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ABSTRACT

Consider an arbitrary distributed network in which large
numbers of objects are continuously being created, repli-
cated, and destroyed. A basic problem arising in such an
environment is that of organizing a distributed directory ser-
vice for locating object copies. In this paper, we present a
new data tracking scheme for locating nearby copies of ob-
jects in arbitrary distributed environments.

Our tracking scheme supports efficient accesses to data ob-
jects while keeping the local memory overhead low. In par-
ticular, our tracking scheme achieves an expected polylog(n)-
approximation in the cost of any access operation, for an
arbitrary network. The memory overhead incurred by our
scheme is O(polylog(n)) times the maximum number of ob-
jects stored at any node, with high probability. We also show
that our tracking scheme adapts well to dynamic changes in
the network.

1College of Computer Science, Northeastern University,
Boston, MA 02115, rraj@ccs.neu.edu. Supported by NSF
CAREER award NSF CCR-9983901.

*Department of Computer Science and Engineering, Arizona
State University, Tempe, AZ 85287-5406, aricha@asu.edu.
Supported in part by NSF CAREER Award CCR-9985284
and NSF Grant CCR-9900304.

3Max-Planck-Institut fiir Informatik, Saarbriicken, Ger-
many. Supported in part by the IST Programme of the EU
under contrac number IST-1999-14186 (ALCOM-FT)

4Compaq Corporation, San Jose, CA,
Gayathri.Vuppuluri@compaq.com. This work was done
while the author was a graduate student at Arizona State
University, supported in part by NSF CAREER Award
CCR-9985284.

Andréa W. Richa?

Berthold Vécking®  Gayathri Vuppuluri*

1. INTRODUCTION

Replication is a powerful tool in the design of scalable high-
performance distributed systems. For example, the scala-
bility problem that arises when a large number of clients si-
multaneously access a single object (the “hot spot” problem)
can be addressed by creating several copies of the object and
then distributing the load among these copies. As another
example, the latency associated with accessing an object at
some distant node of a large network can often be reduced
by caching. Indeed, large-scale replication and cooperative
caching are central themes that underlie the emergence of
the paradigms of content delivery networks and peer-to-peer
networking. A basic problem arising in such replicated data
environments is that of organizing a distributed directory
service for locating object copies. In this paper, we present
a new data tracking scheme for locating nearby copies of
objects in arbitrary distributed environments. Our track-
ing scheme describes the control structures that need to be
stored at the network nodes, defines protocols for locating
nearby copies of data objects, and protocols for updating
our control structures in case of insertions and deletions of
copies. We also consider the adaptability of our scheme as
nodes join and leave the system.

We represent the network by a collection V' of n nodes with
a single communication cost function that takes into ac-
count the combined effect of network parameters such as
congestion, edge delays, edge capacities, distance and buffer
space. The cost of communication is defined by a function
¢:V? = RT. For any two nodes v and v in V, ¢(u,v) is
the cost of transmitting a unit size message from node u to
node v. We assume that c is a metric — that is, it is sym-
metric and satisfies the triangle inequality. In the remainder
of this paper, we will address the proximity of two nodes u
and v — e.g., u is close to v, the distance between v and
v, or u is mear to v — always with respect to the cost of
communication ¢(u,v) between these nodes.

An important measure of the efficiency of a data tracking
scheme is the stretch factor, which compares the cost in-
curred by the tracking scheme to the optimal communica-
tion cost. We consider three operations: access, whereby a
node fetches a copy of a particular object, insert, whereby
a new copy of an object is added to the system, and delete,
whereby an exsiting copy of an object is removed from the
system. The stretch factor of an access, insert or delete op-
eration at a node u for an object A is the ratio of the actual
communication cost incurred by the data tracking system



in performing the operation to c(u,v), where v # u is the
nearest node to u that holds a copy of A; if there is no such
v, then we set the stretch factor to be the ratio of the cost
incurred to diam(G), where diam(G) = maxy,, c(u,v) is the
diameter of the network.

