gnutella\r\n

Connection: Keep-Alive\r\n

Range: bytes=<Range Begin>-<Range End>\r\n

\r\n

Figure D.1: HTTP GET message syntax
�

�

�

�

GET /get/458/Tori.mp3/ HTTP/1.1\r\n

User-Agent: Gridella\r\n

Referrer: Gnutella\r\n

Connection: Keep-Alive\r\n

Range: bytes=4678-12487\r\n

\r\n

Figure D.2: HTTP GET message example

D.2 HTTP GIV Message

A HTTP GIV message is used by the Gnutella network to support downloads
from a firewalled host. It is sent by a host in response to a received Gnutella
Push message (see Section 2.2), and starts a pushed download. When a Gnutella
peer is not able to download a file from a requested peer, it assumes that the
other peer is behind a firewall. Therefore it sends a Gnutella Push message to
this host, to request a pushed download. The receiver of a Push message must
immediately respond with a HTTP GIV message, containing the File Index

and the Servent Identifier of the Push message. The file index is used to re-
quest the assigned File Name from the File manager. The Servent Identifier

is a globally unique identifier representing the requesting host. Peers receiving a
HTTP GIV message respond with a download request (HTTP GET message).
The syntax of the GIV message is shown in Figure D.3.
HTTP GIV message can only be sent to Gnutella hosts, because only Gnutella
hosts send Gnutella Push messages. Currently, firewalled hosts are not sup-
ported by P-Grid, but the problem will not be solved by an equivalent to the
Gnutella Push message. Gridella only supports this message to be compatible
with Gnutella.

Figure D.4 shows an example HTTP GIV message. The Gnutella Push mes-
sage is sent by the requesting host of the previous example (Figure D.2) if the
storing host is behind a firewall. The storing host uses the file index 458 and

D.3. HTTP OK MESSAGE 85

�

�

�

�
GIV <File Index>:<Servent Identifier>/<File Name>\n\n

Figure D.3: HTTP GIV message syntax

the servent identifier 432DE235CA3EF523490F32DE6AC462EB of the received Push
message and appends the message with the file name Tori.mp3. The request-
ing host will respond to this HTTP GIV message with the HTTP GET message
shown in Figure D.2.

�

�

�

�

GIV 458:432DE235CA3EF523490F32DE6AC462EB/Tori.mp3\n\n

Figure D.4: HTTP GIV message example

D.3 HTTP OK Message

A HTTP OK message is sent in response to a received HTTP GET message and
is followed by the requested file. The message contains a response Code and a
Description. The Code can be ‘200’ with a Description ‘OK’ to indicate a
complete download, or Code ‘206’ and Description ‘Partial Content’ for partial
downloads of files. The content length is computed by ‘Range End - Range Begin

+ 1’ and indicates the length of the content following. Content range indicates
the range in the file of the content following (represented by Range Begin and
Range End), followed by the full length of the file (Content Length). The syntax
of the message is shown in Figure D.5.

�

�

�

�

HTTP/1.1 <Code> <Description>\r\n

Server: Gridella\r\n

Content-length: (<Range End>-<Range Begin>+1)\r\n

Content-Range: bytes <Range Begin>-<Range End>/<Content Length>\r\n

\r\n

Figure D.5: HTTP OK message syntax

Figure D.6 shows an example HTTP OK message. It is the response message
to the HTTP GET message in Figure D.2. As only a part of the file is requested

86 APPENDIX D. HTTP MESSAGES

the response code is 206. The range was given in the HTTP GET message (4678
- 12487). Then the calculated content length is 7810. At last the content length
of the file is given (3427643).

�

�

�

�

HTTP/1.1 206 Partial Content\r\n

Server: Gridella\r\n

Content-length: 7810\r\n

Content-Range: bytes 4678-12487/3427643\r\n

\r\n

Figure D.6: HTTP OK message example

Bibliography

[1] Karl Aberer. P-Grid: A self-organizing access structure for P2P information
systems. In Proceedings of the Sixth International Conference on Cooper-
ative Information Systems (CoopIS 2001), 2001. http://lsirwww.epfl.ch/
publications/CoopIS2001.pdf.

[2] Karl Aberer. Scalable Data Access in P2P Systems Using Unbalanced Search
Trees. In Workshop on Distributed Data and Structures (WDAS-2002), 2002.
http://www.p-grid.org/Papers/WDAS2002.pdf.

[3] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-Peer In-
formation System. Technical Report DSC/2001/029, Swiss Federal Institute
of Technology, Lausanne (EPFL), 2001. http:/lsirwww.epfl.ch/publications/
P2P-Trust.pdf.

[4] Karl Aberer and Manfred Hauswirth. Semantic Gossiping. In Database
and Information Systems Research for Semantic Web and Enterprises,
Invitational Workshop, 2002. http://lsirpeople.epfl.ch/hauswirth/papers/
SemWeb.pdf.

[5] Karl Aberer, Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt.
Improving Data Access in P2P Systems. IEEE Internet Computing, 6(1),
January/February 2002. http://www.p-grid.org/Papers/IC2002.pdf.

[6] Eytan Adar and Bernardo A. Huberman. Free Riding on Gnutella. Technical
report, Xerox PARC, 9 September 2000. http://www.firstmonday.dk/issues/
issue5 10/adar/index.html.

