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Abstract

MultiChord is a new variant of the Chord namespace management algorithm [7] that includes lightweight mech-
anisms for accommodating a limited rate of change, specifically, process joins and failures. This paper describes the
algorithm formally and evaluates its performance, using both simulation and analysis. Our main result is that lookups
are provably correct—that is, each lookup returns results that are consistent with a hypothetical ideal system that dif-
fers from the actual system only in entries corresponding to recent joins and failures—in the presence of a limited rate
of change. In particular, if the number of joins and failures that occur during a given time interval in a given region
of system are bounded, then all lookups are correct. A second result is a guaranteed upper bound for the latency of a
lookup operation in the absence of any other lookups in the system. Finally, we establish a relationship between the
deterministic assumptions of bounded joins and failures and the probabilistic assumptions (which are often used to
model large scale networks). In particular, we derive a lower bound for the mean time between two violations of the
deterministic assumptions in a steady state system where joins and failures are modeled by Poisson processes.
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1 Introduction

This paper describes MultiChord, a new, more resilient variant of the Chord namespace management algorithm [7].
The main innovation is that MultiChord includes lightweight mechanisms for accommodating a limited rate of change,
specifically, process joins and failures.

The contributions of this paper include (a) techniques for improving the performance and resiliency of peer-to-peer
namespace management algorithms, and (b) methods of analyzing performance for such algorithms in the presence of
a bounded rate of change.

Building in resiliency: We improve the performance and resiliency of Chord by adding additional entries to processes’
routing (finger) tables, and by delaying a process from joining until its finger table is properly populated. This demon-
strates an approach to building peer-to-peer namespace management services in which resiliency to a bounded rate
of change is built in from the beginning. The method we use is to design the ideal communication infrastructure
with enough redundancy to accommodate a bounded rate of change without reducing latency, and to maintain this
redundant structure using gossiping. Newly-joining processes should not participate fully in the system until they
have been fully incorporated into the communication infrastructure. This general approach should extend to other
communication infrastructures such as those proposed in [1, 4, 5, 6, 7].

Formal modeling and analysis: We present the algorithm precisely, using high-level, nondeterministic timed I/O
automata pseudocode. We analyze its performance conditionally, assuming a limited rate of change. This demonstrates
how peer-to-peer namespace management algorithms can be modeled using state machines and subjected to proofs
and analysis. In particular, it demonstrates that interesting performance results can be obtained for such algorithms
using conditional analysis, conditioned on the “normal case” assumption that changes happen at a bounded rate. This
kind of analysis should be useful in comparing different namespace management algorithms.

Our method of analysis is quite different from the probabilistic style used by Liben-Nowell et al [2]. Our claims
are not probabilistic, but rather, worst-case bounds under restricted circumstances. Our assumptions about the rate of
change are rather strong. However, as we discuss in Section 3, we can relax these assumptions by adding probabilistic
assumptions, while still obtaining our stronger latency bounds.

1.1 Overview

The original Chord protocol [7] assumes a circular identifier space (called the Chord ring) of size
�������

. With each
process � is associated a unique logical identifier in this space. Each process � maintains a routing table (known as a
finger table). The � -th entry in this table, called the � -th finger of process � , contains a reference to the first process
whose logical identifier follows process � ’s logical identifier by at least

�
	
in the clockwise direction on the Chord

ring, where �������� . In the remainder of this paper we refer to these fingers as the power-of-two fingers of � .
The successor of a logical identifier ��� represents the first process whose logical identifier follows ��� in the clockwise
direction on the Chord ring, or the process with logical identifier ��� if such a process exists. We redefine the notion of
successor in the context of MultiChord in Section 1.2.

In MultiChord, process � maintains, in addition to the finger table like that used in Chord, information about its
“ � -block” (i.e., its own � successors and � predecessors) and all � -blocks of its power-of-two fingers. The value of �
is chosen based on an assumed upper bound on the “normal” rate of change. When the algorithm is in an ideal state,
each process’ finger table contains its � -block, as well as a � -block for each of its power-of-two fingers. However, this
information can degrade from an ideal state as a result of process joins and failures.

MultiChord includes lightweight mechanisms, based on periodic background gossiping, for maintaining the system
in a nearly ideal state in the face of limited change, i.e., limited joins and failures. Each process � continually sends
its own � -block to its � successors and � predecessors, which allows them to update their finger tables. In addition,
process � continually “pings” its power-of-two fingers, who respond by returning their own � -blocks. These periodic
exchanges of information between a process and the processes in its finger table allow the system to gravitate back
toward an ideal state in the face of changes. Like Chord, MultiChord does not differentiate between a process failure
and departure. When a process � fails or leaves, processes who maintain process � in their finger tables will remove it
when it expires.

When a new process � joins the system, it first populates its finger table with its � -block, and the � -blocks of its
power-of-two fingers. Like in Chord, a process � uses the lookup operation to find its power-of-two fingers. There

1



are two other instances when a process � invokes a lookup: (i) when a client at location � explicitly invokes a lookup
operation for a specified target, and (iii) when it decides to refresh its finger table.

Like Chord, MultiChord implements the lookup operation in an iterative fashion. Consider a process � that per-
forms a lookup on value � . At every iteration (stage), process � sends a query to the best known predecessor for � . Let
process � be this predecessor. Upon receiving the query, process � checks whether it knows the process responsible
for � –that is, whether its immediate successor is responsible for � —, and if yes, it sends the answer back to process � .
Otherwise process � sends its best known predecessor for � to � . MultiChord generalizes this procedure: at every stage
process � sends ����� queries to the best known � predecessors for � . In turn, process � responds with its best known
� predecessors of � . As we will show this redundancy increases the resilience of the lookup in the face of changes.

The value of � is chosen to be larger than the number of changes that “normally” occur in a “small” interval of time,
in a limited region of the ring. The length of this small interval of time is assumed to be sufficient for the system to
recover from a limited number of changes in the relevant region of the ring. The admissible rate of change is quantified
in Section 3.

1.2 Notations

Notation Comments���
	
the set of physical process identifiers (e.g., IP address and port number)���
	
the set of logical identifiers; ���������� , for any ����� ���
	� �
	
the set of general identifiers of the form ��� �"!#���%$'&(�*) , where ����� �+�
	 $,&-��� ���
	� .0/1� $ �2.0/1� one-to-one correspondence from

���
	
to
���
	

, and its inverse.3547656 !#&8$59-$5:;) the 97<#= successor of & in ring :>@?5A 	 !#&8$'9($B: ) the 97<#= predecessor of & in :3547656
3
A . !#&8$59-$5:;) successor set of & ; 354@656
3
A . !#&8$,9($5: )C�ED 3B47656 !#&8$�FG$5:;)+HI��JF��K9ML>@3B47656
3
A . !#&8$59-$5:;) proper successor set of & ; >M3547656
3
A . !#&8$59-$5:;)N�ED 3547656 !#&O$�FG$5:;)+H@P �JF��K9@L>@?5A 	 3
A . !#&8$59-$5:;) predecessor set of & ; >M?5A 	 3
A . !#&8$'9($B: )Q�RD >M?5A 	 !#&O$�FG$5:;)+H���JF��K9@L>*>M?5A 	 3
A . !#&8$,9($5: ) proper predecessor set of & ; >M?,A 	 3
A . !#&8$59-$5:;)N�ED >M?,A 	 !#&8$'FG$5:;)+HSP;�JF���9MLTVU / 6BW !#&8$,9-$5:;) block of & ;
TVU / 6BW !#&8$'9($B: )Q� 3547656
3VA . !#&8$,9-$B:;)(X >M?,A 	 3VA . !#&8$,9-$B:;)

Table 1: Notations used in this paper.

Table 1 shows the main notations used in this paper. Each process is identified by a physical identifier (e.g., IP
address and port number), and a logical identifier in identifier space �(YZY � �\[ � , where

� � � �
. A ]1^#_M`�a is a nonempty

subset of logical identifiers ( b�ced ), ordered in a clockwise direction.
The �Mf0g successor of � in a is denoted by h1ikjVj%l0�Cm �nmoaqp . For � � � , h1ikjVj%l0�Cm �kmoaqp � � if �srta , and is otherwise

undefined. If �vuw� then h1ikj
jSlx��m �nm
a�p is the �-f0g value encountered when moving clockwise in a [ � starting from the
position of � , if y a [ �+yMu � , and is otherwise undefined. The �(f0g predecessor of � is defined similarly (see Table 1).

2 The MultiChord Protocol

In this section we present the details of the MultiChord protocol.

2.1 Process Automaton: Signature

For the rest of this section, we fix a physical address �vr{z2cGd , and describe the process automaton for location � ,| i-}�~�^,�N�k��]odk� . Throughout this section, we use ��� as an abbreviation for the general identifier ��cGd�� with �nY �k�M�Ih � �
and �8YZ}��
` � z ~'�eb�l �5p , where �8Y �(�-�Ih and �8YZ}��
` denote the physical identifier, and the logical identifier of � , respec-
tively. Formally,

| i-}�~�^,�C�(�%]odO� is a timed I/O automaton, as defined in Chapter 23 of [3].
The signature of

| i-}�~�^,�C�k��]odk� is given in Figure 1. The external signature describes the inputs and outputs (primar-
ily, client invocations and responses) by which the MultiChord service interacts with its environment. The external
signature includes ���-��� , � �M�(�S�7� and ���e����� �*� inputs and corresponding acknowledgments. We do not include special
“leave” requests and responses in this paper; instead, we treat leaves as failures. We do not consider rejoining after a
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failure. The internal signature consists of transitions that implement join and lookup protocols, and maintain the finger
tables in the face of a limited rate of change.

Input:����� ���	��
	�
,
�

a finite subset of ����������	�� ����������� �!
"�
,
�$#&% �'�(*)�+�) � , ) � -$
 .�/ �

,
-0#&132"4

, 5 # 6�'�
Output:����� ��7	8 + � �� ����������7	8 + ���:9$
	�

,
90;=< �'�> ) �@?A� -&
	�	/ .

,
-0#31B2"4

, 5 # 6�'�

Internal:����� ��7C�D� ��E �� ) � E�FHGD� ( 7 (I)�J�(*) > F �
+ F�� ( ?D7C�D� ��E �
>	K 8HGD� � � L ) � �!
"�

,
�&#$% ���EH8 ( G@8�E ) 7 + � � � )�+ K �:MA
"�

,
M$#$NPO*Q�4�RTS

Time-passage:K � U ) 7C�@8 >"> 8�E ) �WV"

,
VP#$XZY

Figure 1:
| i-}�~�^,�C�(��]
d �\[ Signature

2.2 Process Automaton: Data Types and Constants

Table 2 shows the data structures and the message formats used by the MultiChord protocol. In addition we define two
operations on sets of fingers:

1. i*�kd!]%~'�@lC^ m�^B_#p , which computes ^a`b^3_ ; if a finger c belongs to both sets of fingers ^ and ^d_ then c inherits
the highest expiration time, ��e��n~�^#��� , that it has in the two sets.

2. ~�]1i-_8j@]%~'�7l"^ m�fBp , which bounds the ��e��n~�^#��� of each finger c�rg^ to f , i.e., c8Y#��e1�n~�^#��� [ �0hjiAk lCc8Y#��e��8~�^#���Sm�fBp .
Notation Commentslnm:oAp Ao? finger data structure; consists of fields: ! p�m#	 � � �
	 $ A'qo> .�m:r A � :$sut�X D�vKLG)w A'x �
	 request identifier set, partitioned into subsets

w A�x �
	 !#��) , �C� ���
	 ; used to identify lookup instancesw A'x
4@Ao3 . used to implement one lookup stage; consists of fields: ! mx	 � w A'x �
	 $ 3 ."yDp A �{z Y $ ."y ? p A . � ���
	 )|%/�m:oAw A,6 / ? 	 used to keep track of progress in a process’ attempt to join the system; consists of
fields: ! ?,A'x mx	 3~} w A�x �
	 $ 6 /�r >�} w A'x �
	 $ y 6BW .�m:r A ��: sut X D�v�Le)� U m A o@.Ww A,6 / ? 	 used to keep track of client-initiated lookup requests at a particular location; consists of fields:
! ?,A'x mx	 3~} w A�x �
	 $ 6 /�r >�} w A'x �
	 $ y 6BWIA 	 } w A'x �
	 !#��),)�8/1/ WG4�>��v3 p lookup message; consists of fields: ! ."yDp ��� ���!�����I$ m#	 � w A'x �
	 $ 3 ."yDp A �dz Y $ ."y ? p A . � ���
	 )�8/1/ WG4�> w Ao3x>��v3 p lookup response message, ! ."yDp ��� ���������D���W�����I$ mx	 � w A'x �
	 $ 3 ."y@p A �{z Y $ >M?,A 	 3 ��� A .�� lnm:oAp Ao?H� )�8/1/ WG4�> � /�r >��v3 p lookup completion msg., ! ."y@p ��� ���������D�C��������� ����� ���e$ mx	 � w A'x �
	 $ 3 ."yDp A ��z Y $ TVU / 6BW ��� A .@� lnm:o�p Ao?�� )��mWoAp �v3 p ping message used to refresh finger information, ! ."yDp �����I�H�7$����I�H��)� U / 6BWD�v3 p message used to send a block to another message, ! ."y@p ����� �A���G$ TVU / 6BW ��� A .@� lnm:oAp Ao?H� ) ¢¡
the timeout value for expiration of entries in the finger table ¤£
the time between scheduling gossiping messages, i.e.,

��m:o�p �v3 p and
� U / 6BWD�v3 p messages  .

the time from when a joining process has received all its responses until it responds to its client¥
number of proper predecessors and successors that a process maintains about itself
and its power-of-two fingers¦ number of responses that a client returns in response to a lookup request; ¦ � ¥

Table 2: Data structures and message formats used in MultiChord.

MultiChord uses only five types of messages: §C�*��¨%i*� , §��*��¨%i*�u©���h�� | hB` and §��e��¨�i*�¤©���h��+�������8}��G~�^0��_ to imple-
ment join and lookup operations, and z ^#_@` | hB` and ª;}��*j@¨ | hB` to maintain the finger tables in the face of changes.

In addition, MultiChord uses the following time constants: (1) «¬ , the time between scheduled gossiping messages,
(2) «¯® , the timeout value for expiration of entries in the finger table, and (3) «±° , the time from when a joining process
has completed its systematic collection of responses until it responds to its client.

Finally, MultiChord uses two constants � and � . Constant � represents the level of redundancy used by a process to
maintain routing information. In particular, each process maintains its � proper successors and � proper predecessors,
and � proper successors and � proper predecessors of each of its power-of-two fingers. Constant � represents the level
of redundancy used to perform lookups, the basic operations in MultiChord. During lookup operations, each process
issues � concurrent queries, which makes it highly likely that at least one process will respond. The value of � is chosen
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to be larger than the number of changes that are likely to occur in an arc of the ring, in intervals of some reasonable
length. The length of this interval should be sufficiently long to allow recovery from recent changes. The value of � is
usually larger than � ; � must be large enough to ensure a response under “normal” conditions (with bounded changes),
while � must be large enough to support the infrastructure maintenance protocol.

2.3 Process Automaton: State

The state of
| i-}�~�^,�N�k��]od � consists of the state variables listed in Figure 2. Note that our initializations of these

variables assign tuples to record-valued variables. We use the convention that the order of the components in the
tuples is the same as the order presented in the definitions of the record types.

State variables:2���������2 # � � ? � )�� ����� �D� ��E � 8 + K � , ) � , initially
� ? � )	�
 O*QB#� 
 O*Q��¯R�� 
 S � , initially

��� � � ��� 
��� OWRTQ��P#���� OWRTQ����¯R�� 
 S � , initially
��� � � � �H
��2 R ��� S"R��TO � 2�;��±R�� �'� � � 
 , initially
�S"R�����R�2��W2 # ��R!��" �¯R��!� RT2���#

, initially
�

$ Q�4�RTS'2 #%��R��&" N6O*Q�4�R�S!#
, initially � �('~R ��� 
 �
 ��� � �!� R���R

, a sequence of
132"4*) 6�'� , initially empty+ O Q�4 � �:O�'�R #&X s�t-, � , initially �Q/.TS � S"R�0 S"R�221 � �:O3'~R\#BX sut-, � , initially �0&�HO3� R � , a Boolean, initially J 8 � > )

Derived variables:� 
 ����� � S'O*Q�4*4 � �&#$% �'�65�7 M&# $ Q�4�RTS'2�" M98:� 
 4;4��9# �
For

� #B% ��� , <>=�? :0 � 2�������2 R��'� � � < 
@4 � M$# $ Q�4�RTS'2 5 M98:� 
 4 #d2��9���T2'R��'� � � < � � 
 ���A� � S'O Q�4�
 �0 � + 2�������2'R!�'�W� � < 
�4 � M$# $ Q�4HR�S'2 5 M�8:� 
 4 # + 2��9����2'R!�'�W� � < � � 
 ����� � S'O*Q�4�
 �0 � + S"R � 2'R���� � � < 
�4 � M$# $ Q�4�RTS'2 5 M98:� 
 4 # + S"R � 2'R!��� � � < � � 
 ����� � S'O*Q�4�
 �0 � +A+ S"R � 2'R��T�W� � < 
�4 � M$# $ Q�4�R�S'2 5 M�8:� 
 4�# +A+ S"R � 2'R���� � � < � � 
 ����� � S'O*Q�4�
 �0 � .�� 
 ��B!� � � < 
@4 � M$# $ Q�4�R�S'2 5 M�8:� 
 4�#C.�� 
 ��B!� � � < � � 
 ���A� � S'O Q�4�
 �

Figure 2:
| i-}�~�^,�C�(�%]od ��[ State

The h1~ ]%~�iMh variable keeps track of the state of process � . The DG��^#_ variable keeps track of the progress of the joining
protocol for process � , and the j�}�^0��_O~ variable keeps track of the progress of all client-initiated lookups at location � .
The E\_@`@��]Vh variable contains a set of fingers, which represent process � ’s best knowledge of the current members
of the ring (including their expiration times). The iMh��VdGF,]o�IH�^0d�h variable keeps track of which request identifiers in©��IH
cGdnl �,p have already been used; it is used to model the generation of unique identifiers. The ]o�IH�ik��h1~0h variable keeps
track of the set of requests that have been initiated at location � ; these may be generated on behalf of the local joining
protocol, local client lookup requests, or heavyweight stabilization. The ��i-~�F!HGik��ik� variable is a buffer for messages
that process � has generated and has not yet sent.

The _KJG]�F,]o�(LV]
�1ho�MF,~�^#��� and �n^#_@`/F,~�^#��� variables are used to schedule the gossip messages; _KJG]�F,]o�2LV]o��hB�NF,~�^#��� is
used by process � to schedule sending of its own block to its nearby neighbors, whereas �n^#_@`/F,~�^#��� is used by process
� to schedule “ping” messages to request block information from other processes. Finally, the LH]�^#}��Vd variable is a flag
saying whether process � has failed.

Process � also maintains some derived variables, which also appear in Figure 2. The derived variable }��*j@]�}OF,]1^#_M` is
defined to be the set of logical identifiers that appear in � ’s E\_@`@��]Vh variable, that is, }��*j@]�}OF,]1^#_M` represents � ’s current
local view of the global ring. Other derived variables are defined to give various successor and predecessor sets, with
respect to the }Z�ej@]�}3F,]1^#_@` . For example, LIF'h1ikj
j�hG��~�l0�Cm �(p is defined to be the set of fingers in the current E�_M`7�G] set whose
logical identifiers are among the � successors of � in the current }��*j@]�}OF,]1^#_M` ; if � appears in }��*j@]�}OF,]1^#_M` then this set
include � itself.

2.4 Process Automaton: Transitions

In this section we present the main transitions in MultiChord. Section 2.4.1 describes the basic transitions such as
message sending, garbage-collection, and time-passage transitions. Section 2.4.2 shows the transitions involved in the
joining protocol, and Section 2.4.3 presents the transitions involved in the stabilization protocol. Finally, Section 2.4.4
describes transitions involved in the client lookup protocol.

