Ulysses: A Robust, Low-Diameter, Low-Latency Peer-to-Peer
Network*

Abhishek Kumar
College of Computing,

Georgia Institute of Technology,

{akumar, merugu, jx}@cc.gatech.edu

Abstract

A number of Distributed Hash Table (DHT)-based pro-
tocols have been proposed to address the issue of scala-
bility in peer-to-peer networks. In this paper, we present
Ulysses, a peer-to-peer network based on the butterfly
topology that achieves the theoretical lower bound of
lololgogn on network diameter when the average routing
table size at nodes is no more than logn. Compared to
existing DHT-based schemes with similar routing table
size, Ulysses reduces the network diameter by a factor
of loglogn, which is 2-4 for typical configurations. This
translates into the same amount of reduction on query
latency and average traffic per link/node. In addition,
Ulysses maintains the same level of robustness in terms
of routing in the face of faults and recovering from grace-
ful/ungraceful joins and departures, as provided by exist-
ing DHT-based schemes. The performance of the protocol
has been evaluated using both analysis and simulation.

1. Introduction

Recent years have seen a considerable amount of re-
search effort devoted to the development of distributed
and coordinated protocols for scalable peer-to-peer file
sharing (e.g., [15, 18, 12, 9, 10]). These protocols gener-
ally rely upon Distributed Hash Tables (DHTSs) to al-
low each node to maintain a relatively small routing
table, while taking a relatively small number of over-
lay routing hops to route a query to the node responsi-
ble for the particular DHT key. DHT-based protocols
have great potential to serve as the foundation for a
wide-range of new Internet services (e.g.,[14, 1]).

* This paper was supported in part by the National Science
Foundation under Grants ANI-0113911, ANI-0081557, DMS-
0245530 and under NSF CAREER Award Grant ANI-0238315,
and by the NSA under Grant MDA-904-03-1-0052.

Shashidhar Merugu Jun (Jim) Xu

Xingxing Yu
School of Mathematics,
Georgia Institute of Technology,
yu@math.gatech.edu

An important and fundamental question in the
space of DHT-based peer-to-peer protocols con-
cerns the tradeoff between the routing table size,
i.e., number of neighbors a DHT node has to main-
tain, and the network diameter, i.e., the number
of hops a query needs to travel in the worst case.
It is further important for two reasons. The num-
ber of nodes n in a peer-to-peer network could be very
large, hence differences in values that are insignifi-
cant for small n have the potential to be important.
Second, because each hop in a peer-to-peer net-
work is an application-layer overlay hop, savings in
query hops are magnified when one considers the net-
work layer impact.

It was observed in [11] that existing DHT schemes
tend to have either (1) a routing table of size O(log, n)
and network diameter of O(logyn) (including [15, 18,
12, 9]), or (2) a routing table of size d and network
diameter of O(dn'/?) (including [10]). Tt was asked in
[11] whether Q(log, n) and Q(dn'/¢) are the asymptotic
lower bounds for the network diameter, when the rout-
ing table sizes are O(log,n) and d, respectively. Re-
cent work [16] shows that neither is the lower bound:
the actual bounds are Q(l%l(;’fif)gzn) and Q(log,n) re-
spectively.

An open question posed in [16] concerns the design
of a DHT-based scheme that achieves the lower bounds
without causing congestion, where congestion is defined
informally as requiring certain nodes and edges to for-
ward traffic that is many times the average, even un-
der uniform load. The main contribution of this paper is
Ulysses, a DHT-based protocol based on a butterfly topol-
ogy that meets the theoretical lower bounds without con-
gestion. In particular, with a routing table size of about
log, n, Ulysses can reach the diameter of fmgk;gl%] +1,
as compared to log, n in most existing schemes!. This

1 In section 6, we discuss some recently proposed schemes that

represents a significant reduction in network diameter.
For example, in a network of 1 million (~ 22°) nodes,
the average diameter of Chord? [15] is 20, but that of
Ulysses is 6, with similar average routing table sizes (20
for Chord and around 17 for Ulysses). For larger val-
ues of n, the advantages of Ulysses become even more
pronounced (e.g., 30 hops versus 7 hops when n = 10°).

Ulysses not only achieves a reduction in network
diameter (the worst-case query latency), by a factor
of log,log, n, but also achieves a reduction factor of
%log2 log, n on the average query latency, compared
to Chord [15]. By Little’s Law [5], this reduction re-
sults in significant reduction in the overall network traf-
fic in the network as each query “travels less”. There-
fore, with the same number of nodes and links and the
same offered load (queries), each Ulysses link or node
will have to carry less traffic than in Chord.

Ulysses is based on the well-known butterfly network
structure [13]. The desired properties do not come im-
mediately, however, and require adapting the butterfly
structure for use in practical peer-to-peer networks by
meeting three primary challenges. First, the basic but-
terfly has edge congestion where some edges carry sig-
nificantly more traffic than average. To address this,
we add edges to the butterfly to avoid edge conges-
tion while maintaining small routing table size. Second,
we must embed the butterfly structure onto a dynam-
ically changing set of peers. Third, since peer-to-peer
networks are subject to considerable dynamics as nodes
join and leave, we must provide for procedures that al-
low routing to stabilize upon joins and leaves, and pro-
vide for correct routing while stabilization is occurring.

