
redundant computation by processing each transaction only once and delivering the result
with group communication primitives.

The proceedings of the conference were published by Springer in LNCS number 1914.
They were edited by Maurice Herlihy who also chaired the program committee.

Most of us found time outside of the technical sessions to enjoy Toledo. Angel Alvarez
was the local arrangements chair. With the help of his team from the Technical University
of Madrid, he made our visit to Toledo particularly memorable. It included a evening of
banqueting in Spanish style and a fine afternoon on a guided walking tour of old Toledo.
The orga~zizers of DISC 2001 have a tough act to follow. But I hear they are up to the
challenge. See you in Lisboa in October.

R o u t i n g in D i s t r ibuted Networks:
Overv iew and O p e n Pro b l ems

Cyril Gavoil le 2

1 S t a t e m e n t o f t h e P r o b l e m

1.1 T h e rout ing problem

Delivering messages between pairs of processors is a basic and primary activity of any dis-
tributed communication network. This task is performed using a routing scheme, which is
a mechanism working in a distributed fashion for routing messages in the network. The
routing mechanism can be invoked at any source node and be required to deliver a message
to some destination node.

Unlikely to the design network problem that is considered usually early in the process of
setting up a new network, the problem of designing the management and control systems of
the network, including routing, can be designed and optimized after the network construc-
tion. The routing problem can be stated as follows: given a graph (the underlying topology
of a commn-ication network) fixed in advance, design in each node (i.e., each router of the
network) a routing algorithm as efficient as possible. It is required to explicit what we mean
by "routing algorithm" and "efficient". A routing algorithm is a (computable) function that
for each message arriving at a node determines the link on which the message has to be
transmitted, and this as function of its destination or any other information contained in
the header of the message. The term "efficient" groups a set of desirable quality factors like:
the routes generated by the algorithm are (near) shortest paths in the graph; the time to
compute the function is low; the number of routes using a same link is low; the size of the
data structures required by the algorithm is small; the routing scheme is fault tolerant; and
SO on .

2LaBRI, Universit~ Bordeaux I, 351, cours de la Libdration, 33405 Talence Cedex, France.
gavoilleGlabri.u-bordeaux.

36

The way we stated the routing problem is the static version: the graph is given in
advance and the problem consists to pre-process the graph in order to find some efficient
routing schemes on the graph. The dynamic version allows addition and deletion of nodes
and/or links in order to model node/ l ink failure and network growing. In this article we will
concentrate our attention on the static case. The dynamic case can be tackled by paying
more attention on the pre-processing algorithm in charge of the routing algorithm designing.
Depending on when failures occur, one can run a distributed pre-processing algorithm to
update the routing scheme and to make it adaptive to dynamic networks. It is willing
that this maintaining algorithm has low message or t ime complexity. For more details on
the dynamic case, we invite the reader to consult [1, 11], and [2, 5, 28] for end-to-end
communication problems, where the goal is to guarantee communications between a fixed
pair of nodes in spite of link failures with the minimum memory space in the nodes and
min imum communication messages.

To illustrate the (static) routing problem, let us consider the following example: the
standard routing algorithm in the Hypercube s. Let z denote the binary name of the current
node (possibly the source), and let y denote the destination forming also the header of the
message currently located in z.

ROUTE(x, y): If x = y, then the message is arrived at destination. Otherwise forward it on
the edge o£ dimension i i f z and 1] differ at position i.

If every router possesses a copy of this algorithm, then we obtain a distributed algorithm.
The algorithm ROUTE is said a shortest path routing algorithm because, one can check that
the route generated by the algorithm is the shortest possible one. Let us denote Rf(y) the
function that returns, for each destination y, the integer / defined by ROUTE(X, y). The
function P~(.) has an argument, F, but the algorithm defining P~(-) depends on x only. In
other words the function Rz(.) can be implemented by a program 4 of length logn -t- O(1)
bits in each node, n being the number of nodes of the Hypercube. Indeed, it suffices to
store the name x in the data structure of the program implementing R=(.) and a constant
number of computer basic instructions. Note that such a routing algorithm has therefore
a relatively "compact" implementation, and a constant t ime complexity if basic operations
like "=", XOR and integer LOG s are available on O(logn) bit integers.

1.2 M o d e l and termino logy

The complexity results are strongly dependent of the routing model (ability to relabel and
to assign new addresses to the nodes, size of the addresses, size of the headers, ability to
rewrite the headers, etc.). So let us define more precisely all these terms.

Let G be a graph representing a communication network. For the discussion, we assume
that graphs are connected, undirected and have n nodes. However, most of the results can

SThe nodes of this g raph are the n ---- 2 k b inary words of k bits . T h e node z ~ . . . z~ . . . Zl is connec t ed to
the node z k . . . z-~.., z l , for each i = 1 . . . k, forming the edge of d imension i.

CBy "program" we m e a n the set of all d a t a s t ruc tures and all the control ins t ruct ions . T h e log func t ion
we consider in this art icle are in base two.