2.4.1 Basic Transitions

Figures 3(a)-(c) shows three basic transitions: sending, garbage-collection, and time-passage transitions.
A PB�S�9Q transition simply removes the first

| hB` from ��i-~�F!H�ik�Gik� and sends it to the indicated destination, using an
assumed point-to-point network. Process � can do this only if it has at least begun the protocol, and has not failed.
A RTSS�2U�S9RS��V'�G�(� � �e�AW transition removes an entry from its E�_M`7�G]Vh set when the entry’s ��e��8~�^#� � has been reached. A
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W
������Vo��S9P!P S9RS� transitions advances the time until the next event, i.e., scheduling times of pinging, acknowledging
the client, or neighbor-refreshing, and the ��e��8~�^#� � of any finger in the E�_@`@�G]Vh set. Time may not pass at all if the
��i-~�F!HGik��ik� is nonempty; this implies that messages in the �%i-~2F!HGik�Gik� are sent out immediately, without any time
passage.

����������� > ) ��?A�W-$

	 �	/ .��
Precondition:/0&�HO3� R �2���������2��4b� ? � )� - � 5 
 4 1�R�� � � 
 ��� � �!� R���RD

Effect:

remove
1�R�� � � 
 � � � ����R�� R@


(a)

��� ����� ����� EH8 ( G@8�E ) 7 + � � � )�+ K �:MA
"�
Precondition:/0��DO3� R �2���������2 4�8 + K � , )M$# $ Q�4HR�S'2M98IR
� + �:O3'~R��gQ 
��
Effect:$ Q�4�RTS'2 5 4 $ Q�4HR�S'2 �j� M �

(b)

K � U ) 7C�@8 >C> 8�E ) � V"

Precondition:

if
/0��DO3� R � thenQ 
�� � V!� + O Q�4 � �WO�'�RQ 
�� � V!� 	!
 O*QN8O�A��B � �:O3'~RQ 
�� � V!�gQ/.TS � S"R�0 S"R�221 � �:O3'~R
" M # $ Q�4�RTS'2 5 Q 
�� � V#��M�8IR$� + �:O3'~R

 ��� � �!� R!� R is empty

Effect:Q 
�� 5 4 Q 
%� � V
(c)

Figure 3: (a) Sending transitions; (b) Garbage-collection transition; (c) Time passage transitions.

2.4.2 Transitions Involved in the Joining Protocol

Like Chord, in MultiChord a process uses lookups to populate its finger table when it joins the system. Where the two
protocols differ is in the amount of state required to join the system. Whereas in Chord a process is required to know
only a set of successor processes, in MultiChord a process is required to know a set of processes (i.e., a � -block) for
each of its power-of-two fingers. As we will show in Section 3 this redundancy increases the resilience of the protocol
in the face of changes.

Next, we present the details of the transitions involved when process � joins the system. These include:
1. The ���-��� � transitions, by which the client at location � requests to join.
2. The ���e����� �*� transitions for � �M�(�%�@� , � �M�(�%�@��Vo����PG� , and � �M�(�S�7��V'�G�&� � messages, which are involved in initially

populating process � ’s E\_@`@��] set.
3. The ���-��� V
�%���9R transitions and the �Z�*���I� �I� transitions for �S����R messages; these are used to complete the E\_@`@��] set

before process � responds to the client.
4. The ���-��� V&S���� � transitions, by which process � responds to its client.
Figure 4 shows the �'�M��� and ���-��� V&S���� transitions. In a �'�M���-l
'Cp � transition, processor � initiates joining by submitting

a set ' of z2cGd s of other processes that should already be members of the system. Process � handles the join request
only if it has not failed and has not previously begun joining. To handle the join request, the process first sets its h1~']�~�iMh
to ���M���S���9R and schedules its �8^#_M` task. If ' �)( , the process is already done and schedules its response to the client.
Otherwise, if '+*�,( , process � launches a set of lookup requests, one for itself and one for each of its power-of-two
successors.

When all these requests have completed, and when sufficient additional time has passed (as determined by a
scheduled ]Sj@¨�F,~�^#� � being reached), process � can report back to the client with a ���-��� V&S���� � transition. When it does
so, it converts its h1~ ]%~�iMh to S���W
� �I� and schedules its _KJG]�F,]o�2LV]o�1ho� task.

As in Chord, MultiChord implements an iterative lookup protocol. The processing of a lookup request involves
three types of transitions, which appear in Figure 5. When process � receives a � �M�(�%�@� message, it handles this message
only if it is already active, that is, if it has completed its joining protocol. In order to handle the � �M�(�%�@� message, it
sends either a � �M�(�%�@��Vo����PG� or a � �M�k�%�7��V,���&� � message, depending on whether it thinks that the search has reached its
goal. The test for completion is that, according to � ’s current information, target � is among the � proper predecessors
of the target. In the case of a � �M�(�S�7��V'�G�&� � message, process � sends back its best information about the target’s block
of radius � . In the case of a � �@�k�%�@� V
�Z� P�� message, process � sends back its � best proper predecessors for the target.1

When process � receives a � �@�k�%�@� V
�Z� P�� message for the current stage of a current request, it updates its E�_M`7�G]
table with the information contained in the �n]o�VdIh field of the incoming message. Then because the request is not
completed, process � generates a new batch of � �M�k�%�7� messages for the next stage of the same request. This next stage

1In either case, process � first truncates all fingers’
R
� + �WO�'�R

s to
Q 
��

plus the maximum timeout value - ¡ ; this is because � ’s entry for itself hasR
� + �:O�'�R 4 � , but we do not want others to record
R
� + �:O3'~R 4 � for � .

5



��� � ��� �:��� ������
"�
Effect:

if
/0��DO3� R � then
if

2���������2 4g� ? � ) then2���������2 5 4d����� �D� ��E
+ O Q�4 � �:O�'�R 5 4 Q 
%�
if

� 4 �
then
	!
 O*QN8O���&B��:O3'~R 5 4 Q 
��

else
for

�$# � '~R�8:� 
 4 � , � '�R�8:� 
 4 � � � 5A? � < ��� ����� do
choose

S'O � # �±R�� �'� � � 
 � ��2'R ��� S"R���O � 2��2'R ��� S"R���O � 2 5 4 ��2'R �A� S"R��TO � 2 �j� S'O ���	!
 O*QN8 SCR���O � 2 5 4 	�
 O QN8 S"R��TO � 2 , � S'O �!�SCR���� RT2��:2 5 4 S"R��!� RT2��:2 , � �"S'O � � � � �!
 �
for 5 #3�

do
add

�"� � ��������� � S'O � � � � �!
 � 5 

to

 ��� � �!� R!� R

����������� ����� ��7�8 + � �
Precondition:T0&�DO�� R �2���������2 43����� �D� ��E
	!
 O*QN8 SCR���O � 2�; 	�
 O QN8O� 
 ' +	!
 O*QN8O���&B��:O3'~R 4 Q 
��

Effect:2���������2 5 4�8 + K � , )Q/.TS � S"R�0 SCRT221 � �:O�'�R 5 4 Q 
��

Figure 4: Client-level transitions related to joining
��� � ��� (I)T+�) � , ) � � ��������� ���I����� �!
*.�/ �
Effect:

if
/0��DO3� R � then
if

2���������2 4 �A���:O
	@R
then

if
'~R 8:� 
 4�# +A+ S"R � 2'R��T� � ���I� � 
 ����� � S'O*Q�4�


then.!� 
 �&B 5 4 �:S&��QG���A�:R�� 0 � .!� 
 �&B��2'�R 8:� 
 4 �� 
 � Q 
�� � - ¡ 

add

�C� � �����@�H��7 + ��U � ���I����� .�� 
 ��B�
 � 5 

to

 � � � ��� R!� R

else+ SCR � 2 5 4 �WS&��QG������R��:0 � +�+ S"R � 2'R!�T� � ��� 
 � Q 
�� � - ¡ 

add

�C� � �����@�H��7 (*) > � ���I����� + S"R � 2�
 � 5 

to

 ��� � �!� R���R

��� � ��� (I)T+�) � , ) � � ����������7 (I) > � ���I���A��� 
*.�/ �
Effect:

if
/0��DO3� R � thenQAR � � $ Q�4HR�S'2 5 4 � M$# � 5 M98IR
� + �WO�'�R = Q 
�� � 

$ Q�4HR�S'2 5 4 � + � ����R�� $ Q�4HR�S'2 � QAR � � $ Q�4HR�S'2T

if 7 �N" � �I����� �!
P#dS"R�����R�2��W2�
�#

then
choose

�
where

� �I���A� �!
P#{S"R��!� R�2��:2S"R�����R�2��W2 5 4 S"R�����R�2��W2 ��� � �I���A� �!
 � , � � �I��� � � � �!
 �
for

M #;0 � +A+ S"R � 2'R���� � ��� 
 do
add

�C� � �����@�H� ���I��� � � � �!
 � M�8 4DO � 8 + 1��D2�

to

 ��� � �!� R!� R

��� � ��� (*)�+�) � , ) � � �����@�H��7 + ��U � ���I��� 
 .�/ �
Effect:

if
/0��DO3� R � thenQAR � � $ Q�4�RTS'2 5 4 � M$# � 5 M98IR
� + �:O3'~R = Q 
�� � 

$ Q�4HR�S'2 5 4 � + � ����R�� $ Q�4�RTS'2 � QAR � � $ Q�4HR�S'2T

if �

# 	!
 O*QN8 S"R���O � 2
then	�
 O*QN8O� 
 ' + 5 4 	�
 O QN8O� 
 ' + , � � �

if
	!
 O*QN8 SCR���O � 2\; 	�
 O QN8O� 
 ' + and

	!
 O*QN8O�A��B��WO�'�R 4 � then	!
 O*QN8O���&B��:O3'~R 5 4 Q 
�� � - .
if �

# ��� OWRTQ��&8 SCR���O � 2
then��� OWRTQ��&8O� 
 ' + 5 4 �!� O R�Q��&8O� 
 ' + , � � �

Figure 5: Transitions of the lookup protocol

has the next-higher stage number, which is recorded in the request record. The messages for the new stage are sent
to the � currently-known best proper predecessors of the target. Note that the number of messages does not increase
exponentially at each stage; the protocol limits the the number of messages to � .

When process � receives a � �M�(�S�7��V'�G�&� � message for the current stage of a current request, it updates its E�_@`@�G] table
with the information in the J�}��*j@¨ field of the incoming message. As in the � �M�k�%�7��V
�Z� P�� case, process � increments the
request’s stage number, to register the fact that some response for this stage has arrived. If the current request is part of
� ’s joining protocol, then the completion of this request is recorded in the DG��^#_ record; if this represents the completion
of the last request, then process � also schedules the client acknowledgment. On the other hand, if the request is being
done on behalf of a client-initiated lookup, the completion is recorded in the jG}�^0�G_k~ record (see Appendix A).

During the joining protocol, process � periodically pings its power-of-two E�_M`7�G]Vh for their � -blocks. The relevant
transitions are the ���-��� V
�%���9R transitions and the ���e�G�I� �I� transitions for �S����R messages and their responses (see Figure 6).

Process � performs a ���M����V
�%���9R transition while it is joining, whenever �8^#_@`/F,~�^#� � is reached. When it does so,
it sends �%���9R messages to the � -blocks of all targets for which lookup requests have already completed. This allows
process � to augment and refresh its information about completed requests while finishing the joining protocol. When
process � receives a �S����R message, it responds by sending back its � -block, in a U7� �-�%� message. When process � receives
a U7� �-��� message, it updates its E�_M`7�G] table with the new information.
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Figure 6: Transitions related to pinging during the join protocol

2.4.3 Transitions Involved in Stabilization

Once process � is active, it performs several types of transitions to maintain its finger table. The protocol includes two
kinds of stabilization: normal case, lightweight stabilization, and a heavier-weight stabilization.

In the lightweight stabilization protocol, process � periodically sends its � -block to its nearby neighbors (the mem-
bers of its � -block), and periodically pings processes in the vicinity of its power-of-two successors, so that they send
� their current � -blocks. The transitions involved in this lightweight stabilization protocol are the �*��� R�� U%�M��V
�����,����P��
transitions, the ���I�M��Q/V
�%���9R transitions, and the �Z�*���I� �I� transitions for �S���9R and U@� �-��� messages. Note that the pseu-
docode for �%���9R and U@� �M�%� transitions has already been presented in Figure 6, while the pseudocode �I�I� R��TU%�M��V
�Z���,�Z� P��
and ���I�M��QGV
�%���9R transitions appears in Figure 7(a)-(b).
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Figure 7: Transition related to stabilization.

In the heavyweight stabilization protocol is similar to the Chord stabilization protocol (see Figure 7(c)). Process �
(for any reason, unspecified here) may try to obtain new information about any target � . Most commonly, such a target
will be one of its power-of-two successors. For example, process � might execute P!W!S U%��� � ���7lx�8p1� for each � of the form
z�~,�Gb�l �,p	� � 	 , at regular intervals, or when it suspects that its information is out-of-date.

2.4.4 Transitions Related to Client Lookups

The transitions related to client-initiated lookup operations include the ���e����� �*� transitions already described, plus the
� �M�(�%�@� and � �M�k�%�7��V&S���� transitions. These last two appear in Figure 8.

When process � receives a client-initiated lookup request, it handles it in much the same way it handles a request
in the joining protocol. Namely, it chooses and records a request identifier, and sends a � �M�(�%�@� message to each of
the � best proper predecessors it knows for the target identifier. An exception: If process � believes it is one of the �
best predecessors, it does not bother sending out any � �M�(�%�@� messages, but simply records the fact that the lookup is
done. A � �M�(�%�@� V&S���� can occur when a request is done but not yet acknowledged to the client. In this case, the response
includes information about process � ’s current � best predecessors for the target.
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Figure 8: Transitions for client lookup

3 Summary of Analysis Results

In this section we give a short and informal summary of our analysis results. Appendix A presents the proofs of these
results.

We make the following assumptions about the environment: (1) all processes are time-synchronized, (2) the mes-
sage delay is bounded above by � , and there is no message loss, (3) during an interval of time « ¬ � � � , the number of
���-��� V&S���� events among processes in an “arc” of the ring containing at most � � � processes is at most DG�%^#_KJVd , and (4)
during an interval of time « ® , the number of failed processes in an “arc” of the ring containing at most �	�R� processes
is at most LH]%^#}�JVd .
Then we show that if these assumptions hold, and furthermore, if the following constraints are satisfied:

1. « ° � « ¬ � � � and « ® � � l	« ¬ � � �Mp
2. ��������� � � � � �	� c�
 �� � �
3. ��u � � �	����� � � � � � h�i�k l � ��� � � � �km@c�
 ��� � �Mp

we prove that all lookup operations are correct. In particular we prove the following result:

Theorem 3.1. Every good execution � satisfies
� « ¬ ��� � -lookup-correctness.

The notion of � -Lookup-correctness is defined as follows: suppose that a � �@�k�%�@� V&S����%l���p � event occurs in � at timef , in response to a prior � �M�(�%�@�@l0�8p � . Let �n_ be the portion of � ending with the given � �M�(�S�7��V�S��%�%l���p � event. Then
there exists a ring a such that:

1. a�� ]%iS`GF,]1^#_M`nl��_#p ,
2. `S}��TJ�]%}OF,]1^#_@`Nl��_#p [�� z��k�eb�l��Mp [ �'�M����V�S��%� ° occurs at a time u�f [ �! "�Ra , and

3. � � �S�8]
�
d�hG��~*lx�Cm
��moaqp .
Furthermore, we show that in the absence of any other events in the system the lookup latency is bounded. More

formally, we prove the following result:

Theorem 3.2. Suppose that � is a good execution, ��_ a finite prefix of � containing at least
� � �w�+���-��� V&S���� events.

Suppose that:

1. The final step of � _ is a � �M�(�S�7� � step in which � initiates request # , with target � .

2. No other requests (on behalf of joins, client lookups, or stabilizes) are active at any time u�$%~�^#���@l�� _ p [ « ® .

Then request # terminates with a ���e����� �*�@l,� �M�(�S�7��V'�G�&� �Ip step, at a time that is ��$%~�^#���7l%��_�p	�&�8l�')(+* � � �*p � .
In order to prove these results, in Appendix A we first prove a series of results asserting that the basic routing

infrastructure is maintained correctly by the joining and refresh protocols.
While the deterministic assumptions on the bounded number of joins (��� � � � � ) and failures ( c�
 �� � � ) allow us to

prove strong analytical results, these assumptions are not always realistic. We consider this issue in Appendix B,
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Figure 9: (a) The lookup failure versus the rate of change; (b) the average path length and the 90-th percent confidence
interval as a function of change rate.

where we give bounds on the probability that these assumptions hold in a steady state system in which processes join
according to a Poisson process and have a lifetime drawn from an exponential distribution. In particular, we compute
the mean time between two violations of these assumptions as

«�� � « °� �
�������
	 ������������������� �������������� m (1)

where � represents the normalized rate of change (i.e., the rate of change in the entire system divided by the number
of processes

�
in the system), ��� � � ��« ° l � � �*p , and � uw� �7��� � .

4 Simulation Results

In this section we evaluate our algorithm by simulation. Our goal is twofold. First, we want to get a sense of how
much we can push the protocol in practice before it breaks, i.e., before we start to see lookup failures. Second, we
want to see how the protocol performs on the average case. We use the average number of stages in a lookup as the
metric to evaluate the performance of MultiChord.

We have developed an event driven simulator that accurately implements the protocol at the message level. In all
simulations, we use «±¬ � � � sec, «�° � �7� sec, and «® � �+�

sec. The message propagation delay is bounded by � � � �
ms. Note that these values satisfy the constraints presented in Section 3, i.e., «±° � «P¬ � � � and «¯®v� � l	«P¬ � � �@p .
Each process schedules heavy stabilization every � � sec.

We consider a network with �7m � � � processes, in which processes join at a rate ��� according to a Poisson process,
and have an exponentially distributed lifetime with the mean

� � � � ; thus, the number of processes in the system
remains roughly the same. In addition, we assume that the system receives lookups at a rate approximately � � times
larger than the join and failure rate, # .

Figure 9(a) plots the lookup failure rate versus the arrival rate of new processes in the system (i.e., rate of join)
over � �(m � � � lookups. During each simulation there are approximately � � � � new processes that join the system, and
� � � � processes that fail. We consider two cases: (i) � � � , � � �

, and (ii) � � � , � �"!
. As expected, the rate of

lookup failure increases as the join rate increases. However, increasing the level of redundancy (i.e., parameters � and
� ) makes a significant difference. While in case (i) we did not record any lookup failure for join rates less or equal to
�(YZ� , in case (ii) we did not see any lookup failure for a join rate five time larger, i.e., �kY � . Furthermore, for a join rate
of
� Y � the rate of lookup failure in the first case is about ��# times larger than in the second case.
It is interesting to compare the simulation results with our upper bound on the mean time «$� between two violations

of the deterministic constraints. Consider the first case where � � � and � � �
. Using Eq. (1), for a join rate of �kY �

we obtain «�� � � � ms.2 This is a very small value given the fact that a lookup operation is generated every
� � ms

(i.e., there are roughly � � lookups for every join operation). One explanation for this large discrepancy is that a single
constraint violation will hurt only a small fraction of lookups, if at all. Indeed, the lookups that do not use the region
of network where the constraints are violated will not be affected.