The remainder of the paper is structured as follows.
We give an overview of our design objectives and the
Ulysses solution approach in Section 2. After introduc-
ing the static butterfly topology and its shortcomings
in Section 3, we describe Ulysses in detail in Section 4.
In Section 5, we discuss results of our performance eval-
uation by simulation. Section 6 has other related work
followed by concluding remarks in Section 7.

2. Design Overview of Ulysses

In this section, we first describe three major design
objectives of Ulysses. Then we give a brief overview of
how these objectives are achieved in Ulysses.

achieve the bound of 0(1(’;2‘”?7(2);”).

2 For comparison we have chosen Chord as a representative of
the whole family of DHT based protocols that have a network
diameter of O(log n) and routing table size of O(logn).

2.1. Design Objectives

Low latency routing: Ulysses tries to achieve the
lowest possible network diameter with a routing table
size of about logn per node, without causing excessive
“stress” at any overlay link or node. While the butter-
fly topology can help us achieve this in theory, it re-
mains a challenging task to embed the butterfly struc-
ture in a dynamic network so that two important prop-
erties are satisfied. First, each query, starting from any
location, should be able to find its way to the destina-
tion within the same small number of steps as in a but-
terfly network. Second, the routing table size should be
about logn at each node. Both properties need to be
maintained despite node joins and departures.
Self-Stabilization: The system should be able to re-
cover to a “correct state” after joins and leaves tem-
porarily “perturb” the system. The recovery should not
only be fast and inexpensive, but also handle multi-
ple concurrent faults that are possible in a dynamic
peer-to-peer environment.

Robustness: The protocol must include the ability
to route a query around faulty nodes to reach a non-
faulty destination. This capability is orthogonal to self-
stabilization: self-stabilization says that the network
will eventually recover from faults whereas the robust-
ness says that most of the network should function de-
spite the existence of transient faults. Also, from the
performance point of view, such “detours” should not
increase the query latency too much, even when a large
percentage of nodes are faulty in the network.

2.2. How Ulysses achieves these objectives

The multidimensional static butterfly topology, de-
scribed in the next section, is known to have a diame-
ter of O(logn/loglogn) with an out-degree of logn at
each node. However, past attempts to use this topol-
ogy in DHT based peer to peer networks have only
used the constant out-degree version of this topology
that achieves a diameter of O(logn) [7]. To the best of
our knowledge, Ulysses is the first to propose and use
an enhanced version of this topology to achieve a di-
ameter of O(logn/loglogn) with average out-degree
no more than logn. After proposing the enhanced ver-
sion of the butterfly topology in the next section we
concentrate our design effort, described in section 4 on
embedding this topology in a peer-to-peer network to
achieve the objective of low latency routing.

Ulysses has a set of self-stabilization mechanisms
to handle joins as well as graceful and ungraceful de-
partures of nodes. Our embedding of the enhanced
butterfly topology, combined with a “zoning” scheme

that partitions the key-space among different nodes
is designed to accommodate such dynamics. We de-
scribe these in sections 4.4 and 4.5. A salient feature of
Ulysses’ self-stabilization mechanisms is their low cost,
discussed further in section 4.5.3.

Ulysses is designed to be robust. The routing mech-
anism contains an implicit “detour protocol” that redi-
rects the query to a different node when a fault is en-
countered on the routing path. Our simulation results
show that even under severe cases where 20% percent
of nodes are rendered inoperable, the system can still
serve all the queries destined for non-faulty nodes with
very high probability.

3. The static butterfly topology

The structure of Ulysses is inspired from the well
known butterfly topology [13]. In this section, we first
describe the static butterfly which has low diameter but
is not a practical peer-to-peer network because it re-
quires a precise number of nodes at each level, function-
ing correctly at all times for correct routing. Another
problem with this static butterfly is that some of the
edges carry a disproportionately high amount of traf-
fic as compared to the average, or in other words, have
a high edge stress. We describe a solution to this prob-
lem of high edge stress by adding shortcut links. This
solution is subsequently used in the Ulysses network as
explained in Section 4.

3.1. The static butterfly topology and its
“stress” problem

The general static butterfly network can be de-
fined as follows. A (k,r)-butterfly is a directed
graph with n = krF vertices, where k and r are re-
ferred to as the diameter and the degree, respec-

tively. Each vertex is of the form (xo, %1, -, Zg—1;%),
where 0 < i<k—1and 0 <zg,zy, -, Tp_1 <1 —1,
ie. xg,x1,---,x,_1 are base r digits. For each ver-
tex (wg,T1,---,Tr_1;i), we refer to i as its leveP
and (zg,Z1,...,ZLk—1) as its row. From each vertex
(zo,x1,--+,%k—1;1%), there is a directed edge to all ver-
tices of the form (xg,z1, -+, %i, Yy, Tiya, -, Tk_1;4+1)
when i # k—1 and (y,21,...,25_1;0) when i = k — 1.
The routing from vertex (zo,z1,---,Tk_1;4) to ver-

tex (Yo, Y1, ,Yk—1;J) proceeds in two phases. In the
first phase, x;41 successively changes to y;+1 while go-
ing from level ¢ to level ¢ + 1, z;42 to y;+2 while going
from level ¢ + 1 to level ¢ + 2, and so on. This pro-
cess continues until all of the z’s have been changed to

3 Throughout this paper, it is assumed that additive operations
on level are modulo k.

y’s, and then in the second phase, we continue along
row (Yo, Y1, -, Yk—1) to level j.

