
redundant computation by processing each transaction only once and delivering the result 
with group communication primitives. 

The proceedings of the conference were published by Springer in LNCS number 1914. 
They were edited by Maurice Herlihy who also chaired the program committee. 

Most of us found time outside of the technical sessions to enjoy Toledo. Angel Alvarez 
was the local arrangements chair. With the help of his team from the Technical University 
of Madrid, he made our visit to Toledo particularly memorable. It included a evening of 
banqueting in Spanish style and a fine afternoon on a guided walking tour of old Toledo. 
The orga~zizers of DISC 2001 have a tough act to follow. But I hear they are up to the 
challenge. See you in Lisboa in October. 

R o u t i n g  in D i s t r ibuted  Networks:  
Overv iew and O p e n  Pro b l ems  

Cyril  Gavoil le  2 

1 S t a t e m e n t  o f  t h e  P r o b l e m  

1.1 T h e  rout ing problem 

Delivering messages between pairs of processors is a basic and primary activity of any dis- 
tributed communication network. This task is performed using a routing scheme, which is 
a mechanism working in a distributed fashion for routing messages in the network. The 
routing mechanism can be invoked at any source node and be required to deliver a message 
to some destination node. 

Unlikely to the design network problem that  is considered usually early in the process of 
setting up a new network, the problem of designing the management and control systems of 
the network, including routing, can be designed and optimized after the network construc- 
tion. The routing problem can be stated as follows: given a graph (the underlying topology 
of a commn-ication network) fixed in advance, design in each node (i.e., each router of the 
network) a routing algorithm as efficient as possible. It is required to explicit what we mean 
by "routing algorithm" and "efficient". A routing algorithm is a (computable) function that  
for each message arriving at a node determines the link on which the message has to be 
transmitted, and this as function of its destination or any other information contained in 
the header of the message. The term "efficient" groups a set of desirable quality factors like: 
the routes generated by the algorithm are (near) shortest paths in the graph; the time to 
compute the function is low; the number of routes using a same link is low; the size of the 
data structures required by the algorithm is small; the routing scheme is fault tolerant; and 
SO on .  

2LaBRI, Universit~ Bordeaux I, 351, cours de la Libdration, 33405 Talence Cedex, France. 
gavoilleGlabri.u-bordeaux. 
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The way we stated the routing problem is the static version: the graph is given in 
advance and the problem consists to pre-process the graph in order to find some efficient 
routing schemes on the graph. The dynamic version allows addition and deletion of nodes 
and/or  links in order to model node/ l ink failure and network growing. In this article we will 
concentrate our attention on the static case. The dynamic case can be tackled by paying 
more attention on the pre-processing algorithm in charge of the routing algorithm designing. 
Depending on when failures occur, one can run a distributed pre-processing algorithm to 
update the routing scheme and to make it adaptive to dynamic networks. It is willing 
that  this maintaining algorithm has low message or t ime complexity. For more details on 
the dynamic case, we invite the reader to consult [1, 11], and [2, 5, 28] for end-to-end 
communication problems, where the goal is to guarantee communications between a fixed 
pair of nodes in spite of link failures with the minimum memory space in the nodes and 
min imum communication messages. 

To illustrate the (static) routing problem, let us consider the following example: the 
standard routing algorithm in the Hypercube s. Let z denote the binary name of the current 
node (possibly the source), and let y denote the destination forming also the header of the 
message currently located in z. 

ROUTE(x, y): If  x = y, then the message is arrived at destination. Otherwise forward it on 
the edge o£ dimension i i f  z and 1] differ at position i. 

If every router possesses a copy of this algorithm, then we obtain a distributed algorithm. 
The algorithm ROUTE is said a shortest path routing algorithm because, one can check that  
the route generated by the algorithm is the shortest possible one. Let us denote Rf(y)  the 
function that  returns, for each destination y, the integer / defined by ROUTE(X, y). The 
function P~(.) has an argument, F, but the algorithm defining P~(-) depends on x only. In 
other words the function Rz(.) can be implemented by a program 4 of length logn  -t- O(1) 
bits in each node, n being the number of nodes of the Hypercube. Indeed, it suffices to 
store the name x in the data structure of the program implementing R=(.) and a constant 
number of computer basic instructions. Note that  such a routing algorithm has therefore 
a relatively "compact" implementation, and a constant t ime complexity if basic operations 
like "=",  XOR and integer LOG s are available on O(logn) bit integers. 