2Here we use � 4 �
, 
4&%

, ' 4 ��(��!?�?�? (there is one join and one failure every 0.5 sec on average and ) 4 �!?�?�? ), and - . 4 � � sec.
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Figure 9(b) plots the average number of stages (path length) of a lookup versus the rate of join for (i) � � � m � � �
,

and (ii) � � �Om � � !
, respectively. There are two points worth noting. First, the average path length is significantly

smaller than in Chord; in Chord, the expected path length is '�(!* � � � , which in our case translates to
�

hops. This is
because in MultiChord every process maintains a much larger set of fingers than in Chord. This increases the chance
that a MultiChord process will know fingers closer to the target than an equivalent Chord process, which ultimately
will reduce the number of lookup stages. Second, as the join rate increases, the lookup path length decreases slightly.
To understand this recall that in steady state the average life time of a node is

� � ��� where � � is the join rate. However,
it takes a process at least « ¬ time to join the system. Thus a node will be inactive for at least c � « ¬ � � � � of its life
time, which means that at least c � processes in the system would be inactive on an average. As the join rate increases,
the fraction c of inactive nodes increases, which will lead to a corresponding reduction in the number of active nodes
in the system. A secondary reason is that as the join rate increases so does the failure rate. Since we do not report
failed lookups, and since the failed lookups tend to have more stages, the reported path length is an underestimation.

5 Conclusions and Future Work

In this paper we present MultiChord, a namespace management algorithm based on Chord [7]. MultiChord uses
redundancy and lightweight mechanisms to accommodate limited changes in time and space. We analyze MultiChord
and show that lookups are guaranteed to be successful and furthermore that the lookup latency is bounded.

It would be interesting to analyze the behavior of the algorithm in situations that are less well-behaved than what
we have described in this paper. In particular, we plan to consider what happens if the rate of change exceeds our
assumed bound for some part of the execution, but at some point “stabilizes” to obey the rate bound. In such cases,
we believe that our algorithm will eventually stabilize to a nearly-ideal state. It remains to determine if this is so and
determine bounds on how long this might take.
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6 Appendix A: Analysis

In this appendix we prove the results which were summarized in Section 3.
Let � by a finite sequence of external actions of

| i-}�~�^,�C�k��]od , according to the external signature just defined. Then
we define the global ring after � , `S}��TJ�]%}OF,]1^#_@`Cl���p , to be the set of b�ced s � such that a ���-��� V&S������ f �������
	 event occurs in �
and no �(SS��� � f �������
	 occurs in � . That is, the global ring after � consists of those processes that have completed joining
the system and have not failed. We extend this same definition to finite executions of untimed or timed automata that
have the given external signature.

If � is a finite timed sequence of actions in the
| i-}�~�^,�C�(�%]od external signature, then we define the augmented ring

after � , ]%iS`GF,]1^#_M`nl���p , to be `S}��/J@]%}OF,]1^#_@`Cl���p `�� , where � is the set of b�cGd s � such that �(SS��� ������ ����	 occurs in � at a
time u $%~�^#� �7l���p [ «¯® . That is, ]�iS`/F,]1^#_@`Nl�� p augments `S}��/J@]%}OF,]1^#_@`Cl���p by adding in the logical identifiers of recently
failed processes. Again, we extend this definition to finite executions of timed automata that have the given external
signature.

6.1 Service Guarantees

We describe safety and latency guarantees. We do not present any liveness guarantees here, replacing them with
latency guarantees.

6.1.1 Safety

The following condition is simple a well-formedness condition, expressing basic conditions such as “the service re-
sponds only to invocations that were actually made”.

� Well-formedness: For each � , at most one �'�M����V�S��%� � occurs in � . Any �'�M����V�S��%� � in � is preceded by a ���-���Ml��%pB� .
Any � �M�(�S�7��V�S��%� � is preceded by a � �M�k�%�7�Ml��Sp � with no intervening � �M�(�S�7��V�S��%�%l��%p � . If �(SS��� � occurs in � , then no
following outputs occur.

We have not formulated any interesting safety guarantees related to joining. For client lookup, we require the
following property, parameterized by �qrsa���� :

� � -Lookup-correctness: Suppose that a � �M�k�%�7��V&S����%l���p � event occurs in � at time f , in response to a prior
� �@�k�%�@�7lx�np � . Let �_ be the portion of � ending with the given � �M�(�%�@� V&S�����l���p � event. Then there exists a
ring a such that:

1. a�� ]�iS`/F,]1^#_@`nl��_#p ,
2. `%}Z�/J@]�}OF,]1^#_M`Nl��_#p [�� z"�O�Gb�l)�@p [ ���-��� V&S���� ° occurs at a time u�f [ �! �"a , and

3. � � �7�8]o�VdIhG�G~Glx��mo��m
aqp .
6.1.2 Latency

As noted above, we replace liveness claims by latency bounds:

� � -Join-latency: Suppose that a ���-���@l
'Cp � event occurs in � , at time f .
1. If ' �+( then a corresponding ���M����V&S���� � occurs at time f .
2. If there exists ��r ' such that ���M����V&S���� ° occurs before the ���-���@l�'Npo� , and neither � nor � fails in � , then a

corresponding �'�M����V�S��%� � occurs by time f ��� .
� � -Lookup-latency: If a � �@�k�%�@�7lx�np � event occurs in � at time f and no �(SS��� � occurs in � , then a corresponding
� �@�k�%�@� V&S�����l��Sp � occurs by time f �	� .

6.2 Assumptions for Analysis

In this section we formalize the algorithm constraints and the assumptions about the environment, which we discussed
in Section 3
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6.2.1 Restrictions on the algorithm

Constraints on values of the constants � , � , � , « ¬ , « ® , and « ° :

� « ° � « ¬ � � �
� « ® � � l	« ¬ � � �Mp

Scheduling assumptions:

� The locally controlled actions that are enabled are performed without any intervening time-passage.

6.2.2 Restrictions on the environment

Constants:
For the purpose of analysis, we introduce two constants, DG�%^#_KJVd and LH]�^#}�JVd . We assume:

� �����IDG�%^#_KJVd �&��LH]�^#}�JVd
� � u � � � � DG��^#_ JVd
� � u � � ���ADG��^#_ JVd � LH]%^#}�JVd

Restrictions on timing and failures:

� No message loss.

� No time passes while a locally-controlled action is enabled.

� Bounded local joins: An execution � satisfies bounded local joins provided that for any finite prefix � _ of � , the
following holds.
Let �Cm�� r�b�cGd where y `%}��TJ@]�}OF,]1^#_M`Nl�� _ p���� �Cm����,y � � � � . Then the number of �'�M����V�S��%� 	 events that occur in � _
at times u�$%~�^#� �@l%�n_�p [ l	«P¬ � � �Mp , where z"�O�Gb l �(p�r�� ��m	��� , is � DG�%^#_KJVd .
That is, at any point in the execution � , the number of recent ���-��� V&S���� events among processes in an “arc” of the
ring containing at most � � � processes is at most DG��^#_ J
d .

This assumption is not ideal because it is expressed in terms of the number of ���-��� V&S���� events, which are under
the control of the algorithm (rather than the environment). We could justify this assumption in terms of a more
primitive assumption that bounds the rate of �'�M��� events, which are controlled by the environment. To do this,
we might need to modify the algorithm so that it schedules the ���-��� V&S���� s so that (in the normal case) they occur
a fixed amount of time after the �'�M��� s. Alternatively, a probabilistic justification might be possible.

� Bounded local failures: An execution � satisfies bounded local failures provided that for any finite prefix � _ of
� , the following holds.
Let �Cm	��rRb�cGd where y `S}��/J@]�}3F,]1^#_@`Nl%�Z_#p
��� ��m	���,y � � �w� . Then the number of �(SS��� 	 events that occur in �Z_ at
times u�$%~�^#� �@l�� _ p [ «¯® , where z"�O�Gb�l �(p r�� ��m	��� , is � LH]�^#}�JVd .
That is, at any point in � , the number of recent �(SS��� events among processes in an arc of the ring containing at
most � � � processes is at most LH]%^#}�JVd .

We also need a special assumption to ensure that there are “enough” processes in the ring.

� Enough-processes An execution � satisfies enough-processes provided that it has a finite prefix � _ such that:

1. At least
� � � �Q�'�M����V�S��%� events occur in � _ .

2. No �(SS��� event occurs in � _ .
3. In any state of � after �Z_ , the total number of live processes is always u � � � � .

We call the shortest such prefix � _ the initialization prefix.

A good execution is one that observes all the timing and failure restrictions given in this section.
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6.3 Basic Lemmas

The first lemma says that ��e��8~�^#� � s of fingers are always uw_8��� .

Lemma 6.1. The following is true in any state that is reachable in a good execution:
If c�r E�_@`@�G]Vh � then c8Y���e��8~�^#� � u _n��� .

The next lemma says that every physical identifier � that appears in another process’ E�_@`@�G]Vh set, or in a message
in transit, must correspond to a process whose h1~']�~�iMh is ]SjG~�^���� .
Lemma 6.2. The following is true in any state that is reachable in a good execution:
Suppose that cJr � ^#_@`@��] , c8Y �k�M�Ih � � , and any of the following holds:

1. cJr E�_@`@�G]Vh ° for some � *� � .
2. cJr���Y�J�}Z�ej@¨ for some � r ª;}Z�ej@¨ | hB` that is in transit.

3. cJr���Y �8]o�Vd�h for some � rb§��e��¨�i*�¤©���h�� in transit.

4. cJr���Y�J�}Z�ej@¨ for some � r §C�*��¨%i*�+���%� � in transit.

Then h1~']�~�iMhG� � S��AW
� �*� .
The next lemma says that, if a process fails at a time f , then no expiration time for that process that is greater thanf � «¯® ever appears anywhere in the state.

Lemma 6.3. Suppose that � is a finite execution, and �(SS��� � occurs at time f in � . Suppose that c r � ^#_@`@�G] andc8Y �(�M�Ih � � . Suppose that, in $�hV~']�~,�@l�� p , any of the following holds:

1. cJr E�_@`@�G]Vh ° for some � *� � .
2. cJr���Y�J�}Z�ej@¨ for some � r ª;}Z�ej@¨ | hB` that is in transit.

3. cJr���Y �8]o�Vd�h for some � rb§��e��¨�i*�¤©���h�� in transit.

4. cJr���Y�J�}Z�ej@¨ for some � r §C�*��¨%i*�+���%� � in transit.

Then c8Y#��e��n~�^#��� ��f � «¯® .

As a corollary to some of the previous lemmas, the following lemma says that a process that has failed more than« ® time ago does not appear in anyone’s E\_@`@��]Vh set.

Lemma 6.4. Suppose that � is a finite execution, and �(SS��� � occurs strictly before time $%~�^#���@l�� p [ « ® in � . Suppose
that cJr � ^#_@`@��] and c8Y �(�-�Ih � � . Then in $�h1~']�~,�Sl%�+p , c does not appear in E\_@`@��]Vh ° for any � *� � .
Proof. By contradiction. Suppose that in $�h1~']�~,�Sl%�+p , c r E�_M`7�G]Vh ° for a particular � *� � . Then by Lemma 6.3, in
$�h1~ ]%~'�@l%�+p , c8Y#��e��8~�^#��� � f � «¯® , where f is the time at which �(SS��� � occurs. Lemma 6.1 implies that, in $�h1~']�~,�Sl%�+p ,c8Y#��e��8~�^#��� u _n��� , that is, c8Y���e��8~�^#� � u $%~�^#���@l�� p . These two inequalities together imply that $%~�^#� �@l�� p � f ��«n® .
This contradicts the hypothesis that �(SS��� � occurs strictly before time $%~�^#���@l�� p [ « ® . �

6.4 Maintaining Neighbor Sets

In this section, we prove that the neighbor sets are properly maintained. We divide the work into three steps: First,
we consider what happens when there are no failures and only a bounded number of joins. Second, we consider the
general case, with unlimited failures and joins.

The results we prove express knowledge guarantees for live processes. Specifically, we show that all live processes
always know about all neighbors that joined more than time

� «¬ � � � ago. Moreover, after a process has been live for
sufficiently long, it knows about all neighbors that joined more than time � ago.

Breaking the proof up in some such way seems necessary in order to make the proof tractable. Each stage intro-
duces its own new difficulties: the first stage already includes many of the issues involving the timing of the flow of
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information during and soon after the joining protocol. The second stage introduces issues of local knowledge—each
process maintains information about its local neighborhood only. The third stage introduces the complications of
failures, which mean that a process cannot rely on responses from any particular other process.

We expect this decomposition to be useful in constructing the general proof, because the ideas of the first stages
should be useful in the later stages. Also, the result for the first stage should be directly usable in proving the more
general results, in describing properties of the initial set-up phase.

6.4.1 Basic lemmas

The following lemma says that every U@� �M�%� message contains a high expiration time for the sender.
The mention of a deadline for a message in transit refers to a detailed state-machine model for a timed channel, in

which a deadline is explicitly kept for each message. This deadline is described in terms of absolute time.

Lemma 6.5. Let � be a good finite execution. If a U@� �-��� message is in transit from � with deadline $ then it contains a
finger for � with ��e��8~�^#� � u�$ � « ® [ � .
6.4.2 No failures, limited joins

In the case we consider in this subsection, no processes fail and at most
� � �����'�M����V�S��%� s occur. With this limited

number of ���-��� V&S���� s, every process is in every other process’ � -block, so we do not have to worry about issues of local
knowledge.

The following lemma says that everyone “always” has a finger for � � , with a “sufficiently high” expiration time.
The precise statement of this is rather complicated, because many different cases are covered.

Lemma 6.6. Let � be a good finite execution that contains no �(SS��� events, and contains at least one and at most
� � � �

���-��� V&S���� events. Let � � denote the process that performs the first ���-��� V&S���� in � . Let �\rJz2cGd .
Then in $�h1~ ]%~'�@l%�+p :

1. If h1~']�~�iMhG� � ���M���S���9R and � contains a ���e�G�I� �I�7l5� �@�k�%�@� V,��� � �*p���� � event for target z"�O�Gb l �,p , then there existscsr E�_M`7�G]Vh � with c8Y �(�M�Ih � � � such that:

(a) One of the following holds:

i. c8Y#��e��8~�^#��� �E�8^#_@`/F,~�^#� � � � � � .
ii. There is a �S���9R message in ��i-~�F!HGik��ik� � addressed to � � and c8Y���e��8~�^#� � � _n��� � � � .

iii. There is a �S���9R message in transit from � to � � with deadline $ and c8Y���e��8~�^#� � ��$ � � .
iv. There is a U@� �-��� message in ��i-~�F!HGik��ik� ��� addressed to � , and c8Y#��e��n~�^#���q�w_8��� � � .
v. There is a U@� �-��� message in transit from � � to � with deadline $ , and c8Y���e��8~�^#� � �	$ .

(b) c8Y���e��8~�^#� � � _n��� .

2. If h1~ ]%~�iMhG� � ���-���%���9R and � contains a ���e����� �*�@l&U@� �-���epB� � � � event, then there exists cKr E�_@`@�G]Vh � with c8Y �k�M�Ih � � �
such that:

(a) One of the following holds:

i. c8Y#��e��8~�^#��� �E�8^#_@`/F,~�^#� � � � � «6¬ ��� � .
ii. There is a �S���9R message in ��i-~�F!HGik��ik� � addressed to � � and c8Y���e��8~�^#� � � _n��� � � « ¬ ��� � .

iii. There is a �S���9R message in transit from � to � � with deadline $ and c8Y���e��8~�^#� � ��$ � � « ¬ �	� � .
iv. There is a U@� �-��� message in ��i-~�F!HGik��ik� ��� addressed to � , and c8Y#��e��n~�^#���q�w_8��� � � « ¬ ��� � .
v. There is a U@� �-��� message in transit from � � to � with deadline $ , and c8Y���e��8~�^#� � �	$ � � «±¬ � � � .

(b) c8Y���e��8~�^#� � � _n��� � � « ¬ � � � .
3. If hV~']�~�iMhG� � � � �*� then there exists c�r E\_@`@��]Vh � with c8Y �k�M�Ih � � � such that:

(a) One of the following holds:
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i. c8Y#��e��8~�^#��� �w_KJG]�F,]o�(LV]
�1ho�MF,~�^#��� � � � « ¬ � � � .
ii. There is a U@� �-��� message in �%i-~2F!HGik��ik� � addressed to � � , and c8Y���e��8~�^#� � � _n��� � � « ¬ � � � .

iii. There is a U@� �-��� message in transit from � to � � with deadline $ and c8Y���e��8~�^#� � ��$ � � « ¬ �	� � .
iv. There is a finger for � in E�_M`7�G]Vh ��� with ��e1�n~�^#��� � _ J�]�F,]o�2LV]o��ho�MF,~�^#� � ��� , and c8Y#��e1�n~�^#���q�w_KJG]�F,]o�2LV]o��hB�NF,~�^#��� ��� �«P¬ �	� � .
v. There is a U@� �-��� message in ��i-~�F!HGik��ik� � � addressed to � , and c8Y#��e��n~�^#���q�w_8��� � « ¬ �&� � .

vi. There is a U@� �-��� message in transit from � � to � with deadline $ , and c8Y���e��8~�^#� � �	$ � « ¬ �	� � .
(b) c8Y���e��8~�^#� � � _n��� � «P¬ �	� � .

4. If a U7� �-��� or � �M�(�S�7��V'�G�&� � message is in an ��i-~�F!HGik��ik� then it contains a finger for � � with ��e��n~�^#��� �{_n��� �« ¬ �	� � .
5. If a U@� �-��� or � �M�k�%�7��V,���&� � message is in transit with deadline $ then it contains a finger for � � with ��e1�n~�^#��� �

$ � « ¬ � � � .
Proof. We proceed by induction on the number of steps in � following the ���M����V&S���� � � .
Base: � steps.
Then the last step of � is ���-��� V&S���� ��� . All the conditions are easy to check.
Inductive step: The only actions that could falsify any of the claims are ���e�G�I� �I�@l5� �@�k�%�@�*p , PB�%��Q8l,� �M�(�%�@��V'�G�&� �ep , ���e�G�I� �I�7l,� �M�k�%�7��V,���&� �*p ,
���-��� V
�S����R , PB�S�9QOl,�S����R-p ��� � � , �Z�*����� �*�@l,�S����RMp ��� � � , Po�%��Qkl�U7� �-���Ip , ���e�G�I� �I�7l&U@� �-���*p , �'�M����V�S��%� , �I�I� R�� U%�M��Vo�����,����P�� , � , and RTSS��U9S9R7�AV,���(� � �*��W .
We consider cases.

1. ���e�G�I� �I�7l5� �@�k�%�@�*p ��� � .
This has the potential to falsify Property 4, in the case where a � �M�k�%�7��V,���&� � message is placed in ��i-~�F!H�ik�Gik� � .
By inductive hypothesis, Property 3(b), in the pre-state of the final transition, there exists cJrCE�_M`7�G]Vh � such thatc8Y �k�M�Ih � � � and c8Y#��e1�n~�^#��� �{_n��� � « ¬ ��� � . Therefore, if a � �M�(�%�@� V,��� � � message is placed in ��i-~�F!H�ik�Gik� �
as a result of this transition, it contains a finger for � � with ��e��n~�^#��� � _8��� � « ¬ ��� � . This shows Property 4.

2. Po�%��Qkl5� �@�k�%�@� V,��� � �*pB� � °
This could falsify Property 5. In the pre-state of the final transition, a � �M�k�%�7��V,���&� � message is in ��i-~�F!H�ik�Gik� � .
Therefore, by inductive hypothesis, Property 4, this message contains a finger for � � with ��e��8~�^#� �J� _8��� �« ¬ �	� � . Since $ � _n��� � � , we have ��e1�n~�^#��� ��$ � « ¬ � � � , as needed for Property 5.

3. ���e�G�I� �I�7l5� �@�k�%�@� V,��� � �ep ��� � .
This could falsify Property 1. Before the step, a � �M�k�%�7��V,���&� � message is in transit to � with deadline u _n��� . By
inductive hypothesis, Property 5, this message contains a finger for � � with ��e��n~�^#��� � _8��� � «P¬ � � � . So after
the step, E�_@`@�G]Vh � contains a finger c for � � with c8Y���e��8~�^#� � �w_8��� � «P¬ � � � . Since �8^#_M`GF,~�^#��� � �w_8��� � «P¬ ,
we have that c8Y#��e1�n~�^#��� � �8^#_M`GF,~�^#��� � � � � . This shows both parts of Property 1.

