
Efficient Top-K Query Calculation in Distributed Networks

Pei Cao
Department of Computer Science

Stanford University
Stanford, CA 94305

pei.cao@cs.stanford.edu

Zhe Wang
Department of Computer Science

Princeton University
Princeton, NJ 08540

zhewang@cs.princeton.edu

ABSTRACT
This paper presents a new algorithm to answer top-k queries
(e.g. “find the k objects with the highest aggregate values”)
in a distributed network. Existing algorithms such as the
Threshold Algorithm [10] consume an excessive amount of
bandwidth when the number of nodes, m, is high. We pro-
pose a new algorithm called “Three-Phase Uniform Thresh-
old” (TPUT). TPUT reduces network bandwidth consump-
tion by pruning away ineligible objects, and terminates in
three round-trips regardless of data input.
The paper presents two sets of results about TPUT. First,

trace-driven simulations show that, depending on the size of
the network, TPUT reduces network traffic by one to two or-
ders of magnitude compared to existing algorithms. Second,
TPUT is proven to be instance-optimal on common data se-
ries. In particular, analysis shows that by using a pruning
parameter α < 1, TPUT achieves a qualitative reduction in
network traffic, lowering the optimality ratio from O(m∗m)
to O(m ∗ √m) for data series following Zipf distribution.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-
Communication Networks

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Distributed Networks, Top-k Algorithms, Instance Optimal-
ity

1. INTRODUCTION
We investigate algorithms that answer “top-k” queries ef-

ficiently in distributed networks. The performance criteria
are low latency and low bandwidth consumption. Such algo-
rithms are important in a variety of systems; our particular
interest is content distribution networks for large enterprises.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’04, July 25–28, 2004, St. John's, Newfoundland, Canada.
Copyright 2004 ACM 1-58113-802-4/04/0007 ...$5.00.

Large enterprises have branch offices located around the
globe. The offices are usually connected to the enterprise
data center via WAN links in a star topology. The number
of branch offices ranges from a few tens to a few thousands.
Due to the diverse geographical locations of branch offices,
the links between the offices and the data center have low
bandwidth, typically 128Kb/s to 2Mb/s.
To enable Web and streaming media applications at the

branch offices, a Content Distribution Network (CDN) is
usually deployed. In the CDN, a “content engine” is in-
stalled at each branch office. The device acts as a Web
cache, a streaming media cache, and a server that serves
pre-positioned Web and video contents. The devices are
managed by a central management station located at the
data center.
Successful operations of CDN rely on effective monitor-

ing of the activities on the network, which means that the
central management station is often asked to answer “top-
k” queries. For example, the administrator routinely asks
for “list the top-k most popular URLs across the whole
CDN”, or “list the objects whose total byte savings across
all caches are among the top k.” Naive methods for answer-
ing these queries would have each cache send data about all
objects to the central manager. Since the number of objects
at each cache easily runs to millions, the sheer amount of
data can consume excessive WAN bandwidth and defeat the
bandwidth-saving purpose of the CDN. Hence, more sophis-
ticated algorithms are needed.
In this paper, we present a new algorithm, Three-Phase

Uniform Threshold (TPUT), that answers the “top-k”
queries in large-scale networks efficiently.

1.1 Problem Definition
Assume that there are m data series, each data series d is

a list of 〈x, vd(x)〉 pairs, where x is an object and vd(x) > 0
is the value of the object. The list is sorted by object values,
from the highest to the lowest; thus we also call a data series
a “sorted list”. The sets of objects in each data series overlap
but are not identical. If an object y doesn’t appear in data
series d, we say that vd(y) = 0.
For each object x, one can calculate its aggregate value

across the m data series: V (x) = v1(x)+v2(x)+ . . .+vm(x).
The query is to find k objects, x1, x2, ..., xk, whose values
V (x1), V (x2), ..., V (xk) are the highest k values among all
objects.
In a network of m nodes connected to a central manager,

each node is a data series. The goal of the algorithm is to
answer the query with minimum amount of communication
between the nodes and the central manager.

206

Position Series 1 Series 2 Series 3
1 〈O1, 10〉 〈O2, 10〉 〈O3, 10〉
2 〈O3, 8〉 〈O4, 9〉 〈O1, 9〉
3 〈O5, 8〉 〈O6, 8〉 〈O7, 8〉
4 〈O6, 8〉 〈O8, 6〉 〈O9, 7〉
5 〈O2, 7〉 〈O7, 5〉 〈O6, 6〉
6 〈O4, 5〉 〈O3, 2〉 〈O4, 5〉
7 〈O9, 1〉 〈O1, 1〉 〈O2, 1〉

Table 1: An example data set with three data series.

As described, the problem is a generic one that can be
found in almost any monitoring network or collaborative
distributed system. When the lists are short, the simple
method where each node sends its list to the manager works
fine. However, when the lists are long, more sophisticated
solutions are needed. Such solutions are useful in many
systems besides content distribution networks, for example,
sensor networks and spam detection networks.

1.2 Review of the Threshold Algorithm
Database communities have studied various methods to

evaluate top-k queries [13, 9, 14, 3, 10, 1]. The queries
in the studies aggregate values over a few databases. The
arguably best algorithm is the Threshold Algorithm (TA),
discovered independently by multiple groups [13, 14, 10] and
examined thoroughly in [10].
Briefly, TA goes down the sorted lists in parallel, one po-

sition at a time, and calculates the sum of the values at
that position across all the lists. This sum is called the
“threshold” in [10] and the “stopping value” in this paper.
Everytime a new object appears, TA looks up in all lists to
find its aggregate value. TA stops when it finds k objects
whose values are higher than the stopping value. The al-
gorithm is correct because any object that it has not seen
cannot have a value higher than the stopping value.
As an example, look at the data series in Table 1. Assume

the query is to find the top 2 objects, i.e. k = 2. TA first
looks at the objects in position 1 of all lists, which are O1,
O2, and O3. It looks them up in all lists and finds their
aggregate values, V (O1) = v1(O1)+ v2(O1)+ v3(O1) = 10+
1+9 = 20, V (O2) = v1(O2)+v2(O2)+v3(O2) = 7+10+1 =
18, and V (O3) = v1(O3)+v2(O3)+v3(O3) = 8+2+10 = 20.
The stopping value at position 1 is 10+10+10 = 30. Hence
the algorithm cannot stop and must go onto position 2. At
position 2 the objects are O3, O4, andO1. O4 is a new object
so the algorithm finds its aggregate value V (O4) = 5+9+5 =
19. The stopping value at position 2 is 8 + 9 + 9 = 26 and
the algorithm must go on. The algorithm finally stops at
position 5 and concludes that the top 2 objects are O6 with
value 22 and O1 with value 20.
Running over a network, TA would go through rounds,

each round involving two round-trip communications. In
the first round-trip, the manager asks nodes about data at
a particular position in their lists. In the second round-trip,
the manager sends all nodes a list of object IDs and the
nodes respond with values of those objects in their lists. To
reduce the number of rounds, nodes can send data from a
block of positions each time. Large blocks result in fewer
rounds, but also generate extra network traffic. Due to lack
of better choices, in this paper we set the size of the block
to k, that is, each round goes k positions down the lists.