[7] Audiogalaxy homepage, 2001. http://www.audiogalaxy.com/.

[8] Antonio Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achieving Expressive-
ness and Scalability in an Internet-Scale Event Notification Service. In Pro-
ceedings of the 19th ACM Symposium on Principles of Distributed Comput-
ing, July 2000. http://www.pdos.lcs.mit.edu/papers/chord:hotos01/hotos8.
pdf.

87

88 BIBLIOGRAPHY

[9] The Gnutella Protocol Specification v0.4 (Document Revision 1.2), June 15
2001. http://www9.limewire.com/developer/gnutella protocol 0.4.pdf.

[10] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert
Morris, Ion Stoica, and Hari Balakrishnan. Building Peer-to-Peer Sys-
tems with Chord, a Distributed Lookup Service. In Proceedings of the
8th Workshop on Hot Topics in Operating Systems (HotOS-VIII), 2001.
http://www.pdos.lcs.mit.edu/papers/chord:hotos01/hotos8.pdf.

[11] FastTrack homepage, 2001. http://www.fasttrack.nu/.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. Network Working Group, January 1997.
RFC 2068. http://www.ietf.org/rfc/rfc2068.txt.

[13] Freenet Project, 2001. http://FreenetProject.org.

[14] Gnutella homepage, 2001. http://gnutella.wego.com/.

[15] Li Gong. JXTA: A Network Programming Environment. IEEE Inter-
net Computing, 5(3):88–95, May/June 2001. http://dlib.computer.org/ic/
books/ic2001/pdf/w3088.pdf.

[16] Manfred Hauswirth, Anwitaman Datta, and Karl Aberer. Handling Iden-
tity in Peer-to-Peer Systems. Technical report, Laboratoire de Systèmes
d’Information Répartis (LSIR), École Polytechnique Fédérale de Lausanne
(EPFL), 2002. http://lsirpeople.epfl.ch/hauswirth/papers/TR-IC-2002-67.
pdf.

[17] Dennis Heimbigner. Adapting Publish/Subscribe Middleware to Achieve
Gnutella-like Functionality. In 2001 ACM Symposium on Applied Computing
(SAC 2001): Special Track on Coordination Models, Languages and Applica-
tions, March 2001. http://www.cs.colorado.edu/serl/papers/CU-CS-909-00.
pdf.

[18] J. P. Hubaux, Th.Gross, J.-Y. Le Boudec, and M. Vetterli. Towards self-
organized mobile ad-hoc networks: the Terminodes project. IEEE Communi-
cations Magazine, January 2001. http://www.terminodes.org/publications/
commag01a.pdf.

[19] iMesh homepage, 2001. http://www.iMesh.com/.

[20] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on Air: Organi-
zation and Access. IEEE Transactions on Knowledge and Data Engineering,
9(3), May/June 1997.

[21] Mihajlo A. Jovanovic, Fred S. Annexstein, and Kenneth A. Berman. Scal-
ability Issues in Large Peer-to-Peer Networks - A Case Study of Gnutella.
University of Cincinnati, Laboratory for Networks and Applied Graph The-
ory, 2001. http://www.ececs.uc.edu/∼mjovanov/Research/paper.ps.

[22] Jon Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective.
Technical Report 99-1776, Cornell Computer Science, October 1999. http:
//www.cs.cornell.edu/home/kleinber/swn.pdf.

[23] Mojo Nation Technology Overview, 14 February 2000. http://www.
mojonation.net/docs/technical overview.shtml.

[24] Napster homepage, 2001. http://www.napster.com/.

[25] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Access-
ing Nearby Copies of Replicated Objects in a Distributed Environment. In
Proceedings of the 9th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 311–20, June 1997. http://www.cs.utexas.edu/users/
plaxton/ps/1997/spaa.ps.

[26] Sean Rhea. Maintenance-free Global Data Storage. IEEE Internet Comput-
ing, 5(5), September/October 2001.

[27] Kunwadee Sripanidkulchai. The popularity of Gnutella queries and its impli-
cations on scalability. http://www.cs.cmu.edu/∼kunwadee/research/p2p/
gnutella.html, February 2001.

[28] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam
Sah, Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: A Wide-Area
Distributed Database System. VLDB Journal, 5(1):48–63, 1996. http:
//epoch.CS.Berkeley.EDU:8000/personal/aoki/papers/vldbj96.pdf.

[29] Kelly Truelove and Andrew Chasin. Morpheus Out of the Underworld, 2001.
http://www.openp2p.com/pub/a/p2p/2001/07/02/morpheus.html.

[30] William Wong. Furi hompage. http://www.jps.net/williamw/furi/, 2001.

[31] Haruo Yokota, Yasuhiko Kanemasa, and Jun Miyazaki. Fat-Btree: An
Update-Conscious Parallel Directory Structure. In Proceedings of the In-
ternational Conference on Data Engineering (ICDE), 1999.

École Polytechnique Fédérale de Lausanne (EPFL)

Laboratoire de Systèmes d’Information Répartis (LSIR)

1015 Lausanne, Switzerland

http://lsirwww.epfl.ch/

