
Low-Bandwidth Topology Maintenance for
Robustness in Structured Overlay Networks

Ali Ghodsi∗†, Luc Onana Alima†∗, Seif Haridi∗†
∗IMIT-Royal Institute of Technology, Electrum 229 * 164 40 Kista, Sweden

Email: {aligh, seif}@imit.kth.se
†Swedish Institute of Computer Science, Box 1263, SE-164 29, Kista, Sweden

Email: onana@sics.se

Abstract— Structured peer-to-peer systems have emerged as
infrastructures for resource sharing in large-scale, distributed,
and dynamic environments. One challenge in these systems is to
efficiently maintain routing information in the presence of nodes
joining, leaving, and failing. Many systems use costly periodic
stabilization protocols to ensure that the routing information is
up-to-date.

In this paper, we present a novel technique called correction-
on-change, which identifies and notifies all nodes that have
outdated routing information as a result of a node joining,
leaving, or failing. Effective failure handling is simplified as
the detection of a failure triggers a correction-on-change which
updates all the nodes that have a pointer to the failed node. The
resulting system has increased robustness as nodes with stale
routing information are immediately updated.

We proof the correctness of the algorithms and evaluate its
performance by means of simulation. Experimental results show
that for the same amount of maintenance bandwidth correction-
on-change makes the system by far more robust when compared
to periodic stabilization. Moreover, compared to adaptive sta-
bilization which adjusts its frequency to the dynamism in the
system, correction-on-change gives the same performance but
with considerably less maintenance bandwidth. As correction-on-
change immediately updates incorrect routing entries the average
lookup length is maintained close to the theoretical average in
the presence of high dynamism. We show how the technique can
be applied to our DKS system as well as the Chord system.

I. INTRODUCTION

In the recent years, a number of structured peer-to-peer
systems have been proposed that provide a routing infrastruc-
ture over the existing Internet. This is done by letting each
participating node maintain routing information about a subset
of the other nodes in the system. The nodes are chosen such
that given the logical identifier of a node a message can be
routed to that node in few routing hops. The number of hops
required to find a node is typically in logarithmic order of
the number of nodes in the system. The size of the routing
information stored at each node is typically in logarithmic
order or constant of the number of nodes in the system. On
top of this routing infrastructure basic services, such as a
distributed hash table, can be built.

A challenge in these systems is to maintain the routing
information, at a low cost of communication, when the set

This work was funded by the European project PEPITO IST-2001-32234,
the European project EVERGROW IST-2004-001935, the Vinnova projects
PPC and GES3 in Sweden.

of participating nodes is altered due to nodes joining, leaving
and failing. A trade-off between robustness and bandwidth
consumption has to be made. If the routing information is not
maintained frequently enough the system will not be robust
as the routing information becomes outdated quickly. On the
other hand, if routing information is maintained too often
bandwidth consumption will be high.

In this paper, we present a novel technique called
correction-on-change1, which identifies and notifies all nec-
essary nodes upon the join, leave, or failure of a node. Failure
handling is simplified as the detection of a failure triggers a
correction-on-change which updates all the nodes which have
a pointer to the failed node. The resulting system is highly
robust while it avoids unnecessary bandwidth consumption.

A. Motivation

Most of the existing structured P2P systems use costly
periodic stabilization protocols to ensure that the routing
information is up-to-date[2][3][4][5].

The main disadvantage of this approach is that it induces a
high bandwidth consumption. Indeed, at steady periods when
the dynamism2 in the system is low, unnecessary bandwidth
is consumed by periodic stabilization.

One solution as suggested in [6] is that the stabilization
frequency should be dynamically adapted to the dynamism
in the system. However, this approach requires knowledge
about global parameters, such as the system size and the
amount of dynamism in the system. As this information is
not locally available, the authors suggest that it should be
estimated. However, the accuracy of the estimations are not
well understood. Furthermore, even with accurate estimation
of the amount of dynamism and the system size, periodic
stabilization consumes far more bandwidth as we show in
Section IV.

In [7] we proposed a technique called correction-on-use that
embeds parameters in routing messages such that incorrect
routing information is corrected on-the-fly without the use of
periodic stabilization.

The advantage of correction-on-use is that it consumes less
bandwidth than periodic stabilization. However, correction-on-

1We note that term correction-on-change was independently introduced in
[1].

2The number of joins, leaves and failures.

use assumes that the ratio between the number of routing
messages to the dynamism in the system is high enough such
that there are enough routing messages to correct the routing
information that is invalidated as the result of dynamism.
Consequently, routing information will become outdated if this
ratio is low. Hence, a the performance will be poor since a
routing hop might lead to a failed node.

Furthermore, the amount of lookups needed at each node
for correction-on-use to be effective is dependent on the total
number of nodes in the system. A property that not necessarily
reflects the behavior of the users in the system.

Our main goal in this paper is to provide maintenance
techniques that allow the system to automatically adapt to the
dynamism while avoiding unnecessary bandwidth consump-
tion. Following our correction-on-use philosophy, we want
to achieve this goal without any assumptions on the amount
of routing messages in the system. Instead, the maintenance
technique should allow the system to self-adapt to the actual
amount of dynamism in the system.