TA works well when the number of nodes, m, is small.
However, when m is large, the network traffic involved in
the second round-trip can become excessive, regardless of
choices of the block size. Unless each object’s positions in
the sorted lists are very similar (i.e. if an object appears in
position k in one list, then it appears in positions near k in
other lists), the number of unique objects reported in the
first round-trip is O(m). These objects are then looked up
in all m nodes, leading to overhead of O(m2). Indeed, when
m is large, the traffic incurred by the central manager to
send the list of objects to all nodes can be high enough that
the naive algorithm would consume less bandwidth than TA.
While one can argue that the factor of O(m2) is unavoidable
in any algorithm’s worst-case performances (proved in [10]),
TA’s worst-cases happen too often in practice.
An additional problem is that the latency of TA is unpre-

dictable because the number of rounds varies by data input.
For distributed networks, it’s desirable to have an algorithm
that terminates in a fixed number of round trips.

1.3 Our Algorithm: TPUT
We design the TPUT algorithm to terminate in a fixed

number of round trips regardless of input and always give
accurate answers. The algorithm executes in three steps:

1. determine a lower-bound estimate for the k’th value;

2. use the estimate to prune away ineligible objects as
much as possible;

3. look up the resulting set of objects in all nodes to iden-
tify the top-k objects.

It draws its efficiency over the naive algorithm and TA
through its effective pruning mechanism.
We demonstrate the practical performance of TPUT

through trace-driven simulations. Using Web access trace
data, we show that the network bandwidth consumption of
TPUT can be one to two orders of magnitude less than TA,
depending on the number of nodes.
We analyze the properties of TPUT following the concept

of “instance-optimality” as proposed in [10]. We consider
the class of fixed round trip algorithms, of which TPUT is a
member. We show that no fixed round-trip algorithm can be
instance-optimal when considering all possible data series.
However, if data series are limited to data distributions that
have a “slope” (i.e. the rate of decreases in values satisfies a
lower bound), then TPUT is instance optimal. Furthermore,
by introducing a parameter α < 1 in the TPUT algorithm,
the performance of the algorithm is improved qualitatively.
In the case of Zipf distribution, the optimality ratio is re-
duced from O(m∗m) to O(m∗√m), where m is the number
of nodes in the network.
Finally, we discuss extensions of TPUT to hierarchical

networks and peer-to-peer networks.

2. THREE-PHASE UNIFORM-
THRESHOLD ALGORITHM

Before we describe the TPUT algorithm, we define a few
basic operations and notations.

2.1 Partial Sums and Upper Bounds
At any stage in the algorithm, the central manager can

calculate a partial sum of an object o, P (o) = v′
1(o)+v′

2(o)+

207

. . . + v′
m(o), where v′

i(o) = vi(o) if o has been reported by
node i, and v′

i(o) = 0 otherwise. Since all values are ≥ 0, an
object’s partial sum is always a lower bound of its aggregate
value, P (o) ≤ V (o).
When the central manager receives all objects with val-

ues above a certain threshold T from all nodes, it can
also calculate an upper bound for an object o, U(o) =
u′

1(o) + u′
2(o) + . . . + u′

m(o), where u′
i(o) = vi(o) if o has

been reported by node i, and u′
i(o) = T otherwise. Clearly,

U(o) ≥ V (o) for any object o.
Assume that the final answer to the top-k query are ob-

jects O1, O2, . . . , Ok, where V (O1) ≥ V (O2) ≥ . . . ≥
V (Ok). We call this set the “true” top-k objects, and the
value V (Ok) the “true bottom”, denoted by τ .

2.2 Basic Algorithm
TPUT consists of three phases, each taking one round-trip

to finish:

• Phase 1: establish a lower bound on the true bottom.
The central manager informs all nodes that it would
like to initiate calculations of a top-k query. Each node
d sends the top k items from its lists.

After receiving the data from all nodes, the central
manager calculates the partial sums of the objects. It
then looks at the k highest partial sums, and takes the
k’th one as the lower bound. We denote this lower
bound as τ1, and call it “phase-1 bottom”.

• Phase 2: prune away ineligible objects. The manager
now sets a threshold T = (τ1/m), and sends it to all
nodes. Each node then sends the list of objects whose
values are ≥ T to the central manager.

At the end of this round-trip the manager has seen
objects in the true top-k set. In other words, if an
object is not reported by any node, then its value are
< T in all nodes, which means that its aggregate value
is < τ1, and hence it can’t be in the top-k set.

The manager now performs two tasks. First, it refines
the lower bound estimate. It calculates a new set of
partial sums for the objects, and finds the k highest
partial sums. Let’s call the k’th highest sum “phase-2
bottom”, and denote it by τ2. Clearly, τ1 ≤ τ2 ≤ τ .

Then, it tries to prune away more objects. It calculates
upper bounds of the objects as described in the previ-
ous section. Objects whose upper bounds are less than
τ2 are eliminated. The set of the remaining objects is
the candidate set S.

• Phase 3: identify the top-k objects. Now, the manager
sends the set S to all nodes, and each node sends the
manager the values of objects in S. The manager can
then calculate the exact sum of objects in S, and select
the top-k objects from the set. Those objects are the
true top-k objects.

As an example, consider the lists in Table 1. In phase 1,
all nodes send the data at positions 1 and 2 to the cen-
tral manager. The manager calculates the partial sums:
V ′(O1) = 19, V ′(O2) = 10, V ′(O3) = 18, and V ′(O4) = 9.
The two highest partial sums are 19 and 18, and the phase-1
bottom τ1 is 18. Hence, the threshold T is set to 18/3 = 6.
In phase 2, node 1 sends data up to position 5 in its list,

node 2 sends data up to position 4, and node 3 sends data
up to position 5. The central manager now finds the phase-
2 bottom τ2 = 19 because V ′(O6) = 22 and V ′(O1) = 19
are now the top 2 sums. Furthermore, U(O8) = 18 and
U(O9) = 19, hence, O8 and O9 are eliminated from con-
sideration and S = O1, O2, . . . , O7. In phase 3, the central
manager now sends S to all nodes; the nodes respond and
the central manager concludes that the top 2 objects are O6

and O1.