1.2 M o d e l  and termino logy  

The complexity results are strongly dependent of the routing model (ability to relabel and 
to assign new addresses to the nodes, size of the addresses, size of the headers, ability to 
rewrite the headers, etc.). So let us define more precisely all these terms. 

Let G be a graph representing a communication network. For the discussion, we assume 
that  graphs are connected, undirected and have n nodes. However, most of the results can 

SThe nodes  of  this  g raph  are the n ---- 2 k b inary  words of  k bits .  T h e  node  z ~ . . .  z~ . . .  Zl is connec t ed  to  
the node  z k . . .  z-~.., z l ,  for each i = 1 . . .  k, forming the  edge of d imension i. 

CBy "program"  we m e a n  the  set of  all d a t a  s t ruc tures  and all the  control  ins t ruct ions .  T h e  log func t ion  
we consider in this  art icle are in base two. 

Sin order  to ex t r ac t  the  pos i t ion  of  the  most  s i gn | f can t  b i t  in the resul t  of  z x o R  I/. 
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be na tura l ly  extended to more general  model  of graphs. Each node u of G has  a Name, an 
lmique ident i ty  integer denoted ID(u). In what  follows, we informally confuse between the  
node u and  its name  ID(u).  However, the routing mechan i sm uses a rout ing-label  or address, 
unique for each node and denoted by l (u) ,  potent ia l ly  different of ID(u).  

A routing function R on G is a d is t r ibut ing a lgor i thm whose role is to dehver  mes- 
sages between nodes of the network. The algor i thm builds a pa th  from the source to the  
dest inat ion,  selecting at each in termedia te  node the  next l ink onto forward the  message. 
Specifically, R consists of a pair  of functions (P, H)  where P is the  port funct ion and H 
is the header function. For any two dist inct  e nodes u and v, _~ produces a pa th  or route 
u -- Uo, U l , . . .  , ~  -- vl a sequence h 0 , h l , . . . ,  h~ of headers,  and a sequence p 0 , p l , . . .  ,p ,  of 
output  port  numbers .  The length of the route, denoted p,~(u, v), is the cost of the  p a t h  from 
u to v if G is weighted, and otherwise pR(u, v) = r. The  port  numbers  ident ify the  l inks 
connected to a node. It is a local name,  so tha t  a l ink connecting x to y may  have a different 
name  in z (output  port) and in y ( input  port).  The  port  numbers  are unique integers t aken  
from the set { 1 , . . . ,  d}, where d is the number  of ports  corresponding to the  degree of the  
current  node 7. A message with heade r /~  arriving at node u~ through input  por t  q~ is given a 
new header /~+1 = H ( ~ ,  q~, hl), and is forwarded on the  output  port  Pl ---- P(u~, qi, h~). Thus,  
we require tha t  for every i E { 0 , . . . , r -  1}, H(~,q~,h~) - h~+l, P(u~,q~,h,~) : Pi and  tha t  
the  l ink (u~, ui+l)  has output  port  number  p~ at u~, and input  port  number  qi+l at u,+~ (see 
Fig. 1). On each router, there exists a special lin]~ numbered  0. It insures the  communica t ion  
between the router  and its host associated at the  node u~. This  allows us to complete  the  
descript ion by imposing the  constraints  tha t  q0 -- P~ --- 0, as well as h0 ~ ~(v), thus  fixing 
the  ini t ia l  header,  which is provided to the router from its host (see Fig. 1). 

host 

~-I-1 

Figure 1: A general model  of router. 

This  ma thema t i ca l  formulat ion allows us to compare  in  a precise way all the  results  
(specially the  lower bound  results) and all the rout ing strategies of the  l i terature.  

A routing strategy is an a lgor i thm tha t  computes  for a graph G a rout ing funct ion R on 

8 T r a d l t i o n a n y ,  we neve r  cons ider  the routing From u t o  i t-self ,  th i s  b e c a u s e  i t  is ass l l rned t h a t  t h e  h o s t  
processor c o n n e c t e d  t o  t h e  r o u t e r  has  e n o u g h  i n f o r m a t i o n  an d  c o m p u t a t i o n a l  p o w e r  to  av o id  th i s  k i n d  of  
useless co rn ,~un ica t ions .  Moreove r ,  t h e  case v = u m ak es  t r o u b l e s  for  t h e  d e ~ n i t i o n  of  t h e  stretch factor fo r  
wh ich  t h e  d i s t a n c e  From ~z to  v is t a k e n  as t h e  d e n o m i n a t o r  o f  a f rac t ion .  