Sin order to ex t r ac t the pos i t ion of the most s i gn | f can t b i t in the resul t of z x o R I/.

37

be na tura l ly extended to more general model of graphs. Each node u of G has a Name, an
lmique ident i ty integer denoted ID(u). In what follows, we informally confuse between the
node u and its name ID(u). However, the routing mechan i sm uses a rout ing-label or address,
unique for each node and denoted by l (u) , potent ia l ly different of ID(u).

A routing function R on G is a d is t r ibut ing a lgor i thm whose role is to dehver mes-
sages between nodes of the network. The algor i thm builds a pa th from the source to the
dest inat ion, selecting at each in termedia te node the next l ink onto forward the message.
Specifically, R consists of a pair of functions (P, H) where P is the port funct ion and H
is the header function. For any two dist inct e nodes u and v, _~ produces a pa th or route
u -- Uo, U l , . . . , ~ -- vl a sequence h 0 , h l , . . . , h~ of headers, and a sequence p 0 , p l , . . . ,p , of
output port numbers . The length of the route, denoted p,~(u, v), is the cost of the p a t h from
u to v if G is weighted, and otherwise pR(u, v) = r. The port numbers ident ify the l inks
connected to a node. It is a local name, so tha t a l ink connecting x to y may have a different
name in z (output port) and in y (input port). The port numbers are unique integers t aken
from the set { 1 , . . . , d}, where d is the number of ports corresponding to the degree of the
current node 7. A message with heade r /~ arriving at node u~ through input por t q~ is given a
new header /~+1 = H (~ , q~, hl), and is forwarded on the output port Pl ---- P(u~, qi, h~). Thus,
we require tha t for every i E { 0 , . . . , r - 1}, H(~,q~,h~) - h~+l, P(u~,q~,h,~) : Pi and tha t
the l ink (u~, ui+l) has output port number p~ at u~, and input port number qi+l at u,+~ (see
Fig. 1). On each router, there exists a special lin]~ numbered 0. It insures the communica t ion
between the router and its host associated at the node u~. This allows us to complete the
descript ion by imposing the constraints tha t q0 -- P~ --- 0, as well as h0 ~ ~(v), thus fixing
the ini t ia l header, which is provided to the router from its host (see Fig. 1).

host

~-I-1

Figure 1: A general model of router.

This ma thema t i ca l formulat ion allows us to compare in a precise way all the results
(specially the lower bound results) and all the rout ing strategies of the l i terature.

A routing strategy is an a lgor i thm tha t computes for a graph G a rout ing funct ion R on

8 T r a d l t i o n a n y , we neve r cons ider the routing From u t o i t-self , th i s b e c a u s e i t is ass l l rned t h a t t h e h o s t
processor c o n n e c t e d t o t h e r o u t e r has e n o u g h i n f o r m a t i o n an d c o m p u t a t i o n a l p o w e r to av o id th i s k i n d of
useless co rn ,~un ica t ions . Moreove r , t h e case v = u m ak es t r o u b l e s for t h e d e ~ n i t i o n of t h e stretch factor fo r
wh ich t h e d i s t a n c e From ~z to v is t a k e n as t h e d e n o m i n a t o r o f a f rac t ion .

7Iu d i r e c t e d g raphs , we h a v e to cons ider t h e in- a n d ou t -deg ree .

38

G. Hence the strategy consists of a pro-processing during the set-up t ime of the graph and
is responsible of the addresses assignment, port labeling, and distributed data structures
construction required by the routing scheme. (We use the term routing scheme to deal with
an implementat ion of a routing function.) A routing scheme, and more generally, a routing
strategy is name-independent if "names" does not change in the pro-processing, that is,
the address £(u) is simply its original n~me ID(~). A strategy is universal if it provides a
routing scheme for any graph. We denote P~ the restriction of R to ~, so-called local routing
function.

A routing function that, in each node, does depend of the header only, and not of the
input port, is said oblivious. And, an oblivious function that depends of the destination only,
i.e., such that h0 = hx = --- = hr = £(v), is a direct routing scheme. Finally, a direct scheme
that uses the address range [1, n] is called a routing table.

All theses refinements and considerations have an impact on the implementat ion of the
routing schemes. The ability of header modification for instance, can be costly for optical
networks that would require electronic-optic conversions. Direct schemes are the simplest
ones and have also the loop-less property: the messages following the route can never cycles,
since otherwise they would loop forever contradicting the routing function definition (there
must exist a path between any pair of nodes).

1.3 C o m p l e x i t y m e a s u r e s

As we will see there are relationship between the length of the routes generated (near or far
from the shortest paths) and the size of the local data structures used by a routing scheme
(i.e., the available knowledge). Actually, the trade-off between the computational power and
the size of the knowledge is a central theme in Theory of Distributed Computing. Routing
with the most compact distributed data structures is a perfect il lustration of this paradigm s.

