
IEEE J. ON SELECT. AREAS COMMUN. 1

Building Low-Diameter Peer-to-Peer Networks
Gopal Pandurangan,Member, IEEE, Prabhakar Raghavan,Fellow, IEEE,

and Eli Upfal,Fellow, IEEE

Abstract—Peer-to-Peer (P2P) computing has emerged as
a significant paradigm for providing distributed services,
in particular search and data sharing. Current P2P net-
works (e.g., Gnutella) are constructed by participants fol-
lowing their own un-coordinated (and often whimsical) pro-
tocols; they consequently suffer from frequent network
overload and partitioning into disconnected pieces sepa-
rated by choke-points with inadequate bandwidth.

In this paper we propose a protocol for participants to
build P2P networks in a distributed fashion, and prove that
it results in connected networks of constant degree and log-
arithmic diameter. These properties are crucial for efficient
search and data exchange. An important feature of our pro-
tocol is that it operates without global knowledge of all the
nodes in the network.

I. INTRODUCTION

Peer-to-peer (or “P2P”) networks are emerging as
a significant vehicle for providing distributed ser-
vices (e.g., search, content integration and adminis-
tration) both on the Internet [5], [6], [7], [9] and in en-
terprises. The idea is simple: rather than have a cen-
tralized service (say, for search), each node in a dis-
tributed network maintains its own index and search
service. Queries no longer go to a central server;
instead they fan out over the network, and results
are collected and propagated back to the originating
node. This allows for search results that are fresh (in
the extreme, admitting dynamic content assembled
from a transaction database, reflecting – say in a mar-
ketplace – real-time pricing and inventory informa-
tion). Such freshness is not possible with traditional
static indices, where the indexed content is as old as

G. Pandurangan is with the Department of Computer Sci-
ence, Purdue University, West Lafayette, IN 47907-2066. e-mail:
gopal@cs.purdue.edu

P. Raghavan is with Verity Inc., Sunnyvale, CA 94089. e-mail:
pragh@verity.com

E. Upfal is with the Department of Computer Science, Brown
University, Providence, RI 02912-1910. email: eli@cs.brown.edu

Work done while the first author was at Brown University. The
first and third authors were supported in part by the Air Force and
the Defense Advanced Research Projects Agency of the Department
of Defense under grant No. F30602-00-2-0599, and by NSF grants
CCR-9731477 and CCR-0121154.
A preliminary version of this paper appeared in the 42nd annual IEEE
Symposium on the Foundations of Computer Science (FOCS), Las
Vegas, 2001.

the last crawl (in many enterprises, this can be several
weeks). The downside, of course, is dramatically in-
creased network traffic. In some implementations [6]
this problem can be mitigated by adaptive distributed
caching for replicating content; it seems inevitable
that such caching will become more widespread.

How should the topology of P2P networks be con-
structed? Unlike static networks, P2P systems are
very dynamic with a high peer turnover rate. For ex-
ample, the study in [17] shows that in both Gnutella
[8] and Napster [12], about half of the peers partic-
ipating in the system are replaced within one hour.
Thus maintaining even a basic property such as net-
work connectivity becomes a non-trivial task.

Each node participating in a P2P network runs so-
calledservent software (forserver+client, since ev-
ery node is both a server and a client). This software
embeds local heuristics by which the node decides,
on joining the network, which neighbors to connect
to. Note that an incoming node (or for that matter,
any node in the network) does not have global knowl-
edge of the current topology, or even the identities
(IP addresses) of other nodes in the current network.
Thus one cannot require an incoming node to connect
(say) to “four random network nodes” (in the hope of
creating an expander-like network [11]). What local
heuristics will lead to the formation of networks that
perform well? Indeed, what properties should the
network have in order for performance to be good? In
the Gnutella world [9] there is little consensus on this
topic, as the variety of servent implementations (each
with its own peculiar connection heuristics) grows –
along with little understanding of the evolution of the
network. Indeed, some services on the Internet [4] at-
tempt to bring order to this chaotic evolution of P2P
networks, but without necessarily using rigorous ap-
proaches (or tangible success).

A number of attempts are under way to create P2P
networks within enterprises (e.g., Verity is creating a
P2P enterprise infrastructure for search). The prin-
cipal advantage here is that servents can be imple-
mented to a standard, so that their local behavior
results in good global properties for the P2P net-



2 IEEE J. ON SELECT. AREAS COMMUN.

work they create. In this paper we begin with some
desiderata for such good global properties, princi-
pally the diameter of the resulting network (the mo-
tivation for this becomes clear below). Our main
contribution is a stochastic analysis of a simple local
heuristic which, if followed by every servent, results
in provably strong guarantees on network diameter
and other properties. Our heuristic is intuitive and
practical enough that it could be used in enterprise
P2P products.