4. �'�M����Vo�S���9R � .
This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that h1~ ]%~�iMh � � �'�M���S����R and � contains a
�Z�*���I� �I�7l5� �M�(�%�@� V,��� � �ep ��� � event for target z"�O�Gb�l �5p . The interesting case is where 1a(i) is true just before the
step, that is, E\_@`@��]Vh � contains a finger c for � � with c8Y#��e��8~�^#��� � �8^#_@`/F,~�^#� � � � � � . Since �8^#_@`/F,~�^#� � � u�_n��� ,
this implies that c8Y#��e��n~�^#���q�w_8��� � � � . This inequality is true after the step as well.

We claim that the step results in a �%���9R message addressed to � � being placed in �%i-~2F!HGik�Gik� � ; this means that
1a(ii) is satisfied in the post-state, as needed. Since we have assumed that Property 1(a)i is true in the pre-state,
we know that E�_M`7�G]Vh � contains a finger for � � in the pre-state. Since a ���e�G�I� �I�7l,� �M�k�%�7��V,���&� �*p occurs in � for
target z"�O�Gb�l �,p , we know that there exists # such that #�YZ^0dtrCDG��^#_+Y�jV�%� � � and #�Y�~']�]�`@�G~ � z"�O�Gb�l �,p . Therefore,
the �'�M����Vo�S���9R deposits �S���9R messages addressed to its entire � -block, according to its local ring. This includes � � ,
as needed.

For Property 2(a), the argument is similar to that for Property 1(a). This time, suppose that h1~ ]%~�iMh�� � ���M���S���9R
and � contains a ���e����� �*�@l&U@� �-���ep���� � event. The interesting case is where 2a(i) is true just before the step, that is,
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E�_@`@�G]Vh � contains a finger c for � � with c8Y���e��8~�^#� � � �8^#_M`GF,~�^#��� � � � « ¬ � � � . Since �n^#_@`/F,~�^#��� � u _n��� , this
implies that c8Y#��e��n~�^#��� � _8��� � � « ¬ ��� � . This inequality is true after the step as well.

We claim that the step results in a �%���9R message addressed to � � being placed in �%i-~2F!HGik�Gik� � ; this means that
2(a)ii is satisfied in the post-state, as needed. Since we have assumed that Property 2(a)i is true in the pre-state,
we know that E�_M`7�G]Vh � contains a finger for � � in the pre-state. Since a ���e�G�I� �I�7l,� �M�k�%�7��V,���&� �*p occurs in � for
target z"�O�Gb�l �,p , we know that there exists # such that #�YZ^0dtrCDG��^#_+Y�jV�%� � � and #�Y�~']�]�`@�G~ � z"�O�Gb�l �,p . Therefore,
the �'�M����Vo�S���9R deposits �S���9R messages addressed to its entire � -block, according to its local ring. This includes � � ,
as needed.

5. Po�%��Qkl5�%���9RMp � � � � .

This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that h1~ ]%~�iMh�� � �'�M���S����R and � contains a
�Z�*���I� �I�7l5� �M�(�%�@� V,��� � �ep ��� � event for target z"�O�Gb l �5p . The interesting case is where 1a(ii) is true just before the
step, that is, E�_M`7�G]Vh � contains a finger c for � � with c8Y#��e1�n~�^#���K� _8��� � � � and there is a �%���9R message in
��i-~�F!H�ik�Gik� � addressed to � � . After the step, there is a �%���9R message in transit from � to � � with deadline _n��� � � .
Taking $ � _8��� � � , we see that 1c is true after the step.

For Property 2(a), the argument is similar: 2(a)ii before the step implies 2(a)iii after the step.

6. ���e�G�I� �I�7l5�%���9R@p � � ��� .

This could falsify Property 1(a) or 2(a). For Property 1(a), suppose that h1~ ]%~�iMh � � �'�M���S����R and � contains a
�Z�*���I� �I�7l5� �M�(�%�@� V,��� � �ep ��� � event for target z"�O�Gb l �5p . The interesting case is where 1a(iii) is true just before the
step, that is, E�_@`@�G]Vh � contains a finger c for � � with c8Y���e��8~�^#� � � $ � � and there is a �S���9R message in transit
from � to � � with deadline $ . Since $tu _8��� , we have that c8Y#��e��8~�^#���s� _n��� � � . After the step, there is aU7� �-��� message in �%i-~2F!HGik�Gik� � � addressed to � . Therefore, 1a(iv) is true just after the step.

For Property 2(a), the argument is similar: 2a(iii) before the step implies 2a(iv) after the step.

7. Po�%��Qkl�U7� �-���ep ° � 	 .
This could falsify Property 1(a), 2(a), 3(a), or 5. For Property 1(a), the interesting case is where � � � � , �

� � ,
and 1(a)iv is true before the step, that is, E�_M`7�G]Vh � contains a finger c for � � with c8Y#��e��8~�^#��� ��_8��� � � . Since
_8��� � � u	$ , we have that c8Y#��e��n~�^#���q��$ , so that 1a(v) holds after the step.

For Property 2(a), the interesting case is where � � � � , �
� � , and 2(a)iv holds before the step. Then, arguing as

in the previous case, 2(a)v holds after the step.

For Property 3(a), there are two interesting cases. The first is where � � � , � � � � , and 3(a)ii holds before the
step; in this case 3(a)iii holds after the step. The second case is where � � � � , �

� � , and 3(a)v holds before the
step; in this case 3(a)vi holds after the step.

For Property 5, we use Property 4 in the pre-state to show Property 5 in the post-state.

8. ���e�G�I� �I�7l�U7� �-���ep ° � 	
This could falsify Property 1(a), 2(a), or 3(a).

For Property 1(a), the interesting case is where � � � � , �
� � , and Property 1(a)v holds before the step. Then

by Lemma 6.5, the received message contains a finger for � � with ��e��8~�^#� �vu{_8��� � «¯® [ � . By assumptions
on the constants, the right-hand side is � ��«±¬ � � � , so ��e1�n~�^#��� u _8��� ����«P¬ � � � . Therefore, after the step,E�_@`@�G]Vh � contains a finger for � � with ��e��n~�^#��� �{_8��� ����« ¬ � � �t� �n^#_@`/F,~�^#��� � � � � . Thus, 1(a)i is satisfied
after the step.

For Property 2(a), the interesting case is where � � � � , �
� � , and Property 2(a)v holds before the step. Arguing

as in the previous case, we see that after the step, E�_@`@�G]Vh � contains a finger for � � with ��e��8~�^#��� � �!«P¬ � � ��u
�8^#_@`/F,~�^#� � � � � «P¬ � � � . Thus, 2(a)i is satisfied after the step.

For Property 3(a), there are two interesting cases. The first is where � � � , � � � � , and 3(a)iii is satisfied before
the step; then we claim that 3(a)iv holds after the step. The argument for this uses Lemma 6.5, applied to � . The
second case is where � � � � , �

� � , and 3a(vi) is satisfied before the step; in this case, 3(a)i holds after the step.
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9. �'�M����V�S��%� � .
This could falsify Property 3(a). By inductive hypothesis, Property 2(b), in the pre-state, E�_@`@�G]Vh � contains a
finger for � � with ��e��8~�^#� � � _n��� � � « ¬ � � � . Since _KJG]�F,]o�2LV]o�1ho�NF,~�^#��� � � _8��� right after the step, 3(a)i holds
after the step.

10. �I�I� R��TU%�M��V
�Z���,�Z� P�� � .
This could falsify Property 3(a). The interesting case is where Property 3a(i) holds in the pre-state. The step
puts a U7� �-��� message in �%i-~2F!HGik�Gik� � addressed to � � . Then 3a(ii) holds in the post-state.

11. � l	fBp
This could falsify Property 1, 2, 3, or 4. For Property 1, there are two interesting cases. The first is where 1(a)iv
holds in the pre-state. But then time cannot pass, by our timing assumption (no time passes while an �%i-~2F!HGik�Gik�
is nonempty). The second possibility is that we might falsify 1(b). However, note that 1(b) follows from 1(a).
Similar arguments hold for Properties 2, 3, and 4.

12. R S%��U�S9RS�AV,���k� � �e�AW .
Since in every case, the finger whose existence is claimed has ��e��n~�^#��� ��_8��� , it cannot be garbage-collected.
Therefore, RTSS�2U�S9RS��V'�G�(� � �e�AW cannot falsify any of the claims.

�

Next, we describe knowledge that � � acquires about the other processes.

Lemma 6.7. Let � be a good finite execution that contains no �(SS��� events, and contains at least one and at most
� � � �

���-��� V&S���� events. Let � � denote the process that performs the first ���M����V&S���� in � . Let � r z�cGd be such that �'�M����V�S��%� �
occurs in � at time f .
Then in $�h1~ ]%~'�@l%�+p , one of the following holds:

1. f � _n��� and a U@� �-��� message addressed to � � is in �%i-~2F!HGik�Gik� � .
2. A U7� �-��� message is in transit from � to � � with deadline f � � .
3. E\_@`@��]Vh � � contains a finger c for � such that one of the following holds:

(a) c8Y���e��8~�^#� � u _ J�]�F,]
�(LV]o��ho�MF,~�^#� � � � « ® [ « ¬ .

(b) A U@� �-��� message addressed to � � is in ��i-~�F!H�ik�Gik� � and c8Y#��e��n~�^#��� uw_8��� � «¯® [ «P¬ .

(c) A U@� �-��� message is in transit from � to � � with deadline $ and c8Y#��e��n~�^#��� u�$ � « ® [ l"« ¬ � �Mp .
Proof. By induction on the number of steps in � following the �'�M����V�S��%� � .
Base: � steps.
Then the last step of � is ���-��� V&S���� � . Then we claim that Property 1 holds in the post-state. This follows because in the
pre-state, � has a finger for � � , by Lemma 6.6, part 3(b).
Inductive step: The only actions that could falsify the claim are Po�%��Qkl&U@� �-���*p � , ���e�G�I� �I�7l�U7� �-���Ip ��� , �I�I� R��TU%�M��V
�Z���,�Z� P�� � ,
time-passage, and R S%��U9S9R7�AV,���k� � �e��W � � .

1. Po�%��Qkl�U7� �-���epB�
This could falsify Property 1 or 3(b). However, if it does so, it makes Property 2 or 3(c) (respectively) true.

2. ���e�G�I� �I�7l�U7� �-���ep ���
Lemma 6.5 implies that after the step, E\_@`@��]Vh � � contains a finger for � with ��e��8~�^#� ��u�$ ��« ® [ � , where $
is the deadline component of the received message. Since $ � _KJG]�F,]o�(LV]
�1ho�MF,~�^#��� � [ « ¬ ��� , (the sending time
plus � ), this implies that this finger has ��e��n~�^#����u _KJG]�F,]o�(LV]
�1ho�MF,~�^#��� � [ « ¬ � � � « ® [ � , that is, ��e��8~�^#� �vu
_KJG]�F,]o�(LV]
�1ho�MF,~�^#��� � � « ® [ « ¬ , which shows that 3(a) is satisfied after the step.

3. �I�I� R��TU%�M��V
�Z���,�Z� P�� �
This could falsify Property 3(a); however, if it does so then Property 3(b) holds after the step.
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4. � l �5p
This could falsify Property 1 or 3(b). However, if 1 or 3(b) holds in the pre-state, then time cannot pass, by our
timing assumptions, because an �%i-~2F!HGik�Gik� is nonempty.

5. R S%��U�S9RS�AV,���k� � �e�AW ��� .

Because « ® � « ¬ � � , the expiration times of the claimed fingers are all strictly greater than � . Therefore, this
cannot falsify any of the statements.

�

The following corollary summarizes the conclusions of Lemma 6.7, saying that � � has a finger for any other process �
that has joined at least time � ago, with a high expiration time. Also, any U7� �-��� message that is sent by � � sufficiently
long after � joins contains a finger for � with a high expiration time.

Corollary 6.8. Let � be a good finite execution that contains no �(SS��� events, and contains at least one and at most� � � ���'�M����V�S��%� events. Let � � denote the process that performs the first �'�M����V�S��%� in � . Let � r z2ced be such that
���-��� V&S���� � occurs in � at time f .
Then in $�h1~ ]%~'�@l%�+p , the following hold:

1. If f � � � _8��� then E�_M`7�G]Vh � � contains a finger c for � such that c8Y#��e1�n~�^#��� u _n��� � «® [ l	«P¬ � �Mp .
2. If f � � � ��$ and a U@� �M�%� message is in transit from � � with deadline $ , then the message contains a finger for �

such that c8Y#��e1�n~�^#��� u	$ � « ® [ l	« ¬ � � �Mp .
The next lemma gives guarantees about what an arbitrary process � knows about another arbitrary process � . This
represents “second-order” information, because � may need to learn this information indirectly, through � � .
Lemma 6.9. Let � be a good finite execution that contains no �(SS��� events, and contains at least one and at most

� � � �
���-��� V&S���� events. Let � � denote the process that performs the first ���-��� V&S���� in � . Let �

� $�hV~']�~,�@l�� p . Then:

1. Suppose that �7Y�hV~']�~�iMh � � ���-���%���9R and � contains a ���e����� �*�@l&U@� �-���ep ����� � event. Suppose that ���-��� V&S���� ° occurs in �
at a time ��$%~�^#� �7l�� p [ l	« ¬ �	� �@p .
Then �SY E�_M`7�G]Vh � contains a finger c for � such that c8Y#��e��8~�^#���qu��SYZ_8��� � « ® [ l � « ¬ ��� �Mp .

2. Suppose that �7Y�h1~']�~�iMhe� � S���W
� �I� and ���-��� V&S���� � occurs in � at a time u�$%~�^#���@l�� p [ l	«±¬ � � �@p . Suppose that
���M����V&S���� ° occurs in � at a time ��$%~�^#���@l�� p [ l � «±¬ � � �@p . Then �SY E�_M`7�G]Vh � contains a finger c for � such thatc8Y���e��8~�^#� � u��7YZ_8��� � «¯® [ l��A«P¬ � � �Mp .

3. Suppose that �7Y�h1~']�~�iMh � � S���W
� �I� and ���-��� V&S���� � occurs in � at a time ��$%~�^#���@l�� p [ l	« ¬ � � �@p . Suppose that
���M����V&S���� ° occurs in � at a time � $%~�^#� �@l�� p [ l	« ¬ � � �@p . Then �7Y E\_@`@��]Vh � contains a finger c for � such thatc8Y���e��8~�^#� � u��7YZ_8��� � « ® [ l � « ¬ � � �Mp .

The proofs are based on conveying information through � � . These proofs are not inductive; rather, they rest directly on
previously-proved lemmas.

Proof. 1. Assume that �7Y�h1~']�~�iMhG� � ���M���S���9R and � contains a �Z�*����� �*�@l&U@� �M�%�*pB� � � � event. Also suppose that ���M����V&S���� °
occurs in � at a time ��$%~�^#� �@l�� p [ l	«±¬ ��� �Mp .
Lemma 6.6, Part 1(b), implies that whenever � sends a �%���9R message during its joining protocol, it has a finger
for � � . Thus, by the limitation on the number of ���M����V&S���� events, � � is included in the set of destinations of the
�%���9R message.

We claim that, in � , process � receives a U@� �-��� message from � � sent by � � in response to a �S����R message sent by
� at a time u��7YZ_8��� [ l	« ¬ � � �Mp . For if not, then the latest U7� �-�%� message received by � from � � is a response to
a �S����R sent by � at a time ���7Y�_n��� [ l"« ¬ � � �Mp . But then it must be that another �S����R message is sent by � at a
time ���SYZ_8��� [ � � , and this receives a response by the end of � , a contradiction.

Since the time of the ���-��� V&S���� ° is ���7Y�_n��� [ l	«P¬ � � �Mp , it must be ����_�YZ_8��� [ � , where ��_ is the state just before
� � sends this U7� �-�%� message. Therefore, by Corollary 6.8, Part 1, in state �A_ , E�_M`7�G]Vh ��� contains a finger for �
with ��e��8~�^#����u���_0YZ_8��� � « ® [ l	« ¬ ���Mp . Therefore, in state � , which is at most time « ¬ � � � later, E\_@`@��]Vh �
contains a finger for � with ��e��8~�^#� � u��7YZ_8��� � « ® [ l � « ¬ ��� �Mp , as needed.
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2. Suppose that �SY�h1~ ]%~�iMh � � S���W
� �I� and ���-��� V&S���� � occurs in � at a time u�$%~�^#���7l%�+p [ l	« ¬ � � �Mp . Also suppose that
���M����V&S���� ° occurs in � at a time ��$%~�^#���7l%�+p [ l � « ¬ � � �Mp .
By the inductive hypothesis, Part 1, we know that, just before the �'�M����V�S��%� � , E�_@`@�G]Vh � contains a finger for � with
��e��8~�^#���quw_8��� �b« ® [ l � « ¬ � � �Mp . Therefore, in state � , which is at most time « ¬ � � � later, E�_M`7�G]Vh � contains
a finger for � with ��e��8~�^#� � u��7YZ_8��� � « ® [ l��A« ¬ � � �Mp , as needed.

3. Suppose that �7Y�hV~']�~�iMhe� � S��AW
� �*� and ���-��� V&S���� � occurs in � at a time � $%~�^#���@l�� p [ l"«P¬ � � �Mp . Suppose that
���M����V&S���� ° occurs in � at a time ��$%~�^#���7l%�+p [ l"« ¬ � � �@p .
Corollary 6.8, Part 1, implies that in any state ��_ of � with ��_�Y�_n��� � f�_�� � , E�_M`7�G]Vh � � contains a finger for �
with ��e��8~�^#� �vu ��_�Y�_n��� � « ® [ l	« ¬ ���Mp . Since « ® � « ¬ � � and because of the limitation on the number of
���M����V&S���� events, � is included in the set of destinations of every U7� �-�%� message sent by � � in such a state ��_ .
We claim that, in � , process � receives a U@� �M�%� message from � � sent by � � at a time u �7YZ_8��� [ l"« ¬ ���@p . For
if not, then the latest U@� �-��� message received by � from � � is sent by � � at a time ���SYZ_8��� [ l	« ¬ � �@p . But then
it must be that another U@� �-��� message is sent by � � (as part of a �I�I� R�� U%�M��Vo�����,����P�� � � ) at a time ���7YZ_8��� [ � , and
this arrives at � by the end of � , a contradiction.

Now fix ��_ to be the state just before � � sends this U7� �-�%� message; thus, � _�Y�_n��� u �7YZ_8��� [ l	«P¬ ���@p . Putting
this inequality together with the assumption that the �'�M����V�S��%� ° occurs at a time � �7YZ_8��� [ l"«P¬ � � �@p , we may
conclude that the ���-��� V&S���� ° occurs at a time � ��_�Y�_n��� [ � . Therefore, by Corollary 6.8, Part 1, in state ��_ ,E�_@`@�G]Vh � � contains a finger for � with ��e��8~�^#� � u�� _�Y�_n��� �g«¯® [ l	«P¬	� �Mp . Therefore, in state � , which is at most
time «P¬ � � later, E�_@`@�G]Vh � contains a finger for � with ��e��8~�^#� � ���7YZ_8��� � «® [ l � «P¬ � � �Mp , as needed.

�

The following lemma describes information that � is guaranteed to have after receiving a � �@�k�%�@� V,��� � � message. It rep-
resents “third-order” information, because the � �@�k�%�@� V,��� � � message could be conveying “second-order” information
from its sender.

