
Improving Search in Peer-to-Peer Networks

Beverly Yang Hector Garcia-Molina
fbyang, hectorg@cs.stanford.edu

Computer Science Department, Stanford University

Abstract

Peer-to-peer systems have emerged as a popular way to
share huge volumes of data. The usability of these systems
depends on effective techniques to find and retrieve data;
however, current techniques used in existing P2P systems
are often very inefficient. In this paper, we present three
techniques for efficient search in P2P systems. We present
the design of these techniques, and then evaluate them using
a combination of analysis and experiments over Gnutella,
the largest open P2P system in operation. We show that
while our techniques maintain the same quality of results
as currently used techniques, they use up to 5 times fewer
resources. In addition, we designed our techniques to be
simple, so that they can be easily incorporated into existing
systems for immediate impact.

1 Introduction

Peer-to-peer (P2P) systems are distributed systems in
which nodes of equal roles and capabilities exchange in-
formation and services directly with each other. In recent
years, P2P has emerged as a popular way to share huge vol-
umes of data. For example, the Morpheus [8] multimedia
file-sharing system reported over 470,000 users sharing a
total of .36 petabytes of data as of October 26, 2001. Shar-
ing such large volumes of data is made possible by dis-
tributing the main costs – disk space for storing the files
and bandwidth for transferring them – across the peers in
the network. In addition to the ability to pool together
and harness large amounts of resources, the strengths of
existing P2P systems (e.g., [9], [6], [5], [8]) include self-
organization, load-balancing, adaptation, and fault toler-
ance. Because of these desirable qualities, many research
projects have been focused on understanding the issues sur-
rounding these systems and improving their performance
(e.g., [13], [7], [4]).

The key to the usability of a data-sharing P2P system,
and one of the most challenging design aspects, is efficient
techniques for search and retrieval of data. The best search
techniques for a system depends on the needs of the appli-
cation. For storage or archival systems focusing on avail-

ability, search techniques such as [16, 12, 21, 11] are well-
suited, because they guarantee location of content if it ex-
ists, within a bounded number of hops. To achieve these
properties, these techniques tightly control the data place-
ment and topology within the network, and currently only
support search by identifier.

In systems where persistence and availability are not
guaranteed or necessary, such as Gnutella [6], Napster [9]
and Morpheus [8], search techniques can afford to have
looser guarantees. In addition, because these systems are
meant for a wide range of users from non-cooperating or-
ganizations, techniques can not afford to strictly regulate
the network. Friends may want to connect to other friends,
while strangers may not want to store data (potentially large
amounts) on behalf of each other. Also, these systems tra-
ditionally offer support for richer queries than just identifier
lookups, such as keyword search with regular expressions.
Search techniques for these “loose” systems must therefore
operate under a different set of constraints than techniques
developed for persistent storage utilities.

Current search techniques in “loose” P2P systems tend to
be very inefficient, either generating too much load on the
system, or providing a bad user experience. In this paper,
we design and evaluate new search techniques for loosely
controlled, loose guarantee systems such as Gnutella and
Morpheus. In particular, our main contributions are:
� We present several search techniques that achieve huge

performance gains over current techniques, but are sim-
ple and practical enough to be easily incorporated into
existing systems (Section 4).

� We evaluate our techniques using large amounts of data
gathered from Gnutella, the largest open P2P network
in operation (Section 5).

� We highlight the strengths of each technique as well as
the weaknesses, and translate these tradeoffs into prac-
tical recommendations for today’s systems (Section 6).

The basic idea behind our techniques is to reduce the num-
ber of nodes that process a query. Past work in [18], and
our own experiments (Section 6), show that most queries
can be answered by querying fewer nodes than the current
techniques. Our first technique,iterative deepening(Sec-
tion 4.1), iteratively sends the query to more nodes until
the query is answered. TheDirected BFStechnique (Sec-
tion 4.2), queries a restricted set of nodes intelligently se-

1



lected to maximize the probability that the query will be
answered. If we allow nodes to answer queries on behalf of
other nodes, then we can still reduce the number of nodes
that process a query without decreasing the number of re-
sults. In theLocal Indicestechnique (Section 4.3), nodes
maintain simple indices over other nodes’ data. Queries are
then processed by a smaller set of nodes.