7Iu  d i r e c t e d  g raphs ,  we h a v e  to  cons ider  t h e  in- a n d  ou t -deg ree .  
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G. Hence the strategy consists of a pro-processing during the set-up t ime of the graph and 
is responsible of the addresses assignment, port labeling, and distributed data  structures 
construction required by the routing scheme. (We use the term routing scheme to deal with 
an implementat ion of a routing function.) A routing scheme, and more generally, a routing 
strategy is name-independent if "names" does not change in the pro-processing, that  is, 
the address £(u) is simply its original n~me ID(~). A strategy is universal if it provides a 
routing scheme for any graph. We denote P~ the restriction of R to ~, so-called local routing 
function. 

A routing function that,  in each node, does depend of the header only, and not of the 
input port, is said oblivious. And, an oblivious function that  depends of the destination only, 
i.e., such that  h0 = hx = --- = hr = £(v), is a direct routing scheme. Finally, a direct scheme 
that  uses the address range [1, n] is called a routing table. 

All theses refinements and considerations have an impact on the implementat ion of the 
routing schemes. The ability of header modification for instance, can be costly for optical 
networks that  would require electronic-optic conversions. Direct schemes are the simplest 
ones and have also the loop-less property: the messages following the route can never cycles, 
since otherwise they would loop forever contradicting the routing function definition (there 
must exist a path between any pair of nodes). 

1.3 C o m p l e x i t y  m e a s u r e s  

As we will see there are relationship between the length of the routes generated (near or far 
from the shortest paths) and the size of the local data  structures used by a routing scheme 
(i.e., the available knowledge). Actually, the trade-off between the computational  power and 
the size of the knowledge is a central theme in Theory of Distributed Computing. Routing 
with the most compact distributed data structures is a perfect il lustration of this paradigm s. 

Let R be a routing scheme on a graph G. The stretch factor of R is the value defined by 
m a x ~  pR(u, v)/dc(u, v), where da(u, v) denotes the length of a shortest path  from ~ to v in 
G (the cost of a min imum path  in the weighted case). A routing scheme of stretch factor 1 
is termed a shortest path routing scheme. 

The memory space of R is the size (in bits) of all the data  structures it uses. One can 
distinguish the local memory space of R in a node u, and the total memory space of R, 
defined as the sum of the local memory space of all the nodes of G. As we will see, the 
memory space may depend of the size of the headers and the size of the addresses. Note 
that,  a priori, it is not required that  the size of local memory space of ~ is at least as large 
than the size of the address of u. 

The routing time (sometimes called latency) is the m a x i m ,  m of the worst-case t ime 
complexity of P~, the maximum taken over all node u of G. The total routing time is the 
max imum of the sum of the t ime complexity for the local routing decisions performed along 
a route, the m a x i m - m  taken over all the routes. 

SThe "Best Student Paper Awards" of the 1996 and 2000 ed i t io~  of the aunal SFmposium on Principles 
of Distributed Computing (PODC) deal with compact routing, cf. [25, 26]. 
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2 O v e r v i e w  

2.1 Universal routing schemes 

First, remark that  every graph has a shortest path routing scheme with (local) memory space 
of size O(nlogd) bits for each node of degree d: it suffices to use routing tables. (One can 
list in each source the right output port for the n - 1 possible destinations. The direction 
of each destination can be determined by rooting a minimum spanning tree in the source.) 
Thus, the use of routing tables is an universal routing strategy. 

After this remark, one may naturally ask whether there exists universal routing strategy 
that are more compact? Say more compact than O(r~log d) bit per node. 