Lemma 6.10. Let � be a good finite execution that contains no �(SS��� events, and contains at least one and at most
� ���J�

���-��� V&S���� events. Let �Vm �sr z2ced . Suppose that h1~']�~�iMh � � ���M���S���9R and � contains a ���e�G�I� �I�7l5� �@�k�%�@� V,��� � �*p ��� � event for
target z"�O�Gb l �,p . Suppose that ���M����V&S���� ° occurs in � , at a time ��$%~�^#���7l%�+p [ l%�A«±¬ � # �Mp .
Then in $�h1~ ]%~'�@l%�+p , E�_M`7�G]Vh � contains a finger for � with ��e��n~�^#��� � _8��� .

Proof. (Sketch:) If the time when process � receives the � �M�(�%�@� V,��� � � message is � $%~�^#� �@l%�+p [ l	« ¬ � � �Mp , then �
also receives a U7� �-�%� message from � � before the end of � . In this case the result follows from Lemma 6.9, Part 1.

On the other hand, if the time when process � receives the � �M�(�S�7��V'�G�&� � message is u�$%~�^#���@l�� p [ l	« ¬ � � �Mp , then
the result follows from Lemma 6.9, part 2, applied to the sender of the message. In applying this lemma, we add time« ¬ � � � ( � for the message delay and « ¬ � � � for the time that might have elapsed from the ���e�G�I� �I�7l5� �@�k�%�@� V,��� � �*p )
to the age of the known processes and subtract this from the expiration time of the finger. This uses the fact that«¯® � �!«P¬ � ! � . �

The next series of results bound how long it takes for a process � to become an “authority”, like � � . That is, it knows
about all processes that have joined more than time � ago. The first case is where another process � joins sufficiently
long after � so that � knows about � at the point where it joins.

Lemma 6.11. Let � be a good finite execution that contains no �(SS��� events, and contains at least one and at most� � � �����-��� V&S���� events. Suppose that ���M����V&S���� � and ���M����V&S���� ° occur in � at times f and fT_ , respectively, and wheref � « ¬ ��� � � f _ � _8��� [ � .
Then in $�h1~ ]%~'�@l%�+p , E�_M`7�G]Vh � contains a finger for � with ��e��n~�^#��� u _8��� � « ® [ l"« ¬ � �Mp .
Proof. We first claim that, at any point in � after the �'�M����V�S��%� ° , E�_M`7�G]Vh ° contains a finger for � with ��e��8~�^����q�w_8��� .
Lemma 6.9, Part 1, implies that, in the state immediately before the DG�%^#_�FT]Sj@¨ ° , E�_M`7�G]Vh ° contains a finger for � with
��e1�n~�^#��� u _8��� � «±® [ l � «P¬ �&� �Mp . Thereafter in � , through time fT_ � «6¬ � � � , E\_@`@��]Vh ° contains a finger for � with
��e1�n~�^#��� � _8��� � «¯® [ l��!«6¬	� � �Mp . Also, at any time after fT_ � «P¬ � � � in � , Lemma 6.9, Part 2 implies that E\_@`@��]Vh °
contains a finger for � with ��e1�n~�^#��� uw_8��� � « ® [ l%�A« ¬ ��� �Mp . Combining these two facts, we conclude that, at any
time after the ���-��� V&S���� ° , E\_@`@��]Vh ° contains a finger for � with ��e��8~�^#� � u _n��� � « ® [ l��A« ¬ ��� �Mp��w_8��� .
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Immediately after the �'�M����V�S��%� ° , and at intervals of « ¬ thereafter, process � performs a �I�I� R�� U%�M��Vo�����,����P�� ° , in which
it sends a U@� �M�%� message containing a finger for itself with ��e��8~�^#� � � « ® . By the argument in the previous paragraph,
� is included in the destination set of each such U7� �-�%� message. At the end of � , some such message must have arrived
at � which was sent by � at a time u $%~�^#���@l�� p [ l	«±¬ � �Mp . Therefore, in $�h1~']�~,�@l�� p , E\_@`@��]Vh � contains a finger for �
with ��e��8~�^#� � uw_8��� � «¯® [ l	«P¬ � � �Mp , as needed. �

The second case is where � and � both join long enough before the end of the execution.

Lemma 6.12. Let � be a good finite execution that contains no �(SS��� events, and contains at least one and at most� � �w�+���-��� V&S���� events. Suppose that ���-��� V&S���� � and ���-��� V&S���� ° occur in � at times f and fT_ , respectively, where f1m�fT_ �
$%~�^#� �@l�� p [ l � « ¬ �	� �@p .
Then in $�h1~ ]%~'�@l%�+p , E�_M`7�G]Vh � contains a finger for � with ��e��n~�^#��� � _8��� � «® [ l"«6¬ � �Mp .
Proof. By Corollary 6.8, Part 1, by time strictly less than $%~�^#� �7l�� p [ l � «¯¬ � � �Mp , E\_@`@��]Vh ��� contains fingers for
both � and � , each with ��e��8~�^#���su _8��� ��«® [ l	«P¬ � � �Mp . Then by time strictly less than $%~�^#� �@l%�+p [ l	«±¬ � �@p ,
� receives a U@� �-��� message from � � telling � about � , resulting in E�_M`7�G]Vh ° containing a finger for � , with ��e��n~�^#��� u
_8��� ��« ® [ l � « ¬ � � �Mp . And then by time strictly less than $%~�^#���7l%�+p , � receives a U@� �-��� message directly from �
telling � about � , and producing the needed finger. �

The following corollary says that if process � has joined more than time �!« ¬ � � � ago, it is an “authority”, in the sense
that it knows about all processes � that has joined more than time � ago.

Corollary 6.13. Let � be a good finite execution that contains no �(SS��� events, and contains at least one and at most� � �{�����M����V&S���� events. Suppose that �'�M����V�S��%� � and ���-��� V&S���� ° occur in � at times f and f _ , respectively, where f �
$%~�^#� �@l�� p [ l��!« ¬ �	� �@p and f�_ ��$%~�^#���@l�� p [ � .
Then in $�h1~ ]%~'�@l%�+p , E�_M`7�G]Vh � contains a finger for � with ��e��n~�^#��� � _8��� � « ® [ l"« ¬ � �Mp .
Proof. This follows from the two previous lemmas. �

6.4.3 Joins and failures

Now we use the ideas in the previous section to talk about what happens when we have unlimited joins and also
failures. Now, instead of relying on � � as an “authority”, processes rely on neighbors that happen to have been around
long enough. Because of the failures, we now consider the augmented ring as well as the actual global ring.

From now on, I am being slightly sloppy by writing just � instead of z"�O�Gb l �5p in many places. This is done for the
sake of readability. I hope it does not cause any confusion. The first lemma relates various neighborhoods in the same
ring.

Lemma 6.14. Let a be any ring, �Vm �7m � r�z2cGd .

1. If ��r J�}��*j@¨Nl �
m � � m
a�p and � r JG}��*j�¨Cl �Vm ���Smoaqp , then ��r JG}��ej@¨Cl �nm � � �����Smoaqp .
2. If ��r�hVikjVj�hG��~Gl �Vm � � m
a�p , � r�h1ikj
j�hG��~�l �Vm ���%m
a�p , and � �r�h1ikjVj�h��G~�l �Vm ���%m
a�p , then ��r J�}��*j@¨Nl �nm h�i�k l�� � [ ���%m ���ep1m
aqp .

Proof. Straightforward. �

The following lemma asserts the existence of neighbors that have joined a long time ago.

Lemma 6.15. Assume that ��� � � � ��� � ����DG��^#_ JVd . Let � be a good finite execution, a � `S}��TJ�]%}OF,]1^#_@`Cl�� p . Let
�\rJz2ced . Suppose that y a�yMu"� � � . Then:

1. There exists � rJz�cGd such that

(a) � r�h1ikjVj�h��G~�l �Vm
� [ � � m
aqp .
(b) � �r�h1ikjVj�h��G~�l �Vm � � moaqp .
(c) ���-��� V&S���� 	 occurs at a time ��$%~�^#���@l�� p [ ���7l	« ¬ � � �Mp
(d) �(SS��� 	 does not occur in � .
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2. There exists � rJz�cGd such that

(a) � r �n]o�VdIhG�G~Gl �Vmo� [ � � m
a�p .
(b) � �r �n]o�VdIhG�G~Gl �Vm � � moaqp .
(c) ���-��� V&S���� 	 occurs at a time ��$%~�^#���@l�� p [ ���7l	« ¬ � � �Mp
(d) �(SS��� 	 does not occur in � .

Proof. We prove Part 1; Part 2 is analogous. There are at least � [ l�� � � ���ep processes in the set difference
h1ikjVj1hG�G~�l �Vmo� [ � � moaqp [ h1ikjVj1hG�G~�l �Vm ���Smoaqp . Of these, at most ���!DG��^#_KJVd perform a ���-��� V&S���� at times u $%~�^#���@l�� p [
���Sl"« ¬ � � �@p . Since ��� � � � ��� � ����DG��^#_KJVd , it must be that at least one of these processes, call it � , performs a ���-��� V&S����
at a time �	$%~�^#���7l%�+p [ � �Sl	« ¬ � � �@p . This � satisfies all the listed properties. �

The next lemma relates neighborhoods in the global ring to neighborhoods in the augmented ring.

Lemma 6.16. Let � be a good finite execution, � r �
, �Vm � r�z2ced .

1. If ��r �Oh1ikjVj1hG�G~Gl �Vm �@mV`%}��TJ@]�}OF,]1^#_M`Ql�� pBp then ��r �Oh1ikjVj1hG�G~Gl �Vm � � LH]%^#}�JVdNm ]�iS`/F,]1^#_@`nl%�+pop .
2. If ��r �S�8]
�
d�hG��~*l �Vm �@m
`S}��TJ�]%}OF,]1^#_@`Nl�� pBp then �vrv�7�8]o�Vd�h��G~el �Vm � � LH]�^#}�J
dNm�]%iS`GF,]1^#_M`Ql�� pBp .
3. If ��r�hVikjVj�hG��~Gl �Vm �@m
`S}��/J@]%}OF,]1^#_@`Ql%�+pop then �vr�h1ikjVj1hG�G~�l �Vm � � LH]%^#}�JVdNm ]�iS`/F,]1^#_@`nl%�+pop .
4. If ��r �8]o�VdIhG�G~el �
m �@m
`S}��/J@]�}3F,]1^#_@`Ql%�+pop then ��r �8]
�
d�hG��~Gl �Vm � � LH]�^#}�J
dCm�]%iS`GF,]1^#_M`nl�� pBp .
5. If ��r J�}��*j@¨Nl �
m �@m
`S}��/J@]�}3F,]1^#_@`Nl%�+pop then ��r JG}��*j�¨Cl �Vm � � LH]%^#}�JVdQm ]�iS`/F,]1^#_@`nl�� pBp .

Proof. (Sketch) These follow because at most LH]�^#}�JVd processes in the given region appear in ]�iS`/F,]1^#_@`nl%�+p but not in
`S}��/J@]�}3F,]1^#_@`Nl%�+p . �

The next lemma says that neighbors in the augmented ring are also neighbors in the local ring.

Lemma 6.17. Let � be a good finite execution, �
� $�hV~']�~,�@l�� p .

1. If ��r�hVikjVj�hG��~Gl �Vm �@m�]%iS`GF,]1^#_M`nl�� pBp and E�_@`@�G]Vh � contains a finger for � , then �vr�h1ikjVj�h��G~�l �Vm �7m �7Y�}��*j@]�}OF,]1^#_M` � p .
2. If ��r �8]o�VdIhG�G~el �
m �@m�]�iS`/F,]1^#_@`nl%�+pop and E\_@`@��]Vh � contains a finger for � , then �vrv�n]o�VdIhG��~el �Vm �@m �7YZ}��*j�]%}OF,]1^#_@` � p .
3. If ��r J�}��*j@¨Nl �
m �@m�]�iS`/F,]1^#_@`nl%�+pop and E�_@`@�G]Vh � contains a finger for � , then �vr JG}��*j�¨Cl �Vm �7m �7Y�}��*j@]�}OF,]1^#_M` � p .

Proof. We show Part 1; the rest are similar. If � �r h1ikjVj1hG�G~�l �Vm �@m �SYZ}��*j@]�}OF,]1^#_M` � p , then it must be that there are at least
� elements of �7YZ}��ej@]%}OF,]1^#_@` � p in the interval l �Vm �Mp . But each of these is an element of ]�iS`/F,]1^#_@`nl%�+pop , which contradicts
the assumption that �vr�h1ikjVj�h��G~�l �Vm �7m ]�iS`/F,]1^#_@`nl%�+pop . �

The next lemma relates the augmented ring at some point to the global ring at a point not too far in the past.

Lemma 6.18. Let � be a good finite execution, ��_ a prefix of � with $%~�^#���@l��Z_#p�u�$%~�^#���@l�� p [ « ® . If ��r `S}��/J@]%}OF,]1^#_@`Cl��Z_#p ,
then ��r ]�iS`/F,]1^#_@`nl�� p .
Proof. By the definition of ]%iS`GF,]1^#_M` . �

The next lemma says that a neighbor in the augmented ring at a particular time is a neighbor in the global ring at a
point not too far in the past.

Lemma 6.19. Let � be a good finite execution, ��_ a prefix of � with $%~�^#���@l��Z_#p u $%~�^#���@l�� p [ « ® . Let �sr �
and

�Vm �vrsz2ced . Suppose �vrs`S}��TJ�]%}OF,]1^#_@`Nl��Z_#p . Then:

1. If ��r �Oh1ikjVj1hG�G~Gl �Vm �@m ]�iS`/F,]1^#_@`nl�� pBp then ��r �Oh1ikjVj1hG�G~Gl �Vm �7mV`%}Z�/J@]�}OF,]1^#_M`Ql��Z_#pop .
2. If ��r �S�8]
�
d�hG��~*l �Vm �@m�]%iS`GF,]1^#_M`nl�� pBp then ��r �S�8]
�
d�hG��~*l �Vm �@m
`S}��TJ�]%}OF,]1^#_@`Nl��Z_#pBp .
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3. If ��r�hVikjVj�hG��~Gl �Vm �@m�]%iS`GF,]1^#_M`nl�� pBp then �vr �n]o�VdIhG�G~Gl �Vm �@mV`%}��TJ@]�}OF,]1^#_M`Ql��Z_#pBp .
4. If ��r �8]o�VdIhG�G~el �
m �@m�]�iS`/F,]1^#_@`nl%�+pop then ��r �n]o�VdIhG��~el �Vm �@m
`S}��TJ�]%}OF,]1^#_@`Nl��Z_#pBp .
5. If ��r J�}��*j@¨Nl �
m �@m�]�iS`/F,]1^#_@`nl%�+pop then �vr JG}��*j�¨Cl �Vm �@mV`%}��TJ@]�}OF,]1^#_M`Ql��Z_#pBp .

Proof. For Part 1, suppose for the sake of contradiction that � �r �Oh1ikjVj1hG�G~�l �Vm �@m
`S}��TJ�]%}OF,]1^#_@`Nl���_#pop . Then y `%}��TJ@]�}OF,]1^#_M`Nl��Z_#p��
l �Vm��@pey � � , that is, there are more than � elements of `S}��/J@]�}3F,]1^#_@`Nl%� _#p in the interval properly between � and � ,
moving in the clockwise direction. By Lemma 6.18, every such element is also in ]%iS`GF,]1^#_M`nl�� _#p . Therefore, � �r
�Oh1ikjVj�h��G~Gl �
m �@m�]�iS`/F,]1^#_@`nl%�+pop . This is a contradiction.

The proof of Part 2 is analogous. For Part 3, suppose that �vr�h1ikjVj1hG�G~Gl �Vm �7m ]�iS`/F,]1^#_@`8l�� pBp . If �vrv�8hVikjVj�hG��~Gl �Vm �@m�]%iS`GF,]1^#_M`nl�� pBp
then the conclusion follows from Part 1. The only remaining case is where � � � , but this case follows trivially from
the fact that ��rs`S}��/J@]�}3F,]1^#_@`Nl%� _ p .

Part 4 is analogous. Part 5 follows from Parts 3 and 4. �

The following lemma summarizes facts about the knowledge of a new process at various points during and soon after
its joining protocol.

Lemma 6.20. Let � be a good finite execution, �
� $�hV~']�~,�@l�� p . Let � be a process that does not fail in � . Then:

1. Suppose that �7Y�h1~ ]%~�iMh � � ���-���%���9R and a �Z�*����� �*�@l,� �M�(�%�@��V'�G�&� �*p ��� � event for target � occurs in � at a time u
$%~�^#���@l�� p [ l"« ¬ � � �@p . Suppose that �vr JG}��*j�¨Cl �Vm
��m�]%iS`GF,]1^#_M`nl�� pBp , �'�M����V�S��%� ° occurs in � at a time �	$%~�^#� �@l�� p [
l��A« ¬ � # �Mp , and �(SS��� ° does not occur in � .
Then E�_@`@�G]Vh � contains a finger for � with ��e��8~�^#� � � _n��� .

2. Suppose that hV~']�~�iMh � � �'�M���S����R and a �Z�*����� �*�@l,� �M�(�%�@��V'�G�&� �*p ��� � event for target � occurs in � at a time �
$%~�^#���@l�� p [ l"« ¬ � � �@p . Suppose that �vr J�}��*j@¨Ql �Vm �Im�]%iS`GF,]1^#_M`nl�� pBp , �'�M����V�S��%� ° occurs in � at a time �	$%~�^#� �@l�� p [
l	« ¬ ��� �Mp , and �(SS��� ° does not occur in � .
Then E�_@`@�G]Vh � contains a finger for � with ��e��8~�^#� � � _n��� � « ® [ l � « ¬ ��� �Mp .

3. Suppose that �7Y�h1~']�~�iMh � � S���W
� �I� and a �'�M����V�S��%� � occurs in � at a time u�$%~�^#���7l%�+p [ l	« ¬ � � �@p . Suppose that
��r J�}��*j@¨Nl �
m �Im�]%iS`GF,]1^#_M`nl�� pBp , ���-��� V&S���� ° occurs in � at a time ��$%~�^#� �@l%�+p [ l � « ¬ � � �Mp , and �(SS��� ° does not occur
in � .
Then �SY E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#��� u��7Y�_n��� � « ® [ l%�A« ¬ ��� �Mp .

4. Suppose that �7Y�h1~']�~�iMh � � S���W
� �I� and a �'�M����V�S��%� � occurs in � at a time ��$%~�^#���7l%�+p [ l	« ¬ � � �@p . Suppose that
��r J�}��*j@¨Nl �
m �Im�]%iS`GF,]1^#_M`nl�� pBp , ���-��� V&S���� ° occurs in � at a time �	$%~�^#���7l%�+p [ l"« ¬ � � �Mp , and �(SS��� ° does not occur
in � .
Then �SY E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#��� u��7Y�_n��� � « ® [ l � « ¬ � � �Mp .

5. Suppose that �7Y�h1~']�~�iMh � � S���W
� �I� and a �'�M����V�S��%� � occurs in � at a time ��$%~�^#���7l%�+p [ l%�A« ¬ ��� �Mp . Suppose that
��r J�}��*j@¨Nl �
m � [ LH]�^#}�JVdCm�]�iS`/F,]1^#_@`nl%�+pop , �'�M����V�S��%� ° occurs in � at a time ��$%~�^#���@l�� p [ � , and �(SS��� ° does not occur
in � .
Then �SY E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#��� u��7Y�_n��� � « ® [ l"« ¬ � �@p .

Proof. Let a denote `%}��TJ@]�}OF,]1^#_M`Nl�� p . The proof is by strong induction on the number of steps in � .
Base: The total number of �'�M����V�S��%� events in � is at most

� � � � .
If there are no �'�M����V�S��%� events in � then the statements are all vacuously true. If there are between one and

� � � �
���-��� V&S���� events in � then the five claims follow from Lemma 6.10, Lemma 6.9, Parts 1, 2, and 3, and Corollary 6.13,
respectively. (This uses the fact that, in the absence of failures, ]%iS`GF,]1^#_M` is the same as `S}��TJ�]%}OF,]1^#_@` .)
Inductive step: We assume that � contains more than

� � � �����-��� V&S���� events. We assume that the result is true for all
proper prefixes of � and show it for � . We show the five properties in turn.