Let R be a routing scheme on a graph G. The stretch factor of R is the value defined by
m a x ~ pR(u, v)/dc(u, v), where da(u, v) denotes the length of a shortest path from ~ to v in
G (the cost of a min imum path in the weighted case). A routing scheme of stretch factor 1
is termed a shortest path routing scheme.

The memory space of R is the size (in bits) of all the data structures it uses. One can
distinguish the local memory space of R in a node u, and the total memory space of R,
defined as the sum of the local memory space of all the nodes of G. As we will see, the
memory space may depend of the size of the headers and the size of the addresses. Note
that, a priori, it is not required that the size of local memory space of ~ is at least as large
than the size of the address of u.

The routing time (sometimes called latency) is the m a x i m , m of the worst-case t ime
complexity of P~, the maximum taken over all node u of G. The total routing time is the
max imum of the sum of the t ime complexity for the local routing decisions performed along
a route, the m a x i m - m taken over all the routes.

SThe "Best Student Paper Awards" of the 1996 and 2000 ed i t io~ of the aunal SFmposium on Principles
of Distributed Computing (PODC) deal with compact routing, cf. [25, 26].

39

2 O v e r v i e w

2.1 Universal routing schemes

First, remark that every graph has a shortest path routing scheme with (local) memory space
of size O(nlogd) bits for each node of degree d: it suffices to use routing tables. (One can
list in each source the right output port for the n - 1 possible destinations. The direction
of each destination can be determined by rooting a minimum spanning tree in the source.)
Thus, the use of routing tables is an universal routing strategy.

After this remark, one may naturally ask whether there exists universal routing strategy
that are more compact? Say more compact than O(r~log d) bit per node.

There are at least two ways of designing shortest path and compact routing tables: find a
suitable address set and a suitable system of shortest paths for each source. The idea behind
naming nodes with a suitable address is to encode useful information about the network and
then to make use of this implicit information when performing the routing. Clearly, a routing
strategy that does not allow renaming of nodes of a ring cannot avoid a f~(n) bit lower bound
for the memory space. (If the nodes are permuted at random, a source x needs to store ~(1)
bit for each destination ~/to determine whether a message has to be forwarded to its left or
to its right.) Note that the original node name can always be kept in the final address of the
router, for instance setting address(u) -- liD(u), f(u)) where £(u) is the routing-label. That
is why we pay more attention on £(u), and try to minimize its size. Shortest path selection
by the routing strategy is desirable as well. A routing strategy that does not give this ability
provides a ~l(r~) bit lower bound of memory space for a K2,,~-2 C a complete bipartite graph).
(Consider two nodes x,y of the largest part. If the shortest path from x to y is fixed by
a coin flip (there are two shortest paths from x to y using distinct first edges) and is not
optimized by he routing strategy, x would require to store fl(1) bits for ~/.) Obviously, rings
and complete bipartite graphs support shortest path routing schemes with O(log n) bits of
memory space if renaming and shortest path selection is allowed.

These two kinds of optimizations makes interesting the problem, in particular for specific
families of graphs like trees [34, 35], outer-planar and bounded genus graphs [17, 23], k-
trees [31], etc. However, most of the routing strategies proposed are rather specific, and
thus not universal. Unfortunately, in [25], we negatively answer to the question of universal
and compact routing strategies. We showed that for every integer d, 3 ~ d ~ n/2, every
shortest path universal routing strategy requires ~(n ~ log d) bits of total memory space for
some worst-case graph of maximum degree d, assuming that addresses can be optimized
by the strategy and are taken in the set {1 , . . . , n}. (Note that port numbers and shortest
paths are also selected and optimized by the routing strategy.) Therefore, this shows, up to
a constant multiplicative factor, the incompressibility of shortest path routing tables. The
result can be extended to any routing strategy generating optimal addresses up to c logn
bits, for every constant c ~> 1, and whatever is the header size.

It turns out that memory space can be reduced only if we accept to relax at least two
constraints: the shortest paths and the size of the addresses.

40

to send it on a higher level, and so on, until the routing process succeeds in delivering the
message. Clearly, the implementation of this procedure in every router results in a complex
decision function; the number of the present phase has to be coded into the header of the
message, thus a new message header must be recomputed and rewritten by the originator
upon each retransmission, i.e., in every phase of the algorithm. Moreover, intermediate
touters must also change the message header, for ex~.mple, in order to notify that a failure
occurred. (Another possibility is to send only a failure notification, but in this case the
message originator must keep a copy, and an intermediate router has to generate additional
messages). In addition, those strategies treat the nodes of the network non-uniformly, in the
sense that different nodes play different roles, thus the decision function could be substan-
tiaUy different at different nodes. As high-speed networks gain popularity and increase in
size, these drawbacks become crucial, since the main routing bottleneck in these networks
is often the decision function in the nodes and not the propagation delay. Therefore, sim-
ple routing schemes, like direct schemes which could be implemented in hardware may be
preferable in practice.