A challenge in designing efficient tracking schemes is to achieve

a low stretch factor while maintaining small control struc-
tures at the network nodes. Consider a naive approach that
optimizes the stretch factor for the read operation by storing
at each node the location of the closest copy of each object
in the network. The control memory required at each node
is prohibitive since it is proportional to the total number of
objects in the system. Furthermore, when any object copy
is inserted or deleted, a large number of nodes (possibly, all)
need to be informed. Clearly, the memory overhead required
at each node is also an important performance metric of a
data tracking scheme. Let S denote the maximum number
of objects that may be stored on any individual node. We
relate the amount of memory required by our data tracking
scheme to S§. Formally, we measure the memory overhead
at each node by the fraction of local memory that is used
for control structures.

A final performance metric that we consider is how the
scheme adapts to dynamic changes in the network under
the assumption that the cost metric does not change. We
adopt the following model for this study. We assume that
the set V' of nodes and the cost function are fixed; however,
individual nodes may join or leave the data management
system. When a node leaves the system, the functionality
provided by the node needs to be taken over by the rest of
the network. Similarly, in order to achieve scalability, when
new nodes join the system, a portion of the data structure
needs to be distributed among the new nodes. We evaluate
the adaptability of a tracking scheme by the number of nodes
that are updated when a node joins or leaves the system.

1.1 Our contributions

Our main contribution in this work is the development of
the first data tracking scheme for arbitrary networks, that
simultaneously achieves polylogarithmic approximations in
stretch factors for access, insert and delete operations, as
well as for local memory overhead per node. Our data track-
ing scheme is based on a randomized hierarchical decomposi-
tion technique of Bartal [8], that partitions the network into
disjoint clusters at various degrees of locality. The protocol
for accessing an object in our tracking scheme is to search
for the object level by level, from the smallest clusters to
the largest, until an object copy is found (if it exists).

A challenge is then to provide an efficient mechanism for
searching within a cluster that keeps the memory overhead
low and adapts quickly to changes in the network. For this
purpose, we embed a de Bruijn graph [17] of appropriate
size into each cluster. We use the embedding to guide access
requests within the cluster via hashed pointers to relevant
object copies. Since the diameter of a 2¥-node de Bruijn
graph is k, the search process within any cluster is efficient.

Another important feature of our tracking scheme is that it
needs to store only a small number of signposts (pointers)
for every data object. Typically, these signposts are tuples

of object names (object IDs) and node addresses. We as-
sume that both the object IDs and the node addresses have
a unique integer representation that can be stored in a con-
stant number of words. Furthermore, since the in-degree
and out-degree of each vertex in a de Bruijn graph is 2, the
embedding in each cluster only requires a constant amount
of words to be stored at each node. We now summarize the
main properties of our data tracking scheme.

o The stretch factor for any read operation is O(log® n).

e The expected stretch factor for any insert or delete
operation is O(log®n). (The worst case cost for these
operations is O(diam(G)log®n).)

e The local memory requirement is

O (Slog(min{diam(G),n})(log n + log S)
+ log(min{diam(G), n}) log® n)

words, w.h.p.!. Assuming S is polynomially bounded
in m, our upper bound on the local memory require-
ment simplifies to O(Slog? n + log® n).

e The amortized adaptability of our tracking scheme is
O(log” n).

The logarithmic factors in the stretch are partially derived
from the properties of a network decomposition of Bartal [9],
as we will see in Sections 3 and 4. Utilizing improved clus-
tering techniques may result in better stretch factors. For
example, for planar graphs one can divide the bounds for
the stretch by a loglogn factor by employing a clustering
algorithm of [15]. Furthermore, increasing the bound on
the memory requirement by only an additive O(n°) term,
for constant ¢ > 0, reduces the bounds on the stretch by
a factor of ©(logn/loglogn). Finally, if one only wants a
guarantee for the ezpected stretch for read operations, then
one can drop another logn factor in all bounds for stretch
and memory requirement (a simplified such scheme, which
only provides guarantees on the expected cost of a read op-
eration, is presented in Section 3).

1.2 Related Work

The clustering and decomposition techniques of Bartal [8, 9,
15] build on the seminal work of Awerbuch and Peleg [6] (see
also [4]), who provide the first low-diameter hierarchical de-
composition for arbitrary networks. These clustering tech-
niques have found several applications in distributed net-
works, and network algorithms such as maintaining routing
tables [5], distributed data management [2, 10, 3], tracking
of mobile users [7], network design [22], and locating Inter-
net servers [13].