Theorem 2.1. The above algorithm correctly identifies
the exact top-k objects for any data input.

Proof. As discussed above.

The above discussion omits two details. First, if a node
has sent a piece of data in previous round-trips then it
doesn’t send it again; the central manager saves all history.
Second, at each phase, TPUT always examines the available
information and checks if it can safely terminate. For ex-
ample, in phase 2 if there are k objects whose partial sums
are true sums and are higher than the upper bounds of all
other objects, TPUT can terminate.
In practice, to guard against the pathological case where

a node has a very long sequence of objects with values above
the threshold, the central manager can put a limit on the
maximum number of objects that a node sends in phase 2.
If a node cannot send all objects above the threshold, it
should inform the manager. The manager needs to make
two adjustments. First, it adjusts the values used in the
upper bound calculations. Second, it calculates the sum of
the bottom values on the lists sent by the nodes; let’s call
it τ ′. If, at the end of phase 3, the manager finds k objects
whose values are > τ ′, then the algorithm can terminate.
Otherwise, it needs to rerun phase 2 requesting nodes to
send all objects above the threshold. Since this mechanism is
only needed for pathological cases which are rare in practice,
we do not discuss this scheme further.
Finally, note that the algorithm is not limited to sum,

and can apply to any strict monotonic aggregation function
f [10] as long as there is a way to determine the threshold
value T based on the phase-1 bottom. For example, if the

function is multiplication, then T would be τ
1/m
1 .

2.3 Enhancing the Pruning Power
We can lower the threshold T by setting it to be (τ1/m)∗α,

where 0 < α < 1. We call α the pruning parameter. We
choose α = 0.5 in our design.
Intuitively, with T = τ1/m ∗ 0.5, many objects that are

reported by a few nodes but whose actual sums are smaller
than τ1 can be detected and eliminated. It turns out that
any value of α < 1 leads to a qualitative reduction in the
size of candidate set S. We analyze the choice and impact
of α in later sections.

2.4 Compression via Hash Arrays
If names of objects are long (e.g. URLs), one can use

hash arrays to reduce the amount of traffic. Specifically,
in phase 2, when a node sends all objects above T to the
manager, it sends in a hash array of counters instead of a
list of 〈url, value〉 pairs. Each entry in the hash array is
either 0 if no object hashes into the entry, or the value V ,
where V is the maximum of values of objects hashed into
the entry. The hash function used and the size of the hash
array are the same across all nodes.

208

Partial sums and upper bounds are calculated on array
entries. The candidate set S also consists of array entries.
In phase 3, the manager represents S as a bit array and
sends it to all nodes, and all nodes respond with lists of
objects that hash into entries whose bits are 1.
Due to hash collision, τ2 might not be a lower bound of

τ anymore. In this case, TPUT will not be able to find k
objects whose sum are ≥ τ2. If this happens, the central
manager recalculates the candidate set by using τ1 as the
lower bound and the algorithm will then terminate.
To determine the size of the hash array, each node j sends

the total number of objects in its sorted list, nj , in phase
1. The central manager then sets the size of the array to
be Σ(nj). This creates many empty entries in individual
nodes’ data, which are easily eliminated by compression. In
essence, the hash arrays make sure that each object’s name
consumes at most three or four bytes in transmission.

Theorem 2.2. The hash array compression does not af-
fect the correctness of the algorithm.

Proof. As discussed above.

3. EXPERIMENTAL PERFORMANCE OF
TPUT

We implemented TA, TPUT and TPUT with hash array
compression to compare their performance across a range of
data sets.
The performance metrics for the algorithms are band-

width consumption and the number of round trips. For
bandwidth consumption we calculate two kinds of byte
count:

• “uni-cast” bytes, which assumes that the central man-
ager communicates with each node via uni-cast. In
this case, the central manager constructs individual
messages for each node to avoid requesting duplicate
information from a node.

• “broadcast” bytes, which assumes that there is a
broadcast mechanism, e.g. satellite communication,
that the central manager can use to communicate with
all nodes. In this case, the central manager constructs
one message to broadcast to all nodes, and the message
is counted only once.

All information exchanges are compressed via gzip, and the
compressed sizes are used in the calculations.

3.1 Trace Data
Using web access logs, we simulate the scenario where a

central manager talks to a network of web proxies or web
servers to execute top-k queries.

• NLANR-10: a full-day (Oct 21, 2003) trace log of the
10 caching proxies operated by NLANR [12], which
are used by international research communities for ac-
cesses to US contents.

• NLANR-203: to simulate a higher number of prox-
ies, we split each NLANR proxy’s trace into 32 sub-
traces, based on the hash of the class A byte of the
client IP address. Sub-traces that have fewer than
1000 requested URLs are ignored since they indicate
that the corresponding client population are not using
the NLANR proxy hierarchy regularly. We are then
left with data for a network of 203 proxies.

NLANR-REAL WorldCup DEC-64 DEC-128 NLANR-203 Berkley-512
0.001

0.010

0.100

1.000

T
ot

al
 m

es
sa

ge
 s

iz
e

(L
og

 s
ca

le
)

0.001

0.010

0.100

1.000

T
ot

al
 m

es
sa

ge
 s

iz
e

(L
og

 s
ca

le
)

Top 10 unicast

Threshold

TPUT

TPUT+Hash

Figure 1: Uni-cast bytes of the algorithms for find-
ing the top 10 objects. Note that the y-axis is in log
scale.

• WorldCup-30: a 2-hour access log from the 30 web
servers hosting the web site for the 1998 World Cup
Soccer on June 30, 1998.

• DEC-64: we take a one-day (Sep 16, 1996) trace from
the Digital Equipment Corporation’s Internet gate-
way [7] and split it 64-ways based on client IP ad-
dresses. The resulting data simulate the scenarios
where the corporate employees are spread among 64
branch offices, with each office having its own gateway
proxy.

• DEC-128: similar to the DEC-64 data set, we take two
days (Sep 16 and 17) worth of traces and split it 128
ways, to simulate the scenario where the number of
branch offices is 128.

• UCB-512: to understand how the algorithms perform
over larger numbers of nodes, we use the 18-day home
IP traces gathered by Univ. of California at Berkeley
from Nov. 1, 1996 to Nov. 19, 1996. The traces
capture 8399 clients’ activities, and we split the clients
into 512 groups. This simulates the scenario where a
large corporation have many small branch offices, each
with only ten to twenty people.