A. Case study: Gnutella

To better understand the setting, modeling and ob-
jectives for the stochastic analysis to follow, we now
give an overview of the Gnutella network. This is a
public P2P network on the Internet, by which any-
one can share, search for and retrieve files and con-
tent. A participant first downloads one of the avail-
able (free) implementations of the search servent.
The participant may choose to make some documents
(say, all his IEEE papers) available for public shar-
ing, and indexes the contents of these documents and
runs a search server on the index. His servent joins
the network by connecting to a small number (typ-
ically 3-5) of neighbors currently connected to the
network. When any servent� wishes to search the
network with some query�, it sends� to its neigh-
bors. These neighbors return any of their own docu-
ments that match the query; they also propagate� to
their neighbors, and so on. To control network traf-
fic this fanning-out typically continues to some fixed
radius (in Gnutella, typically 7); matching results are
fanned back into� along the paths on which� flowed
outwards. Thus every node can initiate, propagate
and serve query results; clearly it is important that
the content being searched for be within the search
radius of�. A servent typically stays connected for
some time, then drops out of the network – many par-
ticipating machines are personal computers on dialup
connections. The importance of maintaining connec-
tivity and small network diameter has been demon-
strated in a recent performance study of the public
Gnutella network [4].

Note that the above discussion lacks any mention
of which 3-5 neighbors a servent joining the network
should connect to; and indeed, this is the current free-
for-all situation in which each servent implementa-
tion uses its own heuristic. Most begin by connect-
ing to a generic set of neighbors that come with the

download, then switch (in subsequent sessions) to a
subset of the nodes whose names the servent encoun-
tered on a previous session (in the course of remain-
ing connected and propagating queries, a servent gets
to “watch” the names of other hosts that may be con-
nected and initiating or servicing queries). Note also
that there is no standard on what a node should do if
its neighbors drop out of the network (many nodes
join through dialup connections, and typically dial
out after a few minutes – so the set of participants
keeps changing). This free-for-all situation leads to
partitioning of the network into disconnected pieces
as documented in [4].

B. Main Contributions and Organization of the Pa-
per

Our main contribution is a new protocol by which
newly arriving servents decide which network nodes
to connect to, and existing servents decide when and
how to replace lost connections. We show that our
protocol results in a constant degree network that is
likely to stay connected and have small diameter. A
nice feature of our protocol is that it operates with-
out any global knowledge (such as the topology of
the network or even the identities of all other nodes)
and can be implemented by a simple distributed local
message passing scheme. Also our protocol is eas-
ily scalable both in terms of degree (which remains
bounded irrespective of size) and diameter (grows
slowly as a function of network size).

Our protocol for building a P2P network is de-
scribed in Section II. Sections III presents a stochas-
tic analysis of our protocol. Our protocol involves
one somewhat non-intuitive notion, by which nodes
maintain “preferred connections” to other nodes; in
Section IV we show that this feature is essential. Our
analysis assumes a stochastic setting in which nodes
arrive and leave the network according to a proba-
bilistic model. Our goal is to show that even as the
network changes with these arrivals/departures, it re-
mains connected with small diameter. Our main re-
sult is that atany time (after a short initial period),
with large probability, the network isconnected and
its diameter islogarithmic in the size of the network
at that time. Furthermore, our analysis proves that the
protocol has strong fault tolerance properties: if the
network gets partitioned into disconnected pieces it
rapidly recovers its connectivity. The technical core
of our analysis is an analysis of an evolving graph as



PANDURANGAN, RAGHAVAN AND UPFAL: BUILDING LOW-DIAMETER P2P NETWORKS 3

nodes arrive and leave, with edges being dictated by
the protocol; the analysis of evolving graphs is rela-
tively new, with virtually no prior analysis in which
both nodes and edges (connections) arrive and leave
the network.

We mention related work in Section V and discuss
open issues in Section VI.

II. THE P2P PROTOCOL

The central element of our protocol is ahost
server1 which, at all times, maintains acache 2 of
� nodes, where� is a constant. The host server is
reachable by all nodes at all times; however, it need
not know of the topology of the network at any time,
or even the identities of all nodes currently on the net-
work. We only require that (1) when the host server
is contacted on its IP address it responds, and (2) any
node on the P2P network can send messages to its
neighbors. In this sense, our protocol demands far
less from the network than do (for instance) current
P2P proposals (e.g., thereflectors of dss.clip2.com,
which maintain knowledge of the global topology).

When a node is in the cache we refer to it as a
cache node. A node isnew when it joins the network,
otherwise it isold. Our protocol will ensure that the
degree (number of neighbors) of all nodes will be in
the interval���� ���, for two constants� and�.

