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Abstract
We propose and analyze a randomized variant of the Butterfly network that is amenable to de-
centralized construction and modification as nodes join and leave a network. The proposed networks
have constant out-degree, and maintain a logarithmic diameter and nearly optimal congestion with high
probability. In expectation, only a constant number of links are changed during a modification, and a log-
arithmic number with high probability. These properties make our construction particularly suitable for
distributed hash tables (DHTs), which have been heavily promoted as a building block for internet-scale

distributed services.

1 Introduction

Distributed hash tables (DHTSs) provide a scalable solution to the classic problem of storing and sharing data
among a large and dynamic set of participating servers ([7, 18, 24, 27, 29, 32, 33]). DHTs were originally
suggested in Chord [32], and employ hashing to partition the key-value pairs among the participating servers
so that only a small fraction of the keyspace must be moved to redistribute load when servers join and leave
as participants. To further reduce the cost of such dynamism, DHTs do not require that changes in the
key-server mapping be propagated to all current participants. Rather, each server maintains connection and
routing information with a small number of other participating servers so that a client’s lookup request for a
key can be forwarded appropriately to the server managing the key. The set of connections between servers
forms the overlay routing network, which is incrementally maintained as the system evolves.

In this paper, we focus only on the problem of setting an overlay routing network among a dynamic set

of servers. Our construction achieves the following performance properties:

Low Congestion: The number of lookup requests routing through the system may be considerable. No
server should receive a disproportionate amount of traffic when the requests are for random targets.
More precisely, we define the load on a server to be the probability that a server is on a route with
random source and destination. We wish the load to be balanced among all servers.

*A preliminary version of this paper appeared in PODC 2002.

TSchool of Computer Science and Engineering, The Hebrew University Jerusalem 91904, Israel; email: dalia@cs.huji.ac.il.

fIncumbent of the Judith Kleeman Professorial Chair, Department of Computer Science and Applied Math, The Weizmann
Institute of Science, Rehovot 76100 Israel; email: naor@wisdom.weizmann.ac.il. Research supported in part by an IST grant
RAND-APX.

§Computer Science Division, University of California at Berkeley, Berkeley, CA 94720, USA; email:

dratajcz@cs.berkeley.edu.



Incremental maintenance cost: The cost of adding or removing any server should be small, as measured
by the amount of state that must be transferred, the number of servers impacted by the change, and
the number of messages generated by the maintenance protocol. Specifically, each step (join or leave)
should incur changes to the state of only a constant number of peers.

Degree: The number of connections on which a server can forward a lookup request should be small, as
these connections must be removed (either immediately or lazily) and the routing information changed

whenever either end leaves the network. We aim for a constant degree.

Dilation: The length of a forwarding path directly affects the latency of responding to a client’s lookup
request. An overlay should minimize the maximum actual path length of any request serviced by the
lookup protocols (the dilation), as well as the expected path length for random requests. Our specific

goal is to have logarithmic path lengths.

The task of constructing network topologies with low degree, low dilation, and balanced congestion has
been the focus of considerable research for static environments [4, 31]. However, DHTs must work in a
highly dynamic environment in which the size of the network is not known a priori, and where there are no
permanent servers for maintaining either the hash function or the overlay network (all servers are assumed to
be ephemeral). Hence, there must be a decentralized protocol, executed by joining and leaving servers, that
incrementally maintains the structure of the system. Additionally, a joining server should be able to correctly
execute this protocol while initially only having knowledge of a single, arbitrary participating server.

In this paper, we present the Viceroy network, a variant of Butterfly Networks yielding O(1) out-degree,
O(log n) dilation, and O(log® n./n) congestion, with high probability. Thus Viceroy achieves the same dilation
and congestion as existing solutions [32, 33, 29] with fewer edges. We believe this is a significant achievement
for two primary reasons: first, reducing the number of edges in the graph reduces the ambient traffic
associated with pings and control information, and maintaining a constant degree network assuages concerns
about the cost of too many open connections at servers; second, there are cases when it is desirable for a
server to notify its outgoing and incoming connections that it is leaving, and thus the degree of the network
directly relates to the total cost of joins and leaves. While it is a justifiable criticism that low degree networks
are unsuitable for failure-prone environments, we note that an accepted way of handling fault tolerance (as in
Chord [32] and in Pastry [29]) is not in the network topology itself but by “thickening” edges; fault tolerance
of f simultaneous faults is achieved by replacing every edge by f + 1 redundant edges connecting close
neighbors of the endpoints of the original edge. This is also similar to the “supernode” approach suggested
in Lynch et al. [17], where nodes are actually replicated groups of servers. Section 6 discusses our application
of these ideas.