Closely related to our work is the study of distributed pag-
ing [3, 23], which addresses a more general online adver-
sarial version of the problem that we consider in this pa-

!We use the abbreviation “w.h.p.” throughout the paper
to mean “with high probability” or, more precisely, “with
probability 1 — n™ ¢, where n is the number of nodes in the
network and c is a constant that can be set arbitrarily large
by appropriately adjusting other constants defined within
the relevant context.”



per. The distributed algorithm of [3] achieves polylog(n)-
competitiveness in terms of access cost. Their study does
not address the overhead due to control information, how-
ever, and direct extension of their results to our problem
may require local memory proportional to the number of
objects.

The randomized tracking scheme of Plaxton, Rajaraman,
and Richa [20] addresses many of the same concerns that
we consider in this paper. Their protocol, which has also
been implemented as part of a large-scale persistent ob-
ject repository named Oceanstore [16], achieves a constant-
factor approximation in expected access cost for a restricted
class of communication cost functions motivated by hierar-
chical networks. Ours, in contrast, achieves a polylog(n)-
approximation for arbitrary networks.

The idea of partioning the network into clusters and allo-
cating pointers (and copies) inside the clusters using hash
functions was introduced by Maggs et al. in [18]. The data
manangement schemes presented in [18], however, assume
unbounded memory capacities and are restricted to struc-
tured networks like meshes or hierarchical networks. In
[19], these schemes are generalized to broader classes of net-
works and, furthermore, local memory constraints are in-
corporated. These memory constraints, however, are only
w.r.t. the stored copies but not the pointers to these copies,
which in turn is our main concern in this paper. Other work
on data management for restricted network models can be
found, e.g., in [1] and [14].

2. TECHNICAL OVERVIEW

Our scheme is based on a hierarchical clustering H = H(G)
of a network G = (V, E). We break the network into dis-
joint clusters (i.e., subsets of nodes) with smaller diameter?.
These clusters are partitioned recursively until we reach sin-
gle nodes. In particular, we demand that the diameter of
a child cluster is at most half the diameter of the parent
cluster.

The clustering defines a decomposition tree T'(H) whose
nodes represent the clusters of H. In particular, the root
of the tree represents the cluster V, and the children of a
cluster C represent the clusters into which C is partitioned
according to H. Also, every leaf of the decomposition tree
corresponds to a cluster containing a single node, and there-
fore represents a distinct node of the graph G. The length of
an edge in T'(H) connecting a parent cluster C' with a child
cluster C’ is defined by diam(C), where diam(C) denotes
the (weak) diameter of C.

We will use randomly generated cluster constructions: The
cluster hierarchy H is chosen at random from a distribution
H = H(G) of hierarchical clusterings on G. The perfor-
mance of our data tracking scheme depends on the quality
of the hierarchical clusterings obtained by the randomized
construction scheme. The most important quality measure
is the stretch factor of H, denoted by s(H), which is equal to
the maximum stretch factor s, »(H) over all pairs of nodes

?We consider weak diameters. The (weak) diameter of a
cluster C is the maximum cost of communication in G be-
tween any pair of nodes in C.

u,v € V, where

(1)

Suw(H) = Ex [w]

distc(u,v)

with diste(u, v) and distpg)(u, v) denoting the cost of com-
munication between nodes v and v w.r.t. G (given by the
cost function ¢) and as defined by the clustering decompo-
sition tree T'(H), respectively (Observe that distr(m)(y,v) iS
a random variable w.r.t. the random choice of H from #.).
Another quality measure is the depth d(H) of the clustering
scheme, which we define to be the maximum height of the
clustering tree T'(H) over all H in H.

In Sections 3 and 4, we will prove the following theorem,
which relates the performance of our data tracking scheme
to the quality of the randomized clustering scheme. (Re-
call that n denotes the number of nodes and S denotes the
maximum number of objects that may be held by a single

node.)