B. Contributions

In this paper we show a general approach, given only partial
information about the system, to deterministically identify
all the nodes that should be notified upon a join, leave or
failure event. Furthermore we prove that the identified nodes
are indeed all the nodes that need to be corrected. We also
prove that no other nodes in the system need to be notified of
the change. Thereafter we show how the broadcast algorithm
proposed in [8] can be used to in-parallel notify the identified
nodes. We adapt the broadcast algorithm to correction-on-
change by letting it broadcast only to the nodes that need
to be updated, rather than broadcasting to all nodes in the
system. Hence, the broadcast algorithm notifies the nodes in
O(logD) steps, where D is the number of nodes that need to
be notified. Furthermore, we improve the broadcast algorithm
such that it never sends redundant messages, even when the
routing information in the system is incorrect. We also give an
algorithm for optimizing correction-on-change to send fewer
messages.

Our approach is general enough to be applied to several
Chord-based [9][7] structured peer-to-peer systems. However,
it cannot be applied to peer-to-peer systems where there is
non-determinism in the choice of routing neighbors [5][4]. For
simplicity we demonstrate how correction-on-change can be
applied to DKS , as the topology of Chord can be derived from
DKS when the structuring parameter k = 2 in DKS.

C. Related Work

In one of the early Chord papers [9] the authors mention that
upon a join of a node j an event notification should be routed
to the first node in the vicinity of the nodes pointing to j 3.
Thereafter the notification message should be sent sequentially
on the ring as long as it finds predecessors that should be
pointing to the node j. The drawback of this scheme is that

3This approach was abandoned and does not appear in the other Chord
papers.

it goes sequentially on the predecessor chain, as the authors
fail to properly identify all the nodes that need to be notified.
This has the consequence that it takes a long time and may
terminate due to the failure of a single node in the predecessor
chain. Furthermore, the algorithm can terminate prematurely
due to other reasons. For instance, this can happen if a node
in the predecessor chain is pointing to a failed node or if a
newly joined node that already has correct routing information
is met in the predecessor chain. The first case will be common
as Chord treats voluntary leaves as failures. Consequently, the
authors suggest that the notification should be run concurrently
with a periodic stabilization protocol.

In [1][10] several reactive routing maintenance techniques
are proposed. The main idea is to correct outdated routing
information lazily when errors are detected during system
use. Our approach takes this one step further by updating the
outdated entries of all nodes eagerly whenever a change is
detected.

Many attempts have been made to provide symmetric struc-
tured P2P systems [11][12][13], where a routing pointer from
a node i to a node j implies a routing pointer from node j to
node i for all nodes i 6= j. In such a symmetric P2P system
correction-on-change could be implemented in a straight-
forward manner. However, the aforementioned systems do not
satisfy the symmetry requirement except in the rare case when
the number of nodes in the system happens to be equal to the
number of nodes in the overlay graph.

In [11] a system is proposed where each node keeps a
pointer to the nodes with logical identifiers at hamming dis-
tances of one. But this system cannot guarantee full symmetry
neither. Therefore, the authors take the same approach as
Chord and their system consequently has to concurrently run
a periodic stabilization protocol.

Another possible solution would be to make the system
symmetric in a dynamic fashion by letting each node establish
a routing pointer back to every node that is pointing to it. For
example connection-oriented communication such as TCP/IP
could be exploited to find all the incoming connections for
every node. The drawback of this approach is that it cannot
be used for fault-tolerance because if a node fails, the node that
detects it does not know which other nodes are still pointing to
the failed node. Furthermore, it is not clear how a newly joined
node can notify the existing nodes that they should point to it.
We see however that this technique can be used to optimize
our approach.

II. DKS OVERVIEW

In the following section we briefly present the assumptions
on the underlying network and describe the notation for pre-
senting algorithms. Thereafter we present the routing topology
of the DKS system and the correction-on-use technique used
to lazily maintain the routing information.

A. Model of Distributed Systems

We assume a distributed system modeled by a set of nodes
communicating by message passing through a communication

network that is: (i) Connected, (ii) Asynchronous, (iii) Reli-
able, and (iv) providing FIFO communication.

A distributed algorithm running on a node of the system is
described as a set of rules of the form:

R ::
receive(Sender, Receiver, MESSAGE(arg

1
, .., argn))

Action

The rule R describes the event of receiving a message MES-
SAGE at node Receiver, from Sender, and the Action taken
to handle that event. A Sender of a message executes the
statement send(Sender, Receiver, MESSAGE(arg1, .., argn)) to
send a message to Receiver.

B. Structure of the DKS

In this sub-section we present the DKS system and the rest
of the paper will assume the structure defined here.

An instance of the DKS system is configured with a number
of parameters. In this paper, we will only report those that
are necessary to make this paper self-contained. One of the
parameters is the structuring parameter k (k ∈ N\{0, 1}).
With k defined, the maximum number of nodes that can be
simultaneously in a DKS network is chosen to be N = kL,
for some large positive integer L. Given N , and k the lookup
length is guaranteed to take at most L = logk(N) hops for a
network of maximum size N during normal system operation.
Every node knows k and N , and can therefore compute L.

Once N has been defined, all nodes in the system are
mapped onto the identifier space, I= {0, ..., N − 1}. The
identifier space is a circular space modulo N .

We shall use the infix notation for the binary operator ⊕ :
I ×I → I defined as a⊕ b = (a + b) modulo N . The binary
operator ª : I ×I → I is defined similarly as aªb = (a− b)
modulo N .

The whole identifier space can be represented by an interval
of the form [x, x[or]x, x] for an arbitrary x ∈ I. For any x ∈
I, we note that [x, x] = {x} and]x, x[= I\{x}. Generally,
]x, y] denotes the interval x⊕1, · · · , (x⊕yªx) = y for any
x, y ∈ I. Similarly [x, y[denotes the interval x, x⊕1, · · · , yª1
for any x, y ∈ I.