Contributions of this work: We present a simple and efficient network construction that maintains
constant degree networks in a dynamic environment. Routing is achieved in these networks in O(logn)
hops and with nearly optimal congestion with high probability. Furthermore, servers joining and leaving
the system induce only O(logn) messages and require only O(1) servers to change their state. Viceroy is
the first manifestation of a decentralized and dynamic network where all of these properties are achieved
simultaneously. This addresses the first challenge in the paper by Ratnasamy et al. in [28].

A preliminary version of the Viceroy construction was presented in [18]. In the current version, we
simplify the routing algorithm by making it almost purely greedy, and we present a more concise analysis.

Several related works have appeared since the original Viceroy publication and are discussed in Section 7.



1.1 Related work

The proliferation of Internet-scale services and the advent of peer-to-peer applications has focused consider-
able attention on the resource lookup problem presented here. Many popular services, such as DNS, LDAP,
and file-sharing services (such as Napster and Gnutella), rely on some partitioning of data across a dynamic
network of servers. Recently, several schemes have been proposed that address the scalability and dynamic
requirements of a world-wide lookup service.

The Chord lookup service [32] presents a solution that has greatly influenced our approach. Like in
Chord, Viceroy employs consistent hashing [13] as the hash function mapping keys to servers, and uses a
doubly-connected ring as the underlying routing structure. The algorithm of Plaxton et al. [25] was originally
devised to route web queries to nearby caches, and has been employed in the Tapestry naming service [33]
and Pastry [29]. The above works differ in the overlay routing network used for locating data efficiently.
Compared with our scheme, all of the above methods have logarithmic out-degree overlays (variants of a
hypercube graph), whereas Viceroy achieves the same dilation and congestion with only constant out-degree.

The work by Ratnasamy et al. [27] (CAN) dynamically maintains an approximation to a d-dimensional
torus, for a chosen constant d. Their expected routing complexity is O(dn(*/?9), compared with logarithmic
in our construction.

Work on traditional data structures has produced some comparable results. SkipLists [26], for exam-
ple, lend themselves to distributed construction and similarly employ randomization for efficient routing.
SkipLists, however, have O(n) congestion and only expected constant out-degree. Certain types of constant
linkage-cost data structures are competitive with our scheme in every way except for congestion [14, 23].
Proposals for distributed data structures typically address the problem of incremental maintenance cost and
state partitioning, but either require centralized control, or do not address congestion [10, 16].

There are other works that have looked at the problem of dynamic network construction with different
emphases than ours. Pandurangan et al. [24] address the problem of dynamically constructing a low-degree,
logarithmic diameter network under a probabilistic model of arrival and departure; however their construction
does not provide a routing scheme, and their intended application is to disseminate queries to every server
rather than to route to a particular server. Their method is also not fully distributed and employs a central
server for newly connected nodes. Several works are concerned with building graphs resilient to various
failure scenarios, including adversarial failures [15, 7, 5, 30].

There are additional issues pertaining to overlay networks beyond the scope of our work. One issue that
arises is non-uniformity of server identifiers in the key-space due to either poor initial random choices or
degradation due to non-independent server arrivals and departures. This phenomenon has been observed by
others; in Naor et al. [21], the uniform dispersal of identities is termed “smoothness”, and the performance
of the Distance Halving network is shown with respect to smoothness. In CAN [27], this issue is addressed
by requiring nodes to periodically change identifiers after departures. In Chord [32], a background over-
haul process constantly re-adjusts random choices. Preliminary strides toward implicitly balancing overlay
networks are made in Abraham et al. [1]. Another method of achieving smoothness is the virtual node
technique introduced in Chord [32]. Using this technique, allowing each node to emulate up to logn virtual
nodes achieves nearly uniform balancing at the expense of a logarithmic multiplicative factor increase in the
out-degree of nodes. Though outside our current scope, it should be mentioned that these techniques can
be combined with our construction to enhance load balance.