THEOREM 1. Given a graph G with clustering scheme H =
H(G), there exists a randomized data tracking algorithm
with (deterministic) stretch factor O(s(H)log, nlogn) for
access requests, expected stretch factor O(s(H)log, nlogn)
for insert and delete requests and memory overhead of

O (Sd(H)(logn + log S) + d(H)(k + logn)logn)

words at each node, w.h.p, for every 2 < k < n.

It remains to describe how the results presented in Section 1
can be derived from Theorem 1. In [8], Bartal presents
a probabilistic approximation of metric spaces by so-called
hierarchical well separated trees (HSTs). In fact, the con-
struction of these trees is based on a hierarchical partitioning
scheme with small stretch and depth. Meanwhile the orig-
inal results of Bartal have been improved. The currently
best known bounds are as follows.

e For general graphs, s(#) equals log n loglog n and d(H)
equals min{diam(G),logn} [9].

e For planar graphs, s(#) equals logn and d(#) equals
min{diam(G),logn} [15].

Combining these bounds with Theorem 1 (for £ = logn)
yields the results stated in Section 1.1.

In Section 3, we will show how to obtain an upper bound
on the expected stretch factor for all operations and on the
memory overhead. Then, in Section 4, we will build on the
results proved in Section 3, showing how to achieve a de-
terministic stretch for the access operation if we use logn
copies of the data structure defined in Section 3. Finally, in
Section 5 we will investigate the adaptability of our scheme.
We conclude with some directions for future work in Sec-
tion 6.

3. MINIMIZING EXPECTED STRETCH

In this section, we will show a slightly weaker version of
Theorem 1. The following lemma bounds only the expected
stretch for access operations.



MAIN LEMMA 2. For every graph G with randomized clus-
tering scheme H = H(G) there ezists a data tracking algo-
rithm with ezpected stretch O(s(H)log, n) and local memory
requirement

0 (d(’H) (s <1+ %) +10gn+k)>> ,

words, w.h.p., for every 2 < k < n.

In Section 3.1, we will first present a simple data tracking
scheme that achieves small expected stretch but stores all
information regarding the state of all copies in a cluster on a
single node, which we refer to as a cluster leader. In Sections
3.2 and 3.3, we will show how to reduce the local memory
requirement by embedding de Bruijn graphs into the clus-
ters.

3.1 Thecluster leaders

Let us assume that each cluster has a special node that holds
all relevant information about copies in the cluster. For a
cluster C, this node is the cluster leader L(C). We maintain
the following invariant.

INVARIANT 3. Suppose C' is the child cluster of a cluster
C. For every data object A, L(C) holds a signpost for A
pointing to L(C") iff C' holds a copy of A.

Using this invariant, one can always find a close copy by
following the shortest path in the decomposition tree T'(H).
Recall that a node u € V' corresponds to a leave in T'(H). If
u searches for an object A then it simply can send a message
upward in the decomposition tree until it reaches a signpost
for A, that is,

e the message follows the chain of cluster leaders repre-
senting the clusters on the path upward in the decom-
position tree,

e the message is stopped as soon as it reaches a cluster
leader L(C) of a cluster C holding a signpost for A,
and then

o the message follows the chain of signposts downwards
until it reaches a copy of A on a node v.

The above path is called the search path of u for A. We
denote its length by £(u, A). Clearly, if u issues an access
request to A, then one only has to perform a search to a
copy and return the absolute address of node v. In case of
an insert of a copy on wu, in each cluster C' one follows the
search path of u for A and, at every cluster C on this path,
one follows a path to L(C), adding a signpost for A at L(C).
Similarly, in case of a delete of a copy on u, one follows the
search path of u for A and, for every cluster C on this path,
one follows a path to L(C), removing the signpost for A at
L(C). Thus, the cost for access, insert and delete operations
are bounded above by O(¢(u, A)).

Next we give an upper bound on ¢(u,A). For notational
convenience, we let distg(u, A) (resp., distr(m)(u, A)) de-
note the distance in G (resp., T(H)) between u and the
closest copy of A on another node.

LEMMA 4. E[{(u, A)] < 2s(H) - diste(u, A).