Each node in a DKS overlay network maintains three main
components: a routing table, a BackList and a FrontList. We
describe these components in the following sub-section.

C. Routing tables

Each node maintains a routing table which consists of L =
logk(N) levels. Let L = {1, 2, .., L} be the set of levels.

At any level, l ∈ L, a node n has a view of the identifier
space defined by the function Vn : L → 2I as:

Vn(l) = [n, n ⊕ kL−l+1[

This means that for level one, the view consists of the whole
identifier space, and at any other level l > 1, the view consists
of one k:th of the identifier space considered by the view
Vn(l − 1).

At any level l∈L, the view Vn(l) is partitioned into k
equally-sized intervals. Let K = {0, · · · , k − 1}. At a node

n, the intervals are defined by the function In : L × K → 2I

as:

In(l, i) = [n ⊕ ikL−l, n ⊕ (i + 1)kL−l[

For simplicity we will let BIn : L × K → I defined as
BIn(l, i) = n ⊕ ikL−l denote the beginning of the interval
In(l, i).

The aforementioned intervals and views are defined stati-
cally at each node independently of the rest of the nodes in
the system. However, to assign parts of the identifier space to
the participating nodes in the system each node needs to map
its intervals to some of the nodes in the system. We denote the
identifiers of the nodes in the system by the set P (P ⊆ I).
Each node, n, maintains a responsible node for every interval
in its routing table. For any level, l∈L the responsible for
interval In(l, 0) is always n itself. 4 For all other intervals
m ∈ K\{0}, the responsible for interval In(l,m) is chosen to
be the first node encountered, moving in clockwise direction,
starting at the beginning of the interval.

Formally, the routing table of a node n is given by the
function RTn,P : L ×K → P:

RTn,P(l, i) = BIn(l, i) ⊕ min({p ª BIn(l, i) | p ∈ P})

In addition to storing a routing table, each node, n, main-
tains a predecessor pointer referred to as Predn,P which is the
first node encountered, moving in counter-clockwise direction,
starting at n. Formally, Predn,P = n⊕max({pªn | p ∈ P}).
Similarly we define the successor of node n to be Succn,P =
RTn,P(L, 1).

Figure 1 shows an example of a DKS network (k = 4,
N = 64, P = {21, 24, 27, 48, 57, 63}) from the perspective of
the node 21. Note that in figure 1 we have mapped the modulo
N circle onto a line from node 21’s view.

Fig. 1. a) A DKS network (k = 4, N = 64, P = {21, 24, 27, 48, 57, 63}).
The figure shows node 21’s views, V21(1), V21(2) and V21(3), and how
each view is partitioned into k = 4 equally sized intervals. The dark nodes
represent the responsible nodes from node 21’s view. b) Node 21’s routing
table showing each interval and its responsible node.

4The responsible node’s identifier and network address is stored such that
communication can be established with it.

When setting up a DKS network, another parameter that
needs to be instantiated is the fault-tolerance parameter, de-
noted f . Each node in a DKS network maintains two lists
of references, each containing at most f + 1 references to
other DKS nodes. These lists are named FrontList and the
BackList. The FrontList contains the f + 1 nodes in the
system with closest identifiers in clockwise direction, while
the BackList contains the f + 1 nodes in the system with
closest identifiers in anti-clockwise direction. For short, we
will use Fln (resp. Bln) to denote the FrontList (resp. BackList)
at a node n. In the DKS system these lists are maintained
by using a technique similar to correction-on-change together
with vector-timestamps to ensure causality. However, we will
not show how these pointers are maintained in this paper,
rather report the results of that in a different paper.

D. Legitimate state

The set of nodes P is typically changing over time as
nodes join, leave, and fail. Therefore, the routing tables of the
nodes might become incorrect. To cope with this dynamism,
the DKS is designed with stabilization in mind. However
the stabilization in a DKS is achieved at very low cost of
communication.

As for any stabilizing system, we need to characterize the set
of legitimate (global) states of a DKS network. The intuition
behind the legitimate state is to model the state when all the
routing information in the system is fully correct. The system
might often not be in a legitimate state. However, the idea is
that it will always eventually converge to the legitimate state.

Definition 2.1: We will say that a DKS system populated
with P nodes is in a legitimate state iff:
(

∀n, l, i : n ∈ P ∧ l ∈ L ∧ i ∈ K :
(RTn, P(l, i) = BIn(l, i)⊕min({pªBIn(l, i) | p∈ P}))

)

We say that the system is in a illegitimate state if it is not in
a legitimate state.

The DKS system keeps the successor and predecessor point-
ers up-to-date by executing a local atomic action whenever a
node joins or leaves the system.

This is however not enough to ensure that the system is
always converging towards the legitimate state. Therefore the
DKS system uses the correction-on-use technique.

E. Correction-on-use

In a DKS network, routing information can become outdated
as a result of joining, leaving, or failing nodes. Figure 2
shows how routing entries become outdated as a result of
a join operation. The outdated routing entries are corrected
only when they are used. As long as the ratio of lookups to
joins, leaves, and failures is high, the routing information is
eventually corrected. This is the essential assumption in DKS ,
which is validated in [7].