There are at least two ways of designing shortest path and compact routing tables: find a 
suitable address set and a suitable system of shortest paths for each source. The idea behind 
naming nodes with a suitable address is to encode useful information about the network and 
then to make use of this implicit information when performing the routing. Clearly, a routing 
strategy that  does not allow renaming of nodes of a ring cannot avoid a f~(n) bit lower bound 
for the memory space. (If the nodes are permuted at random, a source x needs to store ~(1) 
bit for each destination ~/to determine whether a message has to be forwarded to its left or 
to its right.) Note that  the original node name can always be kept in the final address of the 
router, for instance setting address(u) -- liD(u), f(u)) where £(u) is the routing-label. That  
is why we pay more attention on £(u), and try to minimize its size. Shortest path selection 
by the routing strategy is desirable as well. A routing strategy that  does not give this ability 
provides a ~l(r~) bit lower bound of memory space for a K2,,~-2 C a complete bipartite graph). 
(Consider two nodes x,y of the largest part. If the shortest path from x to y is fixed by 
a coin flip (there are two shortest paths from x to y using distinct first edges) and is not 
optimized by he routing strategy, x would require to store fl(1) bits for ~/.) Obviously, rings 
and complete bipartite graphs support shortest path routing schemes with O(log n) bits of 
memory space if renaming and shortest path selection is allowed. 

These two kinds of optimizations makes interesting the problem, in particular for specific 
families of graphs like trees [34, 35], outer-planar and bounded genus graphs [17, 23], k- 
trees [31], etc. However, most of the routing strategies proposed are rather specific, and 
thus not universal. Unfortunately, in [25], we negatively answer to the question of universal 
and compact routing strategies. We showed that for every integer d, 3 ~ d ~ n/2, every 
shortest path universal routing strategy requires ~(n  ~ log d) bits of total memory space for 
some worst-case graph of maximum degree d, assuming that addresses can be optimized 
by the strategy and are taken in the set {1 , . . . ,  n}. (Note that  port numbers and shortest 
paths are also selected and optimized by the routing strategy.) Therefore, this shows, up to 
a constant multiplicative factor, the incompressibility of shortest path routing tables. The 
result can be extended to any routing strategy generating optimal addresses up to c logn 
bits, for every constant c ~> 1, and whatever is the header size. 

It turns out that memory space can be reduced only if we accept to relax at least two 
constraints: the shortest paths and the size of the addresses. 
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to send it on a higher level, and so on, until the routing process succeeds in delivering the 
message. Clearly, the implementation of this procedure in every router results in a complex 
decision function; the number of the present phase has to be coded into the header of the 
message, thus a new message header must be recomputed and rewritten by the originator 
upon each retransmission, i.e., in every phase of the algorithm. Moreover, intermediate 
touters must also change the message header, for ex~.mple, in order to notify that  a failure 
occurred. (Another possibility is to send only a failure notification, but in this case the 
message originator must keep a copy, and an intermediate router has to generate additional 
messages). In addition, those strategies treat the nodes of the network non-uniformly, in the 
sense that  different nodes play different roles, thus the decision function could be substan- 
tiaUy different at different nodes. As high-speed networks gain popularity and increase in 
size, these drawbacks become crucial, since the main routing bottleneck in these networks 
is often the decision function in the nodes and not the propagation delay. Therefore, sim- 
ple routing schemes, like direct schemes which could be implemented in hardware may be 
preferable in practice. 

2.3 D i r e c t  r o u t i n g  s c h e m e s  a n d  low s t r e t c h  fac tor  

Subsequently to the previous discussion, considerable attention is given recently to an op- 
posing design philosophy, focusing on simple and direct schemes. These schemes employ a 
simple "transmit and forget" type decision function in the nodes, depending only on the 
destination of the message, and the destination is the only information coded in the message 
header (which is determined once and for all by the originating router, and is never changed 
afterwards.) They are loop-free and can be implemented by some routing tables ( that  are 
sometimes compacted, but with a relatively low routing time). That  is why, other routing 
strategies have been designed, in particular some routing strategies with small stretch factor 
s E [2, 5]. 

In this framework, [10] proposed direct loop-free routing schemes for weighted graphs 
with O(n 2/s log 4/3 z:) local memory space. The stretch is at most s = 3, and addresses and 
headers are of size 31ogn. The space bound can be reduced to O(v~logS/2~:) bits if one 
accept a small increasing on the stretch to s = 5 [12]. The latter routing strategy is based on 
routing tables (the tables axe compacted into intervals of integers, namely these are interval 
routin 9 schemes, cf. [21] for a survey of this technique). Thus they are loop-free, and use 
headers/addresses which are taken from the set {1,..., n}, i.e., on log n bits exactly. It is 
also remarked that the stretch is, in average on all the source-destination pairs of the graph, 
bounded by ~ = 3. Moreover, the longest route does not exceed 2D (D being the weighted 
diameter of the graph), and is even bounded by [1.5D~ in the case of uniform weights. The 
routing time is O(log n). 