In [16], the notion of edge congestion free is defined
under the assumption of uniform traffic load*. To avoid
confusion with transport layer congestion control, we
shall use the term edge stress free instead of edge con-
gestion free.

Definition 1 We say that a network is edge stress free
if the amount of traffic going through any edge in the net-
work is no more than c times the average. Herec > 1 is a
small constant.

The static (k,r) butterfly is not edge-stress
free. Consider the edges going from a node
(3&'0,.’13'1, e ,.Z'k_l;i) to (xo,ZL‘l, - Tp—1;1+ 1), i.e. the
edges between nodes with same row identifier but dif-
ferent levels. Such edges are called horizontal links.
Non-horizontal links are called cross links. In the
static (k,r) butterfly, each node has exactly one hori-
zontal link and (r — 1) cross links. A query traverses
k cross links on average in the first phase of rout-
ing and ’“2;1 horizontal links in the second phase
of routing as described above. Therefore, a horizon-
tal link carries about § times more traffic than a cross
link.

3.2. Shortcut links to remove stress

We solve this stress problem by adding k£ —2 “short-
cut” links from the node (zo,z1,---,zk_1;%) at
level ¢ to nodes (zg,z1,---,Zr_1;j) at level j,
vj € {0,1,---,k —1},4 # i,i + 1. Thus, in the afore-
mentioned butterfly routing, once x’s have all changed
to y’s in the first phase of routing, only one jump is
needed in the second phase to reach the destination
through one of these “short-cut” links. This clearly has
the additional benefit of reducing the network diame-
ter from 2k—1 to k+1. Recall that the number of nodes
n is related to the number of levels k through the equa-
tion n = krk. If we choose k to be logn/loglogn,

log n
we get 7 = (n/ogn)/ stosm < logn. Thus the in-

loglogn
crease in the routing table size due to the shortcut links
isfrom r =logantor+k—2= loggn—l—iloézgl;g’;n -9

For example, when there are 229 nodes in the net-
work, this represents an increase from 20 to 23 entries
in the routing table.

This topology is not yet suitable for a peer to peer
network because it requires a precise number of nodes

4 Since the hashing scheme in a DHT based network distributes
the keys uniformly across the key space, the queries are uni-
formly distributed across nodes in the network. In addition, if
the sources of queries are themselves assumed to be distributed
uniformly, the resulting scenario is one of uniform traffic load.

at each level, for correct routing. The Ulysses network
uses a modified version of this topology which can ac-
commodate the dynamics of a peer-to-peer network.

4. Design of the Ulysses Protocol

In this section we present the detailed design of
Ulysses that achieves the objectives outlined in Sec-
tion 2. We first present a novel naming and zoning
scheme, and a description of the allocation of differ-
ent portions of the DHT to nodes. We then describe
the topology of the Ulysses network and the details
of routing. The section ends with a description of the
self-stabilization mechanism of Ulysses, which handles
node joins and departures.

4.1. Naming and zoning in the Ulysses net-
work

In Ulysses, we use a naming convention that is dif-
ferent from the one used above in the static butterfly.
This naming convention retains the essential notions of
row and level while providing a description that flexi-
bly captures the details of allocation of portions of the
hash table to different nodes as well as the dynamics
of node joins and departures.

4.1.1. Naming convention In the Ulysses network
with %k levels and n nodes, each DHT node represents
a zone in the name-space, and is identified by a tu-
ple (P,1). Here P is a binary string, also known as the
row identifier and [is the level, where 0 <[< k — 1.
The correspondence between the row identifier P of
a Ulysses node and the k-dimensional row identifier
(zo,x1,...,Tp—1) in a static butterfly is as follows : The
bits at location 4,7 + k,¢ 4+ 2k... in P represent x; in
(zo,%1,-.-,Tg_1)- In other words, the coordinate of the
node (P, 1) in the i** dimension, is given by the concate-
nation of every kt" bit in the string P starting at the i¢"
location. For example if kK = 5 and P = aga;...a12, then
azara;z is the coordinate of P in 2" dimension (i.e. x5
in the row identifier of a static butterfly). The expected
length of row identifier P of a node in a Ulysses net-
work with n nodes and k levels is log, 7. But the length
of P for individual nodes changes due to dynamic ar-
rival and departure of nodes, as explained later in this
section. In Ulysses, the search key is also mapped to
a tuple (a,l) using one or more uniform hash func-
tions. Again, I corresponds to the level. The row iden-
tifier o is m bits long, where m is a constant cho-
sen such that k& x 2™ is large enough to assign unique
keys for all objects stored in the DHT. In particular,
k x 2™ >> n, which is an assumption implicit in all
DHT based schemes (e.g. [15, 18, 12, 9, 10]).

00
f\ 0
TR § ~—=% .
5 100 S 010 o 5]
‘B S | 1017 10 010
2 |1Se= g
=) o011 o011 — n
o o \\%
% u .
%‘%0
Level O Level 1 Level O

Figure 1: A Ulysses butterfly with 2 levels and
11 nodes. Links from only 2 nodes in each level
are shown for clarity. This figure is “wrapped
around” with level 0 shown twice.

4.1.2. Distributing the Hash Table The struc-
ture of Ulysses is closely related to the way different
nodes are allocated different portions of the DHT. A
node with identifier (P,1) stores all keys (a,) such that
P is a prefiz of a. In this manner the key-space is par-
titioned into disjoint zones of responsibility, with one
DHT node handling each zone. A key (a,l) belongs to
a zone (P,1) if and only if P is a prefix of a. For exam-
ple, the keys (1011001,3) and (1011100, 3) would be-
long to the zone (1011, 3). From the description of node
joins and departures, to come later in this section, it
will become clear that no two nodes P and P’ exist in
the same level [such that P is a prefix of P'.