Another important issue in overlay routing networks is locality-awareness. In addition to the total number



of hops in a route, it is desirable to keep the accumulated cost proportional to the cost of crossing the network.
CAN [27] preserves locality by assigning the nodes identifiers that directly reflect their geographical location.
Thus, a route between a starting point and an endpoint directly corresponds to the real distance that should
be travelled. Toplus [9] also uses geographically-oriented node identifiers for locality. It uses IP addresses,
and employs hierarchical routing, thus achieving roughly logarithmic dilation. Other works [25, 29, 33]
randomize node identifiers, and achieve locality by having nodes select links based on proximity. Our work
does not address locality, though recently, some of its concepts were applied by Abraham et al. in [2] to

achieve a constant-degree locality-aware DHT.

2 System model and notations

The system consists of a dynamic set of nodes (servers). At any point in time, an existing node may
choose to leave the system, or a new node may choose to join. In response to such a modification, the system
reconfigures to include/exclude the joining/leaving node and establish or remove connections between nodes,
leaving an overlay routing network among the new set of participating nodes.

Our construction makes use of the following notation. Each node u has two properties, its unique identifier
u.id and a level u.level. As an abuse of notation, we sometimes refer to w.id simply as u. Identifiers are
simply bit-strings. A prefix of length k of a bit string b is denoted by b[k]. The term b[s — €] denotes a slice
of b’s bits, from the s’th through the e’th. The ¢’th bit of a string b is denoted by b;. The length (in bits) of
a string b is denoted by |b|.

In order to define an ordering among binary identifiers, we use a real metric. That is, let a binary string
(b1,...,b) have the real value Y ,_; , b;/2". This induces the real order among nodes and real distance
metrics. For a node b, the node ¥’ that is the minimal among greater nodes (if exists) is its unique SUCCESSOR;
the unique PREDECESSOR is the inverse of SUCCESSOR.

2.1 Identifiers and levels

Nodes select identifiers as random bits strings. In practice, choosing strings of length 128 is sufficient to
avoid collisions; in the unlikely case that two nodes select the same identifier, one is revoked. At any point
in time, the active identifier u.id of a node u with identifier id is the shortest unique prefix of id. Since node
identifiers are selected at random upon arrival, and assuming that node departures are also independent of
node identifiers, we have that the following property holds:

Property 2.1 !

In a system containing n nodes whose identifiers are selected as described above. Let
min_prefiz = min, |u.id|, maz_prefiz = max, |u.id|. Then w.h.p. maz_prefiz < 3logn and min_prefiz >
logn — loglogn — O(1).

Nodes can thus estimate logn by examining the length of their own active identifiers. Nodes have, in
addition to their identifier, a level attribute. Each node u chooses its level u.level at random from among
1..k, where k = |u.id| is the length (in bits) of the node’s identifier. Node u determines the length of its
active identifier u.id by examining its SUCCESSOR and its PREDECESSOR and taking the greatest common
prefix.

1A proof of this simple property is provided for completeness in the Appendix.
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Figure 1: A typical Viceroy network of 32 nodes. Only Long and Medium-left links are shown for simplicity.

Several improvements on the above estimate of logn have been explored. First, the balancing technique
of Abraham et al. [1] guarantees a logarithmic additive gap between maz_prefiz and min_prefiz against
adversarial arrivals and departures. Balancing to within a gap of 1 at a somewhat increased cost is discussed
by Naor and Wieder [21]. Second, for randomized balancing, other techniques of Abraham et al. [1] and
Adler et al. [3] balance the identifiers space so that there is a constant bound on the gap between maz _prefiz
and min_prefiz. Third, a node u can achieve a better estimate of logn than taking |u.id| by the methods
of Horovitz and Malkhi in [11] and of Manku in [19].