A new node first contacts the host server, which
gives it� random nodes from the current cache to
connect to. The new node connects to these, and be-
comes ad-node; it remains a d-node until it subse-
quently either enters the cache or leaves the network.
The degree of a d-node is always�. At some point
the protocol may put a d-node into the cache. It stays
in the cache until it acquires a total of� connections,
at which point it leaves the cache, as ac-node. (Thus
the set of cache nodes keeps changing with time.)
A c-node might lose connections after it leaves the
cache, but its degree is always at least�. A c-node
has always onepreferred connection, made precise

� The host server is similar to (or models) websites that maintain
list of host IP addresses which clients visit to get entry points into the
P2P network; for example,http://www.gnufrog.com/ is a website which
maintains a list of active Gnutella servents. New client can join the net-
work by connecting to a one or more of these servents. Another point
to note is that we have assumed a single host server for clarity of pre-
sentation. The protocol can be easily extended to work with multiple
host servers.

� This is just a terminology used to denote the set of nodes which
can accept connections - analogous to the list of active Gnutella clients
mentioned in the previous footnote.

below. Our protocol is summarized below as a set of
rules applicable to various situations that a node may
find itself in.

Peer-to-Peer Protocol for Node �:
1. On joining the network: Connect to� cache

nodes, chosen uniformly at random from the
current cache.

2. Reconnect rule: If a neighbor of� leaves the
network, and that connection was not a preferred
connection, connect to a random node in cache
with probability������, where���� is the de-
gree of� before losing the neighbor.

3. Cache Replacement rule: When a cache node
� reaches degree� while in the cache (or if
� drops out of the network), it is replaced in
the cache by a d-node from the network. Let
	���� � �, and let	���� be the node replaced by
	������ in the cache. The replacement d-node is
found by the following rule:

 � �;
while (a d-node is not found)do

search neighbors of	���� for a d-node;

 � 
��;

endwhile
4. Preferred Node rule: When� leaves the cache

as a c-node it maintains apreferred connection
to the d-node that replaced it in the cache. (If�
is not already connected to that node this adds
another connection to�.)

5. Preferred Reconnect rule: If � is a �-node
and its preferred connection is lost, then� re-
connects to a random node in the cache and this
becomes its new preferred connection.

We end this section with brief remarks on the proto-
col and its implementation.

1. It is clear from our protocol that it is essential
for a node to know whether it is in the cache
or not; thus each node maintains a flag for this
purpose.

2. The cache replacement rule can be imple-
mented in a distributed fashion by a local mes-
sage passing scheme with constant storage per
node. Each c-node� stores the address of the
node that it replaced in the cache, i.e.,	���.
Node� sends a message to	��� when� itself
doesn’t have any d-node neighbors.

3. Note that the overhead in implementing each
rule of the protocol is constant (or expected con-
stant). This is very important in practice, be-



4 IEEE J. ON SELECT. AREAS COMMUN.

cause even if a protocol is local, it is desirable
that neither too much (local) computation nor
too many local messages be sent per node. Rules
1, 2, 4 and 5 can be easily implemented with
constant overhead. It follows from our analy-
sis that the overhead incurred in replacing a full
cache node (rule 3) is constant on the average,
and with high probability is at most logarithmic
in the size of the network (see Section B).

4. We note that the host server is contacted when-
ever a node needs to reconnect (rules 2 and 5),
and when a new node joins the network. We
show that the expected number of contacts the
host server receives per unit time interval is
constant in our model and with high probabil-
ity only logarithmic in the size of the network;
this implies that the network also scales well in
terms of the number of “hits” the host server re-
ceives.

5. We assume that a node knows when any of its
neighbors leave the network. One way of real-
izing this in practice is (as in the Gnutella pro-
tocol [8]) that each node can periodically ping
its neighbors to check whether any of them have
gone offline.

6. In the stochastic analysis that follows, the pro-
tocol does have a minuscule probability of catas-
trophic failure: for instance, in the cache re-
placement step, there is a very small probability
that no replacement d-node is found. A practical
implementation of this step would either cause
some nodes to exceed the maximum capacity of
��� connections, or to reject new connections.
In either case, the system would rapidly “self-
correct” itself out of this situation.

III. A NALYSIS

In evaluating the performance of our protocol we
focus on the long term behavior of the system in
a fully decentralized environment in which nodes
arrive and depart in an uncoordinated, and unpre-
dictable fashion. This setting is best modeled by
a stochastic, memoryless, continuous-time setting.
The arrival of new nodes is modeled by Poisson dis-
tribution with rate�, and the duration of time a node
stays connected to the network is independently and
exponentially distributed with parameter
. We are
inspired by models in queuing theory which have
been used to model similar scenarios, e.g., the clas-

sical telephone trunking model [10]. Also, a re-
cent measurement study of real P2P systems [17]
(– Gnutella and Napster) provides evidence that the
above model approximates real-life data reasonably
well.

Let �� be the network at time� (�� has no ver-
tices). We analyze the evolution in time of the
stochastic process� � �������.