Intuitively, the key-space of a Ulysses k-butterfly can
be seen as k different k-dimensional level-cuboids, one
level-cuboid corresponding to each level. Each level-
cuboid is of size 2/* in each dimension. A search key
(a,1) maps to a specific point in the I** level-cuboid. A
zone P is said to be a subset of another zone P’ if P’ is
a prefix of P. Note that larger zones have smaller iden-
tifiers and vice versa.

4.2. Topology of the Ulysses network

Having specified the zones of responsibility for nodes
in the Ulysses network, we proceed to define the links
between these nodes. The topology of the Ulysses net-
work captures the link structure of the static butterfly
described earlier in 3.1. In particular, we wish to retain
the property that links from nodes in level ¢ to those in
level i 4+ 1 fan-out along the dimension ¢+ 1. The short-
cut links that were introduced in 3.2 to make the net-
work edge stress free and reduce its diameter, are also
retained in Ulysses.

Geometrically, the links can be imagined as follows:
each zone-cuboid (P,l) in the level | has links to all
those zone-cuboids (P’',1 + 1) in the level (I + 1) such
that P’ has an overlap with P in all dimensions other

than the dimension ¢ + 1. Since we do not place the
requirement of an overlap in the dimension i + 1, the
links fan-out along this dimension. For example, in Fig-
ure 1, the node 00 at level 0 has links to the three nodes
00,010 and 011 in level 1, because their zones have an
overlap with the zone of node 00 along all dimensions
other than dimension 1. Thus the links from node 00
at level 0 fan out along dimension 1.

Another way visualize this process is the following :
Project the “shadow” zone of the node (P,!l) on level
I+ 1 and stretch it along the dimension [+ 1. (P,]) has
links to all nodes (P',] + 1) whose zones overlap with
this stretched shadow. Returning to Fig. 1, if we project
the zone of node {011,0} onto level 1 and stretch this
“shadow” along the vertical direction (dimension 1),
it overlaps with zones {011,1} and {00,1}. This ex-
plains why node {011,0} has links to nodes {011,1}
and {00,1}. These fan-out links correspond to the hor-
izontal and cross links in the butterfly topology.

Additionally, each node (P, %) has links to all nodes
(P', 7) such that either P is a prefix of P’ or vice versa,
for any value of j. These correspond to the “shortcut”
links in the butterfly topology. The geometric intuition
here is that a zone/node will have a link to all zones
overlapping with its “shadow” at all levels.

4.3. Routing in a Ulysses butterfly

Routing in the Ulysses network can be visualized as
follows. A query for the key (a,%) originates at some
random node (P,l) in the network. In the first step,
(P,1) forwards this query to the node (P',l + 1) such
that the location of a in dimension ! + 1 matches the
range of the zone P’ in dimension [+ 1. We say that
(P',1 + 1) “locks” on the destination « along the di-
mension [+ 1. The node (P’',l+ 1) forwards this query
to (P",l + 2) such that the location of « in dimen-
sions [+ 1 and [+ 2 lies within the range of the zone
P' in dimension [4+ 1 and [+ 2. Thus in each step, the
query gets locked in one additional dimension, and af-
ter the first k steps the query reaches a node (@, 1) such
that « lies within the zone @ in all the k dimensions.
If the level [is the same as the level ¢ of the key that is
being searched, then () must contain «, and the rout-
ing is complete. Otherwise the node (Q,1) forwards the
query on its shortcut link to node (Q,), which must
be responsible for the key (a,).

The pseudo-code for the forwarding operation at a
node is shown in Figure 2. At an individual node (P, 1)
in the Ulysses network, routing of a query for the key
(a, 1) proceeds as follows. First the set S of dimensions
in which the query has already been locked is computed
locally by examining the bits of P and « (line 5). If the

query has been locked in all dimensions and the level
of this node is the same as the level of the key that
is being queried for, then the routing is complete (line
7). If all the dimensions have been locked but the lev-
els do not match, the query is forwarded on the short-
cut link to the correct level (line 8). If one or more di-
mensions do not match, the query is forwarded to the
next level locking dimension [+ 1, while maintaining
the lock on the dimensions in S (line 9). Since the for-
warding operation at any node depends only on the
destination node address, it is stateless (i.e., “marko-
vian”).

4.3.1. Robustness Due to dynamic departures, a
node (P, 1) might identify (P’,141) as the next hop for
a query, just after (P',l + 1) has departed but before
the self-stabilization mechanism of Ulysses has repaired
this fault. In such a situation the current node (P,1)
needs to “route around” this failed neighbor. This is
achieved in Ulysses by simply requiring the node (P,)
to forward the query to any of its neighbors in level
I + 1 while maintaining the condition that the dimen-
sions in S that have been locked already remain locked
after this step. This simple “detour” mechanism is ade-
quate to correctly reroute most queries that encounter
faulty nodes on their paths. A more complete descrip-
tion of the robustness features of Ulysses, including the
detour mechanism and a vicious cycle avoidance mech-
anism that together guarantee successful rerouting of
all queries destined to alive nodes, is presented in [6].