The queries are either for top k most referenced URLs, or
for top k URLs whose responses have highest aggregate byte
count (i.e. consume most bandwidth). We choose two types
of queries to vary the value distributions in the input data.
Values distributions in the first type of queries tend to be
Zipf-like [2], while value distributions in the second type of
queries resemble stair-case functions.
Table 2 summarizes the trace characteristics and lists the

actual performance numbers for the naive algorithm and TA.

3.2 Performance Results
Performance comparison of TA, TPUT, and TPUT with

hash compression are shown in Figures 1 to 4. We present
the results on k highest byte-count URLs for DEC-64 and
DEC-128 traces, and the results on k most referenced URLs
on other traces. Results of other combinations are similar.
Figure 1 shows the uni-cast bytes of the algorithms for

selecting the top 10 objects (i.e. k = 10), while Figure 2
shows the broadcast bytes. Figure 3 and Figure 4 are the
corresponding results for selecting the top 100 objects (i.e.
k = 100). The results are normalized against the algorithm

209

Trace name m Gzip’ed Size Performance of TA (k=10) Performance of TA (k=100)
of Data Series unicast broadcast # of RTs unicast broadcast # of RTs

NLANR 10 26.6MB 56.3KB 25.9KB 4 318KB 132KB 4
WorldCup 30 426KB 31.0KB 22.2KB 4 96.3KB 80.0KB 4
DEC-64 64 7.38MB 1.69MB 160KB 12 4.61MB 359KB 4
DEC-128 128 14.9MB 7.19MB 419KB 14 24.6MB 1.18MB 6
NLANR-203 203 44.3MB 22.2MB 1.20MB 8 143MB 4.24MB 6
UCB-512 512 78.0MB 423MB 16.1MB 34 1.47GB 31.2MB 14

Table 2: Summary of data sets. The gzip’ed size of data series is also the byte count of the naive algorithm;
“# of RTs” stands for number of round trips. Note that in the cases of DEC-128, NLANR-203 and UCB-512,
TA consumes more bandwidth than the naive algorithm in terms of unicast bytes, since the central manager
sends a long list of object URLs to all nodes for lookup.

NLANR-REAL WorldCup DEC-64 DEC-128 NLANR-203 Berkley-512
0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 m

es
sa

ge
 s

iz
e

0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 m

es
sa

ge
 s

iz
e

Top 10 multicast

Threshold

TPUT

TPUT+Hash

Figure 2: Broadcast bytes of the algorithms for find-
ing the top 10 objects.

NLANR-REAL WorldCup DEC-64 DEC-128 NLANR-203 Berkley-512
0.001

0.010

0.100

1.000

T
ot

al
 m

es
sa

ge
 s

iz
e

(L
og

 s
ca

le
)

0.001

0.010

0.100

1.000

T
ot

al
 m

es
sa

ge
 s

iz
e

(L
og

 s
ca

le
)

Top 100 unicast

Threshold

TPUT

TPUT+Hash

Figure 3: Uni-cast bytes of the algorithms for find-
ing the top 100 objects. Note that the y-axis is in log
scale.

NLANR-REAL WorldCup DEC-64 DEC-128 NLANR-203 Berkley-512
0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 m

es
sa

ge
 s

iz
e

0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 m

es
sa

ge
 s

iz
e

Top 100 multicast

Threshold

TPUT

TPUT+Hash

Figure 4: Broadcast bytes of the algorithms for find-
ing the top 100 objects.

with the highest cost. The shaded region in each bar repre-
sents the number of bytes sent by the nodes to the manager,
while the empty region represents the number of bytes sent
by the manager to the nodes.

As the number of nodes increases, the advantage of TPUT
over TA in the unicast case magnifies. The main reason is
that the number of objects looked up in all nodes is much
lower in TPUT than in TA. For example, in the case of
DEC-128 traces with k = 100, TA looks up a total of 26680
URLs in the 128 nodes, whereas TPUT only looks up a total
of 250 URLs. TPUT is clearly very effective at reducing the
set S.
Though not shown here, we experimented with different

α values. Larger α tends to increase the size of candidate
set S but reduces the number of items that nodes send to
the central manager, while smaller α has the opposite effect.
Optimal α varies by traces, oscillating between 0.3 and 0.8.
Overall, α = 0.5 appears to be a good default choice.
In the case of Worldcup-30 at k = 10, TA performs slightly

better than TPUT. The reason is that in the WorldCup case,
the web servers are very well load-balanced, which means
that object rankings among all web servers are very similar,
a perfect scenario for TA.

The comparison of broadcast bytes is mostly determined
by how “far down the lists” TA and TPUT stop at, since
broadcast bytes are dominated by the traffic from the nodes
to the central manager. Depending on whether the values at
the same positions across the lists are similar or very differ-
ent, either TA or TPUT might win in this case. The results
show that in many traces TPUT outperforms TA, but in a
few cases TA outperforms TPUT slightly. Considering the
fact that the number of round-trips of TA is unpredictable,
we would still recommend TPUT as the top-k algorithm in
the case where a broadcast mechanism is available.

The effect of hash array compression is not uniform across
the traces. On NLANR and UCB data sets it reduces the
bandwidth consumption by a factor of 2 to 4, but on the
Worldcup traces it increases the bandwidth consumption by
about 25%. The main reason is that TPUT already uses gzip
compression, and gzip can do a very good job at reducing
the number of bytes needed to represent an object’s name,
making the hash array compression somewhat redundant.

The results show clearly that TPUT should be the default
top-k algorithm for large-scale networks. Hash array com-
pression can be used when the object names are too long.

210

4. INSTANCE-OPTIMALITY OF TPUT
As defined in [10], instance optimality is a measure of how

close an algorithm is to the optimal algorithm in the worst
case. Let A denote the class of all deterministic algorithms,
and let D denote the class of data series that we are in-
terested in. For any algorithm a ∈ A, and any data series
d ∈ D, we use cost(a, d) to denote the cost of running a over
d. Then an algorithm R is instance optimal over A and D
if R ∈ A and there exist two constants C1 and C2 such that
for every a ∈ A and d ∈ D:

cost(R,d) ≤ C1 ∗ cost(a, d) + C2

The constant C1 is called the optimality ratio of R.
Unfortunately, TPUT is not instance-optimal over all pos-

sible data series. If a data series has N objects with a fixed
value that is just over T , TPUT will send all N objects
to the central manager, while a more adaptive algorithm
might avoid sending all N objects. Since N can go to infin-
ity, TPUT is not instance optimal.
However, though TPUT is not instance optimal over all

data series, nor can any algorithm that terminates in a fixed
number of round trips regardless of inputs. Hence, we need
to incorporate some descriptions of the data series in opti-
mality ratio analysis. Below, we first define a class of algo-
rithms called “fixed round-trip algorithms”, then introduce
a concept called “log-log slope function” to characterize data
series.