PROOF. Let vg and vr(x) denote the closest node wrt G
and T'(H), resp., holding a copy of A. Observe that possibly,
v # vp(m) # ve. Invariant 3, however, yields that we always
find a copy in the smallest cluster containing » and a copy of
A. Since the costs for edges in T'(H) decrease geometrically
by a factor of two from the root to the leaves, we obtain

E(u, A) = diStT(H)(’LL, ’U) S 2dlStT(H) (U, UT(H))-
We now calculate the expected value of distr(a)(w, vr(a))-

E[diStT(H) (’LL, UT(H))] S S(H) . diStG(u, 'UT(H))
< s(H) - diste(u,va)
s(H) - distc (u, A),

which yields the lemma. [

A naive implementation of Invariant 3 requires that a cluster
leader of a cluster with A children has to store up to A
signposts per cluster. We conclude this section by showing
that one can redistribute the signposts in such a way that
the memory requirement per cluster leader is independent
from A.

LEMMA 5. Using cluster leaders, every access, insert, or
delete operation of a node u wrt an object A can be performed
at cost O(€(u, A)) storing only O(1) signposts for A on the
leader of those clusters that contain a copy of A.

PrOOF. Let C1,...,Cs denote the child clusters of C' =
Co that contain a copy of A. We connect these clusters in
a doubly linked list so that L(C;) holds pointers to L(C;+1)
and L(C;_1), for 0 < i < 4. In this way, one can efficiently
search for a copy in C by following the pointer to C;. If a
first copy of A is inserted in a different child cluster, then
we add the leader of this cluster to the head of the linked
list. If the last copy of A is deleted from a child cluster,
then this cluster is removed from the linked list. If this
leaves an empty linked list, then C has no copies of A, and
L(C) removes itself from the linked list at the next level of
the hierarchy. Thus, insertions and deletions of copies are
implemented using standard operations for doubly lists re-
quiring only to change two pointers in the list. Each change
of a pointer costs O(diam(C)). Thus, the asymptotic cost
for insertions and deletions of copies does not change.

O

3.2 Didtributing the cluster leadership

An obvious drawback of the cluster leader concept is that
the leader node needs to store signposts to all copies in a
cluster (eventually signposts to all copies in the whole net-
work). To overcome this problem one might define differ-
ent leader nodes for different objects using a hash function
that distributes the signposts evenly among the nodes in a
cluster. A naive implementation of this concept, however,
assumes that every node is known by every other node in
the cluster. For example, a typical implementation of a hash



function requires that the nodes in a cluster are numbered
in a consecutive fashion. However, even if the nodes in the
network are numbered from 0 to n — 1, the locality condi-
tions of the clusters can produce arbitrary subsets of these
numbers within a given cluster. Therefore, we number the
nodes in different clusters independently. In this way, we
can compute a hash function that maps signposts to nodes.
However, we do not want to store gigantic tables translating
the labels for all nodes in all clusters into physical addresses.
Instead we locate the pseudo-randomly distributed signposts
by following shortest paths in an embedded de Bruijn graph.
In this way, we ensure that every node has to store only its
own label and the labels of a few other nodes in each of the
d(#H) clusters in which it is contained. We now describe the
hashing scheme and the embedding in more detail.

Hash function.

We assign keys to the objects. For an object A € A, let
key(A) denote the key of object A. Keys are not unique, we
choose them from the set [P]® using a hash function, where
P > |A| is a prime number. The hash function is chosen
as follows. Following Carter and Wegmann [11], we draw a
polynomial f from a class of integer polynomials F of degree
q = O(log(8n)). (Observe that the representation of f re-
quires only q words.) We define key(A) = f(int(A)), where
int(A) is a unique integer representation of A in Zp. This
polynomial hashing scheme guarantees g-wise independence.
In particular, we can conclude the following lemma.

LEMMA 6 (CARTER AND WEGMANN [11]). Let M < P
and m € [M] be two integers. For every collection of q
distinct objects Ai,...,Aq,

Pr[(key(A;) mod M) =m for 1 <i<q] < (%) .

Now, for each cluster C', we number the nodes in C from 0
to |C — 1|. The signposts of an object A are stored in the
node with label homec(A) = key(A) mod |C].

Embedding de Bruijn graphs.