Since the evolution of� depends only on the ratio
��
 we can assume w.l.o.g. that� � �. To demon-
strate the relation between these parameters and the
network size, we use� � ��
 throughout the anal-
ysis. We justify this notation in the next section by
showing that the number of nodes in the network
rapidly converges to� . Furthermore, if the ratio be-
tween arrival and departure rates is changed later to
� � � ���
�, the network size will then rapidly con-
verge to the new value� �. Next we show that the
protocol can w.h.p.3 maintain a bounded number of
neighbors for all nodes in the network, i.e., w.h.p.
there is a d-node in the network to replace a cache
node that reaches full capacity. In Section C we ana-
lyze the connectivity of the network, and in Section D
we bound the network diameter.

A. Network Size

Let�� � ������� be the network at time�.
Theorem III.1: 1. For any � � ����, w.h.p.
�����	���.

2. If �
�
�� then w.h.p.������ � ����.

Proof: Consider a node that arrived at time� � �.
The probability that the node is still in the network at
time � is ��������� . Let ���� be the probability that a
random node that arrives during the interval��� �� is
still in the network at time�, then (since in a Pois-
son process the arrival time of a random element is
uniform in ��� ��),

���� �
�

�

� �

�

����������� �
�

�
���� ����� ��

Our process is similar to an infinite server Pois-
son queue. Thus, the number of nodes in the graph
at time� has a Poisson distribution with expectation
����� (see [15, pages 18-19]).

For � � ����, ������� � 	���. When��� ��,
������� �� � ����.

� Throughout this paper, w.h.p. (with high probability) denotes prob-
ability ���

�����.



PANDURANGAN, RAGHAVAN AND UPFAL: BUILDING LOW-DIAMETER P2P NETWORKS 5

We can now use a tail bound for the Poisson distri-
bution [1, page 239] to show that for�� ����,

�	
�
����� ��������� �

�
�� 
���

�
� �� ��� �

for some constants� � � and� � �.
The above theorem assumed that the ratio� �

��
was fixed during the interval��� ��. We can derive
similar result for the case in which the ratio changes
to� � � ���
� at time� .

Theorem III.2: Suppose that the ratio between ar-
rival and departure rates in the network changed at
time � from � to � �. Suppose that there were�
nodes in the network at time� , then if ���

� �
� �

w.h.p.�� has� �� ��� �� nodes.
Proof: The expected number of nodes in the net-

work at time� is

���
�����

�� �� ���� �� ���
�� � � � � � �� �� ����

���
�� �

Applying the tail bound for the Poisson distribu-
tion we prove that w.h.p. the number of nodes in��

is� �� ��� ��.

B. Available Node Capacity

To show that the network can maintain a bounded
number of connections at each node we will show
that w.h.p there is always a d-node in the network
to replace a cache node that reaches capacity�, and
that the replacement node can be found efficiently.
We first show that at any given time the network has
w.h.p. a large number of d-nodes.

Lemma III.1: Let � � 
� � �; then at any time
� � � 
��� , (for some fixed constant� � �), w.h.p.
there are

��� �� � �

� �� ������� � ���� �����

d-nodes in the network.
Proof: Assume that� � � (the proof for� � �

is similar). Consider the interval�������; we bound
the number of new d-nodes arriving during this inter-
val and the number of nodes that become c-nodes.

The arrival of new nodes to the network is Poisson-
distributed with rate 1; using the tail bound for the
Poisson distribution we show that w.h.p the number
of new d-nodes arriving during this interval is����
�����, and that the number of connections to cache
nodes from the new arrivals is����� �����.

By Theorem III.1, the expected size of the network
at any time in the interval is bounded by���������.
The expected number of connections from old nodes
to the cache nodes in unit time in this interval is
bounded by

�
���

�
�� � �����

����

�

�

����
� �� � �����

�

�

�

� �� � ���� � �����

(The two terms within the sum bounds the number
of reconnections due to non-preferred and preferred
neighbors leaving a node.) Thus the expected num-
ber of connections to the cache from old nodes in
this interval is bounded by��������� �����. Let
��� ������ be the set of nodes that left the network, in
that interval, and let��	
� � � if � makes connection
to the cache when�� left the network, else��	
� � �.
Then

�

�
��

���

�
�

��	
�

�
� ��� � ���� � �����

and each variable in the sum is independent of all
but � other variables. By partitioning the sum into
� sums such that in each sum all variables are in-
dependent, and applying the Chernoff bound ([11,
pages 67-71]) to each sum individually, we show that
w.h.p. the total number of connections to the cache
from old nodes during this interval is bounded w.h.p
by��������� �����.