4.1 Fixed Round-Trip Algorithms
We study algorithms that calculate top-k queries in the

following fashion. The algorithm is a series of round-
trip communications between the central manager and the
nodes, at the conclusion of which the central manager has
the identities of the top-k objects and their values. At each
step (i.e. a round-trip communication), the central manager
sends information to each node, and each node uses a cer-
tain criterion to select items on the list to sent to the central
manager. The selection criterion is one of the following:

• by position: at node i, all items from positions 1
through hi (hi is specified by the manager) are sent
to the central manager;

• by name: if the name of an object falls in a set of
object names sent by the central manager, then the
object and its value are sent to the central manager;

• by value: at node i, all objects with values higher than
ti (specified by the manager) are sent to the central
manager;

The cost of the algorithm is measured in bandwidth con-
sumption, which is modeled as “units of communication”,
where each unit is either an 〈object, value〉 pair sent by a
node to the manager, or an object name in a list sent by the
manager to the nodes.
We call these algorithms generic top-k algorithms because

they do not rely on any properties in the names of objects or
any properties in the value distributions of the list, and they
do not require the nodes to perform complicated operations
when deciding what to send to the central manager.
We say that a generic algorithm is a fixed round-trip algo-

rithm (or of “constant round complexity”) if it never incurs
more than c number of round trips where c is a constant in-
dependent of k, the number of node m, and the data series.

The threshold algorithm is not a fixed round trip algorithm,
but the TPUT algorithm is.
Intuitively, if an algorithm is fixed round-trip, then it must

use the value criteria in at least one step, otherwise it won’t
be able to correctly find the top k objects. This is because
the “by name” step does not let the central manager see any
new object, and the “by position” step does not show the
manager objects at lower positions that could be in the true
top-k set. The following theorem formalizes the argument.
Detailed proof of the theorem can be found in the extended
version of the paper [4].

Theorem 4.1. Any fixed round trip algorithm which cor-
rectly finds the top-k object for all data series and which does
not require seeing all data in all nodes must include a “by
value” criterion in at least one of its steps.

Unfortunately, use of the “by value” criteria means that a
fixed round-trip algorithm cannot be instance optimal over
all possible data series. It’s easy to see why; a data series
may have an arbitrarily large number of objects having a
particular value V that satisfies the “by value” criterion.
The following theorem formalizes the argument. Again, de-
tailed proof of the theorem can be found in the extended
version of the paper [4].

Theorem 4.2. Let A be the class of all deterministic al-
gorithms that correctly finds the top-k objects in all data
series. Let D be the class of all possible data series. Then
no fixed round-trip algorithm can be instance optimal in A
over D.

Hence, the general notion of instance optimality ratio
cannot be used to characterize fixed round-trip algorithms.
However, we can still analyze optimality ratios of these algo-
rithms by incorporating a characterization of the data series
themselves. The concept that we introduce is called log-log
slope function, described in the next section.

4.2 Optimality Ratio of TPUT
We introduce the log-log slope function of a data series.

In a sorted list, we call the value of the object at the i’th
position in the list “the value of the i’th position”, denoted
as w(i). Note that w(i) ≥ w(j) if i ≤ j, since the list is
reverse sorted.
We say that a data series has a log-log slope function

C(n) if, for all i where i ≤ k, w(C(n) ∗ i) < w(i)/n, and
C(n) is the smallest value satisfying this criteria (n is an
integer here). In other words, in order to achieve a factor
of n reduction in the value, one should go a factor of C(n)
deeper down the list. For example, data series that follow
Zipf-like distribution, that is, w(i) = O(1/iβ), has a log-log

slope function of C(n) = n1/β . Clearly, C(n) is a non-
decreasing function. The log-log slope function bounds the
occurrence of a long “plateau” in the values in the sorted
list, and it only needs to apply to the top k ranked object
as far as the algorithm is concerned.
TPUT is instance optimal over data series that satisfy log-

log slope function C(n). Put it differently, the optimality
ratio of TPUT can be characterized by C(n) of the data
series. Before we prove that, we establish two properties of
TPUT.

Lemma 4.3. Phase-1 bottom, τ1, is at least 1/m of the
true bottom τ .

Proof. After the central manager receives the top k ob-
jects from every node, it calculates partial sums for these

211

objects. Let’s call the collection of these objects S1. The
central manager selects objects with the top k partial sums,
and sets τ1 to be the min of the top k partial sums. There-
fore, for an arbitrary subset of k objects in S1, the min of
their partial sums is ≤ τ1. In other words, τ1 is no less than
the bottom partial sum of any subset of k objects in S1.
Now, let’s sort all them∗k pairs of 〈object, value〉 received

in Phase 1 by value. Then go down the sorted list, and find
the first value, t, that belongs to the k’th object that has
been seen in going down the list. Clearly, the set of k objects
that are seen in going down the list has a bottom value that
is at least t. Hence, t ≤ τ1.
Now, for any object to have a value that is higher than

m ∗ t, it must have a value in a node that is higher than t.
Since the number of objects that have values higher than t is
at most k− 1, it follows that one can’t find k objects whose
values are higher than m ∗ t, which is saying in another way
that the true bottom is at most m ∗ t. Since t ≤ τ1, the true
bottom is at most m ∗ τ1.

It’s easy to see that the above bound is tight by construct-
ing an example where all m ∗ k objects are different.

Lemma 4.4. Phase-2 bottom, τ2, is at least τ ∗m/(2m−
1), where τ is the true bottom.

Proof. In phase 2, the difference between the partial
sum of an object and its true sum is at most T ∗ (m −
1) = (τ1/m) ∗ (m − 1), since at whichever node that has
not reported the object, its value in that node is at most
T . Hence, the partial sums for the true top-k set of objects
are at least τ − τ1 ∗ ((m − 1)/m). Since τ2 is at least the
bottom partial sum of any set of k objects, we have τ2 ≥
(τ − τ1 ∗ ((m− 1)/m).
Note also that τ2 ≥ τ1, since the partial sum of any object

in phase 2 is at least its partial sum in phase 1. Hence,
τ2 ≥ max(τ1, τ − τ1 ∗ (m− 1)/m) ≥ (τ ∗m/(2m− 1)).

By similar argument we have the following corollary.