2.3 D i r e c t r o u t i n g s c h e m e s a n d low s t r e t c h fac tor

Subsequently to the previous discussion, considerable attention is given recently to an op-
posing design philosophy, focusing on simple and direct schemes. These schemes employ a
simple "transmit and forget" type decision function in the nodes, depending only on the
destination of the message, and the destination is the only information coded in the message
header (which is determined once and for all by the originating router, and is never changed
afterwards.) They are loop-free and can be implemented by some routing tables (that are
sometimes compacted, but with a relatively low routing time). That is why, other routing
strategies have been designed, in particular some routing strategies with small stretch factor
s E [2, 5].

In this framework, [10] proposed direct loop-free routing schemes for weighted graphs
with O(n 2/s log 4/3 z:) local memory space. The stretch is at most s = 3, and addresses and
headers are of size 31ogn. The space bound can be reduced to O(v~logS/2~:) bits if one
accept a small increasing on the stretch to s = 5 [12]. The latter routing strategy is based on
routing tables (the tables axe compacted into intervals of integers, namely these are interval
routin 9 schemes, cf. [21] for a survey of this technique). Thus they are loop-free, and use
headers/addresses which are taken from the set {1,..., n}, i.e., on log n bits exactly. It is
also remarked that the stretch is, in average on all the source-destination pairs of the graph,
bounded by ~ = 3. Moreover, the longest route does not exceed 2D (D being the weighted
diameter of the graph), and is even bounded by [1.5D~ in the case of uniform weights. The
routing time is O(log n).

Actually, the bound on the local memory space is almost optimal. It is shown in [12]
that no loop-free routing strategy with address range [1, n] can guarantee a local memory
space lower than cv/n bits TM on every family of graphs including trees. The result holds
for every stretch factor, since on trees a loop-free routing scheme of stretch s is a routing
scheme of stretch 1. It follows that the trade-offs presented previously (for instance the

1°Prec i se ly , c = (~ r v / ~) / l n 2 = 3 .7006565593 ._

42

name-independent hierarchical routing strategy of [6]) cannot pretend to loop-free routing
schemes, thus require to change and rewrite the headers at least once.

Open ques t ion

• What is the best trade-off between local memory space and stretch factor (or average stretch
factor) for universal direct routing schemes using addresses taken in (1 , . . . , m}, with ~ ~ n?

The same question arise for universal k-phase routing strategies, namely strategies that
provide routing schemes for which the header of each message can be rewritten at most k
times along its route.

2.4 Almost all the graphs

We just have seen that in the worst-case a shortest path routing scheme requires e (n log n)
bits of local memory space (cf. the result of [25] taking d = (9(n)). But, are such worst-
case networks rare? Is the situation better for the "average case"? The answer is yes.
Actually, surprisingly enough, the networks that require a large memory space for routing
along shortest paths are not the ones that possess the maximal entropy 11. Graph structures
that make difficult the routing are not completely random. As we will see, on the contrary,
a graph with a fully random structure has a shortest path routing scheme with O(n) bits of
local memory space.

Certain results in graph theory are valid for "almost all the graphs". The term "almost
all" is statistical. It means that the fraction of n-node graphs for which the property holds
tends to 1 as n tends to infinity. The tools to establish such kind of results are probabili-
ties, with the f~mily ~ of random graphs 12, or the Kolmogorov Complexity [29] with the
Kolmogorov random graphs. These two tools are very close in essence.

In [13] the ability of random graphs in ~ , for some particular values of p, to support
shortest path routing tables that can be compacted into intervals has been considered. More
generally, and using Kolmogorov random graphs, [9] showed that a fraction of at least 1 - 1 I n a
of all the graphs has a shortest path routing table of size 3n + o(n) bits (per node) under
the assumption that node address range is [1, n] and node addresses are randomly permuted,
and that each node knows its neighborhood for ~ee. However, ff the addresses are on c log 2 n
bits, where c is a constant, then the routing table can be reduced to c log 2 n bits only. Other
results are mentioned for stretch factor s > 1. Finally, in [24] the 3n + o(n) bit upper bound
has been slightly improved: for a fraction of at least 1 - 1In of all the graphs support shortest
path routing tables of size n + O(log 4 n) bits for addresses taken in the range ~1, . . . , ~ .

Open question

• Is the n+o(n) upper bound is the best possible one for a fraction of 1-o(1) of all the graphs?

11This family of graphs is quite hazy, but it can be viewed as the set of graphs whose adjacency matrix is
n o t compressible in the Kolmogorov Complexity sense.

12In this model, graphs have n nodes and with probability p there is an edge connecting two nodes of the
graph, cf. [7].

43

R e m a r k . To design such a lower bound on the memory space is harder than it looks. First ,
a node does not need to know its neighborhood (even if the neighborhood results of a r andom
choice of n / 2 nodes among n - 1). We can relabel the ports according to some informat ion
of the neighbors and it may decrease the information even bellow the degree of the node
(for instance, it is shown in [21] tha t trees have a O(V/'~) bit local memory space rout ing
scheme even for large degree node). Secondly, in a r andom graph, node relabeling changes
the probabil i ty to have a connection between two arbi t rary nodes labeled respectively z and

y in { 1 , . . - , n } .