Thus w.h.p the total number of connections to
cache is bounded by���� ����� � �����. Since a
node receives��� connections while in the cache,
w.h.p. no more than����


��
��� � ����� d-nodes con-

vert to new c-nodes in the interval; thus w.h.p we are
left with ��� ����


��
����� ����� d-nodes that joined

the network in this interval.
Lemma III.2: Suppose that the cache is occupied

at time � by node�. Let  ��� be the set of nodes
that occupied the cache in�’s slot during the in-
terval �� � � 
���� ��. For any Æ � � and suffi-
ciently large constant�, w.h.p. � ���� is in the range
�������
�
����


������ Æ�.
Proof: As in the proof of Lemma III.1, the

expected number of connections to a given cache
node in an interval��� � 
������ is ������� ��	�

�
�� �

�����. Applying the Chernoff bound we show that
w.h.p. the number of connections is in the range



6 IEEE J. ON SELECT. AREAS COMMUN.

�������
�


������ Æ�. Since a cache node receives
� �� connections while in the cache the result fol-
lows.

The following lemma shows that most often the
algorithm finds a replacement node for the cache by
searching only a few i.e.,!�
���� nodes.

Lemma III.3: Assume that� � 
� � �. At any
time � � � 
��� , with probability��!� ��	��

�
� the

algorithm finds a replacement d-node by examining
only!�
���� nodes.

Proof: Let ��� ���� �� be the� nodes in the cache
at time�. By Lemma III.2, w.h.p.� ����� � � 
��� ,
for some constant�. With probability at least

��
��� ���� �

� � �� !� 
��
��

�
�

no node in ����, " � �� ���� leaves the network in
the interval��� � 
������.

Suppose that node� leaves the cache at time�, then
the protocol tries to replace� by a d-node neighbor of
a node in ���. As in the proof of Lemma III.1 w.h.p.
 ��� received at least�

�
� 
��� connections from

new d-nodes in the interval��� � 
���� ��. Among
these new d-nodes no more than� ���� nodes entered
the cache and became c-nodes during this interval.
Using the bound on� ���� from Lemma III.2, w.h.p.
there is a�-node attached to a node of ��� at time�.

C. Connectivity

The proof that at any given time the network is
connected w.h.p. is based on two properties of the
protocol: (1) Steps 4 and 5 of the protocol guaran-
tee (deterministically) that at any given time a node
is connected through “preferred connections” to a
cache node; (2) The random choices of new connec-
tions guarantee that w.h.p. the!�
���� neighbor-
hoods of any two cache nodes are connected to each
other. In Section IV we show that the first property is
essential for connectivity. Without it, there is a con-
stant probability that the graph has a number of small
disconnected components.

Lemma III.4: At all times, each node in the net-
work is connected to some cache node directly or
through a path in the network.

Proof: It suffices to prove the claim for c-nodes
since a d-node is always connected to some c-node.
A c-node� is either in the cache, or it is connected
through its preferred connection to a node that was

in the cache after� left the cache. By induction, the
path of preferred connections must lead to a node that
is currently in the cache.

Lemma III.5: Consider two cache nodes� and�
at time � � � 
��� , for some fixed constant� � �.
With probability��!� ��	��

�
� there is a path in the

network at time� connecting� and�.
Proof: Let ��� be the set of nodes that occupied

the cache in�’s slot during the interval���� 
������.
By Lemma III.2, w.h.p.� ���� � � 
��� , for some
constant�.

The probability that no node in ��� leaves the
network during the interval��� � 
������ is

��
�� ���� �

� � �� !� 
��
��

�
��

Note that if no node in ��� leaves the network dur-
ing this interval then all nodes in ��� are connected
to � by their chain of preferred connections.

The probability that no new node that arrives
during the interval��� � 
���� �� connects to both
 ��� and ��� is bounded by���������� ��	� �
!���� ���.
Since there are� � !��� cache locations we have
the following theorem.

Theorem III.3: There is a constant� such that at
any given time� � � 
��� ,

�	��� is connected� � �� !� 
��
��

�
��

The above theorem does not depend on the state of
the network at time�� � 
��� . It therefore shows
that the network rapidly recovers from network dis-
connection.

Corollary III.1: There is a constant� such that if
the network is disconnected at time�,

�	����� ��	� is connected� � ��!� 
��
��

�
��

Theorem III.4: At any given time � such that
��� ��, if the graph is not connected then it has a
connected component of size���� �����.

Proof: By Lemma 3.4 all nodes in the network are
connected to some cache node. The!� ��	

��
�

� failure
probability in Theorem III.3 is the probability that
some cache node is left with fewer than� 
��� nodes
connected to it. Excluding such cache nodes all other
cache nodes are connected to each either with proba-
bility �������������� ��	� � ����� �, for some
� � �.



PANDURANGAN, RAGHAVAN AND UPFAL: BUILDING LOW-DIAMETER P2P NETWORKS 7

D. Diameter

We state our main theorem which gives a bound on
the diameter of the network.