Corollary 4.5. If a pruning parameter α < 1 is used,
i.e. T = (τ1/m) ∗ α, then τ2 > τ ∗ 1/(1 + α).

Lemma 4.4 shows that by the end of phase 2, the central
manager has a lower bound that is within a factor of 2 of the
true bottom. Thus, in the case where the phase-1 bottom is
too low and a lot of objects are sent to the central manager,
the phase-2 bottom is much closer to the true bottom and
can weed out many objects. Note that this property is true
because the threshold value used in all nodes is the same,
indicating the importance of using a uniform threshold.

Now, we are ready to prove the optimality ratio of TPUT.

Theorem 4.6. Let D be the class of all data series that
have log-log slope function of C(n). Let A be the class
of all deterministic algorithms that correctly finds the top
k answers for every data series in D. Then the basic
TPUT algorithm (without pruning parameter α) is instance-
optimal over A and D, with optimality ratio: (m − 1) ∗
min(C(2m), C(m) ∗ k) +min(C(m2), C(m) ∗ k).

Proof. Assume algorithm a ∈ A, and assume a set of m
data series d ∈ D. For each data series di ∈ d, assume that
a stops at position bi in di, that is, the top bi objects in di

are seen by a (e.g. reported to the central manager running
a), but not the object at position bi + 1. As a result the
object at position bi + 1 does not belong to the true top-k
set. Then at node i, the value of position bi, w(bi), satisfies

w(bi) ≤ τ , since otherwise the object at position bi+1 might
have a value higher than τ and a cannot stop at position bi.
Since the threshold T = τ1/m and τ1 ≥ τ/m as per

Lemma 4.3, T ≥ τ/m2. Therefore, T ≥ w(bi)/m
2. Based

on the definition of the log-log slope function, objects at po-
sitions later than C(m2)∗bi have values < w(bi)/m

2. Hence,
TPUT stops at no later than C(m2) ∗ bi at data series di.
In addition, note that in node i, the value of the k’th

ranked object in that node is ≤ τ1. Since T = τ1/m, TPUT
will stop at no deeper than position C(m) ∗ k in data series
di.
Hence, the number of objects that TPUT sees in phase

2 is at most min(C(m2) ∗ bi, C(m) ∗ k) which is at most
min(C(m2), C(m) ∗ k) ∗ bi since bi ≥ 1.
In phase 3, where the central manager asks for values of

a set of objects, each object will have at most m− 1 nodes
sending the information to the central manager. Only if an
object has a value ≥ τ2/m in at least one node can it belong
to the set. Since at each node di, the value at position
bi (where algorithm a stops) is at most the true bottom
τ , and τ2 > τ/2 as per Lemma 4.4, we know that at most
C(2m)∗bi objects have values higher than τ2/m. Hence, the
total number of objects sent by the central manager in phase
2 is at most the total number of objects seen by algorithm
a times C(2m). This number is also at most the number of
objects seen by algorithm a times C(m)∗k as per the analysis
above. Therefore, the amount of information received by the
central manager is at most (m− 1) ∗min(C(2m), C(m) ∗ k)
times the amount of information seen under algorithm a.
Combining the phase 2 and phase 3 analysis gives us the

optimality ratio.
Furthermore, the ratio is tight because one can construct

the following example that incurs the ratio. In the example,
k=1. Every node with the exception of node 1 has a top
object that has value 1 and does not appear in any other
node. Node 1’s top object appears in other nodes at position
2 with value 1. All other objects in the nodes do not appear
in more than one node. The optimal algorithm would just
incur 2m communication units to find the top object, while
the basic TPUT algorithm would fetch C(m) objects from
each node and look up m ∗ C(m) objects in m − 1 nodes,
leading to the optimality ratio.

How close is TPUT to an optimal fixed round-trip algo-
rithm? Below, we give a weak lower bound on the optimality
ratio of any fixed round-trip algorithm.
We define “unit data series” as the following class of data

series. Each node has a list of objects of value 1, and the
objects, except for the very last one, do not appear in any
other node. The last object in all nodes’ list is the same
and has value 1 in all nodes. We say that a fixed round trip
algorithm has depth p for unit data series, if, before the “by
value” step, the shallowest position it has gone down in any
list is position p. The depth of any fixed round trip algo-
rithm on the unit data series is finite because the algorithm
can only run a fixed number of steps using the “by position”
criterion.

Theorem 4.7. Let A be the class of all deterministic al-
gorithms. Let D be the class of all data series that have
a log-log slope function of C. Then for any fixed round
trip algorithm B, its optimality ratio cannot be lower than
C(m) ∗ m/(p + 1 + 2m), where p is the depth of B on the
unit data series.

212

Proof. For any algorithm B, an adversary can construct
a data series that is a variation of the unit data series. B’s
cost on this data series is C(m) ∗ m, and there exist an
algorithm that would only incur cost p+1+ 2m. Details of
the construction can be found in [4].

If an algorithm uses only three round trips, its first step
must be a “by position” step and its depth on the unit
data series p is the minimum of the hi’s that it uses on
the nodes. Since the algorithm gathers all hi objects from
node i even if the top object is the same on all nodes and
is the top-1 object, the algorithm has an optimality ratio of
at least p. Hence, all three round trip algorithms have opti-
mality ratios that are ≥ max(p,C(m) ∗m/(p+ 1 + 2m)) ≥p

C(m) ∗m+ (m+ 1/2)2 − (m+ 1/2).

Corollary 4.8. Any three round trip algorithm has an
optimality ratio of at least

p
C(m) ∗m+ (m+ 1/2)2−(m+

1/2) on data series that satisfy the log-log slope function C.

Though the above lower bound is quite weak, it does show
that the dependence on C(m) is inherent to all fixed round-
trip algorithms.