2 . 5 S e p a r a t o r , p l a n a r a n d b o u n d e d g e n u s g r a p h s

There are strategies tha t are not universal, but very efficient for specific class of graphs.
In [19] it is presented routing schemes for the f~.mily of graphs tha t axe recursively de-

composable by a separator of size at most c. A separator is a subset of nodes whose removal
disconnect a graph in two (or more) connected components, each one of size at most 2/3
of the init ial size of the graph. More generally, the graph is said c-decomposable if for
every node weight assignment of the graph there exists a separator of size c tha t provides
connected components of weight (the sum of the weight of the nodes in the component) at
most 2/3 of the weight of the whole graph. This definition implies a recursive decompo-
sition of the graph with at most loga/2(n) hierarchical levels, cf. [19]. A separator insures
tha t every route between two nodes of distinct components has to cross some nodes of the
separator. If the separator is small in size, this allows to concentrate the routing informat ion
towards the nodes of the separator. Outer-planar graphs, and more generally, series-parallel
graphs are 2-decomposable, graphs of treewidth bounded by k are O(k)-decomposable, pla-
nar graphs are O(V~)-decomposable, mad more generally, graphs of genus bounded by g are
O (~) - d e c o m p o s a b l e .

More precisely, [19] proposed two routing strategies. The first one, applicable to edge-
weighted graphs, uses a total memory space of O(cn l og~ n) , a stretch factor s -- 3, and
addresses of size r log n bits, r > 1 being a small constant. The second one, wi th the same
memory space, decreases the stretch to s -- 1% 2/~, where 1 < ~ ~ 2 (thus s < 3) is the
root of c~ [(~+1)/2] - e r - 2, for an increasing of the addresses size to 3.42 c logc l o g n bits. For
c E {2, 3}, c~ -- 2, and for c E {4, 5}, a ~ 2.32. The routes are not necessary loop-free, the
headers are supposed to be rewritable, and the local memory space is not bounded.

These strategies axe efficient only if c is constant. For planar graphs, c = O(v/-n), the
same authors proposed in [18] two bet ter strategies. Still for weighted graphs, the first one
has O(n 4/q log n) total memory space and a stretch factor of 8 -- 3, for addresses and headers
of size O(log n). The second one, for every constant e, 0 < e < 1/3, provides a total memory
space of O((1/e)nl+~ log n) bits for addresses of size O((1/e) logn) , and a stretch factor s -- 7.
Both strategies suffer of the previous drawbacks: they do not bound the local memory space
(that can be as larger t han O (n l o g n)) , and use rewritable headers and addresses of size
str ict ly longer than log n. All the strategies presented in [18] and in [19], have rout ing t ime
linear in the size of addresses, tha t is O((1/e)logn).

The case of shortest pa th routing schemes for planar graphs (s -- 1) has been s tudied
in [23]. It is proposed a direct routing scheme (a routing table with addrdsses and headers are

44

c~ E {al,.-., ad) and B[a] = 0 otherwise. It turns out that P~(y) = i if the number of a~'s
less or equal to ~/is exactly i. It corresponds also to the number of l's in B up to position
y. The memory space is n bits (the string B) and the routing time is a priori O(y), the
traversal time of B up to y. In [30] it is shown that this type of queries can be solved in
constant time I'~ in the worst-case, thanks to a data structure of size n + o(n) bits (moreover
constructible in polynomial time).

Obviously, the ideal solution would be a compact representation of the set {al,..., ad}
by a data structure of size 14 log (~) -- O(dlog(n./d)) allowing constant routing time. In
the same spirit, [8] proposed a quasi-optimal coding of integer sets (up to a multiplicative
constant) with constant time for membership queries. The question of computing the rank
of an element is open.

Open question

• Is it possible to find a da ta structuxe of size at most O(dlog (n/d)) bits per node of degree
d, and a constant routing t ime for graphs supporting an i n t e rwl routing scheme?

3.2 Total routing t ime

We saw tha t it is not easy to design a compact da ta structure for a min imal routing t ime,
even for the case of interval routing scheme. An alternative would be to consider the to ta l
routing t ime on a route of length L.

Consider the "standard" shortest pa th routing in the de Brui jn graph. The nodes of
this graph are the n ---- 2 h binary words of length k. The node zkxk-1 . . . z2=1 is connected
to the nodes zk-1- - . ~2zla , for a E {0, 1}. It consists to compute the largest prefix of
the dest inat ion address that is a sui~nx of the source address (addresses correspond to node
names). This prefix constitutes the first header. At each in termediate node, the first bit of
the current header is extracted: if the bit is 0 the message is forwarded to output port 1,
if the bit is 1 it is forwarded to port 2 (this graph is directed and has only two outgoing
arcs). In bo th cases, the extracted bit is destroyed and the new header is one bi t less. The
message arrives at dest inat ion when the header is empty. The total routing t ime on a route
of length L is O(L + log n), the log n te rm coming fxom the computa t ion of the first header
that can be performed by the Boyer-Moore's algori thm [3]. Note tha t the routing t ime is
constant excepted in the source. Since L ~ log n (the diameter is k), the total rout ing t ime
never exceeds O(1og n).