Theorem III.5: For any �, such that��� � �,
w.h.p. the largest connected component of�� has
diameter!�
����. In particular, if the network is
connected (which has probability��!� ��	��

�
�) then

w.h.p. its diameter is!�
����.
Note that the above diameter bound is the best pos-

sible for a constant degree network.
Proof: Since a d-node is always connected to a

c-node it is sufficient to discuss the distance between
c-nodes.Thus, in the following discussion we assume
that all nodes are c-nodes. For the purpose of the
proof we define a constant# , and call a cache node
good if during its time in cache it receives a set of
	 � # connections such that

� The	 connections are “reconnect” connections.
� The	 connections are not preferred connections.
� The 	 connections resulted from	 different

nodes leaving the network.
We color the edges of the graph using three colors:

$, %� and%�. All edges are colored$ except a
random# edges of the set of	 “reconnect” edges that
satisfied the three requirements of a good node. A
random half of these# edges are colored%�, the rest
are colored%�.

Since the proof of Theorem III.3 uses only pre-
ferred connection edges, and edges of new d-nodes,
it is easy to verify that at any time�, the network is
connected with probability��!� ��	��

�
� using only

$ edges, and that if the network is not connected then
w.h.p. the$ edges define a connected component of
size���� �����.

We rely on the “random” structure of the% edges
to reduce the diameter of the network. However, we
need to overcome two technical difficulties. First, al-
though the% edges are “random”, the occurrences of
edges between pairs of nodes are not independent as
in the standard��	� random graph model ([3]). Sec-
ond, the total number of% edges is relatively small;
thus the proof needs to use both the$ and the%
edges.

Lemma III.6: Assume that node� enters the cache
at time�, where��� ��. Then for a sufficiently
large choice of the constant�, the probability that�
leaves the cache as a good node is at least& � ���.
Further, the	 connections of a good cache node are
distributed uniformly at random among the nodes

currently in the network. Furthermore, the proba-
bility that a c-node is good is independent of other
c-nodes.

Proof: Consider the interval of time in which�
was a cache node.

1. New nodes join the network according to a
Poisson process with rate 1. Also the expected
number of connections to� from a new node is
���.

2. Nodes also leave the network according to a
Poisson process with rate�. Also the expected
number of connections to� as a result of a old
node leaving the network is

�

��

����

�� �
�

����

�

�
�
�

�
� �

3. The expected number of connections from an
old node� to � in unit time is ��
�

�
�
��
�

���� .
From 1 and 2 above, it follows that each connection
to �, while it is in the cache, has a constant proba-
bility of being a reconnect connection. Also from 2,
we have the expected number of connections to� as
a result of one old node leaving the network is� �;
thus each connection has a constant probability of be-
ing triggered by a unique node leaving the network.
Thus, for a sufficiently large�, the� �� connec-
tions to� include, with probability& � ���, 	 � #
reconnect edges from different nodes leaving the net-
work.

Further, from 3 and using the fact that each node
leaves the network independently and identically un-
der the same exponential distribution it follows that
each node in the network - irrespective of its de-
gree - has an equal probability of being connected
to �. Finally, it is easy to see the independence of the
events for different c-nodes, since a cache node stays
in the cache till it accepts� connections irrespective
of other cache nodes.

For the proof of the theorem we need the follow-
ing definitions. Given a node� in ��, let �����
be an arbitrary cluster of� 
��� c-nodes, such that
� � �����, and this cluster has diameter!�
����
using only$ edges. For" � �, " odd (resp., even)
let ����� be all the c-nodes in�� that are connected
to ������� and are not in	���

�������� using%� (resp.,
%�) edges.

We first show the following “expansion” lemma
which states that each neighborhood of� starting



8 IEEE J. ON SELECT. AREAS COMMUN.

from ����� is at least twice the size of the previous
neighborhood.

Lemma III.7: If ���������� ����,

�	
������� � ����������� � �� ���
�
Proof: Let ' � �������, ( � �' �, and let

) �� ' 	 �	���
���������. W.l.o.g. assume that"� �

is even. Partition' into'�, consisting of nodes in
' that are older than), and'�, consisting of nodes
in ' that arrived after). The probability that) is
connected to'� using%� edges is�

�
� ��	�
�

��� �����
using lemma III.6. Similarly, each node in'� has
probability �

��
��� ����� of being connected to) by

%� edges. Thus, the probability that) is connected
to' by%� edges is at least�

�
��
�
��� �����.

Let * � ������� be the number of c-nodes outside
' that are connected to' by %� edges.��* � �
�
�
(��� �����. Let (��(�� ���� be an enumeration of

the nodes in' , and let��(�� be the set of neigh-
bors of(� outside' using%� edges. Define an ex-
posure martingale ��  �� ����, such that � � ��* �,
 � � ��* � ��(��� �������(���,  � � * . Since the
degree of all nodes is bounded by�, a node(� can
connect to no more than� nodes outside' . Thus,
� �� ����� �.