In order to avoid large tables that translate the virtual node
labels within the clusters into physical addresses, we embed
a [log|C|]-dimensional de Bruijn graph into each cluster
C. For convenience, we let d = [log|C|] in the following
discussion. The d-dimensional de Bruijn graph consists of
24 vertices whose labels are d-ary binary strings that can be
identified with integers from 0...d — 1. The nodes in the
cluster C' are assigned labels from [|C|]. Let Ac(u) denote
the label of w in C. Any de Bruijn vertex with integer label
¢ € [|C] is hosted by the cluster node u with label Ac(u) = £.
Any de Bruijn vertex with integer label £ > |C| is hosted by
the cluster node u whose label A¢(u) is identical to £ in
binary representation, except that the most significant bit
in Ac(u) is 0 instead of 1. Observe that each cluster node
hosts either one or two de Bruijn vertices.

In the de Bruijn graph, there is a directed edge from each

vertex with label uius . . . ug to the vertices with labels us . .. ug0

3For any nonnegative integer =z, [z] denotes the set
{0,1,...,z —1}.

and wus ... ugl. The diameter of this directed graph is log C
and there is a unique shortest path between every pair of
nodes that can be computed easily. (For more details about
the de Bruin graphs see, e.g., [17].) If a node v in cluster C
needs to send a message to node homec(A), for some object
A, then this message follows the edges on the shortest path
from v to homec(A) in the de Bruijn network. In this way,
each node on this path only needs to know the physical ad-
dress of the next node on the path. This information can be
obtained easily if every node stores the physical addresses
of the nodes incident on its outgoing edges. We refer to this
table as the neighbor table. Since the out-degree of each ver-
tex in the de Bruijn graph is 2 and at most 2 vertices are
emulated by any cluster node, the neighbor table at each
node is constant size.

The price for routing messages along shortest paths in the
de Bruijn network is that the search within a cluster has cost
O(diam(C)log |C|) rather than O(diam(C)) because it vis-
its up to [log |C|] — 1 intermediate nodes. Clearly, one can
save cost by storing a larger neighborhood in the neighbor
table. This yields the following tradeoff. If a node memo-
rizes a neighborhood of size k > 2 for each of its at most two
de Bruijn vertices of cluster C, then a search in cluster C'
has cost O(diam(C)log, |C|). Consequently, adapting the
bound on the cost of access, insert, and delete operations in
Lemma 5 to the embedding yields the following result.

LEMMA 7. For every k > 2,

o cvery access, insert, or delete operation of a node u wrt
an object A can be performed at cost O(£(u, A)log, n)

o for every cluster C, each node v € C' needs to mem-
orize O(k) words to store the de Bruijn neighborhood,
and

o for every cluster C, each node v € C needs to hold
O(1) signposts for every object A if homec(A) = v
and cluster C contains copies of A.

3.3 Analysisof memory requirement

It remains to count all labels, addresses and signposts over
all clusters that need to be stored in the local memory mod-
ules of the nodes.

LEMMA 8. Let S denote the mazimum number of objects
that can be stored in the main memory of any node. Let k
denote the number of memorized de Bruijn neighbors. Then
the local memory requirement is

) (d(H) (s (1+ i‘;i‘z) +logn+ k))) ,

words, w.h.p.

PROOF. A node is contained in d(H) clusters. We will
show, for every cluster C, each node v € C holds at most
O((S + logn)(log n) ™" log(nS)) signposts, w.h.p. Lemma 7
shows that the additional number of words that need to be
stored for the de Bruijn neighborhood is O(k) per cluster.



Furthermore, we will need an g = O(log(nS))-wise indepen-
dent hash function in order to show the upper bound on
the number of signposts. For the representation of this hash
function we require O(log(nS)) words of memory in every
node. Putting altogether, we obtain an upper bound on the
local memory requirement of

1
0 (d('H) ((8 +log n)M + k) + log(nS)) ,
logn
which after simplification corresponds to the bound in the
lemma.

We now place an upper bound on the number of signposts
stored at a node. Fix a cluster C. We show that each
node v in C holds at most O((S + log n)(logn)~* log(nS))
signposts, with probability 1 —n~¢, for any constant ¢ > 0.
Recall that only the node homec(A) = key(A) mod |C|
may hold a signpost directed to a copy of A where key(A)
is defined by a g-wise independent hash function.