The problem to design a compact data structure in order to optimized the total routing
time has been first pointed in {16]. For weighted outer-planar graphs (that all support
a shortest path interval routing), he presents a data structure of size O(dlogn), mainly
based on intervals with auxiliary tables in a way that the total routing time never exceeds
O(L + log r~) for messages between nodes at distance L.

laThe computation model is the word-RAM model in which standard arithmetic and bitwise logic opera-
tions on integers of O(logn) bits run in a unit of time.

14This is an optimal coding since there are (~) possible se ts .

46

Expressed in an other complexity measure, the bit-operations model, [14] showed that ev-
ery graph of diameter D support a routing scheme with routing time O(log n) bit-operations
and with total routing t ime O(D + n 1/k log n) bit-operations, where k 1> 2 is an arbi t rary
constant. Note that in this complexity measure, s tandard routing tables have total routing
t ime O(D log n) bit-operations. Indeed, reading of £ bits in a table of size t costs O(£ + log t)
time, thus it costs O(logn) bit-operation to read the output port in a s tandard routing ta-
ble xs. The technique to save t ime is therefore to take few routing decisions (at most O(n 1/~)
for some parameter k). Most of the routers takes their own decision from few bits of the
header only. Note that in the result [14] the routes are not shortest paths, but their length
are bounded by O(D).

Open question

• Is there any universal routing strategy with total routing t ime bounded by O(D + log n)
bit-operations?

3.3 R o u t i n g in trees

Routing in trees is a basic and important problem. Indeed, most of the hierarchical routing
strategies axe based on tree covering. Often, at the final phase of the routing protocol, the
problem to route in a small region spanned by a tree occurs. It is quite easy to design space-
efficient routing scheme for trees. For instance, interval-based routing (assuming addresses
fixed by a DFS traversal numbering, each sub-tree defines an interval of consecutive ad-
dresses) achieves a total memory space of O(n log ~), thus O(log n) bits per node in average.
This scheme is easy to implement and the routing time is O(log n). however one can object
the two following remarks: (1) the local memory space is not bounded by O(log n) when the
degree is large; (2) one could expect a constant routing t ime with a better data structure.

In Paragraph 3.1, we saw that in the case of interval routing scheme, one can get a local
memory space O(dlog(n/d)) . With a space n + o(n) one can even guarantee a constant
routing time. Is the space O(dlog(n/d)) bound optimal for trees?

The answer is no: the right bound is O(v/-~). In [21] it is shown that, thanks to a
DFS numbering according to the number of descendents of each sub-tree, the local routing
function in x can be computed from a sequences S= = (n l , . . . , rid), with n l ~ .-- ~ rid.
Here, ni is precisely the number of descendents in the sub-tree rooted at the i th child of x.
Because 1 ~ nl <~ ~.. na and d "'" ~-~=1 n~ = n -- 1, the sequence S® can be coded with at most
O (v ~) bits, since the number of such sequences (called parti t ions of n - 1) is bounded by
2 °(~ra). Thus the local memory space of z is bounded by O(V~), and this is actually the
optimal bound, of. [12]. Roughly speaking, the routing function in x for a destination of
address y consists to compute the index i such that y - z E (E~- l l i

asIn this model, reading or writing a single bit of header costs one lmit of time. However, the message
and the bits of the header tha t are not read can be copied and tranemitted onto the outgoing link without
any penalties - in the de Bruijn example, the routing t ime is O(1) bit-operations though headers are non
constant

47

O p e n ques t ion

• Design a compact data structure for partitions of n using optimal space, and allowing
constant time rank query type?

3.4 Exponential routing time and Cayley graphs
In an extension of [14], one can show that there are graphs having shortest pa th routing
tables of size O(log n) for each node with the following property: every shortest path routing
scheme using less than cnlog n bits of local memory space, for a suitable constant c > 0,
must have a routing time greater than any constant size stack of exponentials, i.e.,

3,t

22""

It is clear that if the data structure is to compact, the time to extract some piece of infor=
mation can be very large.

Cayley graphs are precisely a family of graphs supporting a theoretical low local memory
space. They have strong regularity property (based on a group structure), and thus are
good candidates for compact routing tables since they their adjacency matr ix can be entirely
described with a few number of bits. However, from such global information (say, the matr ix
of the graph), there is no efficient way to extract a shortest path, or simply the first edge of
a shortest path. Routing schemes need local information.

More precisely, nodes of a Cayley graph are element of a group F and the arcs 16 are
defined by a given set of generators S C F: z is connected to y if there exists an element
s E S such tha t y -- z + s.