4.3 Effects of the Parameter α

The pruning parameter α < 1 has a surprising impact on
the size of the candidate set S. Without it, if τ1 = τ2, then
no objects can be pruned away. More fundamentally, for any
object in S, α introduces a coupling between its value and
the number of nodes that reports it in phase 2. Intuitively, if
an object appears in a few nodes and still “makes the cut”,
then its value must be high in those nodes; if an object
has low values but “makes the cut”, then it must appear in
many nodes. Below, we formalize the argument, and show
the power of any α < 1 in the case of Zipf distribution.
To analyze the size of S under a particular α, we construct

the following 2-D matrix. Each row in the matrix is the
name of an object in S. Each column is a node. We set
T ′ = (τ2/m) ∗α (in the case of τ2 = τ1, T

′ = T). The entry
〈o, i〉 is 1 if object o appears in the list sent by node i and
vi(o) ≥ T ′, and 0 otherwise. Note that each row has at least
one entry that is 1.
Clearly, the sum of all entries in column i is less than

or equal to the number of objects in node i with values
≥ T ′. Since T ′ ≥ τ ∗ α/(m ∗ (1 + α)), by analysis in the
previous section, the sum of all entries in column i is ≤
C(m ∗ (1+α)/α) ∗ bi. Thus, if we sum all the entries in this
matrix by column, then the sum is ≤ C(m∗(1+α)/α)∗Σ(bi).
Let xl denote the number of objects in the matrix that

appears in exactly l columns. Then if we sum all the entries
by rows, the sum Σ(xl ∗ l) equals to the sum of all entries
by columns and hence Σ(xl ∗ l) ≤ C(m ∗ (1 + α)/α) ∗Σ(bi).
Now, if an object p appears in less than l columns and

“makes the cut” (i.e. the upper bound of its true sum is
over τ2), its average value in those nodes, R, must satisfy
(R ∗ l) + T ∗ (m − l) ≥ τ2 (note also that R ≥ T). Since
T ≤ (τ2/m)∗α, (R∗l) ≥ τ2∗(1−((m−l)/m∗α)) ≥ τ2∗(1−α).
Since τ2 ≥ τ/(1 + α), R ≥ τ ∗ (1 − α)/(1 + α) ∗ 1/l. Let
node i be the node where p’s value is higher than its average
R, then it’s clear that p must appear in node i’s sorted list
at a position no deeper than bi ∗ C(l ∗ (1 + α)/(1 − α)).
Let β = (1 + α)/(1 − α). If we count each such object
exactly once by choosing a node where the object’s value
is higher than or equal to its average value, then we have
x1 + x2 + . . .+ xl ≤ C(l ∗ β) ∗Σ(bi).
The number of objects in S is simply Σ(xl) where l =

1, . . . ,m. We have two constraints:

1. Σ(xl ∗ l) ≤ C(m ∗ (1 + α)/α) ∗Σ(bi);

2. x1 + x2 + . . .+ xl ≤ C(l ∗ β) ∗ Σ(bi) for each l;

where β = (1 + α)/(1− α).
The maximum value of Σ(xl) occurs when these exists a

value l0 such that for each l ≤ l0, xl is the maximum allowed
under constraint 2, and for each l > l0, xl = 0. In other
words, x1 = C(β) ∗ Σ(bi), x2 = (C(2 ∗ β)) − C(β)) ∗ Σ(bi),
x3 = (C(3 ∗ β) − C(2 ∗ β)) ∗ Σ(bi), and in general xi =
(C(i ∗β)−C((i− 1) ∗β)) ∗Σ(bi). The value l0 is simply the
maximum value such that l0 ∗ C(l0 ∗ β) − C((l0 − 1) ∗ β) −
C((l0 − 2) ∗ β) − . . . − C(β) ≤ C((1 + α) ∗ m ∗ 1/α). The
size of S (i.e. the total number of “random lookup” objects)
is C(l0 ∗ β) ∗ Σ(bi). l0 is determined by the log-log slope
function. Hence, we can refine the optimality ratio below.

Theorem 4.9. If the TPUT algorithm uses the parame-
ter α (0 < α ≤ 1) to improve the pruning power, then the
optimality ratio is at most (m−1)∗C(l0 ∗ (1+α)/(1−α))+
min(C(m2 ∗1/α), C(m∗1/α)∗k), where l0 is defined above.

The relationship between l0 and m depends on the log-
log slope function C. In the case of Zipf distribution, where
C(l) = l, we have l20 + l0 ≤ m ∗ (1− α)/α. In other words,

l0 is approximately
p

m ∗ (1− α)/α.

Corollary 4.10. TPUT with pruning parameter α < 1
has an optimality ratio that is O(m ∗ √

m)1 for Zipf distri-
bution, regardless of the value of α.

The analysis above shows the impact of α on the size of S.
The parameter α also has another effect, that is, it reduces
the threshold and increases the number of objects that each
node sends to the central manager. This is reflected in the
second additive term in the optimality ratio in Theorem 4.9.
Hence, the optimal α that minimizes network traffic depends
on both the log-log slope function and the number of nodes
m. In our experience, we found that α = 0.5 appears to
work well across a range of systems and we use it as the
default value.
Finally, TA’s optimality ratio for data series that satisfy

log-log slope function C(m) is (m−1)∗min(m,C(m)∗k) [4],
similar to that of TPUT with α = 1, but inferior to that of
TPUT with α < 1.

5. EXTENDING TPUT TO HIERARCHI-
CAL AND P2P NETWORKS

TPUT can be easily extended to hierarchical and peer-to-
peer networks. The algorithm would still operate in three
phases, which are lower-bound estimation, pruning, and final
lookup, but the operations in each phase vary according to
the network topology. Below, we discuss how TPUT might
operate in a two-level hierarchical network and the associate
design choices.
Assume that the network is a two-level tree hierarchy,

with the central manager talking to m intermediate nodes,
and each intermediate node i talking to ni leaf nodes. For
simplicity we assume that only the leaf nodes have data. The
top-k query is then aggregating values over all leaf nodes.

1We suspect that this ratio is tight within a constant factor
for Zipf distribution, but we are yet to construct a detailed
example that exhibits this ratio.

213

For phase 1, there are numerous ways to obtain a lower
bound. One approach is for all leaf nodes to send their
top-k elements to the central manager. The lower bound
obtained this way could be a factor of 1/Σni less than the
true bottom. Another approach is for each of the interme-
diate node to initiate its own top-k query over its children
and then send the results to the central manager. The lower
bound obtained this way would be no less than 1/m of the
true bottom, but more communications are initiated. Yet
a third approach would be for the central manager to take
whatever data it got and make a guess on the lower bound.
If it guesses too high it will find out at end of Phase 3, and
it can adjust the estimate and re-run the algorithm.
For phase 2, the “by value” query from the central man-

ager is easily decomposable. The central manager sets the
threshold T = (τ1/m) ∗ α, and sends the threshold to inter-
mediate nodes. Each intermediate node i then sets a next-
level threshold T ′ = (T/ni)∗α′ and issues a new “by value”
query to all its children. After receiving all replies, the in-
termediate node can either go through a round of phase 3
lookup of its own to determine exactly the answers to send
to the central manager, or simply estimate the set through
upper bound calculations and send the estimated superset
to the central manager.
For phase 3, the “by name” query from the central man-

ager is propagated from the intermediate nodes to the leaf
nodes, except that some of the lookups can be eliminated at
the intermediate node. For each object that is looked up,
the central manager attaches its current partial sum, upper
bound on sums from all other nodes, and τ2. If the inter-
mediate node has the value of the object or has an upper
bound estimate on the object such that the object’s value
cannot be higher than τ2, then the object can be eliminated
from the lookup.
TPUT running over multi-level hierarchies is a recursive

extension of the two-level hierarchy operation. Due to space
limitation we omit the details here.
To calculate top-k query over peer-to-peer networks, one

can first establish a min-depth broadcast tree over the net-
work, then run the algorithm over the broadcast tree. There
are many ways to establish the min-depth broadcast tree,
including flooding in unstructured peer-to-peer networks or
utilizing the inherent network structures in structured peer-
to-peer networks. Detailed investigations of TPUT on P2P
networks are part of our future work.