Correction-on-use is based on two ideas. The first idea is to
embed the level l and the interval i parameters in every routing

Fig. 2. A node with identifier 26 joins the DKS network (k = 4, N = 64)
and informs its immediate neighbors 24 and 27 about its existence. However,
node 21 does not know about node 26 and considers node 27 responsible for
I2

1
. If node 21 happens to send a lookup message to node 27, node 27 will

inform node 21 about node 26 and trigger a correction-on-use. Alternatively,
node 21 can become aware of node 26 if it receives a message originating
from node 26.

message 5. A node n receiving a routing message from a node
n′ can then calculate the start of the interval, In′(l, i) at node
n′, for which n is responsible according to n′. If n’s predeces-
sor is in the interval [n′⊕ikL−l, n[, then node n sends a BAD-
POINTER message to node n′. This BADPOINTER message
carries the candidate node, denoted cand, to which n′ should
be pointing to according to node n. To determine the candidate
node to be sent to n′ for a correction, node n calls the sub-
routine BestCandidate(n′, msg), which takes n′ and msg
as parameters. A call of BestCandidate(n′, msg) at node
n, returns the node from the Bln to which node n′ should be
pointing to at its level msg.l and for the interval msg.i of that
level, according to n. The formal description of the sub-routine
BestCandidate is straightforward. We do not present it
in this paper. Furthermore, for simplicity of presentation, we
will assume that the sub-routine BestCandidate returns
the predecessor of the calling node. When node n′ receives
a BADPOINTER(cand) message, node n′ updates its routing
information.

The second idea is that a message sent by a node p to
another node n is an indication of p’s existence. Hence, upon
receipt of a message from a node p, node n examines all of
its intervals to determine if p should be responsible for any of
the intervals, in which case routing information is updated.

Figure 3 shows the algorithm for correction-on-use at a
node n. Upon the receipt of any routing message from a
node n′ the sub-routine CorrectionOnUse is immediately
called with message (msg) supplied as a parameter. Recall
that the destination identifier, level, and interval parameters
are embedded in the message. These embedded parameters
are accessed by the fields, l, i, and d respectively. If the sub-
routine returns false the message should be consumed by node
n, i.e. the receiving node should process the request. If the
sub-routine returns true the message should have been sent to
another node and should hence be ignored.

III. CORRECTION-ON-CHANGE

In the following sub-sections the correction-on-change tech-
nique will be explained. The first sub-section explains how all
the nodes pointing to a given node in a legitimate system state
can be deterministically identified. The following sub-section

5A message from node n′ to node n is considered to be a routing message
if n is responsible for an interval in the routing table of n′

R1 :: receive(n′, n, BADPPOINTER(cand)
AdaptTo(cand)

Subroutine :: CorrectionOnUse(msg)
AdaptTo(n′)
if (n′⊕(msg.i)kL−msg.l) ∈]n′, pred] then

cand := BestCandidate(n′, msg)
send(n, n′, BADPOINTER(cand))
if d ∈ [n′, n[then

send(n, cand, msg)
return true

fi
fi
return false

Subroutine :: AdaptTo(cand)
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do
if (n⊕τkL−λ) ∈]n, cand] and

RT (λ, τ)∈]cand, n] then
RT (λ, τ) = cand

fi
od

od

Fig. 3. Correction-on-use

gives the algorithms to identify and notify nodes using an im-
proved restricted version of our previous broadcast algorithm.
Finally we provide algorithms and discuss the intricate details
of making the algorithm work in an asynchronous setting.

A. Identifying the dependent nodes

The aim of this section is to solve the following problem:
given a node with identifier n (n ∈ I) in a legitimate system
state efficiently identify all the identifiers of the nodes that are
pointing to n. We refer to node n as the subjective node and
the identified node identifiers the dependent nodes. In a fully
populated system the set of dependent node identifiers for a
node n is:

{n′ ∈ I | n′ ⊕ ikL−l = n, 1 ≤ l ≤ logk(N), 1 ≤ i < k}

Assume a fully populated DKS system in a legitimate state
with identifier space I = {0, 1, .., kL−1} of size kL for some
large L and some k≥2. The following formula can be used
to identify all the dependent nodes for the subjective node s
(s∈I) : n = sªikL−l, for all l (1 ≤ l ≤ L), and i (1 ≤ i < k).

However, the system is typically not fully populated. There-
fore the above formula does not identify the dependent nodes
in a non-fully populated system. There might be other nodes,
than those deduced by the above formula, which have the
subjective node as responsible for an interval. The reason for
this is that a node can be responsible for several consecutive
intervals.

We want to be able to identify all the dependent nodes for
a subjective node n in a system with the nodes P ⊆ I:

{p ∈ P | RTp(l, i) = n, 1 ≤ l ≤ logk(N), 1 ≤ i < k}

Lemma 3.1: Assume a DKS system in a legitimate state
with identifier space I = {0, 1, .., kL − 1} of size kL for

some large L, and some k≥2 and the nodes P . The following
holds for a node, n′∈I, and p = Predn′,P :
BIn(l, i) ∈]p, n′] ⇔ RTn,P(l, i) = n′.

Proof: Since]p, n′] ∩P = {n′}, the right implication is
proved as follows:
BIn(l, i) ∈]p, n′]
⇒ BIn(l, i) ⊕ min({p ª BIn(l, i) | p ∈ P}) = n′

⇒ RTn,P(l, i) = n′

We prove the left implication by proving the contra-position:

BIn(l, i) /∈]p, n′] ⇒ RTn,P(l, i) 6=n′

We will use the following rule in the derivations:

∀(S ⊆ N) : (min({0}∪S) = 0) (1)

Assume:
BIn(l, i) /∈]p, n′]
⇒ BIn(l, i) ∈]n′, p]
⇒ RTn,{p,n′}(l, i) ∈]n′⊕min({pªn′, n′ªn′}), p⊕min({pª
p, n′ ª p})]
⇒ RTn,{p,n′}∪P(l, i) ∈]n′ ⊕ 0, p ⊕ 0] by Rule (1)
⇒ RTn,P(l, i) ∈]n′, p]

Hence we have that ⇒ RTn,P(l, i) 6= n′

The following lemma identifies the set of nodes that have an
interval beginning in]p, n′].