Consider the following example: F = Z (the additive group modulus n) and S -
{+1, ±cl , ±c~} with Cl,C2 E Z \ {0, 1} (we make the graph symmetric taking opposed gener-
ators). The Cayley graph (F, S) can be described by given the two integers cl and c~. Hence,
the shortest pa th routing can be solved with O(log n) bits of memory space. Indeed, one
can rebuild the whole graph (in the router memory), and apply a s tandard shortest pa th
algorithm in order to extract the first edge of a shortest path. The point is that this method
would require n (n) routing time, whereas one can expect a poly-logarithmic routing time,
the size of the input being O(log n). Unfortunately, one need to solve the minimal decom-
position of an element in sum of generators, a difficult problem. In fact, for S = {-4-cl, ±c2}
the problem can be solved in log °(i) n time, but is still open for S of larger carAinality.

O p e n q u e s t i o n

• What is the best routing time we can achieve for shortest path routing scheme on Cayley
graphs of degree k and defined on Abelian groups, if the local memory space if bounded by
O(klogn).

leCayley graphs are directed. However if - s ~ S for every s E S, one can considered t h e m as und i rec ted
graphs.

48

Remark . The allowed spaced is enough to store all the generators, and whole the graph
information: there are O(k) generators in S, each one can be described by an integer taken
in [1, hi, and one can show that there are at most n °(i) non-isomorphic Abelian groups with
n elements.

3.5 Rout ing and other distr ibuted tasks

It is worth to observe that design a compact data structure for routing in a distributed
network is a difficult task. For instance, to determine the minimum number of intervals for
which the graph has a shortest path k-interval routing scheme is NP-hard (with at most k
intervals per link). The pre-processing on the graph to optimize routing is time consuming
in general. A natural question is thus to ask if such efficient data structures, once generated
by the pre-processing algorithm, could be useful to other distributed tasks than routing, e.g.,
broadcasting or leader-election? or ff with a little effort one could not modify the compact
data structures allowing fast multiple queries in addition to routing.

In [15], we positively answer to this question for the case of shortest path 1-interval
routing schemes. Mainly, it is shown that there are simple broadcast algorithms that allows
broadcasting message from any source in at most a total of O(n) messages, and using the
routing information only. It implies also O(n) message algorithm for leader-election im-
proving the first contribution in this routing and election problem, [35]. Note that with no
specific information, the leader-election problem has already n(n log n) message-complexity
lower bound for a ring [20].

Open quest ion

• Does the message-complexity remain in O(n) for s-stretched k-interval routing schemes for
constant k and constant s?

The problem is open for other representation of compact routing schemes. For instance
it is not clear if a graph having low local memory space for routing, say O(log n) bits, has
also some ability to broadcast or elect a leader with low message-complexity.

R e f e r e n c e s

[1] Y. AFEK, E. GAFNI, AND M. RICKLIN, Upper and lower bounds ,for routing schemes
in dynamic networks, in 30 th Annual Symposium on Foundations of Computer Science
(FOCS); IEEE Computer Society Press, Oct. 1989, pp. 370-375.

[2] Y. AFEK, E. GAFNI, AND A. RO.q~N, The slide mechanism with applications in dy-
namic networks, in 11 ~-h Annual ACM Symposinm on Principles of Distributed Com-
puting (PODC), ACM PRESS, Aug. 1992, pp. 35-46..

[3] A. V. AHO, Algorithms for finding patterns in strings, in Handbook of Theoretical
Computer Science, J. van Leeuwen, ed., vol. A, North-Holland, 1990, pp. 255-300.

49

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. AWERBUCH, A. BAR-NoY, N. LINIAL, AND D. PELBG, Compact distributed data
structures for adaptive routing, in 21 "t Symposium on Theory of Computing (STOC),
vol. 2, May 1989, pp. 230-240.

B. AWEKBUCH, Y. MANSOUR, AND N. SHAVIT, Polynomial end-to-end communica-
tion, in 30 th Annual Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society Press, Oct. 1989, pp. 358-363.

B. AWERBUCH AND D. PELEG, ~parse partitions, in 31 th Symposium on Foundations
of Computer Science (FOCS), IEEE Computer Society Press, 1990, pp. 503-513.

B. BOLLOBAS, Random Graphs, Academic Press, New York, 1975.

A. BRODNIK AND J. I. MUNRO, Membership in constant time and almost-minimum
space, SIAM Journal on Computing, 28 (1999), pp. 1627-1640.

H. BUHRMAN, J.-H. HOEPMAN, AND P. VIT~.NYI, Space-e~cient routing tables for
almost all networks and the incompressibility method, SIAM Journal on Computing, 28
(1999), pp. 1414--1432.

L. J. COWEN, Compact routing with minimum stretch, in 10 th Symposium on Discrete
Algorithms (SODA), ACM-SIAM, 1999, pp. 255-260.

S. DOLEV, E. KRANAKIS, D. KI~LIZANC, AND D. PELEG, Bubbles: Adaptive routing
scheme for high-speed dynamic networks, in 27 th Annual ACM Symposium on Theory
of Computing (STOC), May 1995, pp. 528-537.