1. For Part 1, suppose that �7Y�h1~']�~�iMhe� � ���-���%���9R , a �Z�*����� �*�@l,� �M�(�%�@��V'�G�&� �*p���� � event for target � occurs in � at a time
u $%~�^#���@l�� p [ l	«P¬ � � �Mp , and �(SS��� 	 does not occur in � . Also suppose that �Kr J�}Z�ej@¨Nl �Vmo��m ]�iS`/F,]1^#_@`nl�� pBp and
���M����V&S���� ° occurs at a time �	$%~�^#� �@l%�+p [ l��A« ¬ � # �Mp . We must show that �SY E�_M`7�G]Vh � contains a finger for � with
positive ��e��8~�^#� � .
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Consider the first � �M�(�S�7��V'�G�&� � message for target � that is received by � , and let � be the sender of this message.
Let �Z_ be the prefix of � ending just before the �Z�*���I� �I�7l5�Z� P��%�k��Po�*p step in which � sends this message, let
��_ � $�h1~ ]%~'�@l%�n_#p and let a&_ � `S}��/J@]�}3F,]1^#_@`Nl%�n_#p .
By inductive hypothesis, Parts 3 and 4, ��_�Y E\_@`@��]Vh 	 contains a finger for every process in h1ikj
j�hG��~�l �nm ��m�]�iS`/F,]1^#_@`nl%� _#pBp
whose ���-��� V&S���� event occurs at a time ��$%~�^#� �@l�� _#p [ l � « ¬ � � �Mp and that does not fail in �Z_ . Therefore, by
Lemma 6.16, � _0Y E�_M`7�G]Vh 	 contains a finger for every process in h1ikjVj1hG�G~�l �nm � [ LH]%^#}�JVdQm
aB_�p whose ���-��� V&S���� event
occurs at a time � $%~�^#���7l%�Z_#p [ l � « ¬ � � �Mp . In particular, � _�Y E\_@`@��]Vh 	 contains a finger for every process in
hVikjVj�hG��~�l �nm h���� loy a$_�� � �nm �5pGy�m � [ LH]%^#}�JVdOp�moa&_Zp whose ���M����V&S���� event occurs at a time ��$%~�^#���@l�� _#p [ l � « ¬ � � �@p .
By our assumption on the join rate, at most �ADG��^#_ JVd processes in hVikjVj�hG��~�l �nm � [ LH]%^#}�JVdQmoad_Zp perform �'�M����V�S��%�
events at times u�$%~�^#���@l��Z_#p [ l � «P¬ � � �Mp . It follows that � _0Y E�_M`7�G]Vh 	 contains at least

h���� l
y aB_ � � �Qm �5pGy�m � [ LH]�^#}�JVdkp [
�ADG��^#_ JVd fingers for processes in a&_�� � �nm �5p .
Now we claim that � r �S�n]o�VdIhG�G~Gl �Vmo� � ��DG��^#_KJVdnm
a _ p . If not, then y a _ � � �nm �5pGyv� � ����DG��^#_ J
d . Then,
since ��� � � �ADG�%^#_KJVd � LH]%^#}�JVd , we have that

h���� l
y aB_�� � �nm �,pey�m � [ LH]�^#}�J
d8p [ ��DG��^#_KJVd � � , which im-
plies that ��_�Y E\_@`@��]Vh 	 contains strictly more than � fingers for processes in a3_ � � �Qm �5p . This implies that
� �r �7�8]o�Vd�h��G~Gl �
m
��m ��_�Y�}Z�ej@]�}3F,]1^#_@` � p , However, the definition of the �Z�*���I� �I�7l5�Z� P��%�k��Po�*p transitions implies that
�vr �S�n]o�VdIhG�G~Gl �Vmo�%m ��_0YZ}��*j@]�}OF,]1^#_M` � p , which yields a contradiction. Therefore, � r �S�n]o�VdIhG��~el �Vmo� � �ADG��^#_ JVd8moa3_�p , as
claimed.

Since � r JG}��*j�¨Cl �Vm
��m�]%iS`GF,]1^#_M`nl�� pBp , Lemma 6.19 implies that � r J�}Z�ej@¨Nl �Vmo��m
aB_�p . Since � r J�}��*j@¨Nl �
m
��moaB_Zp and
�vr �8]
�
d�hG��~Gl �Vmo��� ��DG��^#_ J
d8m
a&_Zp , Lemma 6.14 implies that �vr JG}��*j�¨Cl �nm � ��� �ADG��^#_ JVd8moaB_�p . Since (by assumption
on constants) � u � � � ��DG��^#_ J
d ��LH]%^#}�JVd , we have that ��r J�}��*j@¨Nl �nm � [ LH]%^#}�JVdQmoa3_Zp . Therefore, by Lemma 6.16,
��r J�}��*j@¨Nl �nm �Im ]�iS`/F,]1^#_@`nl%�n_#pBp .
Now we use the inductive hypothesis, Parts 3 and 4, again, to conclude that � _ Y E\_@`@��]Vh 	 contains a finger for �
with ��e1�n~�^#��� u���_�YZ_8��� � « ® [ l��!« ¬ �	� �@p . To apply the inductive hypothesis, we need the fact that ���-��� V&S���� °
occurs at a time � $%~�^#���@l��Z_#p [ l � « ¬ � � �Mp ; this follows from our assumption that �'�M����V�S��%� ° occurs at a time
�	$%~�^#� �@l�� p [ l��!« ¬ � # �@p and the fact that $%~�^#���@l��Z_#p u�$%~�^#���@l�� p [ l	« ¬ ��� �Mp .
Since ��r J�}Z�ej@¨Nl �nm ��m�]�iS`/F,]1^#_@`nl%�Z_�pop and ��_�Y E�_M`7�G]Vh 	 contains a finger for � , Lemma 6.17 implies that � rJ�}��*j@¨Ql �Qm �Im � _ YZ}��ej@]%}OF,]1^#_@` 	 p . Therefore, this finger for � gets included in the block sent by � in the � �@�k�%�@� V,��� � �
message.

Upon receipt of this message, E\_@`@��]Vh � contains a finger for � with ��e1�n~�^#��� uw_8��� � « ® [ l%�A« ¬ � � �@p . Then at
the end of � , at most time « ¬ � � � later, E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#� � u��7YZ_8��� �d« ® [ l��!« ¬ � ! �@p .
Since « ® � �!« ¬ � ! � , this implies ��e��8~�^#� � ���7YZ_8��� , as needed.

2. For Part 2, suppose that hV~']�~�iMhe� � ���-���%���9R and a ���e����� �*�@l,� �M�(�S�7��V'�G�&� �Ip ��� � event for target � occurs in � at a
time � $%~�^#� �@l%�+p [ l	«P¬ � � �Mp . Suppose that � r J�}��*j@¨Nl �
m �Im�]%iS`GF,]1^#_M`8l�� pBp , �'�M����V�S��%� ° occurs in � at a time
�	$%~�^#� �@l�� p [ l	«P¬ � � �Mp , and �(SS��� ° does not occur in � . We must show that E\_@`@��]Vh � contains a finger for � with
��e��8~�^#���q�w_8��� � « ® [ l � « ¬ ��� �Mp . Without loss of generality, assume that ��r�hVikjVj�hG��~Gl �Vm �Im ]�iS`/F,]1^#_@`8l�� pBp .
We first claim that there exists �wr z2cGd such that � r h1ikjVj1hG�G~�l �Vmo� [ � LH]�^#}�J
dNmoaqp [ h1ikjVj1hG�G~Gl �Vm � LH]�^#}�J
dQmoaqp ,
���M����V&S���� 	 occurs at a time � $%~�^#���7l%�+p [ l���« ¬ � � � �Mp , and �(SS��� 	 does not occur in � . This follows from
Lemma 6.15, applied with � � � ��� � � DG�%^#_KJVd and ��� � �

, using the assumption that ��� � DG�%^#_KJVd �	� LH]�^#}�J
d .

Now we claim that �vr JG}��*j�¨Cl �Qm � [ � LH]�^#}�JVdnm ]�iS`/F,]1^#_@`Ql%�+pop . We know that � r�hVikjVj�hG��~�l �
m
� [ LH]�^#}�J
dNm�]%iS`GF,]1^#_M`Ql�� pBpop .
Also, since � �r h1ikjVj�h��G~�l �Vm � LH]�^#}�J
dNmoaqp , we have that � �r h1ikj
j�hG��~el �Vm � LH]�^#}�JVdnm ]�iS`/F,]1^#_@`Ql%�+pop . Also, by assump-
tion, ��rKh1ikj
j�hG��~�l �Vm �Im ]�iS`/F,]1^#_@`nl�� pBp . Lemma 6.14, Part 2, applied with � � � � [ LH]�^#}�J
d , � � � � and � � ��� LH]�^#}�J
d ,
then implies that ��r J�}��*j@¨Nl �nm � [ � LH]�^#}�J
dNm�]%iS`GF,]1^#_M`Ql�� pBp , as claimed.

Process � performs a ���-��� V
�S����R at some time in the left-closed, right-open interval � $%~�^#���@l�� p [ l"« ¬ � � �@p�m $%~�^#� �@l%�+p [� �Mp , and � receives responses for all �S���9R messages generated by that ���M����V
�%���9R whose destinations do not fail.
Let �n_ be the prefix of � ending just before the ���-��� V
�S����R � , ��_ � $�hV~']�~,�@l��Z_#p , and a&_ � `S}��/J@]�}3F,]1^#_@`Nl%�n_#p .
We claim that ��_�Y E\_@`@��]Vh � contains a finger for � . Since the time of the ���-��� V&S���� 	 is ��$%~�^#� �@l�� p [ l��!«P¬ �"� � �Mp ,
it is also � $%~�^#���7l%�Z_�p [ l��!«6¬ � # �Mp . Since � r h1ikjVj�h��G~�l �Vm
� [ � LH]�^#}�J
dNmoaqp , Lemma 6.16 implies that �wr
hVikjVj�hG��~�l �
m
� [ LH]%^#}�JVdQm�]%iS`GF,]1^#_M`Ql�� p . Therefore, by Lemma 6.19, ��r h1ikjVj1hG�G~Gl �Vmo� [ LH]�^#}�JVdNmoaB_�p . Therefore, by
Lemma 6.16, �Er h1ikjVj1hG�G~Gl �Vm
��m�]%iS`GF,]1^#_M`nl��Z_#pop . Then the inductive hypothesis, Part 1, implies that ��_�Y E\_@`@��]Vh �
contains a finger for � .

23



Since � r h1ikj
j�hG��~�l �Vmo��m ]�iS`/F,]1^#_@`nl��Z_#pBp and ��_�Y E\_@`@��]Vh � contains a finger for � , Lemma 6.17 implies that � rJ�}��*j@¨Ql �Vm
��m ��_�Y�}��*j@]�}OF,]1^#_M` � p . Therefore, during the �'�M����Vo�S���9R , � sends a �S���9R message to � . Since � does not fail in
� , � responds to the �S����R message with a U7� �-�%� message. Let ��_ _ be the prefix of � ending just before � sends
the U7� �-�%� message, let � _ _ � $�hV~']�~,�@l��Z_ _�p , and let a&_ _ denote `S}��TJ�]%}OF,]1^#_@`Cl��Z_ _#p .
Since ��r JG}��ej@¨Cl �nm � [ � LH]�^#}�JVdQm ]�iS`/F,]1^#_@`nl%�+pop , Lemma 6.19 implies that ��r JG}��*j�¨Cl �nm � [ � LH]�^#}�JVdNmoaB_ _�p . Then
Lemma 6.16 implies that � r JG}��*j�¨Cl �Qm � [ LH]�^#}�JVdQm ]�iS`/F,]1^#_@`Ql%� _ _#pop . Then by inductive hypothesis, Part 5, we
know that ��_ _0Y E�_M`7�G]Vh 	 contains a finger for � with ��e��8~�^#� � u�� _ _�Y�_n��� � « ® [ l	« ¬ � �@p .
Since � r J�}Z�ej@¨Nl �nm ��m�]�iS`/F,]1^#_@`nl%�Z_ _#pop and ��_ _0Y E�_M`7�G]Vh 	 contains a finger for � , Lemma 6.17 implies that � rJ�}��*j@¨Ql �Qm �Im ��_ _�Y�}Z�ej@]�}3F,]1^#_@` 	 p . Therefore, the finger for � is included in the block sent by � in its U7� �-�%� message to
� . At most «P¬ � � � time elapses from this PB�S�9Q until the end of � , which means that �7Y E\_@`@��]Vh � contains a finger
for � with ��e��8~�^#� � u��7YZ_8��� � «¯® [ l � «P¬ ��� �Mp , as needed.

3. For Part 3, suppose that �SY�h1~ ]%~�iMh*� � S��AW
� �*� and a ���M����V&S���� � occurs in � at a time f u $%~�^#� �@l�� p [ l"«P¬ � � �@p .
Suppose also that � r JG}��*j�¨Cl �Vm �Im�]%iS`GF,]1^#_M`nl�� pBp , ���-��� V&S���� ° occurs at a time � $%~�^#� �@l%�+p [ l � «±¬ � � �Mp , and �(SS��� °
does not occur in � . We must show that �7Y E\_@`@��]Vh � contains a finger for � with ��e��8~�^#� � u��7YZ_8��� �g«® [ l��A«P¬ �
� �Mp . Without loss of generality, assume that ��r�h1ikjVj1hG�G~Gl �Vm ��m�]�iS`/F,]1^#_@`nl%�+pop .
The argument is similar to that for the previous case, because we argue with respect to �S����R s and U7� �-��� re-
sponses near the end of the joining protocol. By Lemma 6.15, there exists �vr�z2ced such that � r�h1ikj
j�hG��~�l �Vmo� [� LH]�^#}�J
dNmoaqp [ h1ikjVj1hG�G~�l �Vm � LH]�^#}�JVdNmoaqp , ���M����V&S���� 	 occurs at a time � $%~�^#� �@l%�+p [ l � « ¬ � � � �Mp , and �(SS��� 	 does
not occur in � . This uses the assumption that �w� �ADG��^#_ JVd � ��LH]�^#}�JVd . Then, since � r h1ikjVj1hG�G~�l �Vmo� [LH]�^#}�JVdQm ]�iS`/F,]1^#_@`Ql%�+pop , � �rKh1ikjVj1hG�G~�l �Vm � LH]%^#}�JVdQm ]�iS`/F,]1^#_@`nl�� pBp , and ��rKh1ikjVj1hG�G~�l �Vm �Im ]�iS`/F,]1^#_@`nl%�+popBp , Lemma 6.14,
Part 2, implies that ��r JG}��*j�¨Cl �nm � [ � LH]�^#}�JVdQm ]�iS`/F,]1^#_@`nl%�+pop .
Process � performs a ���-��� V
�S����R at some time in the interval � f [ l	« ¬ � � �Mp1m�f [ � �Mp , and � receives responses
for all �S���9R messages generated by that �'�M����Vo�S����R whose destinations do not fail in � . Let �\_ be the prefix of �
ending just before the ���-��� V
�S����R � , ��_ � $�h1~ ]%~'�@l��Z_#p , and a&_ � `S}��/J@]%}OF,]1^#_@`Cl��Z_�p .
We claim that � _ Y E\_@`@��]Vh � contains a finger for � . Since the time of the ���-��� V&S���� 	 is ��$%~�^#� �@l�� p [ l � «P¬ �"� � �Mp ,
it is also ��$%~�^#���7l%�Z_�p [ l��A«P¬ � # �Mp . Since � is in h1ikj
j�hG��~el �Vmo� [ � LH]�^#}�JVdQm
aqp , Lemma 6.16 implies that �Rr
hVikjVj�hG��~�l �
m
� [ LH]�^#}�J
dCm�]%iS`GF,]1^#_M`nl�� p . Therefore, by Lemma 6.19, ��r h1ikjVj1hG�G~�l �Vmo� [ LH]%^#}�JVdNm
aB_�p . (This uses
the assumption that « ® � � « ¬ � � � .) Therefore, by Lemma 6.16, � r h1ikj
j�hG��~�l �Vmo��m ]�iS`/F,]1^#_@`nl���_�pop . Then the
inductive hypothesis, Parts 1 and 2, imply that ��_�Y E\_@`@��]Vh � contains a finger for � .
Since � r h1ikj
j�hG��~�l �Vmo��m ]�iS`/F,]1^#_@`nl��Z_#pBp and ��_�Y E\_@`@��]Vh � contains a finger for � , Lemma 6.17 implies that � rJ�}��*j@¨Ql �Vm
��m ��_�Y�}��*j@]�}OF,]1^#_M` � p . Therefore, during the �'�M����Vo�S���9R , � sends a �S���9R message to � . Since � does not fail in
� , � responds to the �S����R message with a U7� �-�%� message. Let ��_ _ be the prefix of � ending just before � sends
the U7� �-�%� message, let � _ _ � $�hV~']�~,�@l��Z_ _�p , and let a&_ _ denote `S}��TJ�]%}OF,]1^#_@`Cl��Z_ _#p .
Since ��r JG}��ej@¨Cl �nm � [ � LH]�^#}�JVdQm ]�iS`/F,]1^#_@`nl%�+pop , Lemma 6.19 implies that ��r JG}��*j�¨Cl �nm � [ � LH]�^#}�JVdNmoa _ _ p . Then
Lemma 6.16 implies that � r JG}��*j�¨Cl �Qm � [ LH]�^#}�JVdQm ]�iS`/F,]1^#_@`Ql%� _ _#pop . Then by inductive hypothesis, Part 5, we
know that � _ _�Y E�_@`@�G]Vh 	 contains a finger for � with ��e��8~�^#� � u�� _ _�YZ_8��� � « ® [ l	« ¬ � �Mp . (Here, we need the fact
that the time of the ���M����V&S���� 	 is ��$%~�^#���@l��Z_ _#p [ l��!« ¬ �&� �Mp , and the time of the �'�M����V�S��%� ° is ��$%~�^#� �@l%�n_ _#p [ � .)
Since � r J�}Z�ej@¨Nl �nm ��m�]�iS`/F,]1^#_@`nl%�Z_ _#pop and ��_ _0Y E�_M`7�G]Vh 	 contains a finger for � , Lemma 6.17 implies that � rJ�}��*j@¨Ql �Qm �Im ��_ _�Y�}Z�ej@]�}3F,]1^#_@` � p . Therefore, the finger for � is included in the block sent by � in its U7� �-�%� message
to � . At most

� «±¬ ��� � time elapses from this PB�S�9Q until the end of � , which means that �7Y E�_@`@�G]Vh � contains a
finger for � with ��e1�n~�^#���qu��7Y�_n��� � « ® [ l��!« ¬ � � �Mp , which suffices.