3 The Viceroy Network

Given N = nlogn nodes whose identifiers and levels have been selected, the Viceroy network is completely
determined as described below.

With nlogn nodes in the network, we expect to have approximately log n network levels, each containing
roughly n nodes. A node b of level 1 < i < logn is responsible for routing to all identifiers {bybs...b; _1%).
It does so by pointing to certain level-(i + 1) nodes with identifiers (b1bs...b;—10/1%). In addition, b is also
linked to a level-(¢ — 1) node (if ¢ > 1), and to its own successor and predecessor. In order to route to any
target, we first descend down the levels to a node at level one, then move greedily to the target. A Viceroy
network with 32 nodes is depicted in Figure 1.

More precisely, in the Viceroy network each node b of level £ = b.level has six out-going links as follows:
Short: A Successor link connects to SUCCESSOR(b); a Predecessor link connects to PREDECESSOR(b).

Medium: The are two Medium links. A Medium-left link connects to the closest level-(¢ + 1) node whose



id matches b.id[f] and is smaller than b.id. A Medium-right link connects to the closest level-(£ + 1)
node whose id matches b.id[{] and is greater than b.id.

Long: A Long link connects to the closest level-(£ 4+ 1) node whose identifier matches (b1..bs—1(1 — be)*).

Parent: A Parent link connects to the closest level-(£ — 1) node.

A node also maintains information about all in-bound links.

The lookup primitive starts at a node z looking for the unique node whose id is a prefix of a target value
y. The lookup procedure has two logical phases: First search for a node whose level is 1 (“root”), then follow

links greedily. Figure 2 below describes precisely the lookup algorithm of target value y starting at node z.

LOOKUP(z,y):
Initialization: Set cur to z.

Proceed to root: If cur.level = 1 goto greedy-search phase.

Else set cur = cur.Parent and repeat.

Greedy search: If y is between cur.id and cur.SUCCESSOR.id in the real metric (or if cur.SUCCESSOR is
empty), then return cur. Let m be the link of cur such that the distance from m to y is minimal.

Then move to m and repeat.

Figure 2: LOOKUP algorithm.

4 Analysis

The analysis below focuses on high-probability events. The expectations can be more easily derived, and
are therefore stated without proof. Furthermore, the stress in the analysis is on simplicity, at the expense
of non-tight constants. Below, we say that a property holds with high probability (w.h.p.) if it holds with
probability 1 — 1/n'*¢ for some € > 0.

4.1 Dilation

Dilation is a measure of the actual length of a lookup, as determined by the network structure and its
lookup algorithm. The expected dilation of Viceroy is less than 3logn: At most logn steps to proceed to a
root, another at most logn to fix logn — loglogn prefix target bits, and finally logn Short steps to fix the
remaining loglogn bits.

For the worst-case analysis of dilation, we focus on a route taken from a random initial node z in search
of a random target Y which is found on node y (that is, y.id is a prefix of Y). Let the ‘proceed to root’
phase of the lookup procedure consist of the sequence x = wug, u1, ..., ux of nodes. Let the ‘greedy phase’ of

the lookup consist of the sequence ug = vy, ..., v = 9 of nodes.

Lemma 4.1 For every node u with level u.level < logn — loglogn, the number of nodes between u and

u.Medium-left (uw.Medium-right), if it ezists, is at most 6log®n w.h.p.



Proof: Starting from any node u, its Medium-left link is the first smaller node that has level w.level + 1.
The link is k nodes away, where k is the first success in a sequence of Bernoulli trials, each succeeding if the
node reached is the appropriate Medium link, i.e., has level u.level + 1. By Property 2.1, the probability
of success is at least 1/3logn. The probability that in a sequence of 6log® n steps there are no successes is

6log?n
<1 - ﬁ) < L. (The case fo Medium-right is analogous.) 0

The following lemma indicates that the greedy phase of the lookup procedure uses Medium/Long links
that fix bits one by one, until within log® n nodes away from the target. At that point, the greedy routing
may shift to use Short links.

Lemma 4.2 In the ‘greedy search’ phase of the lookup of value Y from node x, let the j’th greedy step v;,
for 1 < j < m, be such that v; is more than O(log2 n) nodes away from y. Then w.h.p. node v; is reached
over o Medium or Long link, and hence satisfies v;.level = j and v;[j] = Y[j].