Using Azuma’s inequality [2] it follows that that
for sufficiently large constant�,

�	
�*���* �� � #

�



(

�
�


(� � ���

��

��
�� � � ���
�

Now we complete the proof of Theorem III.5. Our
goal is to show that w.h.p the distance between any
two c-nodes is!�
����. Consider any two c-nodes�
and�. By applying lemma III.7 repeatedly!�
����
times we have with probability� � !� ��	�

�� �, for
some
�� 

 � !�
����, ���	���� �



� 
��� and

���
���� �


� 
��� . The probability that��	���

and��
��� are disjoint and not connected by an edge
is bounded by��� #����� ��	�� , thus with proba-
bility ��!� ��	�

�� � an arbitrary pair of nodes� and
� are connected by a path of length!�
���� in ��.
Summing the failure probability over all

	
�
�



pairs it

follows that w.h.p. any pair of nodes in�� is con-
nected by a path of length!�
����.

IV. WHY PREFERRED CONNECTIONS?

In this section we show that the preferred connec-
tion component in our protocol is essential: running

the protocol without it leads to the formation of many
small disconnected components. A similar argument
would work for other fully decentralized protocols
that maintain a minimum and maximum node degree
and treat all edges equally, i.e., do not have preferred
connections. Observe that a protocol cannot replace
all the lost connections of nodes with degree higher
than the minimum degree. Indeed, if all lost con-
nections are replaced and new nodes add new con-
nections, then the total number of connections in the
network is monotonically increasing while the num-
ber of nodes is stable, thus the network cannot main-
tain a maximum degree bound.

To analyze our protocol without preferred nodes
define a type+ subgraph as a complete bipartite net-
work between� d-nodes and� c-nodes, as shown
in Figure 1.

Lemma IV.1: At any time� � �, where� is a suffi-
ciently large fixed constant, there is a constant prob-
ability (i.e. independent of� ) that there exists a sub-
graph of type+ in ��.

Proof: A subgraph of type+ arises when� in-
coming d-nodes choose the same set of� nodes in
cache. A type+ subgraph is present in the network
at time� when all the following four events happen:

1. There is a set, of � nodes in the cache each
having degree� (i.e., these are the new nodes
in the cache and are yet to accept connections)
at time���.

2. There are no deletions in the network during the
interval�������.

3. A set- of � new nodes arrive in the network
during the interval�������.

4. All the incoming nodes of set- choose to con-
nect to the� cache nodes in set,.

Since each of the above events can happen with con-
stant probability, the lemma follows.

Lemma IV.2: Consider the network��, for � � � .
There is a constant probability that there exists a
small (i.e., constant size) isolated component.

Proof: By Lemma IV.1 with constant proba-
bility there is a subgraph (call it. ) of type + in
the network at time��� . We calculate the prob-
ability that the above subgraph. becomes an iso-
lated component in��. This will happen if all��
nodes in. survive till � and all the neighbors of the
nodes in. (at most��� ��� of them connected
to the� c-nodes) leave the network and there are
no re-connections. The probability that the�� sub-



PANDURANGAN, RAGHAVAN AND UPFAL: BUILDING LOW-DIAMETER P2P NETWORKS 9

c−nodes

d−nodes

Fig. 1. Subgraph� used in proof of lemma IV.2. Note that
� � � in this example. All the four d-nodes are connected to
the same set of four c-nodes (shown in black).

graph nodes survived the interval����� �� is ����.
The probability that all neighbors of the subgraph
leave the network with no new connections is at least
������
�
������ �

���
�
�
���. Thus, the probabil-

ity that. becomes isolated is at least

������� ���
�
������ �

� � �
�
�
��� � 	���

Theorem IV.1: The expected number of small iso-
lated components in the network at any time� � � is
����, when there are no preferred connections.

Proof: Let , be the set of nodes which arrived
during the interval������� �

�
�. Let� � , be a node

which arrived at at��. From the proof of Lemma IV.2
it is easy to show that� has a constant probability
of belonging to a subgraph of type+ at ��. Also,
by the same lemma,+ has a constant probability of
being isolated at�. Let the indicator variable��, � �
, denote the probability that� belongs to a isolated
subgraph at time�. Then,��

�
������ � ����, by

linearity of expectation. Since the isolated subgraph
is of constant size, the theorem follows.

V. RELATED WORK

We briefly discuss related work in P2P systems
most relevant to our work. Two important systems
proposed recently are Chord [18] and CAN [13].
These are content-addressable protocols i.e., they
solve the problem of efficiently locating a node stor-
ing a given data item. There are two components for
the above protocols: the first specifies how and where

a particular data item should be stored in the network,
and the second specifies a routing protocol to retrieve
a given data item efficiently.