Actually, the bound on the local memory space is almost optimal. It is shown in [12] 
that  no loop-free routing strategy with address range [1, n] can guarantee a local memory 
space lower than cv/n bits TM on every family of graphs including trees. The result holds 
for every stretch factor, since on trees a loop-free routing scheme of stretch s is a routing 
scheme of stretch 1. It follows that  the trade-offs presented previously (for instance the 

1°Prec i se ly ,  c = ( ~ r v / ~ ) / l n 2  = 3 .7006565593 ._  
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name-independent hierarchical routing strategy of [6]) cannot pretend to loop-free routing 
schemes, thus require to change and rewrite the headers at least once. 

Open  ques t ion  

• What is the best trade-off between local memory space and stretch factor (or average stretch 
factor) for universal direct routing schemes using addresses taken in ( 1 , . . . ,  m}, with ~ ~ n? 

The same question arise for universal k-phase routing strategies, namely strategies that 
provide routing schemes for which the header of each message can be rewritten at most k 
times along its route. 

2.4 Almost  all the graphs 

We just have seen that in the worst-case a shortest path routing scheme requires e ( n  log n) 
bits of local memory space (cf. the result of [25] taking d = (9(n)). But, are such worst- 
case networks rare? Is the situation better for the "average case"? The answer is yes. 
Actually, surprisingly enough, the networks that require a large memory space for routing 
along shortest paths are not the ones that possess the maximal entropy 11. Graph structures 
that make difficult the routing are not completely random. As we will see, on the contrary, 
a graph with a fully random structure has a shortest path routing scheme with O(n) bits of 
local memory space. 

Certain results in graph theory are valid for "almost all the graphs". The term "almost 
all" is statistical. It means that the fraction of n-node graphs for which the property holds 
tends to 1 as n tends to infinity. The tools to establish such kind of results are probabili- 
ties, with the f~mily ~ of random graphs 12, or the Kolmogorov Complexity [29] with the 
Kolmogorov random graphs. These two tools are very close in essence. 

In [13] the ability of random graphs in ~ ,  for some particular values of p, to support 
shortest path routing tables that can be compacted into intervals has been considered. More 
generally, and using Kolmogorov random graphs, [9] showed that a fraction of at least 1 - 1 I n  a 
of all the graphs has a shortest path routing table of size 3n + o(n) bits (per node) under 
the assumption that node address range is [1, n] and node addresses are randomly permuted, 
and that each node knows its neighborhood for ~ee. However, ff the addresses are on c log 2 n 
bits, where c is a constant, then the routing table can be reduced to c log 2 n bits only. Other 
results are mentioned for stretch factor s > 1. Finally, in [24] the 3n + o(n) bit upper bound 
has been slightly improved: for a fraction of at least 1 - 1In of all the graphs support shortest 
path routing tables of size n + O(log 4 n) bits for addresses taken in the range ~1, . . . ,  ~ .  

Open question 

• Is the n+o(n) upper bound is the best possible one for a fraction of 1-o(1) of all the graphs? 

11This family of graphs is quite hazy, but it can be viewed as the set of graphs whose adjacency matrix is 
n o t  compressible in the Kolmogorov Complexity sense. 

12In this model, graphs have n nodes and with probability p there is an edge connecting two nodes of the 
graph, cf. [7]. 
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R e m a r k .  To design such a lower bound on the memory  space is harder  than  it looks. First ,  
a node does not need to know its neighborhood (even if the neighborhood results of a r andom 
choice of n / 2  nodes among n - 1). We can relabel the ports according to some informat ion 
of the neighbors and it may  decrease the information even bellow the degree of the node 
(for instance, it is shown in [21] tha t  trees have a O(V/'~) bit  local memory  space rout ing 
scheme even for large degree node). Secondly, in a r andom graph, node relabeling changes 
the probabil i ty  to have a connection between two arbi t rary nodes labeled respectively z and 

y in { 1 , . . - , n } .  