T. EILAM, C. GAVOILLE, AND D. PELEG, Compact routing schemes with low stretch
]actor, in 17 t~ Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM PRESS, Aug. 1998, pp. 11-20.

M. FLAMMINI, J. VAN LEEUWEN, AND A. MARCHETTI-SPACCAMELA, The complexity
of interval routing on random graphs, in 20 th International Symposium on Mathematical
Foundations of Computer Sciences (MFCS), J. Wiederman and P. H~.jek, eds., vol. 969
of Lecture Notes in Computer Science, Springer-Verlag, Aug. 1995, pp. 37-49.

P. FRAIGNIAUD AND C. GAVOILLE, A theoretical model for routing complexity, in
5 th International Colloquium on Structural Information ~ Communication Complexity
(SIROCCO), L. Gargano and D. Peleg, eds., Cadeton Scientific, July 1998, pp. 98-113.

P. FRAIGNIAUD, C. GAVOILLE~ AND B. MANS, Interval routing schemes allow broad-
casting with linear message-complexity, in 19 ~h Annual ACM Symposium on Principles
of Distributed Computing (PODC), ACM PRESS, July 2000, pp. 11-20.

G. N. FKEDEKICKSON, Searching among intervals and compact routing tables, Algo-
rithmica, 15 (1996), pp. 448-466.

G. N. FREDERICKSON AND R. JANARDAN~ Designing networks with compact routing
tables, Algorithmica, 3 (1988), pp. 171-190.

50

[18]

[19]

[2o]

[21]

[22]

[231

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

, Efficient message routing in planar networks, SIAM Journal on Computing, 18
(1989), pp. 843-857.

, Space-efficient message routing in c-decomposable networks, SIAM Journal on
Computing, 19 (1990), pp. 164-181.

G. GALLAGER, P. A. HUMBLET, AND P. M. SPIB.A, A distributed algorithm for mini-
mal spanning tree, ACM Trans. Programming Languages Systems, 30 (1983), pp. 66-77.

C. GAVOILLE, A survey on interval routing, Theoretical Computer Science, 245 (2000),
pp. 217-253.

C. GAVOILLE AND M. GENGLER, Space-efficiency of routing schemes of stretch factor
three, in 4 ~h International Colloquium on Structural Information & Communication
Complexity (SIROCCO), D. Krizanc and P. Widmayer, eds., Carleton Scientific, July
1997, pp. 162-175.

C. GAVOILLE AND N. HANUSSE, Compact routing tables for graphs of bounded genus,
in 26 th International Colloquium on Automata, Languages and Programming (ICALP),
J. Wiedermann, P. van Emde Boas, and M. Nielsen, eds., vol. 1644 of Lecture Notes in
Computer Science, Springer, July 1999, pp. 351-360.

C. GAVOILLE AND D. PELEG, The compactness of interval routing for almost all graphs,
in 12 th International Symposium on Distributed Computing (DISC), S. Kutten, ed.,
vol. 1499 of Lecture Notes in Computer Science, Springer, Sept. 1998, pp. 161-174.

C. GAVOILLE AND S. PI~RENN~,S, Memory requirement for routing in distributed
networks, in 15 th Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM PRESS, May 1996, pp. 125-133.

Y. HASSIN AND D. PELEG, Sparse communication networks and efficient routing in
the plane, in 19 th Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM PRESS, July 2000, pp. 41-59.

L. KLEINKOCK AND F. KAMOUN, Hierarchical routing for large networks; performance
evaluation and optimization, Computer Networks, 1 (1977), pp. 155-174.

E. KUSHILEVITZ, R. OSTROVSKY, AND A. ROSI~N, Log-space polynomial end-to-end
communication, SIAM Journal on Computing, 27 (1998), pp. 1531-1549.

M. Lx AND P. M. B. VIT/tNYI, An Introduction to Kolmogorov Complexity and its
Applicationa, Springer-Verlag, Second Edition, 1997.

J. I. MUNRO AND V. Pt, AMAN, Succinct representation of balanced parentheses, static
trees and planar graphs, in 38 th Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society Press, Oct. 1997, pp. 118-126.

L. NAKAYANAN AND N. NISHIMURA, Interval routing on k-trees, Journal of Algo-
rithms, 26 (1998), pp. 325-369.

51

[32] D. PELEG AND E- UPFAL, A tradeoff between space and efficiency for routing tables,
in 20 th Annual ACM Symposium on Theory of Computing (STOC), Chicago, IL, May
1988, pp. 43-52.

[33] ~ , , A trade-off between space and elliciency for routing tables, Journal of the ACM,
36 (1989), pp. 510-530.

[34] N. SANTORO AND R. KHATIB, Labelling and implicit routing in networks, The Com-
puter Journal, 28 (1985), pp. 5-8.

[35] J. VAN LEEUWEN AND P~. B. TAN, Interval routing, The Computer Journal, 30 (1987),
pp. 298-3O7.

52