Let R denote the set of objects with at least one copy in clus-

ter C. We partition Rinto x = [§/logn] groups Ry, ..., R«

each of which having size at most

logn
S

(The last inequality holds because |R| < S|C| as each node

in C can store at most S objects.) For a node v € C, let

ri(v) (1 <4 < k) denote the number of signposts for objects
from R; that are stored on v.

2|R| < 2logn|C| .

Our hash function aims to distribute the signposts evenly
among the nodes in the cluster. In fact, applying Lemma 6

yields
2log n|C| (i)q
q IC]
q
< (43 logn)
- q

< S§'ne

Pr[r;(v) > g

IA

provided ¢ = c¢;log(nS) with ¢; > 0 denoting a suitable
constant. Now let r(v) denote the number of signposts on v
for all objects in R = |J;_; R(¢). Then

Pr[r(v) > kq] < kS 'n7° < n”°.
Finally observe that
S S +logn
= | — 1 = —1 .
Kq ’Vlogn-‘ c1log(nS) O( logn og(nS))

This completes the proof of Lemma 8. [

Combining the bounds in Lemma 4, Lemma 7, and Lemma 8
yields Main Lemma 2 stated at the beginning of this section.

4. DETERMINISTIC STRETCH

The probability for the bound on the expected stretch in
the Main Lemma in Section 3 is w.r.t. the randomized con-
struction of the hierarchical clustering of Bartal [8, 9]. This
means that there are possibly some allocations of copies to
nodes in which accesses issued by particular nodes are al-
ways very expensive. This may be acceptable for insert or

delete requests for which one typically aims to minimize the
overall work load, but it is not acceptable for access requests
which typically occur much more frequently, and for which
one aims to minimize the latency for any particular request.
The following lemma addresses this problem.

LEMMA 9. Using O(logn) copies of the data tracking scheme

presented in Section 8, one can ensure a deterministic stretch
factor of O(s(H) log;, nlogn) for an access operation, and an
ezpected stretch factor of O(s(H)log, nlogn) for the insert
and delete operations.

PrOOF. Consider a randomized clustering scheme H gen-
erating a hierarchical clustering H(G) with stretch s(H).
Applying the Markov inequality to Ex[distr (g (u,v)] < s(H)
yields

1

Pr(distray(u,v) > 2s(H)] < 3

for every pair of nodes u,v € V. Now suppose we use H for
generating r = 2logn independent hierarchical clusterings
Hi,... H,. Then

Pr[Fu,v € V, Vi€ {1,... ,r} : distpm;)(u,v) > 25(H)] (2)
n(n—1) (1\" 1
<22 <=,
- 2 (2) -2 (3)
Initially, our data tracking scheme repeatedly generates r-
tuples of hierarchical partitions terminating with the first
tuple H* = (Hy,..., H;) satisfying
max min distys(u,v) < 2s(H).
u,veV 1<ilr B
Equation 2 shows that this process terminates after gener-
ating only O(logn) tuples, w.h.p.

We implement r versions of our data tracking scheme, the
ith version is based on partitioning H;. Insert and delete
operations are always executed in all versions. The expected
cost for these operations increases by at most a factor of
2r = O(log n) since equation 2 implies

Z Ex[distm,(u,v)] < 2rs(H)

1<ilr

because the randomized process generating the partitions
chooses effectively an s-tuple from a probability distribu-
tion (H*)® in which each s-tuple has at most twice the
probability as in H®. Thus, the expected stretch for in-
sert and delete operations increases from O((#)log, n) to
O(s(#H)log, nlogn).

In order to perform a search procedure for an object A initi-
ated at a node u, we alternate in round robin fashion among
the r versions of the data tracking scheme. In a first round,
for every version, we search for copies of A in the smallest
clusters containing w. If we do not find a copy in of A in
one of these clusters then, in the next iteration, we inspect
clusters of the next higher level of all the clustering hier-
archies. (A more practical implementation may inspect all
clusters of the same level of all versions in parallel.) This
way, an access operation always locates a copy of A at dis-
tance 2distg(u, A)s(H). Thus, the cost for performing a
access operation is 2rdistg(u, A)s(H)log, n and, hence, the



stretch factor for a access operation is O(s(H)log, nlogn).
This completes the proof of Lemma 9. [

The modified data tracking scheme in the proof of Lemma 9
incurs an extra O(logn) factor in the memory overhead at
each node: This fact combined with Lemma 9 concludes the
proof of Theorem 1.