The focus of our work is building P2P networks
with good topological properties and not the prob-
lem of searching or routing – which is an orthog-
onal issue for us; for example a Gnutella-like [8]
or a Freenet-like [7] search/routing mechanism can
be easily incorporated in our protocol. Thus, al-
though we cannot directly compare our protocol with
content-addressable networks such as Chord or CAN,
we can compare them with respect to their topo-
logical properties and guarantees. CAN uses a�-
dimensional Cartesian coordinate space (for some
fixed �) to implement a distributed hash table that
maps keys onto values. Chord on the other hand,
uses a scheme calledconsistent hashing to map keys
to nodes. Although the degree (the number of en-
tries in the routing table of a node) of CAN is a
fixed constant� (the number of entries in its rout-
ing table), the diameter (the maximum distance be-
tween any two nodes in the virtual network) can be
as large as!��/����. In the case of Chord, the di-
ameter is!�
���� while the degree of every node is
!�
����. (If � � 
����, CAN matches the bounds
of Chord.) This is in comparison to the constant de-
gree and logarithmic diameter of our protocol. How-
ever, the most important contrast is that their proto-
cols provide no provable guarantees in a realistic dy-
namic setting, unlike ours. Chord gives guarantees
only under a simplistic assumption that every node
can fail (or drop out) with probability 1/2.

Another interesting P2P system is the dynami-
cally fault-tolerant network of [16]. This is again
a content-addressable network based on a butterfly
topology. The diameter of the network is!�
����
and the degree is!�
�����. Peer insertion takes
!�
���� time. The system is robust to fault toler-
ance in the sense that at any time, an arbitrarily large
fraction of the peers can reach an arbitrarily large
fraction of the data items. They show the above prop-
erty under a somewhat artificial assumption that in
any time interval during which an adversary deletes
some number of peers, some larger number of peers
join the network. Also they assume that each of the
new peers joining the network knows onerandom
peer currently in the network. To compare with our
work, we show that our protocol is naturally fault-
tolerant (in the sense it recovers fairly rapidly from



10 IEEE J. ON SELECT. AREAS COMMUN.

fragmentation and high diameter with high probabil-
ity) under a natural dynamic model where each node
operates with no global knowledge.

VI. CONCLUSION AND FURTHER WORK

We give a distributed protocol to construct net-
works with good topological properties – namely
constant degree, connectivity, and low-diameter. An
attractive feature of the protocol is that it is simple to
implement. We analyze our protocol under a realistic
dynamic setting and prove rigorously that it results in
the above properties with large probability. We also
proved that our protocol is naturally robust to failures
and that it has nice self-correcting properties such as
rapid recovery from network fragmentation. We now
discuss possible extensions and future work.

It is important to point out our protocol is con-
cerned with building a goodvirtual network topology
which may not match the underlying Internet topol-
ogy (this may not be a big issue for enterprise P2P).
In fact, evidence [14] suggests that these two topolo-
gies do not match well. It will be of practical interest
[14] to construct topologies that respects the underly-
ing physical topology (e.g., locality) – this is an area
for further research.

In our protocol we implicitly assume that all nodes
have equal capabilities (i.e., storage and number of
connections supported) and all links have equal band-
width. In enterprises with homogeneous systems this
is closer to reality, however this is not the case in the
Internet. It will be nice to extend our protocol to in-
corporate heterogeneous nodes and links.

REFERENCES

[1] N. Alon and J. Spencer.The Probabilistic Method, John Wiley,
1992.

[2] K. Azuma. Weighted sums of certain dependent random vari-
ables.Tohoku Mathematical Journal, 19, 357-367, 1967.

[3] B. Bollobas.Random Graphs, Academic Press, 1985.
[4] Clip2, “Gnutella Measurement Project”, May 2001.

http://www.clip2.com
[5] D. Clark. Face-to-Face with Peer-to-Peer Networking,Computer,

34(1), 2001.
[6] I. Clarke. A Distributed Decentralized Information Storage and

Retrieval System, Unpublished report, Division of Informatics,
University of Edinburgh (1999).

[7] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system, In
Proceedings of the Workshop on Design Issues in Anonymity and
Unobservability, Berkeley, 2000. (http://freenet.sourceforge.net)

[8] The Gnutella Protocol Specification v0.4.
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf

[9] Gnutella website.http://gnutella.wego.com/
[10] S. Karlin and H.M Taylor.A First Course in Stochastic Processes,

Second Edition, Academic Press, 1997.

[11] R. Motwani and P. Raghavan.Randomized Algorithms, Cam-
bridge University Press, 1995.

[12] Napster website.http://www.napster.com
[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A

Scalable Content-Addressable Network inProceedings of ACM
SIGCOMM, 2001.

[14] M. Ripeanu, I.Foster, and A. Iamnitchi. Mapping the Gnutella
Network: Properties of Large Scale Peer-to-Peer Systems and
Implications for System Design, IEEE Internet Computing Jour-
nal special issue on peer-to-peer networking, vol. 6(1), 2002.

[15] S.M. Ross.Applied Probability Models with Optimization Appli-
cations, Holden-Day, San Francisco, 1970.

[16] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynami-
cally Fault-Tolerant Content Addressable Networks, inProceed-
ings of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), March 2002, Cambridge, MA.

[17] S.Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems, inProceedings
of Multimedia Computing and Networking (MMCN), San Jose,
2002.

[18] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications, inProceedings of ACM SIGCOMM, 2001.