Proof: Let 1 < j <logn —2loglogn —log(3+¢). The proof is by induction. Suppose that the lemma holds
for the (k — 1)’st step, vr—1. We make use of the fact from Property 2.1 above, that each node chooses a
level at most 3logn. We have that the probability that no node has prefix Y[k] and level k is at most

1 n [ B+e)log?n 1
1 - < e 3logn < -
2k3logn ) — = plte/3

Depending on whether the k’th bit of ¥ matches that of v;_; already or not, we get that an appropriate
link, either Long or Medium, of vi_; exists and satisfies the lemma. Thus, if the chosen link is Long or
Medium, the induction holds.

Unfortunately, the proof is not complete yet, as we need to show that the appropriate link is the closest to
target. Otherwise, a greedy route might not select the needed link, if one of the other links of vx_; connects
closer to Y. In particular, it could choose a Short link. We first note that in that case, since a link that has
k common prefix bits with Y exists, any link closer to Y must have at least ¥ common prefix bits as well.
If the chosen link was a Medium or Long link, then it connects to a level k node with an appropriate prefix,
and the induction holds. Otherwise, the chosen link is a Short link. In this case, note that by Lemma 4.1, a
Medium link is at most O(log2 n) nodes away from vi_;. Since the target y must reside between the chosen
Short link and the Medium link in that direction, we reach a node v that is O(log” n) nodes away from the

target, and the lemma holds.

Lemma 4.3 Let v be a node that is O(log” n) nodes away from the target y. Then w.h.p., within O(logn)
greedy steps the target y is reached from v.

Proof: The analysis proceeds in two logical parts. The first part, called hopping, uses Medium links to hop
over several nodes at a time. We will show that there is a logarithmic number of such hops. Intuitively, this
is due to the fact that Medium links hop over O(logn) nodes in expectation. The second part uses Short
links to step to the target. We will show that this part is also logarithmic.

For the first part, let the direction with shortest distance from v to y be the right-direction (similarly,
left). Starting from any node u, its Medium-right (Medium-left) link is k¥ nodes away, where k is the first

success in a sequence of Bernoulli trials, each succeeding when a node is reached that is appropriate as a



Medium link, i.e., has level u.level + 1. The second hop is the second such success in the sequence. And so
on. Each success in the sequence is counted as one hop.

Starting from a node u, and considering each successive node until a hop, the probability that a node
is the next hop is at most 1/(logn — loglogn — O(1)) < 2/logn by Property 2.1. The probability that in
a sequence of log? n steps there are more than clogn hops is therefore the probability that in the sequence
above of log? n Bernoulli trials there are more than clogn successes. This probability can be bounded, for
an appropriate choice of ¢, by:

log?n 2 \clen < log? ne2 clogn <1
clogn/ \logn ~ \clogn x logn ~n?’

For the second part, let w be the last hop in the hopping part. ILe., from w to the target y we have to

use Successor (Predecessor) links only. This means that for each node z from w to y, there is no suitable
Medium-right (Medium-left) link between z and y. Suppose that the number of nodes from z to y is greater
than logn. Denote by B, the event that there is no suitable Medium-right (Medium-left) link for z between
z and y. The event B, occurs if no node between z and y has level z.level + 1. The probability of B, is

logn
bounded by (1 — 2101gn) < e71/2, Therefore, the probability that B, holds for more than ¢’ logn nodes

c'logn

is at most (e~1/2)

second part w.h.p.

< 1/n?, for appropriate choice of ¢’ > 0. In total, there are O(logn) nodes in the

Putting the two parts together, we get that by following greedy routing, hopping over log® n nodes takes
w.h.p. O(logn) steps. 0

Putting all of the above together, we get that the dilation of the network is O(log(n)) w.h.p:
Theorem 4.4 The total length of a route from z to y is O(logn) w.h.p.

Proof: First, note that the algorithm terminates and finds the target: The ‘proceed to root’ phase finds a
level-1 node, and the ‘greedy search’ phase reduces the distance to the target with every step; by our real
metric, a node with longest matching prefix to y is found, and this is indeed the target.