2 . 5  S e p a r a t o r ,  p l a n a r  a n d  b o u n d e d  g e n u s  g r a p h s  

There are strategies tha t  are not universal, but  very efficient for specific class of graphs. 
In [19] it is presented routing schemes for the f~.mily of graphs tha t  axe recursively de- 

composable by a separator of size at most c. A separator is a subset of nodes whose removal 
disconnect a graph in two (or more) connected components,  each one of size at most 2/3 
of the init ial  size of the graph. More generally, the graph is said c-decomposable if for 
every node weight assignment of the graph there exists a separator of size c tha t  provides 
connected components  of weight (the sum of the weight of the nodes in the component)  at 
most 2/3 of the weight of the whole graph. This definition implies a recursive decompo- 
sition of the graph with at most loga/2(n ) hierarchical levels, cf. [19]. A separator  insures 
tha t  every route between two nodes of distinct components has to cross some nodes of the  
separator. If the separator is small  in size, this allows to concentrate the routing informat ion 
towards the nodes of the separator. Outer-planar  graphs, and more generally, series-parallel 
graphs are 2-decomposable, graphs of treewidth bounded by k are O(k)-decomposable,  pla- 
nar  graphs are O(V~)-decomposable,  mad more generally, graphs of genus bounded  by g are 
O ( ~ ) - d e c o m p o s a b l e .  

More precisely, [19] proposed two routing strategies. The first one, applicable to edge- 
weighted graphs, uses a total  memory space of O(cn l og~ n) ,  a stretch factor s -- 3, and 
addresses of size r log n bits, r > 1 being a small  constant. The second one, wi th  the same 
memory  space, decreases the stretch to s -- 1% 2/~,  where 1 < ~ ~ 2 (thus s < 3) is the 
root of c~ [(~+1)/2] - e r  - 2, for an increasing of the addresses size to 3.42 c logc  l o g n  bits. For 
c E {2, 3}, c~ -- 2, and for c E {4, 5}, a ~ 2.32. The routes are not necessary loop-free, the 
headers are supposed to be rewritable, and the local memory  space is not bounded.  

These strategies axe efficient only if c is constant. For planar  graphs, c = O(v/-n), the 
same authors proposed in [18] two bet ter  strategies. Still for weighted graphs, the first one 
has O(n  4/q log n) total  memory  space and a stretch factor of 8 -- 3, for addresses and headers 
of size O(log n). The second one, for every constant e, 0 < e < 1/3, provides a total  memory  
space of O( (1/e)nl+~ log n) bits for addresses of size O((1/e)  logn) ,  and a stretch factor s -- 7. 
Both strategies suffer of the previous drawbacks: they do not bound the  local memory  space 
( that  can be as larger t han  O ( n l o g n ) ) ,  and use rewritable headers and addresses of size 
str ict ly longer than  log n. All the strategies presented in [18] and in [19], have rout ing t ime  
linear in the size of addresses, tha t  is O((1/e)logn). 

The case of shortest pa th  routing schemes for planar  graphs (s -- 1) has been  s tudied 
in [23]. It is proposed a direct routing scheme (a routing table  with addrdsses and headers are 
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c~ E {al,.-., ad) and B[a] = 0 otherwise. It turns out that P~(y) = i if the number of a~'s 
less or equal to ~/is exactly i. It corresponds also to the number of l's in B up to position 
y. The memory space is n bits (the string B) and the routing time is a priori O(y), the 
traversal time of B up to y. In [30] it is shown that this type of queries can be solved in 
constant time I'~ in the worst-case, thanks to a data structure of size n + o(n) bits (moreover 
constructible in polynomial time). 

Obviously, the ideal solution would be a compact representation of the set {al,..., ad} 
by a data structure of size 14 log (~) -- O(dlog(n./d)) allowing constant routing time. In 
the same spirit, [8] proposed a quasi-optimal coding of integer sets (up to a multiplicative 
constant) with constant time for membership queries. The question of computing the rank 
of an element is open. 

Open question 

• Is it possible to find a da ta  structuxe of size at most O(dlog (n/d)) bits per node of degree 
d, and a constant  routing t ime for graphs supporting an i n t e rwl  routing scheme? 

3.2 Total  routing t ime  

We saw tha t  it is not easy to design a compact da ta  structure for a min imal  routing t ime, 
even for the case of interval routing scheme. An alternative would be to consider the to ta l  
routing t ime on a route of length L. 