6. RELATED WORK
The database research community have long studied the

issue of efficient processing of top-k queries [13, 9, 14, 3,
10, 1], since they are prevalent in handling heterogeneous
data such as multimedia data. In particular, the threshold
algorithm was discovered independently by (at least) three
groups [13, 14, 10]. One big difference between our study
and these studies is how big m is. In the database systems,
m is the number of databases that the query is accessing,
and often m is small. In contrast, we are interested in large
scale networks and m is large.
Our work benefited greatly from the seminal paper on

this subject by Fagin, Lotem and Noar [10]. In particular,
the concept of instance optimality is from that study. The
pruning technique used in TPUT is similar to the upper-
bound/lower-bound technique used in the Quick-Combine
algorithm in [14] and the “Combined Algorithm” (CA) in [9].

However, those algorithms do not apply in our environment
as they require too many round trip communications. Fur-
thermore, the use of Uniform Threshold and the pruning
parameter α < 1 are new in our algorithm.
The use of threshold in TPUT is somewhat similar to

the use of range queries in the top-k selection algorithm
in [5], particularly the “no-restarts” strategy in setting
search score. However, [5] does not consider the cost of
“looking up” objects in databases, hence has a different cost
model from ours. The algorithm in [5] uses histograms heav-
ily. We believe that per-node histograms would be of very
limited use in our environments, since the histogram distri-
bution of values in one node says nothing about an object’s
values in other nodes. We do note that efficient calculation
of aggregate histogram distribution would be an interesting
research question for distributed networks.
The distributed top-k monitoring study by Bobcock and

Olston [1] looks at a network environment that is similar to
ours. However, their study is focused on monitoring whether
the set of top k objects have changed after an initial an-
swer has been obtained, and they simply use the threshold
algorithm to obtain the initial answer. We are interested
in algorithms that can obtain the initial answer efficiently.
The reason is that in our target environments the query is
asked hourly or daily. The intervals between the queries are
typically long enough that the top-k objects have changed
completely, and it’s more efficient to serve the queries on
demand.
Our use of hash array compression is similar to techniques

using hash array counters in the “iceberg” study [11], the
router traffic measurement study [8] and the spectral bloom
filter study [6]. However, those studies are interested in find-
ing out the set of “iceberg” objects, i.e. objects whose values
account for 90% of total value, in a non-distributed environ-
ment. In contrast, in our study the top-k objects might
not be “icebergs” and our algorithm runs in a distributed
environment. As a result, while hash array counters are
essential in those algorithm, they only provide a constant
factor speedup in our algorithm.

7. CONCLUSIONS AND FUTURE WORK
In this paper we study efficient top-k algorithms for

distributed networks and present the three-phase uniform
threshold (TPUT) algorithm. TPUT takes only three round
trips over a star network, and significantly out-performs ex-
isting algorithms such as the Threshold Algorithm. It is
instance-optimal over common data distributions. Trace-
driven studies show that on large networks, the traffic of
TPUT can be two orders of magnitude less than those of
existing algorithms.
For future work, we are investigating a number of issues.

We are formulating models to determine the exact condi-
tions when the TPUT algorithms (with α = 1 and with
α < 1) outperform TA. The model needs to include both
the log-log slope function C(m) and distributions describ-
ing an object’s positions across all lists. We would also like
to understand the impact of a broadcast model on top-k
algorithms, for example, whether a broadcast model en-
ables fundamentally new algorithms. We are in the pro-
cess of evaluating various design choices in top-k algorithms
for multi-level hierarchical networks and peer-to-peer net-
works. Finally, we plan to apply top-k query calculation
mechanisms in network monitoring tasks such as identifying

214

denial-of-service attacks, spam emails, and spam-forwarding
proxies.

8. REFERENCES
[1] B. Bobcock and C. Olston. Distributed top-k

monitoring. In SIGMOD, 2003.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
Evidence and implications. In INFOCOM (1), pages
126–134, 1999.

[3] N. Bruno, L. Gravano, and A. Marian. Evaluating
top-k queries over web-accessible databases. In ICDE,
2002.

[4] P. Cao and Z. Wang. Efficient top-k query calculation
in distributed networks. Technical Report
http://www.cs.stanford.edu/c̃ao/topk.pdf, Dept. of
Computer Science, Stanford University, 2004.

[5] S. Chaudhuri and L. Gravano. Evaluating top-k
selection queries. In VLDB’99, pages 397–410, 1999.

[6] S. Cohen and Y. Matias. Spectral bloom filters. In
SIGMOD/PODS, 2003.

[7] D. E. Corporation. Anonymized web proxy traces.
Technical report, http://ftp.digital.com/pub/
Digital/traces/proxy/ webtraces.html, 1996.

[8] C. Estan and G. Varghese. New directions in traffic
measurement and accounting, 2001.

[9] R. Fagin. Combining fuzzy information from multiple
systems. In J. Comput. System Sci., pages 58:83–99,
1999.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In Symposium
on Principles of Database Systems, 2001.

[11] M. Fang, N. Shivakumar, H. Garcia-Molina,
R. Motwani, and J. D. Ullman. Computing iceberg
queries efficiently. In Proc. 24th Int. Conf. Very Large
Data Bases, VLDB, pages 299–310, 24–27 1998.

[12] IRCache. Traces from the ircache system. Technical
Report http://www.ircache.net, National Laboratory
for Applied Network Research, 2003.

[13] S. Nepal and M. V. Ramakrishna. Query processing
issues in image (multimedia) databases. In ICDE,
pages 22–29, 1999.

[14] U.Guntzer, W.-T. Balke, and W. Kiessling.
Optimizing multi-feature queries in image databases.
In Proc. 26th Very Large Databases (VLDB)
Conference, pages 419–428, 2000.

215