Lemma 3.2: Assume a DKS system in a legitimate state
with identifier space I = {0, 1, .., kL − 1} of size kL for
some large L, and some k≥2 and at least three nodes. Let
Dl

i(n
′, p) =]pªikL−l, n′ªikL−l]. Given a node n′, with the

predecessor p, the following holds for any n 6= n′ 6= p:

BIn(l, i) ∈]p, n′] ⇔ n ∈ Dl
i(n

′, p)
Proof: We will prove the logical equivalence in two

steps. First we will show that
BIn(l, i)∈]p, n′]⇒n∈Dl

i(n
′, p)

Assume:
BIn(l, i)∈]p, n′]
⇒ (n⊕ikL−l)∈]p, n′]
⇒ (n⊕ikL−lªikL−l)∈]pªikL−l, n′ªikL−l]
⇒ n∈]pªikL−l, n′ªikL−l]
⇒ n∈Dl

i(n
′, p)

Now we will prove:
n ∈ Dl

i(n
′, p) ⇒ BIn(l, i) ∈]p, n′]

Assume:
n∈Dl

i(n
′, p)

⇒ n∈]pªikL−l, n′ªikL−l]
⇒ n⊕ikL−l∈]pªikL−l⊕ikL−l, n′ªikL−l⊕ikL−l]
⇒ n⊕ikL−l∈]p, n′]
⇒ BIn(l, i) ∈]p, n′]

Theorem 3.3: In a DKS system in a legitimate state with
the identifier space I = {0, 1, .., kL − 1} of size kL for some

large L, and some k≥2 and at least three nodes. Given a
node n′, with the predecessor p, the following holds for any
n 6= n′ 6= p:

n∈Dl
i(n

′, p) ⇔ RTn,P(l, i) = n′

Proof: The proof follows from Lemma 3.1 and Lemma
3.2.

Theorem 3.3 uniquely identifies for each subjective node n′,
and predecessor p = Predn′,P the dependent node identifiers
Dl

i(n
′, p) (1 ≤ l ≤ L, 1 ≤ i < k). Hence any dependent node

n must have an identifier in Dl
i(n

′, p). In the next section we
use our restricted broadcast algorithm to broadcast to all nodes
in Dl

i(n
′, p) whenever a node n′ joins, leaves, or fails.

B. Notifications

In this section we show how a notification is sent to the
dependent nodes identified in the previous section whenever
a node joins, leaves, or fails. The purpose of the notification
is to trigger correction of outdated routing information at the
dependent nodes.

The notification algorithm is given in Figure 4. The algo-
rithm makes a lookup to find the first node in every interval in
the dependent set. This is done by calling FindSuccessor
with a parameter specifying the start of each interval con-
taining dependent nodes. Thereafter a restricted broadcast is
initiated for every interval. Each restricted broadcast serves
to notify the dependent nodes in a given interval determined
by the start and limit parameters computed in the algorithm
given in Figure 4. The msg parameter carries the information
about the actual event that triggered correction-on-change, i.e.
a join, leave, or failure event. In addition, the parameters start
and lim are embedded in the message to specify the interval
being broadcast to.

The algorithm proposed in [8] guarantees that all nodes
present in the system at the time of the broadcast operation
receive the broadcast message given that they do not leave the
system or fail. Moreover, any node that receives a broadcast
message receives it only once, disregarding messages sent
through erroneous pointers as they will trigger correction-on-
use.

In this paper we have improved the broadcast algorithm
such that redundant messages are never sent even if the
routing pointers are outdated. Furthermore, we use a restricted
version of the broadcast algorithm that only broadcasts to the
dependent nodes, rather than broadcasting to all the P nodes
in the system.

Assuming uniform distribution of the node identifiers the
expected number of nodes that will be in the dependent set
are (k − 1) logk(P), where P is the total number of nodes in
the system. Given that the system is in a legitimate state, it
takes at most logk(d) hops to resolve a query from a node i
to a target identifier j, where j ª i = d. The total number of
messages needed to notify all dependent nodes will at most
be:

log
k
(P)−1
∑

l=0

k−1
∑

i=1

logk(P − ikl) < (k − 1) log2
k(P)

As the broadcast algorithm notifies the dependent nodes
in-parallel, it will cover all the D nodes in an interval in
θ(log(D)) time units, assuming that the transmission of a
message from a node to its neighbor takes one time unit.

Subroutine :: Notify(Msg)
for l := 1 to logk(N) do

for i := 1 to k − 1 do
start:= pªikL−l

limit:= nªikL−l

firstNode:=FindSuccessor(start)
msg.start:=start
msg.lim:=limit
send(n, firstNode, BROADCAST(msg))

od
od

Fig. 4. Notification Algorithm

R21 :: receive(n′, n, BROADCAST(msg))
%% Deliver the message to the application layer
s = msg.start
l = msg.lim
p = predecessor
if p∈[s, n[then

msg.lim = n
send(n, p, BROADCAST(msg))
send(n, n′, BADPOINTER(p))

fi
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do
if RT(λ,τ) ∈]n, l[then

msg.start = n ⊕ τkL−λ

send(n, RT(λ, τ), BROADCAST(msg))
l := n⊕τkL−λ

fi
od

od

Fig. 5. Restricted Broadcast Algorithm

The restricted broadcast algorithm shown in Figure 5 will
be used to notify dependent nodes. Unfortunately, intervals
might overlap in certain settings of P . As a consequence,
some dependent nodes might receive notification messages
more than once. To avoid such unnecessary messages, we
propose an optimized algorithm in which overlapping intervals
are collapsed.