4.3.2. An Optimization Shortcut links can also be
used in cases where the query is already locked in the
next two or more dimensions, thus reducing the latency
in some cases. In this case, a node can directly forward
the query on its shortcut link to the level j such that
Jj + 1 is the first level (in a cyclic manner) that needs
to be locked. Although this optimization does not re-
duce the worst case diameter, it does reduce the av-
erage diameter, especially for queries that have to be
re-routed due to failures on their paths.

4.4. Self-stabilization on join of a new node

4.4.1. Finding a row A new node N that would
like to join the network first randomly generates a key
(a, 1) and sends a query for this key, through a node X
that is already in the Ulysses network. To find such an
X, the new node can use any of the discovery mech-
anisms proposed in the literature, such as [3]. This
query, routed through the Ulysses network, will eventu-
ally reach the node O with identifier (P,[) currently re-
sponsible for the key (a,). Node O then splits its zone
of responsibility in two and assigns one half to the new

Routing algorithm at a node (P,%)
input: a query key (a,j)

output: a ‘‘next-hop’’ decision
begin

SOON®O WD R

e e
B w N

. end

Compute the set of dimensions S on which P has locked a
if (S == Q) then /#* all dimensions have been locked */
if (4 == j) then destination has been reached;
else forward the packet through a shortcut link to the destination, at level j;
else forward the packet to a neighbor (P’,i+ 1) that has locked o in on the set SU{i+ 1};
/* existence of such a neighbor guaranteed by Lemma 2 */
if (the ‘‘next-hop’’ is faulty in line 8 or line 9)
if ((S==Q—{i+1}) & (i+1==j)) then nothing can be done; /* the destination is faulty */
else forward the packet to a random neighbor (P’,i+ 1) that locks a on S;

Figure 2: Algorithm for routing at a node, without the optimization in Sec. 4.3.2.

node N as follows. O changes its own row identifier
to “P||0” and assigns the new node N the row identi-
fier “P||1”. Both nodes remain in level /. Here “||” de-
notes the concatenation operation. The keys that are
stored at the node O but are better matched now with
the new node A’s identifier are handed over to NV. The
nodes N and O are referred to as buddies. Formally
P = buddy(P'") if and only if P and P’ differ in only
their last bit. This simple mechanism to choose a zone
that should be split to accommodate the new node,
produces a remarkably even distribution of zone sizes.
Note that in an ideal situation, all the nodes would
have the same zone-size of *2° where k is the num-
ber of levels, n the total number of nodes in the net-
work and 2™ is the key-space at each level.

4.4.2. Updating the routing tables The node O
also informs the node A/ about its “original” neighbors
in its routing table. Since the new zones of the nodes
N and O are subsets of the original zone of responsibil-
ity of the node O, their routing tables are also going to
be subsets of O’s original routing table. Hence the rout-
ing table of the new node A can be computed locally,
after a single message exchange from node O that in-
forms A of the contents of the original routing table
of O. However, the nodes in the preceding level [— 1
that consider O as a neighbor (referred to as “predeces-
sors”), should be informed of this split. It is worth not-
ing at this point that the neighbor relation in a Ulysses
butterfly is not symmetric.

4.5. Self-stabilization on Node Departures

Nodes can depart from a Ulysses network at will,
at any point in time. Ideally, a departing node should
leave gracefully, cleaning up the routing tables of its
predecessors and handing over the keys that it holds be-
fore departing. But the Ulysses network can robustly

handle wungraceful departures too, where nodes stop
communicating abruptly and drop out without per-
forming any housekeeping operations.

4.5.1. Graceful departures When a node with
identifier (P,l) leaves the network, it needs to ex-
plicitly hand over its keys, to another node at the
same level. If its buddy has not been split, these
two nodes must have zones of equal size. These
zones can be merged to create a zone twice the
size. In case the buddy’s zone has split into multi-
ple smaller zones, a more sophisticated protocol, dis-
cussed in [6], can be used to identify a node with one
of these smaller zones. This node will then be “pro-
moted” to take over the zone of the departing node.

Similar to the case of a join, the nodes in the previ-
ous level that consider the departing node as a neigh-
bor should also be informed of the departure. This can
again be done through explicit updates with a mes-
sage complexity of O(logn) as discussed later in sec-
tion 4.5.3.

4.5.2. Ungraceful departures Nodes in peer-to-
peer networks might abruptly stop communicating due
to a host of reasons, ranging from connectivity loss or
power failures to large catastrophic events that might
affect a significant part of the Internet. We classify
as ungraceful all departures that fail to complete the
housekeeping operations required for a graceful depar-
ture. Handling an ungraceful departure consists of two
phases - a detection phase and a repair/housekeeping
phase. The detection itself might occur either by a
time-out of periodic keep-alive messages or through an
asynchronous mechanism where a node finds out that
its successor has failed when a query forwarding oper-
ation to that successor is unsuccessful. Time-out based
detection has higher overheads due to the periodic mes-
sage exchange and does not seem to offer any clear ad-
vantage over the low-overhead asynchronous detection

in the context of peer-to-peer networks. We thus feel
that asynchronous detection is a more suitable candi-
date for ungraceful departures in a Ulysses network.

Once a node has detected the ungraceful departure
of one of its neighbors, it initiates and carries through
all the housekeeping operations on behalf of the un-
gracefully departed node. The housekeeping operations
themselves are the same as in the case of graceful de-
parture. Note that the keys held by the ungracefully
departed node itself cannot be recovered unless there
is some kind of replication or redundancy built into the
storage scheme. Such schemes are crucial to the oper-
ation of a DHT based peer-to-peer network that ex-
pects to accommodate ungraceful departures, but are
orthogonal to the design objectives of Ulysses and are
thus not addressed in this paper.