As for dilation, by Property 2.1, the level selected by z is at most logn + loglogn + O(1). Hence, The
‘proceed to root’ phase of the lookup procedure takes at most 2logn steps, reaching a node whose level is
one. By Lemma 4.2, within log n steps a node u is reached that is at most log? n nodes away from y. Finally,
using O(log n) more steps, Lemma 4.3 assures that the target is reached. Thus, in total O(logn) are needed
to reach the target. 0

4.2 Load

The length of routes is O(logn), and hence, given the almost symmetrical nature of our construction, it is
not difficult to show that the expected load on every node w is O(logn/n). This is optimal for logarithmic
dilation networks. Furthermore, methods for guaranteeing this load in the worst case are discussed in Section
6.

For the worst case analysis, we once again focus on a route initiated at a random starting point z and a
random search target Y found on a node y. Recall that for a node identifier b, the clause b[s — e] denotes
the slice of bits from the s’th to the e’th.



Lemma 4.5 Denote by p = logn — 2loglogn — log(3 + €). Then for every node u, its Long, Medium, and
DownLevel links are determined up to their p’s bit w.h.p. Specifically, we have u.DownLevel[p] = u. Medium-
left[p] = u.Medium-right[p] = u[p], and w.Long[p] matches u[p] except for the u.level th bit.

Proof: The probability that any link of u does not satisfy the conditions of the lemma is given by the
probability that no node v exists at the desired level and whose first p bits match the specified prefix. This

probability is at most (1 — 2,,.3110g(n)) < np}e/s- 0

Theorem 4.6 The load on every node is log® n/n w.h.p.

Proof: Let a node u participate in the ‘proceed to root’ phase. Then by Lemma 4.5, u[p] = z[p].

Next, let a node u be on the ‘greedy phase’, such that u is more than log” n nodes away from y. Let
£ = u.level. Our proof will show that w.h.p. u[f] = y[f] and u[(£ + 1) — p] = z[(£ + 1) — p]. Thus, all nodes
on route that are log® n away from target are determined up to their p’s bit.

The claim concerning u[f] follows from Lemma 4.2. The claim concerning u[(¢ + 1) — p] is proved by
induction on the sequence of routing steps as follows. Suppose that for some node u' on the route the
claim holds. Let u be the next routing step taken after u'. If u is still log2 n away from the target, then
as shown in Lemma 4.2, u is either a Medium or Long link of 4'. Denote £ = u’.level. By hypothesis,
w'[(£+1) — p] = z[(£ + 1) — p]. Therefore, if a node that maintains the induction exists, it is the closest to
u'. By Lemma 4.5, such a node exists w.h.p., and the induction follows.

Summarizing the above, in all routing steps until log® n nodes away from y, the first p bits are fixed
by choice of x and y. Since all identifiers are of length at most logn + loglogn + O(1), there are at most
92leglogn+0(1) = O(log® n) choices of & and y for which u participates in the route in this way.

In addition, w may participate in the Short steps of log?n vicinity nodes. In total, the load on u is
O(log® n/n). 0

4.3 Degree

The out-degree of the network is precisely six. Hence, the in-degree is expected constant. Furthermore,

methods for guaranteeing this in-degree in the worst case are discussed in Section 6.
Theorem 4.7 Every node u has in-degree O(logn) w.h.p.

Proof: Lemma 4.5 assures that any node with a Medium, Long and Parent links connected to u is determined
up to its p’th bit, w.h.p. The probability that more than 2celogn nodes match a specific prefix of length
logn — 2loglogn — logc at a specific level is bounded by

n clog®n 1 Peelogn < ne  2clogn 2celogn < 1
2celogn n  (logn)/2 — \2celogn 2nlogn —n?’

Of these, w.h.p. O(logn) have a specific level. Hence, w.h.p the in-degree is at most O(logn). 0




5 Distributed maintenance

In this section we describe how to maintain the Viceroy network in a distributed manner to accommodate
node arrival and departure. This entails specifying a JOIN and a LEAVE algorithms, depicted in Figure 3 and

Figure 4, respectively.