Figure 6 shows the algorithm for collapsing overlapping
intervals. The sub-routine CollapseIntervals is called
with the parameter intervalList. intervalList is a list contain-
ing pairs of integers in the form (start, end), where start
represents the start of an interval and end the end of an
interval. For example, (6, 9) represents the interval]6, 9].
When CollapseIntervals has computed it returns a list
of intervals, where overlapping intervals have been merged
and redundant intervals have been removed.

The sub-routine CollapseIntervals works by main-
taining the invariant that only intervals that are disjoint from
every other interval are put on a list denoted finalList. Con-
versely, intervals that are not yet determined to be disjoint

from every other interval are kept in a list denoted workList.
The sub-routine initializes workList to contain all intervals
and finalList to be empty. The algorithm works by moving
elements from workList over to finalList on each iteration.
When workList is empty the algorithm terminates.

Theorem 3.4: The sub-routine CollapseIntervals al-
ways terminates.

Proof: To show that the algorithm always terminates,
each iteration of CollapseIntervals either merges some
intervals such that the size of workList is decreased by one or
it moves one element over to finalList. Hence, the algorithm
terminates in a finite number of iterations given that the input
list is finite.

The sub-routine Iterate is used in each iteration of
CollapseIntervals with two parameters; an interval i
from workList and the rest of the intervals from workList
denoted workListRest. Each time Iterate is called it does
one of three things. Either Iterate collapses i into another
interval in workListRest or it just removes i as i is a subset of
another interval in workListRest. In both cases i is subsumed
in workListRest and Iterate returns with a dirty flag set
to true indicating that workList should be replaced by work-
ListRest. Alternatively, i is disjoint from every other interval
in workListRest in which case Iterate simply returns with
a dirty flag set to false and CollapseIntervals can move
i to finalList.

C. Using correction-on-change in a dynamic setting

A challenge with designing algorithms using correction-on-
change is to make it work in a dynamic setting where several
instances of correction-on-change might be interleaved in an
asynchronous setting.

Our first concern is that there is no guarantee on the order in
which messages arrive to the destination, even with the FIFO
requirement, as messages are routed via inter-mediate nodes
in the overlay. We have studied all the different inter-leavings
of joins, leaves, and failures and designed the algorithms using
correction-on-change such that messages arriving out of order
will not render the system in an illegitimate state.

For example, one node might join and shortly thereafter
leave the system. In an ideal situation the nodes would first
be notified about the joining of the node, and thereafter they
would be notified of the departure. But as there is no guarantee
in the order which messages arrive, some nodes might first
find out about the departure of the node, and thereafter find
out about the arrival of the node leaving many nodes with
pointers to a node that is no longer in the system.

We solve the aforementioned problem by attaching a local
time-stamp of the subjective node to the notification message.
A dependent node receiving a notification will save the time-
stamp together with the subjective node’s identifier in a small
buffer. Hence, a dependent node can safely ignore messages
that have a time-stamp which is lower than the last received
message from the same subjective node. If no time-stamp for
the subjective node is available in the buffer, the message is

Subroutine :: Iterate(i, workListRest)
(start, end) = i
tempList = empty
dirty = false
foreach inter in workListRest do

(is,ie) = inter
if start/∈]is, ie] and end/∈]is, ie] then

tempList := Append(tempList, (is,ie))
elseif start/∈]is, ie] and end∈]is, ie] then

dirty := true
tempList := Append(tempList, (start,ie))

elseif start∈]is, ie] and end/∈]is, ie] then
dirty := true
tempList := Append(tempList, (is,end))

elseif start∈]is, ie] and end∈]is, ie] then
dirty:=true
tempList := Append(tempList, (is,ie))

end
end
return (tempList,dirty)

Subroutine :: CollapseIntervals(intervalList)
workList = intervalList
finalList = empty
while workList != empty do

if workList.length == 1 then
finalList := AppendLists(workList, finalList)
workList := empty

else
(start,end) := Head(workList)
workList.DeleteHead()
(workList, dirty) = Iterate(start, end, workList)
if dirty == false then

finalList := Append(finalList,(start,end))
end

end
end
return finalList

Fig. 6. Algorithm for collapsing overlapping intervals

accepted. This however only solves the problem of out-of-
order notifications from one node.

Assume a node a, with successor c, leaves the system.
Shortly thereafter a node b, succeeding a but preceding c,
joins the system. If the notifications arrive out-of-order the
notification of b’s arrival might be received first making some
dependent nodes point to b. Shortly thereafter the notification
of a’s departure arrives to a dependent node making it erro-
neously point to c instead of b.

We solve this problem by letting the notification of the
departure (or failure) of a node a contain a’s identifier together
with a candidate c that the dependent node can point to. The
dependent node will not blindly make its pointers point to
c. Instead, it will adapt its routing tables to only have c as
responsible for intervals for which it has no better candidates.
In example above, the dependent nodes using this technique
would only point to c if they are not already pointing to b as
b is a better candidate than c.

Similarly, the joining of a node only serves to notify the
dependent nodes about the arrival of a node. The dependent
nodes will only point to the new node if they do not have a
better candidate already.