4.5.3. Cost of self-stabilization The self-
stabilization cost in Ulysses is O(logn) per join/leave,
while in Chord it is O(log®n). The constant fac-
tor in O(logn) is about three for a join or about six
for a departure. The intuitive reason for this improve-
ment is the following. In both Chord and Ulysses, each
join/departure affects about logn other nodes that
have a link to the nodes affected by the join/leave,
and they all need to be notified. In Ulysses, be-
cause the “coordinates” of these neighbors are very
close to the affected nodes, a property of butter-
fly topology, each “notification” only travels three
hops. In Chord, on the other hand, each notifica-
tion will travel O(logn) hops. This results in the dif-
ference in message complexity of self-stabilization be-
tween Ulysses and Chord, as a consequence of the
Little’s Law [5].

4.6. Choice of number of levels

One of the design parameters in the Ulysses network
is the number of levels k. The total number of nodes n
in the network and number of levels k determine the av-
erage degree (routing table size (r)) of nodes in the net-
work, according to the equation: n = kr¥. On the other
hand, the diameter of Ulysses is exactly k£ + 1. There-
fore, the different tradeoff points between the size of
the routing tables and the diameter of the network can
be obtained by varying k. For fair comparisons with
other DHT-based protocols, we configure k such that
the routing table size of Ulysses is no more than log, n.
Given a network size n, we define X(n) as the smallest
value of k, for which the routing table size does not ex-
ceed log, n, i.e., n < k(logy, n)*. In other words, given
the routing table size of log, n, setting k to K(n) al-
lows Ulysses to achieve the minimum diameter. The
values of K(n) for various ranges of n are as follows:

2 n<28
3 26<n<2?
4 212 <p <218
5 28 <n <2

Ideally the number of levels should be K(n) when
the network size is n. But Ulysses does not adapt k to
the changing values of n dynamically. Instead, a value
for k is chosen a priori, based on off-line information re-
garding the approximate size ranges of the peer-to-peer
network. Fixing k in this manner can be justified as fol-
lows: First, a given value of k can be optimal for a wide
range of values of n (e.g., K(n) = 5 for n = 256K to
n = 16M). Second, even if n changes drastically so
that the current number of levels is not optimal, the
performance of Ulysses in terms of diameter or latency
will not be affected, and only the average routing table
size will increase or decrease slightly. Thus, the per-
formance of Ulysses is quite insensitive to the choice
of number of levels and even non-optimal choices do
not impact performance significantly®. For our experi-
ments reported in the next section, we select the num-
ber of levels of Ulysses network to be K(n).

K(n) =

5. Performance Evaluation

We have evaluated various aspects of the perfor-
mance of Ulysses using simulation. The findings of our
simulation study can be summarized as follows: In Sec-
tion 5.1, we show the reduction in worst-case and aver-
age path lengths of routes taken by queries, achieved by
Ulysses. In Section 5.2, we show that given the same of-
fered query load and network size, the average query
traffic going through an overlay link or node is much
lower for Ulysses than for other protocols, as expected
from the Little’s Law. The same is true for nodes and
links in the underlying physical network. Section 5.3
discusses simulation results demonstrating the robust-
ness of Ulysses.

We choose Chord [15] as the benchmark for our ex-
periments, since Chord represents the whole family of
DHT based protocols that have a network diameter
of O(logn) and routing table size of O(logn). Among
others, this family includes Pastry[12] and Tapestry[18]
which use a base of 2 instead of 2, hence achieving a di-
ameter of logys n = log, n/b, but with a larger routing
table of size (2°/b)logon. Ulysses can also attain similar
gain of smaller diameter and larger routing table by us-
ing a larger base. However, for objectivity of evaluation,
we work with base 2 only keeping in mind that our re-

5 Fixing k corresponds to the tradeoff of constant diameter
(k + 1) and a routing table size of n'/*. The choice of
k = logn/loglogn causes the routing table size to become
nloglogn/logn — log n.

sults can be extended to larger bases as well. Similarly,
we do not consider the class of protocols (e.g. CAN
[10]) that achieve a network diameter of O(dn'/?) with
a routing table of size O(d) because these protocols
achieve their optimum diameter at d = logn, which re-
duces them to the same family as Chord. Since the pri-
mary design objective® of Ulysses is to achieve a low di-
ameter, such protocols would compare poorly against
Ulysses for other choices of d.

We implemented an event-driven simulator for eval-
uating different DHT-based protocols. It simulates
node arrivals and departures as well as the routing of
queries. It is written in C/C++ and executes as a sin-
gle process. The number of nodes in the peer-to-peer
network is varied from 256 to 4,000,000. Our im-
plementation of the Chord protocol is from the
description given in [15]. The following sections de-
scribe our experiments and analysis of the results.

5.1. Query path length

Our simulation results verify our expectation from
the theoretical analysis that Ulysses achieves signifi-
cantly lower worst-case and average query latency than
Chord. The query path latency is measured in terms of
overlay network hops. We assume a simple model for
the offered query load: queries are generated randomly
and uniformly at each node, destined for keys that are
uniformly distributed in the key-space. As discussed in
4.6, we tune the number of levels k such that the av-
erage routing table size is below logn, where n is total
number of nodes.