JOIN:
Choose identifier: Select at random 128 bits = (1,2, ..., T128) for identifer.

Set Short links: Invoke LOOKUP(z) at an initial contact point, and let z’ be the resulting node. Insert z

between 2’ and z'.Successor, setting Predecessor and Successor links appropriately.

Choose level: Let k be the maximal number of matching prefix bits between = and either Successor or
Predecessor. Choose z.level between 1..k at random.

Set Medium links: Denote p = 1, Z2, ..., Xz lever+1- 1f Successor has a prefix matching p and level z.level+
1, set x.Medium-right link to it. Otherwise, if Successor has a prefix matching p, move to Successor

and repeat.

Likewise, starting from z, if Predecessor has a prefix matching p and level z.level+1, set x.Medium-left

link to it. Otherwise, if Predecessor has a prefix matching p, move to Predecessor and repeat.

Set the Long link: Denote p = &1, 2, ..., Tx.level; 1 —Tp.levei+1- Invoke LOOKUP(z) to find a node matching
p at level x.level + 1; this implies stopping the greedy-routing phase of LOOKUP after the (level + 1)’st
step. Set x.Long to the node reached.

Set the Parent link: If Successor has level z.level — 1, set x.Parent to it. Otherwise, move to Successor

and repeat.

Set in-bound links: Denote p = 21, 22, ..., Lz .1cvel-

First, set in-bound Medium-left links: So long as Successor y has a prefix p and a level different from
x.level, if y.level = x.level — 1, set y.Medium-left to x; in any case, move to Successor and repeat.

Setting in-bound Medium-right links is done analogously by following Predecessor links.

Now we get to inbound Long links. So long as Successor y has a prefix p and level different from
x.level, move to Succesor and repeat. If a node ¥ is reached with a prefix p and level x.level, then if
any of its in-bound Long links closer to  than to y, change them to z. Do the analogous procedure

following Predeceesor links.

Finally, we set incoming Parent links. So long as Predecessor y has level other than x.level, if y.level —

1 = z.level set y.Parent to x, and in any case, move to Predecessor and repeat.

Figure 3: JOIN algorithm.

LEAVE: Update z.Successor and x.Predecessor so as to remove x from in-between them. Re-assign all in-
bound links using procedures similar to the ones in JOIN.

10



Figure 4: LEAVE algorithm.

Theorem 5.1 A JOIN operation by a new node x incurs an expected O(logn) number of messages, and
O(log® n) messages w.h.p. The expected number of nodes that change their state as a result of x’s join is
constant, and w.h.p. is O(logn).

A LEAVE operation by a node z incurs O(logn) number of messages, and O(log®n) messages w.h.p.
The expected number of nodes that change their state as o result of x’s departure is constant, and w.h.p. is
O(logn).

Proof: (Sketch) During a join procedure, a constant number of out-links are sought. As the lookup of any
target takes O(logn) messages, the main communication cost to examine is the cost of single-stepping the
Short links in order to find the Medium/Long links. Here, analysis similar to that in Lemma 4.1 shows that
the expected number of such steps is O(logn), and w.h.p. it is O(log® n). Likewise, the analysis in Theorem
4.7 shows that the new node will have w.h.p. O(logn) in-links, and hence, will incur state change in O(logn)
nodes.

A LEAVE operation by a node x incurs change of state in each one of its incoming links. Each of these
changes entails a procedure of finding replacement links, similar to a joining procedure, whose complexity
is given above. As there is an expected constant number of incoming links, there is an expected constant
number of incurred link-search procedures. Likewise, there is a logarithmic number of link-searches w.h.p.

0

6 Bounding Indegrees - The Bucket Solution

So far we have concentrated on fixing the outdegree of nodes and creating a sparse network. This obviously
yields small average indegree. However, the largest indegree in the network might still be as large as
logn (w.h.p.) and thus a single server leaving would cause logn linkage changes. To combat this we add
another background process to the system which we call “buckets.” Unfortunately, the details of the bucket
mechanism are more involved than the rest of Viceroy so we only sketch its operation here.