Consider the "standard" shortest pa th  routing in the de Brui jn  graph. The nodes of 
this graph are the n ---- 2 h binary words of length k. The node zkxk-1 . . .  z2=1 is connected 
to the nodes zk-1- - .  ~2zla ,  for a E {0, 1}. It consists to compute the largest prefix of 
the dest inat ion address that  is a sui~nx of the source address (addresses correspond to node 
names).  This  prefix constitutes the first header. At each in termediate  node, the first bit  of 
the current header is extracted: if the bit  is 0 the message is forwarded to output  port  1, 
if the bit is 1 it is forwarded to port 2 (this graph is directed and has only two outgoing 
arcs). In bo th  cases, the extracted bit is destroyed and the new header is one bi t  less. The  
message arrives at dest inat ion when the header is empty. The total  routing t ime on a route 
of length L is O(L + log n), the log n te rm coming fxom the computa t ion  of the first header 
that  can be performed by the Boyer-Moore's algori thm [3]. Note tha t  the  routing t ime  is 
constant excepted in the source. Since L ~ log n (the diameter  is k), the  total  rout ing t ime  
never exceeds O(1og n). 

The problem to design a compact data structure in order to optimized the total routing 
time has been first pointed in {16]. For weighted outer-planar graphs (that all support 
a shortest path interval routing), he presents a data structure of size O(dlogn), mainly 
based on intervals with auxiliary tables in a way that the total routing time never exceeds 
O(L + log r~) for messages between nodes at distance L. 

laThe computation model is the word-RAM model in which standard arithmetic and bitwise logic opera- 
tions on integers of O(logn) bits run in a unit of time. 

14This is an optimal coding since there are (~) possible se ts .  
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Expressed in an other complexity measure, the bit-operations model, [14] showed that  ev- 
ery graph of diameter D support a routing scheme with routing time O(log n) bit-operations 
and with total routing t ime O(D + n 1/k log n) bit-operations, where k 1> 2 is an arbi t rary 
constant. Note that  in this complexity measure, s tandard routing tables have total routing 
t ime O(D log n) bit-operations. Indeed, reading of £ bits in a table of size t costs O(£ + log t) 
time, thus it costs O(logn) bit-operation to read the output port in a s tandard routing ta- 
ble xs. The technique to save t ime is therefore to take few routing decisions (at most O(n 1/~) 
for some parameter  k). Most of the routers takes their own decision from few bits of the 
header only. Note that  in the result [14] the routes are not shortest paths, but their length 
are bounded by O(D). 

Open question 

• Is there any universal routing strategy with total routing t ime bounded by O(D + log n) 
bit-operations? 

3.3 R o u t i n g  in trees  

Routing in trees is a basic and important  problem. Indeed, most of the hierarchical routing 
strategies axe based on tree covering. Often, at the final phase of the routing protocol, the 
problem to route in a small  region spanned by a tree occurs. It is quite easy to design space- 
efficient routing scheme for trees. For instance, interval-based routing (assuming addresses 
fixed by a DFS traversal numbering, each sub-tree defines an interval of consecutive ad- 
dresses) achieves a total memory space of O(n log ~), thus O(log n) bits per node in average. 
This scheme is easy to implement  and the routing time is O(log n). however one can object 
the two following remarks: (1) the local memory space is not bounded by O(log n) when the 
degree is large; (2) one could expect a constant routing t ime with a better  data  structure. 

In Paragraph 3.1, we saw that  in the case of interval routing scheme, one can get a local 
memory space O(dlog(n/d)) .  With  a space n + o(n) one can even guarantee a constant 
routing time. Is the space O(dlog(n/d))  bound optimal for trees? 

The answer is no: the right bound is O(v/-~). In [21] it is shown that,  thanks to a 
DFS numbering according to the number of descendents of each sub-tree, the local routing 
function in x can be computed from a sequences S= = ( n l , . . . ,  rid), with n l  ~ .-- ~ rid. 
Here, ni is precisely the number of descendents in the sub-tree rooted at the i th  child of x. 
Because 1 ~ nl <~ ~.. na and d "'" ~-~=1 n~ = n -- 1, the sequence S® can be coded with at most 
O ( v ~ )  bits, since the number of such sequences (called parti t ions of n - 1) is bounded by 
2 °(~ra). Thus the local memory space of z is bounded by O(V~),  and this is actually the 
optimal bound, of. [12]. Roughly speaking, the routing function in x for a destination of 
address y consists to compute the index i such that  y - z E (E~- l l  i 

asIn this model, reading or writing a single bit of header costs one lmit of time. However, the message 
and the bits of the header tha t  are not read can be copied and tranemitted onto the outgoing link without 
any penalties - in the de Bruijn example, the routing t ime is O(1) bit-operations though headers are non 
constant 
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O p e n  ques t ion  

• Design a compact data  structure for partitions of n using optimal space, and allowing 
constant time rank query type? 