We have simulated the worst-case and average path
lengths for both Ulysses and Chord, as a function of
the number of nodes n (x-axis, in the log scale). The
results are plotted in Fig. 3. Two curves are plotted for
each protocol, denoting respectively the worst-case and
the average query path lengths measured in the num-
ber of overlay hops. The “steps” on both Ulysses curves
are due to the increase of parameter & when n becomes
larger, as discussed in Section 4.6. As expected, curves
for Chord coincide with functions log, n for the worst-
case and %log2 n for the average case. They look “lin-
ear” in the figure since the x-axis is in log scale. We can
see from Fig. 3 that both the average and maximum
number of hops required by Ulysses are less than the

6 Proposed enhancements to protocols like CAN [10], Pastry [2]
etc. take network proximity into account during node joins to
construct overlays that have a good correspondence between
the topology of the overlay and that of the underlying network.
Similar enhancements could be proposed for Ulysses too, but
we focus on achieving the optimum tradeoff in the overlay, and
leave the exploration of such enhancements to future work.

20 Ulysses: average ——— a q
Ulysses: maximum ----x--- o
18 + Chord: average -—*-- a 4
Chord: maximum e a
16 @ b
o
14 + = 4

number of overlay hops

256 1k 4k 16k 64k 256k M 4M
number of nodes in the network

Figure 3: The average and maximum number of
hops required for a query to be routed correctly
to its destination in an overlay network with n
nodes.

0.8 T T T
Ulysses: 4 Million nodes —+—
Chord: 4 Million nodes ----x---

0.6

X]

05

0.4

0.3

Prob[no. of hops

0.2 -

0.1

10 15 20 25 30
number of overlay hops

Figure 4: The probability density function of
number of hops required for a query to be
routed correctly to its destination in an over-
lay network with 222 nodes.

average number of hops required by Chord. The differ-
ence is more pronounced at a larger network size. These
differences highlight the better scaling properties’ of
Ulysses compared to Chord. Figure 4 shows the prob-
ability distribution function of overlay path lengths in
Ulysses and Chord for a network size of 222 (4 mil-
lion) nodes. We can see from the figure that the mean
number of overlay hops for Ulysses is less than that of
Chord. The sharp peak of the Ulysses curve, and hence

7 Since neither Ulysses nor Chord optimizes the mapping of the
overlay network to the underlying physical topology, we ob-
served similar reduction in the query path length when mea-
sured in underlying network link latencies [6].

700

Ulysses —— ;
Chord -+--
600 | ja

500 |
400 |
300 |
200 |

100

Mean traffic on a link in underlying topology

,,,,,,,,,,,,,,,,,,

256 512 1k 2k 4k 8k 16k 32k 64k 128k
Number of nodes in the network

Figure 5: Variation of traffic density with differ-
ent sizes of overlay networks.

its low variance, indicate that the length of most of its
paths is very close to the mean.

5.2. Reduction in traffic load

By Little’s Law, given the same offered load of DHT
queries and same network size, Ulysses is expected to
generate much less overall network traffic than Chord,
since each query travels (i.e., “stays in the network”)
for less number of overlay hops. As a consequence,
the amount of traffic that goes through each link and
node also goes down proportionally. In this section, we
demonstrate this advantage through simulations.

We define the traffic intensity as the number of
queries that traverse a link or node in the underly-
ing physical topology. A network topology compris-
ing of 10,320 routers with an average degree of 3.92
is generated using the Transit-Stub graph model from
the GT-ITM topology generator [17]. We attach a set
of end-hosts to each of the stub routers. The num-
ber of end-hosts attached to a stub router is chosen
from a normal distribution with mean 14.0 and stan-
dard deviation 4.0. The resulting graph has approxi-
mately 141,000 end-hosts. In each experiment, we uni-
formly and randomly pick end-hosts of the underly-
ing network topology to construct the overlay network.
Thus a single hop in the overlay network corresponds
to a path of routers between end-hosts in the underly-
ing topology. The total number of queries simulated in
each run is equal to the size of the overlay network. We
generate one query from each overlay node to a ran-
dom destination uniformly drawn from the key space.
Therefore, the offered load increases linearly with the
network size. Figure 5 plots the average traffic intensity
on links in the underlying physical topology, as a func-
tion of the size of the overlay network. We can see that,

as the network size increases and the offered load in-
creases in the same proportion, the traffic intensity in-
creases for both Chord and Ulysses. However, both the
absolute value of traffic intensity and its rate of in-
crease are higher for Chord than for Ulysses. This con-
firms our expectation since the path length grows faster
in Chord than in Ulysses with increasing network size.

5.3. Robustness

The robustness of Ulysses is evaluated in compar-
ison with Chord by simulating sudden ungraceful de-
partures of a fraction of the node population.The per-
centage of nodes that fail is varied from 1% to 20%. A
simple query traffic model with random source and des-
tination as described in section 5.1 is simulated. The
results, not shown here due to lack of space, demon-
strate that almost all queries destined for nodes that
are “alive”, are routed correctly. Furthermore, our sim-
ulations show that queries being routed in a Ulysses
network have a significantly smaller probability of en-
countering a failed node on their path. We also ob-
serve that Ulysses retains its reduction in average path
length of queries even in the face of massive node fail-
ures. Figures demonstrating these results, along with a
detailed discussion, are available in [6].