4. For Part 4, suppose that �SY�h1~ ]%~�iMh*� � S��AW
� �*� and a ���-��� V&S���� � occurs in � at a time ��$%~�^#� �@l�� p [ l"«P¬ � � �@p . Suppose
that �sr J�}Z�ej@¨Nl �Vm �Im ]�iS`/F,]1^#_@`nl�� pBp , ���-��� V&S���� ° occurs in � at a time � $%~�^#���@l�� p [ l"«P¬ � � �Mp , and �(SS��� ° does not
occur in � . We must show that �SY E�_M`7�G]Vh � contains a finger for � with ��e��n~�^#��� u �7YZ_8��� � « ® [ l � « ¬ � � �@p .
Without loss of generality, assume that �vr�h1ikjVj�h��G~�l �Vm �Im�]%iS`GF,]1^#_M`nl�� pBp .
Lemma 6.15 implies that there exists � rJz�cGd such that � r�hVikjVj�hG��~Gl �Vmo� [ � LH]�^#}�J
dQmoaqp [ hVikjVj�hG��~Gl �Vm � LH]%^#}�JVdnmoaqp ,
���M����V&S���� 	 occurs at a time � $%~�^#���@l�� p [ l���« ¬ � � � �Mp , and �(SS��� 	 does not occur in � . This uses the assumption
that ��� � DG��^#_ JVd �&��LH]�^#}�JVd .
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At some time in the interval � $%~�^#���@l�� p [ l"« ¬ � �Mp1m $%~�^#���Ml�� p [ « ¬ p , � performs a _8�G^�`*��JV��]�F,]o�2LV]o��hB� 	 whose
messages all arrive by the end of � . Let � _ be the prefix of � ending just before this _n��^�`I�@JV��]�F,]
�(LV]o��ho� 	 ,
��_ � $�h1~ ]%~'�@l%�n_#p , and aB_ � `S}��TJ�]%}OF,]1^#_@`Cl��Z_#p .
Since �sr h1ikjVj1hG�G~�l �Vmo� [ � LH]�^#}�JVdNmoaqp , Lemma 6.16 implies that � r h1ikjVj1hG�G~�l �Vmo� [ LH]%^#}�JVdQm ]�iS`/F,]1^#_@`Ql%�+pop , Also,
since � r a , we know that � r �8]o�VdIhG�G~el �nmo� [ � LH]�^#}�JVdNmoaqp and so, by Lemma 6.16, � r �n]o�VdIhG�G~Gl �nm
� [LH]�^#}�JVdQm ]�iS`/F,]1^#_@`Ql%�+pop . By Lemma 6.19, �Rr �n]o�VdIhG��~el �nm
� [ LH]%^#}�JVdNm
a&_�p . Therefore, by Lemma 6.16, �Rr
�8]o�VdIhG�G~Gl �Qmo��m ]�iS`/F,]1^#_@`nl��Z_#pBp . Then by inductive hypothesis, Part 5, ��_�Y E\_@`@��]Vh 	 contains a finger for � with
��e��8~�^#���qu�$%~�^#���@l��Z_�p � «¯® [ l"«6¬ � �Mp .
Next, we claim that ��r JG}��ej@¨Cl �nm � [ � LH]%^#}�JVdnm�]%iS`GF,]1^#_M`nl�� pBp . We know that � rKh1ikjVj1hG�G~�l �Vmo� [ LH]%^#}�JVdQm ]�iS`/F,]1^#_@`nl�� pBp .
Also, since � �r hVikjVj�hG��~Gl �Vm � LH]%^#}�JVdnmoaqp , we know that � �r h1ikj
j�hG��~�l �Vm � LH]%^#}�JVdQm ]�iS`/F,]1^#_@`nl�� pBp . Then, since
��r�hVikjVj�hG��~�l �
m �Im�]%iS`GF,]1^#_M`nl�� pBp , Lemma 6.14 implies that �vr JG}��*j�¨Cl �nm � [ � LH]�^#}�JVdQm ]�iS`/F,]1^#_@`Ql%�+pop , as claimed.

Therefore, by Lemma 6.19, ��r JG}��*j�¨Cl �nm � [ � LH]%^#}�JVdnmoa3_Zp . So by Lemma 6.16, �vr J�}��*j@¨Nl �nm � [ LH]%^#}�JVdnm�]%iS`GF,]1^#_M`Ql�� _#pBp .
Then by inductive hypothesis, Part 5, � _ Y E�_M`7�G]Vh 	 contains a finger for � with ��e��8~�^#� �qu�$%~�^#� �@l�� _ p��j« ® [ l	« ¬ �
�@p . Thus, ��_�Y E\_@`@��]Vh 	 contains fingers for � and � , both with ��e1�n~�^#��� u�$%~�^#� �@l%� _#p � « ® [ l"« ¬ � �@p .
Since � r JG}��*j�¨Cl �nm �Im�]%iS`GF,]1^#_M`nl��Z_#pBp and ��_0Y E�_M`7�G]Vh 	 contains a finger for � , Lemma 6.17 implies that � rJ�}��*j@¨Ql �Qm �Im ��_�YZ}��ej@]%}OF,]1^#_@` 	 p . Therefore, � is among the targets of the U7� �-�%� message sent by � during the _8�G^�`*��J
�%]�F,]o�2LV]o�1ho� 	 .
Also, since � r JG}��ej@¨Cl �nm �Im�]%iS`GF,]1^#_M`nl��Z_#pBp and ��_0Y E�_M`7�G]Vh 	 contains a finger for � , Lemma 6.17 implies that
��r J�}��*j@¨Nl �nm �Im ��_0YZ}��*j�]%}OF,]1^#_@` 	 p . Therefore, the finger for � is included in the block sent by � in its U@� �-��� message
to � . When the finger is sent, it has ��e��n~�^#��� u�� _ Y�_n��� � « ® [ l	« ¬ � �@p . Therefore, at the end of � , which is at
most time « ¬ � � later, �7Y E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#���qu��SYZ_8��� � « ® [ l � « ¬ � � �@p , as needed.

5. For Part 5, suppose that �7Y�hV~']�~�iMhe� � S���W
� �I� and a �'�M����V�S��%� � occurs in � at a time ��$%~�^#� �@l%�+p [ l��!«P¬ � � �@p . Also
suppose that �sr JG}��ej@¨Cl �Vm � [ LH]%^#}�JVdNm ]�iS`/F,]1^#_@`nl%�+pop , �'�M����V�S��%� ° occurs in � at a time � $%~�^#� �@l�� p [ � , and �(SS��� °
does not occur in � . We must show that �7Y E\_@`@��]Vh � contains a finger for � with ��e1�n~�^#���qu��7Y�_n��� �{«® [ l	«P¬�� �@p .
Without loss of generality, assume that � r hVikjVj�hG��~�l �
m � [ LH]�^#}�JVdCm�]�iS`/F,]1^#_@`nl%�+pop . Let f denote the time of the
���M����V&S���� ° . We consider two cases:

(a) f ��$%~�^#� �@l�� p [ l � « ¬ ��� �Mp .
Lemma 6.15 implies that there exists � rsz2ced such that � rKh1ikj
j�hG��~�l �Vmo� [ � LH]�^#}�JVdnm
a�p [ h1ikj
j�hG��~�l �Vm � LH]%^#}�JVdQm
a�p ,
���-��� V&S���� 	 occurs at a time � $%~�^#� �@l�� p [ l � « ¬ � # �Mp , and �(SS��� 	 occurs in � . Then (as in the argu-
ment for Part 2), Lemma 6.14, Part 2, implies that � r J�}��*j@¨Nl �nm � [ � LH]�^#}�J
dCm�]%iS`GF,]1^#_M`nl�� pBp . Therefore,
� r J�}��*j@¨Ql��7m � [ � LH]�^#}�JVdQm ]�iS`/F,]1^#_@`Ql%�+pop .
Then we claim that � performs a _n��^�`I�@JV�%]�F,]o�(LV]
�1ho� sometime in the interval � $%~�^#���@l�� p [ l � «¯¬ � � �Mp1m $%~�^#���7l%�+p [
l	«P¬ � � �MpBp . Let �Z_ be the prefix of � ending just before this _8�G^�`*��JV��]�F,]o�2LV]o��hB� 	 , let ��_ � $�h1~ ]%~'�7l��Z_#p , and
let a&_ � `S}��TJ�]%}OF,]1^#_@`Nl��Z_�p .
Since �Rr JG}��ej@¨Cl �nm � [ � LH]%^#}�JVdQm ]�iS`/F,]1^#_@`nl�� pBp , Lemma 6.19 implies that �Rr J�}Z�ej@¨Nl �nm � [ � LH]%^#}�JVdQmoa3_Zp ,
and so by Lemma 6.16, � r J�}��*j@¨Ql �Qm � [ LH]�^#}�JVdCm�]%iS`GF,]1^#_M`nl�� _#pBp . Also, since �sr J�}��*j@¨Nl �
m
� [ � LH]�^#}�JVdNmoaqp ,
we have that ��r J�}Z�ej@¨Nl �nmo� [ � LH]�^#}�J
dNmoaqp , so by Lemma 6.16, ��r J�}��*j@¨Nl �nmo� [ LH]�^#}�JVdQm ]�iS`/F,]1^#_@`Ql%�+pop , so
by Lemma 6.19, � r J�}Z�ej@¨Nl �nmo� [ LH]%^#}�JVdNm
a&_�p , so again by Lemma 6.16, ��r J�}��*j@¨Nl �nmo��m ]�iS`/F,]1^#_@`Ql%� _#pBp , so
�\r JG}��ej@¨Cl �nm � [ LH]�^#}�J
dCm�]%iS`GF,]1^#_M`nl��Z_#pBp .
Then by inductive hypothesis, Part 5, � _�Y E�_@`@�G]Vh 	 contains a finger for each of � and � , both with ��e��8~�^#� � u
� _ YZ_8��� � « ® [ l"« ¬ � �Mp . Since � r JG}��*j�¨Cl �Qm �Im ]�iS`/F,]1^#_@`nl�� _ pop and � _ Y E\_@`@��]Vh 	 contains a finger for
� , Lemma 6.17 implies that � r J�}��*j@¨Ql �Qm �Im � _0YZ}��*j�]%}OF,]1^#_@` 	 p . Therefore, � is among the targets of theU@� �M�%� message sent by � during the _8�G^�`*��J
�%]�F,]o�2LV]o�1ho� 	 . Also, since � r JG}��*j�¨Cl �nm �Im�]%iS`GF,]1^#_M`nl��Z_#pop and
��_0Y E�_M`7�G]Vh 	 contains a finger for � , Lemma 6.17 implies that ��r JG}��ej@¨Cl �nm �Im ��_0Y�}��*j@]�}OF,]1^#_M` 	 p . Therefore, the
finger for � is included in the block sent by � in its U@� �M�%� message to � . When the finger is sent, it has
��e1�n~�^#��� u���_�Y�_n��� � «¯® [ l"«6¬ � �Mp .
This U7� �-��� message arrives at � at a time ��$%~�^#���7l%�+p [ l	«±¬ � �@p . Then sometime in the interval � $%~�^#���@l�� p [
l	«P¬ � �Mp1m $%~�^#���@l�� p [ «P¬�p , � performs a �I�I� R��TU%�M��V
�Z���,�Z� P�� ° . Let �Z_ _ be the prefix of � ending just before
this _8�G^�`I�@JV��]�F,]o�2LV]o��ho� ° , let ��_ _ � $�h1~']�~,�7l%�n_ _#p , and let a&_ _ � `S}��/J@]�}3F,]1^#_@`Nl%�n_ _#p .
Since ��r JG}��ej@¨Cl �Vm � [ LH]%^#}�JVdnm�]%iS`GF,]1^#_M`Ql�� pBp , we have, by Lemma 6.19, that ��r J�}Z�ej@¨Nl)�7m � [ LH]%^#}�JVdQm
`S}��TJ�]%}OF,]1^#_@`Cl���_ _�pop .
So by Lemma 6.16, ��r JG}��*j�¨Cl��7m ��m�]�iS`/F,]1^#_@`nl%�Z_ _xpop . Also, ��_ _�Y E\_@`@��]Vh ° contains a finger for � , because the
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finger for � that arrives in the U@� �-��� message from � has not had time to expire. Then Lemma 6.17 implies
that �\r JG}��*j�¨Cl��7m �Im ��_ _�Y�}��*j@]�}OF,]1^#_M` ° p . Therefore, � is among the targets of the U7� �-��� message sent by � during
this �I�I� R�� U%�M��Vo�����,����P�� ° .

This U7� �-�%� message contains a finger for � , with ��e��8~�^#��� � � _ _ YZ_8��� �0« ® . Therefore, at the end of � ,
at most time « ¬ ��� later, �SY E�_M`7�G]Vh � contains a finger for � with ��e��n~�^#���vu��7Y�_n��� ��« ® [ l	« ¬ ���Mp , as
needed.

(b) f�u�$%~�^#� �@l�� p [ l � «P¬ ��� �Mp .
Then the time between the �'�M����V�S��%� � and �'�M����V�S��%� ° is � «6¬ �	� � .
Lemma 6.15 implies that there exists � rsz2ced such that � r �8]o�Vd�h��G~Gl)�Sm
� [ � LH]%^#}�JVdQm
a�p [ �8]o�Vd�h��G~�l��7m � LH]�^#}�J
dCmoaqp ,
���-��� V&S���� 	 occurs at a time ��$%~�^#���@l�� p [ l%�A« ¬ � ��� �Mp , and �(SS��� 	 occurs in � . This uses the assumption that
������DG��^#_ J
d �	� LH]%^#}�JVd .

Now we claim that � r JG}��*j�¨Cl �Qm � [ ��LH]%^#}�JVdQm�]%iS`GF,]1^#_M`nl�� pBp . Since � r �n]o�VdIhG��~el��7mo� [ � LH]%^#}�JVdQm
a�p ,
Lemma 6.16 implies that ��r��8]o�VdIhG�G~Gl��7m
� [ LH]�^#}�JVdCm�]%iS`GF,]1^#_M`nl�� pBp . Since � �rJ�n]o�VdIhG��~el��7m � LH]�^#}�JVdCmoaqp , we
have that � �r �8]o�Vd�h��G~Gl)�Sm � LH]%^#}�JVdNm ]�iS`/F,]1^#_@`nl�� pBp . Since �vr JG}��*j�¨Cl �Vm � [ LH]%^#}�JVdnm�]%iS`GF,]1^#_M`Ql�� pBp , Lemma 6.14,
Part 2, implies that �\r J�}��*j@¨Nl �nm � [ ��LH]�^#}�J
dNm�]%iS`GF,]1^#_M`Ql�� pBp , as claimed.

Process � performs a ���-��� V
�%���9R at some time in the interval � f [ l	« ¬ � � �@p�mTf [ « ¬ p , and � receives responses
for all �S����R messages generated by that ���M����V
�%���9R whose destinations do not fail, strictly before time f . Let
�Z_ be the prefix of � ending just before this ���-��� V
�S����R ° , ��_ � $�h1~ ]%~'�@l%�n_#p , and aB_ � `S}��TJ�]%}OF,]1^#_@`Cl��Z_#p .
We claim that � _0Y E�_M`7�G]Vh ° contains a finger for � . Since � r J�}��*j@¨Nl)�Sm
� [ LH]�^#}�J
dCm�]%iS`GF,]1^#_M`nl�� pBp , Lemma 6.19
implies that � r JG}��*j�¨Cl��7m
� [ LH]%^#}�JVdNm
a&_�p , and so by Lemma 6.16, � r J�}��*j@¨Ql��7m
��m�]%iS`GF,]1^#_M`Ql�� _#pBp . Then by
inductive hypothesis, Parts 1 and 2, ��_�Y E�_M`7�G]Vh ° contains a finger for � .
Since � r JG}��ej@¨Cl��7mo��m ]�iS`/F,]1^#_@`Ql%� _ pop and � _ Y E�_M`7�G]Vh ° contains a finger for � , Lemma 6.17 implies that
� r J�}��*j@¨Ql��7m
��m ��_�Y�}Z�ej@]�}3F,]1^#_@` ° p . Therefore, during the �'�M����Vo�S���9R , � sends a �%���9R message to � . Since � does
not fail, it responds with a U7� �-��� message. Let � _ _ be the prefix of � ending just before � sends this U@� �M�%�
message, let ��_ _ � $�h1~ ]%~'�7l��Z_ _xp , and a&_ _ � `%}Z�/J@]�}OF,]1^#_M`Nl%�n_ _#pBp .
Since � r JG}��ej@¨Cl �nm � [ � LH]%^#}�JVdQm ]�iS`/F,]1^#_@`Ql%�+pop , Lemma 6.19 implies that � r JG}��ej@¨Cl �nm � [ � LH]%^#}�JVdQm
aB_ _Zp .
Then Lemma 6.16 implies that ��r JG}��*j�¨Cl �nm � [ LH]%^#}�JVdNm ]�iS`/F,]1^#_@`nl%� _ _#pop . Then by inductive hypothesis, Part
5, we know that � _ _�Y E�_M`7�G]Vh 	 contains a finger for � with ��e��8~�^#���quw_8��� � « ® [ l"« ¬ � �Mp .
Since �tr JG}��*j�¨Cl �Qm �Im ]�iS`/F,]1^#_@`nl��Z_ _#pBp and ��_ _�Y E\_@`@��]Vh 	 contains a finger for � , Lemma 6.17 implies that
��r JG}��ej@¨Ql �nm ��m ��_ _0YZ}��*j�]%}OF,]1^#_@` 	 p . Therefore, the finger for � is included in the block sent by � in its U@� �-���
message to � . This finger is recorded by � , and persists until the end of � .

Immediately after the �'�M����V�S��%� ° , and at intervals of «±¬ thereafter, process � performs a �I�I� R��TU%�M��V
�Z���,�Z� P�� ° ,
in which it sends a U@� �M�%� message containing a finger for itself with ��e��n~�^#��� � « ® .

We claim that � is included in the set of targets of each such U@� �-��� message. This is because �\r JG}��ej@¨Cl��7m � [LH]�^#}�J
dCm�]%iS`GF,]1^#_M`nl�� pBp , so by Lemma 6.16, �\r JG}��ej@¨Cl��7m �Im ]�iS`/F,]1^#_@`(p at each point after the ���-��� V&S���� ° . Then
Lemma 6.17 implies that ��r J�}��*j@¨Nl)�Sm �ImG}Z�ej@]�}3F,]1^#_@` ° p at each point after the �'�M����V�S��%� ° , which implies that �
is included in the set of targets of each such U@� �M�%� message.

Some such message must arrive at � that is sent by � at a time u	$%~�^#���7l%�+p [ l	«¯¬ � �@p . Therefore, �7Y E�_M`7�G]Vh �
contains a finger for � with ��e1�n~�^#��� u��7Y�_n��� � «® [ l	«P¬ � �@p , as needed.

�

6.5 Maintaining the Chords

We state a lemma analogous to the main lemma of the previous section, Lemma 6.20, but for neighbors of each
particular chord position � rather than neighbors of the node � itself.

The statements of Part 1, 2, and 3 are entirely analogous to those in Lemma 6.20. However, in Part 4, the fact
that � uses chord-pings instead of neighbor-refreshes to keep up-to-date with respect to � after the �'�M����V�S��%� � changes
the bound slightly. Part 5, which describes situations where � obtains first-hand knowledge of � directly from � , gets
weakened considerably. This is because we have no phenomenon analogous to that of the prior case 5(b), where �
informs � directly about its existence immediately after the join. So, the new Part 5 talks only about those � that are so
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close to the chord position that � pings � directly during its chord-pings. Since � pings only the apparent � -block of � ,
this involves only those � that are in this tiny neighborhood.

The proof is also different in some interesting ways. Rather than relying on the inductive hypotheses as before, we
rely on the earlier lemma about neighborhoods, Lemma 6.20. That is because the relevant information arrives from
neighbors of the chord position � .

Lemma 6.21. Let � be a good finite execution, �
� $�h1~ ]%~'�@l%�+p . Let � be a process that does not fail in � . Let

� r � m � ��� ��� [ � , and � � z"�O�Gb�l �5p � � 	 . Then:

1. Suppose that �7Y�h1~']�~�iMh � � ���M���S���9R and a �Z�*����� �*�@l,� �M�(�%�@��V'�G�&� �*p ��� � event for target � occurs in � at a time
u $%~�^#� �@l�� p [ l"« ¬ � � �Mp . Suppose that ��r JG}��ej@¨Clx�Cm
��m�]%iS`GF,]1^#_M`Ql�� pBp , ���-��� V&S���� ° occurs in � at a time �
$%~�^#���@l�� p [ l%�A«P¬ � # �Mp , and �(SS��� ° does not occur in � .
Then E�_@`@�G]Vh � contains a finger for � with ��e��8~�^#� � � _n��� .