Our approach is to improve the identifier and level selection procedures so that in stretches of length
(logm)/n we will have a constant number of servers (between ¢; and ¢y for some fixed ¢; and cy; we actually
take ¢; to be 1) from each level. We achieve this by maintaining a distributed coordination mechanism
between contiguous, non-overlapping sets of servers on the ring, called buckets, consisting of ©(logn) servers
each. Inside each bucket, we maintain a simple ring (which mostly overlaps the general ring, except that
the end points of the bucket are also connected). In more details, the buckets are maintained so that several

properties hold:

Size: The size of a bucket is always O(logn), that is whenever the size of a bucket drops below logn, it is
merged with a neighbor bucket, and whenever the size exceeds clogn, for a fixed ¢ > 2, the bucket is
split into two. Such merging and splitting might involve reassignment of levels to all members of the
bucket. Within the bucket, a precise estimate of logn is maintained. Furthermore, if when merging
with an adjacent bucket the total number of servers in the two merged buckets is greater than (2¢+2)/3,

then instead of a single bucket, two buckets with equal number of servers are created.
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Diversity: The levels inside a bucket are not assigned at random, rather it is assured that from each level in
[1...logn] there is at least one member and no more than ¢ members. This assures that the indegree
of any server is bounded by 2¢. To maintain this last property it might be necessary to reassign a new

level to some remaining server in the bucket when a server leaves the system (and the bucket).

Overhead: Consider first what happens when a server joins or leaves the system and no merging or
splitting of buckets occurs. In case of a join, the server should find a level with fewer than ¢, servers in
the bucket and choose it as its level. Such a level must exists if ¢ < ¢. When a server of level j leaves
the system, in case the number of servers of level 7 in the bucket drops below c;, then another server with
a different level, of which there are at least ¢; + 1 representatives, must be moved to level j; such a server
must exist if ¢; = 1 and there are at least logn servers in the bucket and logn levels. Hence the overhead
from such assignments is O(1). Consider now the amount of amortized work that merging and splitting can
require. First note that the amount of work merging and splitting may cause is proportional to clogn. The
conditions on splitting and merging imply that in a ‘new’ bucket, i.e. one that is the result of a merge or a

split, the number of servers divided by logn is between the following lower and upper bounds:

Lower Bound: min((c + 1)/3,¢/2) where the first term comes the case a merge has resulted in two equal

sized buckets and the second from a split

Upper Bound: and max((2c — 2)/3,¢/2) (the first when the result is a single bucket and the second from
a split).

Therefore, the number of joins or leaves that must happen in this bucket until another split or merge is
preformed is at least min((c — 2)/3,¢/2 — 1)logn = (¢ — 2)/3logn. Therefore the amortized cost of the

rearrangements is proportional to
clogmn 3c

(c—2)/3logn T -2

so the amortized complexity is O(1).
Finally, buckets are also natural units for maintaining replicated data, e.g., on routing information as

well as the data itself, in order to achieve fault tolerance.

7 Postscript

Several related papers on DHT constructions have been published since the preliminary publication of this
work [18], addressing our constant degree goal. Most of them emulate the De Bruijn graph [6]. These include
the Distance Halving network [21, 22], the D2B network of [8], the Koorde network [12] and the De Bruijn
construction of Abraham el al. in [1]. Symphony [20] uses a constant number, k, of links per node to yield
O(log® n/k) expected dilation.

In the works of Naor and Wieder [21] and Abraham et al. [1], a process of smoothing (balancing) during
joins and leaves guarantees, in addition to constant out-degree, also a worst case constant in-degree, as well

as better lookup load balancing.
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Proof: [Of Property 2.1 For the first inequality, the probability that there exist two nodes whose identifers
matching in (3 + ) logn bits is bounded by: (3) (1/2(3¥9)1°6") < 1/n(1 + ¢). Hence, w.h.p. have identifiers
of length 3logn or less.

As for the second inequality, the probability that there exists a node whose identifier matches no other
identifier in logn loglog n —log c bits is bounded by: n (1 — sezr—rasrrss) < ne °1°8™ < 1/n°~!. Hence,

the length of every identifier is at least logn — loglogn — log ¢ w.h.p. 0
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