3.4 Exponential routing time and Cayley graphs 
In an extension of [14], one can show that  there are graphs having shortest pa th  routing 
tables of size O(log n) for each node with the following property: every shortest path  routing 
scheme using less than cnlog n bits of local memory space, for a suitable constant c > 0, 
must have a routing time greater than any constant size stack of exponentials, i.e., 

3,t 

22"" 

It is clear that  if the data  structure is to compact, the time to extract some piece of infor= 
mation can be very large. 

Cayley graphs are precisely a family of graphs supporting a theoretical low local memory 
space. They have strong regularity property (based on a group structure),  and thus are 
good candidates for compact routing tables since they their adjacency matr ix can be entirely 
described with a few number of bits. However, from such global information (say, the matr ix 
of the graph), there is no efficient way to extract a shortest path,  or simply the first edge of 
a shortest path. Routing schemes need local information. 

More precisely, nodes of a Cayley graph are element of a group F and the arcs 16 are 
defined by a given set of generators S C F: z is connected to y if there exists an element 
s E S such tha t  y -- z + s. 

Consider the following example: F = Z (the additive group modulus n) and S - 
{+1, ±cl ,  ±c~} with Cl,C2 E Z \  {0, 1} (we make the graph symmetric taking opposed gener- 
ators). The Cayley graph (F, S) can be described by given the two integers cl and c~. Hence, 
the shortest pa th  routing can be solved with O(log n) bits of memory space. Indeed, one 
can rebuild the whole graph (in the router memory), and apply a s tandard shortest pa th  
algorithm in order to extract the first edge of a shortest path. The point is that  this method 
would require n (n)  routing time, whereas one can expect a poly-logarithmic routing time, 
the size of the input being O(log n). Unfortunately, one need to solve the minimal decom- 
position of an element in sum of generators, a difficult problem. In fact, for S = {-4-cl, ±c2} 
the problem can be solved in log °(i) n time, but is still open for S of larger carAinality. 

O p e n  q u e s t i o n  

• What  is the best routing time we can achieve for shortest path  routing scheme on Cayley 
graphs of degree k and defined on Abelian groups, if the local memory space if bounded by 
O(klogn). 

leCayley graphs are directed.  However if - s  ~ S for every  s E S, one can considered t h e m  as und i rec ted  
graphs.  
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Remark .  The allowed spaced is enough to store all the generators, and whole the graph 
information: there are O(k) generators in S, each one can be described by an integer taken 
in [1, hi, and one can show that there are at most n °(i) non-isomorphic Abelian groups with 
n elements. 

3.5 Rout ing  and other distr ibuted tasks 

It is worth to observe that design a compact data structure for routing in a distributed 
network is a difficult task. For instance, to determine the minimum number of intervals for 
which the graph has a shortest path k-interval routing scheme is NP-hard (with at most k 
intervals per link). The pre-processing on the graph to optimize routing is time consuming 
in general. A natural question is thus to ask if such efficient data structures, once generated 
by the pre-processing algorithm, could be useful to other distributed tasks than routing, e.g., 
broadcasting or leader-election? or ff with a little effort one could not modify the compact 
data structures allowing fast multiple queries in addition to routing. 

In [15], we positively answer to this question for the case of shortest path 1-interval 
routing schemes. Mainly, it is shown that there are simple broadcast algorithms that allows 
broadcasting message from any source in at most a total of O(n) messages, and using the 
routing information only. It implies also O(n) message algorithm for leader-election im- 
proving the first contribution in this routing and election problem, [35]. Note that with no 
specific information, the leader-election problem has already n(n log n) message-complexity 
lower bound for a ring [20]. 

Open  quest ion  

• Does the message-complexity remain in O(n) for s-stretched k-interval routing schemes for 
constant k and constant s? 

The problem is open for other representation of compact routing schemes. For instance 
it is not clear if a graph having low local memory space for routing, say O(log n) bits, has 
also some ability to broadcast or elect a leader with low message-complexity. 
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