Failures are handled by letting the node that detects the

failure to route to the predecessor of the failed node. The
predecessor of the failed node finds the successor of the failed
node and lets it initiate a leave notification on the failed node’s
behalf to all the dependent nodes. Thereafter, messages that
were not sent due to the failure are resent in an end-to-end
fashion.

The main advantage of this scheme is that it will stop false-
negatives. For example, node a might leave the system and
notify all its dependent nodes. However, before its notification
arrives to a dependent node, the dependent node sends a
message to a and finds that it is not responding. It will
therefore trigger a correction-on-change that will ultimately
be routed to the successor of node a which by the local
atomic action already knows about node a’s departure and
hence ignores the false detection of failure.

There is still the chance that the buffer keeping the times-
tamps is full or that an orphan message arrives to a newly
joined node. Hence, we combine correction-on-change with
the previously mentioned correction-on-use to make sure that
remaining incorrect routing entries are eventually corrected.

IV. SIMULATION RESULTS

To validate correction-on-change we have simulated the
algorithm in the stochastic discrete event simulator developed
by our team using the Mozart[14] programming system. As
there might be an auto-correlation within a sample from one
simulation run the simulator uses the method of independent
replications to generate unbiased estimates from independent
and identically distributed variables. The initialization bias of
the warm-up period has been removed from every replication.
All the simulations are non-terminating where nodes join,
leave, and fail with an exponential distribution with parameter
λ. Hence, the expected number of joins, leaves, and failures
is λ−1.

Fig. 7. The maintenance traffic for the Chord system running periodic
stabilization every 500 time units and the DKS system running optimized
correction-on-change. A leave and join event happens every 200 time units
on average. The Deviation from Legitimate State for these simulations can be
seen in Figure 8.

We first show the difference between periodic stabilization
in the Chord system and correction-on-change (CoC) in the

Fig. 8. Deviation from Legitimate State for the Chord system running
periodic stabilization every 500 time units and the DKS system running
optimized correction-on-change. A leave and join event happens every 200
time units on average. Both systems consume approximately the same amount
of maintenance bandwidth as seen in Figure 7.

Fig. 9. Deviation from Legitimate State for the Chord system running
periodic stabilization every 80 time units and the DKS system running
optimized correction-on-change. A leave and join event happens every 2000
time units on average. Both systems have a legitimate state deviation close to
0 indicating that the system is approximately in a legitimate state.

DKS system. We do this by fixing the maintenance bandwidth
in both systems to investigate the deviation of the routing
information from the legitimate state.

The deviation from the legitimate state is calculated as the
ratio between the total number of incorrect routing pointers
and the total number of routing pointers in the system:

∑

p∈P

∑log
k
(N)

l=1

∑k−1
i=0 Fp(l, i)

|P|(k − 1) logk(N)

where the characteristic function Fp for node p is defined
as:

Fp(l, i) =

1, ifRTp,P(l, i) = BIp(l, i)⊕min({nªBIp(l, i)|n∈ P})
0, otherwise.

Fig. 10. The maintenance traffic for the Chord system running periodic
stabilization every 80 time units and the DKS system running optimized
correction-on-change. A leave and join event happens every 2000 time units
on average. The Deviation from Legitimate State for these simulations can be
seen in Figure 9.

Fig. 11. Average lookup length in a DKS system using correction-on-change
in conjunction with correction-on-use.

Figure 7 shows a simulation of a system where N = 212 and
initially the number of nodes in the system is 512. The nodes
arrive and depart each with a rate of λ = 1

200 . The curves show
the amount of maintenance bandwidth consumed by a Chord
system running periodic stabilization and a DKS (k = 2)
system running the optimized correction-on-change algorithm.
All the stabilization rates in Chord has been set to 500 such
that the amount of maintenance bandwidth is equal to the DKS
system. Given these two systems where the maintenance cost
is equal, Figure 8 shows the deviation from the legitimate state.
The DKS system is maintained approximately in legitimate
state as expected while approximately half of the routing
pointers in Chord are incorrect.

We now show the reverse by fixing the deviation from the
legitimate state close to optimal (zero) for Chord and DKS .
I.e. the routing state in both systems is approximately in
a legitimate state, to investigate the amount of maintenance
bandwidth consumed in respective system. Essentially, this
comparison shows how a adaptive periodic stabilization would

Fig. 12. Average lookup length in a DKS system only using correction-on-
use.

Fig. 13. Amount of maintenance bandwidth used to correct outdated routing
entries.

perform as the stabilization has been set to match the dy-
namism in the system perfectly. We experimented with many
different stabilization rates to find one which matched the
dynamism such that the system would be in approximately
legitimate state at all times.

Figure 9 shows a system (N = 212) containing 512 nodes
initially. The nodes arrive and depart each with a rate of
λ = 1

2000 . The curves show the amount of maintenance
bandwidth consumed by Chord running periodic stabilization
and a DKS (k = 2) running the optimized correction-on-
change algorithm. A stabilization will be made by every node
in the system every 80 simulation time units. The figure clearly
shows that both systems are approximately maintained in a
legitimate state. However, as Figure 10 shows, the periodic
stabilization consumes significantly more traffic than the DKS
system.

Next, we motivate by means of simulations the advantage
of correction-on-change over correction-on-use.

As reported in [7] the use of correction-on-use, instead of
periodic stabilization, gives an average lookup length that is

approximately log
k
(P)

2 for a system of P peers while inducing
little maintenance bandwidth. However, for correction-on-use
to perform well the system needs to have enough routing
messages to correct routing entries that are outdated as the
result of dynamism. However, the requirement of high enough
traffic might not be fulfilled as we show here by simulation.