5. ADAPTABILITY

An important aspect of our tracking scheme is its adaptabil-
ity to changes in network conditions. We consider a scenario
in which the nodes of the network may leave or join the
system over time. We define the adaptability of a tracking
scheme to be the number of nodes that have to be updated
when a node joins or leaves. We show that the amortized
adaptability of our tracking scheme is O(log? n).

We first address the case when a node u leaves the system.
Consider a cluster C to which u belongs. If Ac(u) is |C] -1,
then there are two cases. If |C| — 1 is not a power of 2,
then the label A¢(u) is emulated by the node u' that has
a label identical to that of w except in bit position 0. The
neighbor table at u’ (that lists the neighbors according to
the de Bruijn embedding) is updated to account for the new
neighbors associated with the label. The neighbor table at
the nodes that have de Bruijn edges to u need to update their
neighbor table as well. Furthermore, the list of signposts at
4’ is also updated to include the signposts at u. Thus, the
total number of nodes that are updated is O(1). If |C| -1 is
a power of 2, then each node other than u has two labels. On
the removal of u, the dimension of the embedded de Bruijn
graph decreases by 1. Each node now maintains exactly one
of its labels and merges the signpost lists associated with
the two labels. Thus, all of the |C| nodes are updated. We
finally consider the case in which A¢(u) is less than |C| —1.
In this case, we set the label of the node with current label
|C] — 1 to Ac(u), and then repeat the updates associated
with the removal of the node with label |C| — 1. Again, the
number of nodes updated is O(1). Since the adaptability
is O(1) whenever |C| — 1 is not a power of 2, and O(|C|)
otherwise, a simple amortization argument shows that the
amortized adaptability in any sequence of node departures

is O(1).

When a node u joins a cluster C, then it is assigned a new
label |C|. There are two cases. If |C| + 1 is not a power
of 2, then the node v’ that was previously emulating the
label |C| and the nodes that have de Bruijn edges to v’ need
to be updated. Thus, the number of updates is O(1). If
|C| + 1 is a power of 2, then prior to the addition of u,
each node had exactly 1 label. But after the addition of u,
each node other than u needs to emulate two labels. The
dimension of the embedded de Bruijn graph also increases by
1. Consequently, the number of nodes updated is |C|. Since
this cost can be amortized against earlier node additions,
we obtain in a sequence of node additions, the amortized
adaptability within a cluster is O1).

The above adaptation mechanism does not achieve amor-
tized O(1) adaptability within a cluster for a sequence that
contains nodes both joining and leaving the system. We
achieve this bound by allowing the size of the de Bruijn

graph to be up to four times the size of the cluster. This in-
creases the number of labels emulated by a node by at most
afactor of 2. When a node leaves, the relabeling of the nodes
is done only when the ratio of the number of labels to the
size of the cluster is less than 4. Using standard amortized
analysis, we show that the amortized number of nodes up-
dated within a cluster for any sequence of network changes
is O(1). Since each node belongs to O(log® n) clusters, the
amortized adaptability is O(log” n).

6. FUTURE WORK

It would be interesting to devise low-stretch clustering hier-
archies that could adapt well to a highly dynamic network
environment. Such a hierarchy, when combined with our
data tracking scheme, would provide a tracking scheme that
could be used, for example, in mobile network scenarios or
in networks whose data traffic pattern tends to change often
(also changing the costs of communication between nodes).

Another extension would be to develop data tracking schemes
for objects that may appear in different representation for-
mats in the network (e.g., image and video files is a dis-
tributed multimedia network). A node may recognize only
a few representation formats among the many formats avail-
able for an object. Some nodes in the network may be able to
perform a format conversion, at some specified cost. There-
fore the cost of a read operation now depends not only on
the communication costs between pair of nodes, but also on
the conversion costs at the nodes.
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