2. Suppose that h1~']�~�iMh � � �'�M���S����R and a ���e�G�I� �I�7l,� �M�k�%�7��V,���&� �*p � � � event for target � occurs in � at a time �
$%~�^#���@l�� p [ l"« ¬ � � �Mp . Suppose that �vr JG}��*j�¨Clx��m �Im ]�iS`/F,]1^#_@`Ql%�+pop , ���-��� V&S���� ° occurs in � at a time ��$%~�^#���@l�� p [
l	«P¬ ��� �Mp , and �(SS��� ° does not occur in � .
Then E�_@`@�G]Vh � contains a finger for � with ��e��8~�^#� � � _n��� � «® [ l � «P¬ ��� �Mp .

3. Suppose that �7Y�h1~']�~�iMh � � S���W
� �I� and a �'�M����V�S��%� � occurs in � at a time u�$%~�^#���7l%�+p [ l	« ¬ � � �@p . Suppose that
� r JG}��*j�¨Nlx�Cm �Im�]%iS`GF,]1^#_M`Ql�� pBp , ���-��� V&S���� ° occurs in � at a time � $%~�^#���7l%�+p [ l � « ¬ � � �@p , and �(SS��� ° does not
occur in � .
Then �SY E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#��� u��7Y�_n��� � «® [ l%�A«P¬ ��� �Mp .

4. Suppose that �7Y�h1~']�~�iMh � � S���W
� �I� and a �'�M����V�S��%� � occurs in � at a time ��$%~�^#���7l%�+p [ l	« ¬ � � �@p . Suppose that
��r J�}��*j@¨Nl0�Cm ��m�]�iS`/F,]1^#_@`Nl�� pBp , ���M����V&S���� ° occurs in � at a time ��$%~�^#� �@l%�+p [ l	« ¬ � � �Mp , and �(SS��� ° does not occur
in � .
Then �SY E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#��� u��7Y�_n��� � «® [ l � «P¬ ��� �Mp .

5. Suppose that �7Y�h1~']�~�iMh � � S���W
� �I� and a �'�M����V�S��%� � occurs in � at a time ��$%~�^#���7l%�+p [ l � « ¬ �	� �Mp . Suppose that
��r J�}��*j@¨Nl0�Cmo� [ LH]�^#}�JVdCm�]%iS`GF,]1^#_M`nl�� pBp , ���M����V&S���� ° occurs in � at a time �	$%~�^#���7l%�+p [ l � « ¬ � � �@p , and �(SS��� ° does
not occur in � .
Then �SY E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#��� u��7Y�_n��� � «® [ l"«P¬ � � �Mp .

Proof. Parts 1, 2, and 3, are proved similarly to before, but instead of inductive hypotheses, they use the relevant
parts of Lemma 6.20.

For Part 4, we rely on the chord-ping mechanism. And again, the relevant parts of Lemma 6.20 rather than
inductive hypotheses.

For Part 5, we use Part 4 to conclude that � learns about � by time $%~�^#� �@l%�+p [ l	« ¬ � � �Mp , and then rely on the
chord-ping mechanism. The key is that in this last chord-ping, � communicates directly with (pings) � .

�

6.6 Correctness of Lookup Results

Theorem 6.22. Every good execution � satisfies
� «¯¬ �	� � -lookup-correctness.

Proof. (Sketch:) Let � _ be a prefix of � ending just before a � �M�k�%�7��V&S����%l���p � event, which is a response to a prior
� �M�(�%�@�@l0�8p � . Let ��_ � $�h1~']�~,�@l��Z_�p and a&_ � `%}��TJ@]�}OF,]1^#_M`Nl��Z_#p .

It suffices to produce a ring a such that a � ]%iS`GF,]1^#_M`Ql���_#p , a contains every b�cGd in aB_ except possibly for those
� such that �'�M����V�S��%� ° occurs in �Z_ at a time u�$%~�^#���@l��Z_#p [ l � «P¬ ��� �Mp , and � � �S�8]
�
d�hG��~*lx�Cm
��moaqp .

Define the ring a to be the union �g`�« , where:

� � is the set of all z"�O�Gb l��Mp�rsa&_ such that ���-��� V&S���� ° occurs at a time ��$%~�^#���Sl%�Z_#p [ l � « ¬ �	� �@p .
� « is that set of all b�cGd�h in � _�Y E�_M`7�G]Vh � .
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We show that a satisfies the three properties.
The first property is immediate, because all b�cGd s in ��_0Y E�_M`7�G]Vh � are in ]%iS`GF,]1^#_M`Ql��Z_#p . The second property is also

immediate, because ���"a . For the third property, the code for � �@�k�%�@� V&S�����l���pV� implies that � � �7�8]o�Vd�h��G~el0�Cm
��m ��_�YZ}��*j�]%}OF,]1^#_@` � p .
We need to show that � � �S�n]o�VdIhG��~*lx��mo��m
a�p . Since }Z�ej@]�}3F,]1^#_@` � is the set of b�ced s in E�_@`@�G]Vh � , and that set is a subset
of a , it is enough to show that every �vrv�7�8]o�Vd�h��G~el0�Cm
��moaqp is also in � _ Y E\_@`@��]Vh � .

So, fix �vrv�7�8]o�VdIhG�G~el0�Cmo�%moaqp . If �vrg« then we are done so assume that ��r � . Thus, �vr ad_ and ���-��� V&S���� ° occurs
at a time � f [ l � «P¬ ��� �Mp . Since ��r �S�n]o�VdIhG�G~elx��mo��m
aqp , we have that �vr �7�8]o�Vd�h��G~Gl0�Cmo� ���ADG�%^#_KJVdQm
aB_Zp .

The � �M�(�%�@��V�S��%�Il%��p � event follows the receipt by � of a � �M�(�%�@� V,��� � � message, with no intervening time passage.
Let � be the sender of this � �M�(�%�@��V'�G�&� � message. Then � sent this message at some time u�$%~�^#� �@l%��_#p [ � . Let �Z_ _ be
the prefix of � ending just before � composed this message, ��_ _ � $�h1~']�~,�Sl%�n_ _#p , and aB_ _ � `S}��/J@]�}3F,]1^#_@`Nl%�n_ _#p .

We claim that � r �S�n]o�VdIhG��~elx�Cm
� �	��DG��^#_ J
dNmoaB_ _�p ; the argument is like one in Lemma 6.20, Part 1.
Since � rR�S�n]o�VdIhG�G~elx��mo� ����DG��^#_ J
dQmoa&_�p , it follows that � rR�S�8]
�
d�hG��~*lx�Cm
� ���ADG�%^#_KJVd � LH]%^#}�JVdQmoaB_ _Zp . Since �Er

�S�n]o�VdIhG�G~elx��mo� � ��DG��^#_KJVd � LH]%^#}�JVdNm
a _ _ p and � r �7�8]o�VdIhG�G~Glx��mo� � ��DG��^#_ J
dQmoa _ _ p , it follows that �{r JG}��*j�¨Cl �nm
� �
�ADG�%^#_KJVd � LH]�^#}�JVdCmoa&_ _Zp . Since ��u � � �ADG��^#_ JVd � � LH]�^#}�J
d , we have that � r JG}��*j�¨Cl �nm � [ LH]�^#}�JVdQm
aB_ _�p . Therefore,
��r JG}��ej@¨Cl �nm �Im�]%iS`GF,]1^#_M`nl��Z_ _xpop .

By Lemma 6.20, Parts 3 and 4, ��_ _�Y E�_M`7�G]Vh 	 contains a finger for � with ��e��n~�^#����u�� _ _�YZ_8��� � «¯® [ l%�A«P¬ � � �@p .
This finger for � gets included in the block sent by � in the � �M�k�%�7��V,���&� � message. After � receives this message,E�_M`7�G]Vh � contains a finger for � with ��e��8~�^#��� u _8��� ��«® [ l��!«6¬ � � �Mp . Then, since «¯®v���A«P¬ � � � , ��_�Y E\_@`@��]Vh �
contains a finger for � . This is what we needed to show. �

6.7 Latency Bounds

6.7.1 Latency of a request

Theorem 6.23. Suppose that � is a good execution, ��_ a finite prefix of � containing at least
� � � ���'�M����V�S��%� events.

Suppose that:

1. The final step of � _ is a � �M�(�S�7� � step in which � initiates request # , with target � .

2. No other requests (on behalf of joins, client lookups, or stabilizes) are active at any time u�$%~�^#���@l�� _#p [ «±® .

Then request # terminates with a ���e����� �*�@l,� �M�(�S�7��V'�G�&� �Ip step, at a time that is ��$%~�^#���7l%��_�p	�&�8l�')(+* � � �*p � .
Proof. (Sketch:) We first claim that, at any point during the lookup, for any process *� � in the ring, the known
predecessors of the target � are “bunched together” in at most two � -blocks in the actual global ring. One of these is
the block of actual predecessors of � in the ring, and the other may be anywhere else.

Claim 6.24. At any point in � after � _ , and for any � *� � , all processes in �7�8]o�VdIhG�G~el0�Cmo�%mG}��*j@]�}OF,]1^#_M` ° p that have
not failed lie within two � -blocks of consecutive processes in `%}��TJ@]�}OF,]1^#_M` : �7�8]o�VdIhG�G~Glx��mo��mV`%}Z�/J@]�}OF,]1^#_M`kp and one other
� -block.

Proof. Everyone except � keeps only its neighborhood and chord fingers, as specified by the underlying infrastruc-
ture. These have the needed property. (Two blocks can arise if the target � is in the middle of one of � ’s blocks.)

�

Claim 6.25. At any point in � after � _ , and before a 
M�Df# �I��� � � �@l,� �M�k�%�7��V,���&� �*pB� event, all processes in �S�8]
�
d�hG��~*lx�Cm
� [
� LH]%^#}�JVdQme}��ej@]%}OF,]1^#_@` � p that have not failed lie within two � -blocks of consecutive processes in `%}��TJ@]�}OF,]1^#_M` : �S�n]o�VdIhG�G~elx��mo��mV`%}Z�/J@]�}OF,]1^#_M`kp
and one other � -block.

Proof. (Sketch:) This is more complicated than the previous claim, because process � acquires fingers from other
nodes’ tables in the course of the lookup.

The ways in which process � acquires new fingers are somewhat constrained: by normal neighborhood and chord
refreshing, by receiving a � �M�(�S�7��Vo����PG� message or by receiving a � �@�k�%�@� V,��� � � message. We rule out the last case by
assumption—we are considering only what happens before the first �Z�*���I� �I�7l5� �M�(�%�@� V,��� � �*p\� happens.

Thus, whenever � acquires new fingers, it acquires an entire block of size at least � from some other node, which
by the previous claim is included in only two � -blocks in the actual global ring at the time the block was sent, one of
these blocks being �S�n]o�VdIhG��~*lx��mo��mV`%}��TJ@]�}OF,]1^#_M`kp .
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Since at most LH]�^#}�JVd of each of these blocks could have failed before the block was sent, and at most another LH]�^#}�J
d
from each of these blocks could fail after the send and up to the point of reference, it must be that at least � [ � LH]%^#}�JVd
of the newly-arrived fingers do not fail by the point of reference and lie within two � blocks in `S}��TJ�]%}OF,]1^#_@` , with one
of these blocks being �S�8]
�
d�hG��~*lx�Cm
��m
`S}��TJ�]%}OF,]1^#_@`Op .

But this doesn’t quite tell us that all processes in �S�n]o�VdIhG��~*lx��mo� [ � LH]%^#}�JVdnmG}Z�ej@]�}3F,]1^#_@` � p that have not failed lie within
these two � -blocks of consecutive processes in `S}��/J@]%}OF,]1^#_@` . For this, we have to use the fact that the blocks in E�_M`7�G]Vh �
that are closest to � don’t “degrade” by having too many processes fail. The reason this doesn’t happen is that � keeps
moving the algorithm along—pinging “enough” nodes among its closest predecessors for � , and receiving responses
from many of them, which provide information about blocks that are still closer to � . �

Now the key claim describes how the “distance” to the destination � is halved every time � � , until near the end of
the lookup:

Claim 6.26. Let � be a power of two, � � � .
Suppose that, at some point during the lookup, the clockwise distance from �8]o�VdClx�Cm
� [ � LH]%^#}�JVdQme}��ej@]%}OF,]1^#_@` � p to � (in
the identifier space) is � � .
Then by time � � later, at least one of the following holds:

1. The lookup ends (with the receipt of a � �M�k�%�7��V,���&� � message).

2. E\_@`@��]Vh � contains at least � [ � LH]%^#}�JVd of the members of �S�n]o�VdIhG�G~elx��mo��mV`%}Z�/J@]�}OF,]1^#_M`kp .
3. The clockwise distance from �8]o�VdQl0�Cm
� [ ��LH]�^#}�JVdQme}��*j�]%}OF,]1^#_@` � p to � is � � � � .

Proof. (of Claim:) Assume that the lookup doesn’t end within time � � , that is, Case 1 doesn’t hold. Then within
time

� � , process � performs a new ���-��� V
�%���9R , which results, within an additional time
� � , in a response from one of the

processes corresponding to the b�cGd s in the assumed �S�8]
�
d�hG��~*lx�Cm
� [ � LH]%^#}�JVdQmG}Z�ej@]�}3F,]1^#_@` � p . (The fact that one responds
depends on the fact that not all of these processes can have failed recently or fail during the ping-response exchange.
This in turn relies on our assumed bound on failure rate, and the assumption that they are all within two � -blocks in
the global ring.)

Let � be such a responding process. If z"�O�Gb�l��Mp �w� � � , that is, � is the immediate successor of � in the b�cGd
space, then � sends a � �@�k�%�@� V,��� � � message, contradicting the fact that Case 1 doesn’t hold. So, we may assume that
� is not the immediate successor of � in the b�cGd space.

Then choose � to be the largest natural number such that z"�O�Gb l)�@p � �
	 r l'z"�O�Gb�l��Mp�mB�8p , that is, the largest
power-of-two successor of � that does not reach � .

The response from � to � contains a set ^ of fingers representing � ’s � best predecessors for � at the time � sends
its response. There are two cases:

1. ^ contains only elements in the open interval l�z��k�eb l��Mp � � 	 mo�8p . That is, only elements after the given largest
power-of-two successor of � .

In this case, after � receives the message, the clockwise distance from �n]o�VdQlx��mo� [ � LH]�^#}�J
dNmG}��*j@]�}OF,]1^#_M` � p to � is
��� � � , which suffices to satisfy Case 3.

2. ^ contains at least one element that is not in the open interval l�z��k�eb l��Mp � �
	 mB�np .
Lemma 6.21 implies that, when � sends the � �M�(�%�@��Vo����PG�%�(�9PB� message, E\_@`@��]Vh ° contains entries for all elements
of J�}Z�ej@¨Ql)� � � 	 m �Im ]�iS`S� �G_k~,�Vd�F,]1^#_@`-p that have not failed. Since the set ^ contains at least one element that
is not in the open interval l�� � � 	 mo�8p , we claim that ^ contains actual predecessors of � in the global ring,
specifically, ^ contains at least � [ LH]%^#}�JVd of the members of �S�n]o�VdIhG��~elx�Cm
��m
`S}��TJ�]%}OF,]1^#_@`8p at the time � sends the
message. (Up to LH]�^#}�JVd of the fingers in ^ could have already failed at the time of the send.) Just after � receives
the message, E\_@`@��]Vh � contains at least � [ � LH]%^#}�JVd of the members of �7�8]o�VdIhG�G~el0�Cmo�%m
`S}��/J@]�}3F,]1^#_@`kp . This yields
Case 2.

�

To complete the proof, we use the last claim repeatedly, as long as Case 3 holds. Since we cannot keep halving
forever, eventually, either Case 1 or Case 2 arises. If Case 1 arises first, then we are done. On the other hand, if Case
2 arises first, then within only one more ping round, � receives a � �M�(�%�@��V'�G�&� � message, so again we are done.
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7 Appendix B: Using Nondeterministic Assumptions

As described in Section 3) and Appendix B our analysis in this paper is based on deterministic assumptions. In general,
we assume that there are at most � relevant events that occur in an “arc” of the ring containing at most # processes
during a time interval

�
.

These assumptions however are not realistic for many distributed environments. In practice join and failure events
are modeled by probability distribution functions (e.g, Poisson) which makes it impossible to put a deterministic bound
of the number of such events during an interval of time

�
.

To establish a relationship between the more realistic probabilistic assumptions and the deterministic assumptions
next we compute the mean time « � between two violations of the deterministic bounds under the probabilistic as-
sumptions. In other words, « � represents the expected time for which a MultiChord will remain in the quasi-ideal
state.

For tractability, we assume a system in which processes join according to a Poisson process with arrival rate � �
and that the process lifetimes are exponentially distributed with a mean of � . Assuming that the MultiChord ring is in
steady state we have � � � � � � , i.e., the rate of joins is equal to the rate of failures or leaves. Thus, the rate of changes
is � � � � � .

Next, we bound the probability that the deterministic assumption–that no more than � relevant events occur during
a time interval

�
in an arc of the ring of # processes—is violated.

The average number of events that occur in a given arc of the ring consisting of # processes during an interval of
time

�
is

� � ��� �Cl�# � � p1m (2)

where
��� � represents the average number of events that occur in the entire system during a time interval

�
, and

l�# � � p represents the fraction of these events that occur during that portion of the ring.
Because events are generated from a Poisson distribution we can apply the Chernoff bound:

� #-l � �wl5� ���%p � p � �	��
� ����� m (3)

where
� #-l � � lB� ���%p � p represents the probability that no more than l5� ���%p � events occur in a given arc of #

processes during a time interval
�

. Taking �
� lB� ���%p � , the probability that the deterministic bound is violated in a

given arc of # processors during a time interval
�

is

� #-l � � � p � � �
��� 	�� ���� � Y (4)

The probability ��l � m #%p that the deterministic bound is violated in any arc of # processors during an interval
�

is
bounded above by

�+l � m #%p � ��� #-l � � � p � � � �
��� 	�� � �� � Y (5)

Then the mean time «�� between two violations of the deterministic bound is

«�� �
�

��l � m #%p �
�
� �

��� 	�� � �� � (6)

Expanding � yields

« � �
�
� �

��� 	 ����� ������ � ��� � Y (7)

where � � � � � represents the normalized rate of change.
Next, let us consider how do deterministic constraints presented in Section 3 map to Ineq. (7). In particular, we

consider the following constraints:

30



«¯® u � «¢° (8)

� � � �!� � � � � �	� c�
 �� � �
� u � � ��� ��� � � � � � h�i�k l � �!� � � � �Om�c�
 �� � �@p�m (9)

where c�
 �� � � represents the number of failures in an arc of � �"� processes during time « ® , and �!� � � � � represents the
number of joins in an arc of � � � processes during time «P° .

Because we assume steady state, the number of failures and joins in an arc of � � � processes is roughly the same
during a given time interval. This means that c�
 �� � � � ��� � � � �!«n® � «�° . If we take «¯® ��«�° � �

, the last two constraints
in Ineqs. (8) become:

� � � � �!� � � � � (10)

� u �(� �!� � � � �
during an interval of time « ® , and

� � � Y � �!� � � � � (11)

� u � � Y � ��� � � � �
during an interval of time « ° .

Since constraints (11) imply constraints (10) next we consider only constraints (11). Let us take � � � ��� � � � � ,
� � ��� ��� � � � , values which satisfy both these constraints.

Finally, we take # � � � � , � � « ° , and �
� � ��� � � � � (the factor of

�
is because � accounts for both joins and

failures during the interval « ° ). With these values, the expected time before the deterministic constraints are violated
(see Ineq (7)) becomes

«�� � « °� �
�������
	 ���������������� �� �������������� m (12)

where ��uw� �S� � � .
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