We setup a scenario in which the amount of routing mes-
sages are not high enough to see how the average lookup
length is affected. Figure 12 shows a simulation where nodes
arrive and depart with λ = 1

50 . The system was setup with
N = 212, and k = 2 with initially 512 nodes in a legitimate
state. The behavior of the nodes is modeled as egoistic, not a
completely unrealistic assumption [15], by letting each node
on average make 4 lookups with an exponential distribution.
The figure shows the average lookup length for successful
lookups by far exceeding the expected value 4.5.

The same scenario is simulated using correction-on-change
and correction-on-use simultaneously. Two different versions
of correction-on-change are used. First, the non-optimized
version which updates the dependent nodes in each inter-
val regardless of overlap of the intervals. The second one
is based on an optimized version that uses the subroutine
CollapseIntervals to reduce the bandwidth consump-
tion. Figure 11 shows that for both versions of correction-
on-change the curves superimpose giving an average lookup
length close to the ideal 4.5.

The traffic induced by the correction-on-change is shown
in Figure 13. The figure clearly shows that the amount of
maintenance bandwidth is significantly less in the optimized
version of correction-on-change.

V. CONCLUSIONS

We have presented correction-on-change, a general ap-
proach for maintaining several types of structured peer-to-peer
overlay networks. We showed how it can be applied to the DKS
system as well as the Chord system. The proposed technique
builds on correction-on-use and increases system robustness
while keeping the maintenance cost low. Indeed, with the
correction-on-change technique, bandwidth is consumed only
when necessary.

To proof the correctness of correction-on-change, we for-
mally characterized the set of all nodes (i.e. the dependent
nodes) that need to be updated upon a join, leave or failure of a
node. Furthermore, we showed how the dependent nodes could
uniquely be identified with only partial information about
the system and provided correctness proof for it. To notify
dependent nodes about a change, we provided an improved
and restricted version of our previous work on broadcast
in DKS−based structured peer-to-peer overlay network. The
improved version of our broadcast algorithm does not send any
redundant messages despite the presence of outdated routing
pointers in the system.

Experimental results show that for the same amount of
maintenance bandwidth, correction-on-change makes the sys-
tem by far more robust when compared to periodic stabiliza-
tion. Moreover, even if a periodic stabilization that adapts itself

perfectly to the dynamism in the system is used, correction-
on-change will give the same performance but with a small
fraction of the maintenance cost of periodic stabilization.

We provided an algorithm for further reducing the mainte-
nance bandwidth by optimizing overlapping intervals before
notifying the dependent nodes. We proved that the algorithm
terminates. The proposed optimized algorithm was compared
to the non-optimized algorithm.

Furthermore, we have shown by means of preliminary
simulations that our approach allows the system to maintain
the average lookup length close to the theoretical bound. This
improves upon all existing designs we know of.

Currently, the correction-on-change is being tested in our
implementation of the DKS system. In the future, we will
report our ongoing effort on how the backlist and frontlist
of the DKS system are maintained similarly to correction-
on-change, with the addition of vector-timestamps ensure
causality.

REFERENCES

[1] K. Aberer, A. Datta, and M. Hauswirth. Route Maintenance Overheads
in DHT Overlays. Technical Report IC/2003/69, 2003.

[2] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. Technical Report TR-819, MIT, January 2002.

[3] F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal
distributed hash table. In Proceedings of the Second International
Workshop on Peer-to-Peer Systems, IPTPS, 2003.

[4] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing. U.
C. Berkeley Technical Report UCB//CSD-01-1141, April 2000.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. Lecture
Notes in Computer Science, 2218, 2001.

[6] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of
reliability in peer-to-peer overlayss. In 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), February 2003.

[7] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N, k, f):
A Family of Low Communication, Scalable and Fault-Tolerant Infras-
tructures for P2P Applications. In The 3rd International workshop on
Global and Peer-To-Peer Computing on large scale distributed systems
- CCGRID2003, Tokyo, Japan, May 2003.

[8] A. Ghodsi, L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. Self-
Correcting Broadcast in Distributed Hash Tables. In 15th IASTED Inter-
national Conference, Parallel and Distributed Computing and Systems,
Marina del Rey, CA, USA, November 2003.

[9] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. In ACM SIGCOMM 2001, pages 149–160, San Deigo, CA, August
2001.

[10] K. Aberer, A. Datta, and M. Hauswirth. Efficient, self-contained
handling of identity. IEEE Transactions on Knowledge and Data
Engineering, 16, 2004.

[11] K. Lakshminarayanan, A. Rajagopala Rao, and S. Surana. Hyperchord:
A Peer-to-Peer Data Location Architecture. 2001.

[12] P. Maymounkov and D. Mazires. Kademlia: A Peer-to-peer Information
System Based on the XOR Metric. In The 1st Interational Workshop
on Peer-to-Peer Systems (IPTPS’02), 2002.

[13] V. Mesaros, B. Carton, and P. V. Roy. S-Chord: Using Symmetry to
Improve Lookup Efficiency in Chord. In Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques
and Applications, PDPTA ’03, Las Vegas, Nevada, USA, June 2003.

[14] Mozart Consortium. http://www.mozart-oz.org, 2003.
[15] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study

of peer-to-peer file sharing systems. In Proceedings of Multimedia
Computing and Networking 2002 (MMCN ’02), San Jose, CA, USA,
January 2002.