6. Other Related Work

The Viceroy network [7], also based on the butterfly
topology, has been proposed to achieve O(log, n) net-
work diameter with constant routing table size. Viceroy
achieves this by mapping a butterfly topology onto a
basic Chord ring [15] with only the successor and pre-
decessor links. Routing in Viceroy consists of taking the
butterfly links in two phases to reach within a distance
of O(logn)/n from the destination and then taking the
successor or predecessor links of the Chord ring to reach
the destination in the third phase. The minimum di-
ameter of Viceroy is 3log, n and is O(log, n) with high
probability. However, the random distribution of nodes
on the Chord ring imply that the worst case diameter
can be much larger. For similar reasons, the worst case
congestion at nodes and edges is O (log, n) times the av-
erage in Viceroy while it is only a constant times the
average in Ulysses.

Koorde, proposed in a contemporaneous work [4],
uses the de Bruijn graph to achieve a diameter of
O(logn/loglogn) with O(logn) neighbors per node.
However this bound is achieved by Koorde only in the
expectation and with a larger constant in the “big O”
notation. It is also not known whether Koorde can self-
stabilize like Chord or Ulysses. Koorde and Ulysses can

be seen as two parallel ways of achieving the degree-
diameter tradeoff, with Koorde achieving a determin-
istic bound on the number of neighbors and a proba-
bilistic bound on the diameter while Ulysses achieves
a deterministic bound on the diameter with a proba-
bilistic bound on the routing table size.

Naor and Wieder [8] propose a similar mechanism
to use the de Bruijn graph to achieve a diameter of
O(logn/loglogn) with O(logn) neighbors per node.
Like Koorde, this mechanism too achieves only a prob-
abilistic bound on the diameter. Further, they require
cooperation among logn nodes for storing a key. Since
keys stored in the DHT significantly outnumber the
nodes, this requires a large amount of state at nodes.
Both Koorde and Naor et al. require the number of
neighbors to be logn. This requires an a priori knowl-
edge of the logarithm of network size (n). Ulysses on the
other hand requires a knowledge of “logn/loglogn”
which is much less sensitive to changes in network size.

7. Concluding Remarks

We have presented the design and analysis of
Ulysses, a peer-to-peer protocol that meets the theo-
retical lower bounds for the tradeoff between routing
table size and network diameter. In addition to re-
ducing the diameter (i.e., worst cast query routing
length), Ulysses also reduces the average query rout-
ing length as compared to other protocols with similar
routing table sizes. The reduction in query rout-
ing length implies a number of additional advantages,
including reduced traffic at nodes and links.

Ulysses is based on a butterfly topology with signifi-
cant adaptations to achieve the aforementioned proper-
ties. In brief, Ulysses includes shortcut links to remove
stress on certain edges, a novel method for assigning
peers to locations in the butterfly, a buddy-based pro-
tocol for assigning responsibility for portions of the key
space and handling self-stabilization, and a collection
of robustness techniques to allow efficient and correct
operation under network dynamics.

References

[1] IRIS: Infrastructure for Resilient Internet Systems.
http://www.project-iris.net.

[2] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Ex-
ploiting Network Proximity in Distributed Hash Tables.
In International Workshop on Future Directions in Dis-
tributed Computing, 2002.

[3] P. Francis. Yoid: Extending the Internet Multicast Ar-
chitecture. Unrefereed report, 38 pages, Apr 2000.

[4] M. F. Kaashoek and D. R. Krager. Koorde: A simple
degree-optimal distributed hash table. In IPTPS, Feb
2003.

[5] L.Kleinrock. Queueing Systems, volume I andII. J. Wi-
ley and Sons, 1975.

[6] A. Kumar, S. Merugu, J. Xu, E. Zegura, and X. Yu.
Ulysses: A Robust, Low-Diameter, Low-Latency Peer-
to-Peer Network. Technical Report GIT-CC-03-30, Col-
lege of Computing, Georgia Institute of Technology,
2003.

[7] D.Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scal-
able and Dynamic Emulation of the Butterfly. In Proc.
of ACM PODC, 2002.

[8] M. Naor and U. Wieder. A Simple Fault Tolerant Dis-
tributed Hash Table. In IPTPS, Feb 2003.

[9] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Ac-
cessing Nearby Copies of Replicated Objects in a Dis-
tributed Environment. In Proc. of ACM SPAA, 1997.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In Proc. of ACM SIGCOMM, 2001.

[11] S.Ratnasamy, S. Shenker, and I. Stoica. Routing Algo-
rithms for DHTs: Some Open Questions. In Proc. of 1st
Workshop on Peer-to-Peer Systems (IPTPS ’02), 2002.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware),
2001.

[13] H. J. Siegel. Interconnection networks for SIMD ma-
chines. Computer, 12(6), 1979.

[14] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. In Proc.
of ACM SIGCOMM 02, 2002.

[15] I.Stoica,R.Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications. In Proc. of ACM SIG-
COMM 01, 2001.

[16] J. Xu. On the Fundamental Tradeoffs between Routing
Table Size and Network Diameter in Peer-to-Peer Net-
works. In Proc. of IEEFE Infocom, 2003.

[17] E. Zegura, K. Calvert, and M. J. Donahoo. A Quan-
titative Comparison of Graph-based Models for Inter-
net Topology. IEEE/ACM Transactions on Network-
ing, 5(6), Dec 1997.

[18] B.Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Loca-
tion and Routing. Technical report, U.C. Berkeley Tech.
Report UCB/CSD-01-1141, 2001.