2 Related Work

The original motivation for much P2P research was early
“loose” file-sharing P2P systems such as Gnutella [6], Nap-
ster [9], Freenet [5], and Morpheus [8]. The performance
of search techniques used in Gnutella and Freenet are dis-
cussed in Section 3.2. Napster is not a pure P2P sys-
tem, but rather ahybrid one containing some centralized
components; performance of hybrid P2P systems is ex-
plored in [18]. Morpheus is a newer, very popular system
which has an architecture partway between Napster’s and
Gnutella’s. “Super-peer” nodes act as a centralized resource
for a small number of clients, but these super-peers connect
to each other to form a pure P2P network. Our techniques
are applicable to the P2P network of super-peers. Perfor-
mance of “super-peer networks” is studied in [19].

Other search techniques for “loose” systems include [1],
[3] and [10]. The search technique proposed in [1] is similar
to our Local Indices technique (Section 4.3), but the routing
policy for Query messages differ, resulting different perfor-
mance and cost tradeoffs. References [3] and [10] propose
that each node maintain “hints” as to which nodes contain
data that can answer certain queries, and route messages via
local decisions based on these hints.

Search techniques for systems with strong guarantees on
availability include Chord [16], CAN [11], Pastry [12], and
Tapestry [21]. With deliberately formed connections and
intelligent routing, these systems can locate an object by its
identifier within a bounded number of hops. These tech-
niques perform well for the systems they were intended for
([4],[13],[7]), but we reiterate that they may not be appro-
priate for the type of system we are interested in studying.

Finally, one of the main contributions of our work is
evaluating techniques using extensive measurements over
the Gnutella network. References [2] and [15] measure user
characteristics through passive observation of messages. In
addition, [15] measures hardware characteristics of peers.

3 Problem Overview

The purpose of a data-sharing P2P system is to accept
queries from users, and locate and return data (or pointers
to the data). Each node owns a collection of files or records
to be shared with other nodes. The shared data usually con-
sists of files, but is not restricted to files (e.g., records stored
in a relational database). Queries may take any form that
is appropriate given the type of data shared. If the system

is a file-sharing system, queries may be file identifiers, or
keywords with regular expressions, for example.

Two nodes maintaining an open connection (or “edge”)
are known asneighbors. Messages must travel along a se-
quences of edges. The length of this path is the “number of
hops” taken by the message. Two nodes are said to be “n
hops apart” if the shortest path between them has lengthn.

When a user submits a query, hersourcenode sends the
query message to a set of its neighbors. The routing policy
determines which neighbors (possibly all) are in this set.
When a node receives a Query message, it may forward the
query to a set of its neighbors, depending on the routing
policy. The node will also process the query over its local
collection and produce results (such as pointers to files). If
any results are found at that node, the node will send a single
Response message back to the query source via the reverse
path traveled by the query. The total result set for a query is
the bag union of results from every node that processes it.

3.1 Metrics

Cost. When a query message is propagated through the
network, nodes spend processing resources (i.e., cycles) to
forward the query, process it, etc, and bandwidth to send
and receive messages. The main cost of queries are there-
fore bandwidth and processing. Since the cost of a query
is not incurred at any single node in the network, it makes
sense to discuss costs inaggregate(i.e., over all the nodes in
the network). Furthermore, we should not evaluate a policy
based on the performance of any single query, so instead
we measure theaverageaggregate cost incurred by a set
of queriesQrep, whereQrep is a representative set of real
queries submitted. Our two cost metrics are therefore:
� Average Aggregate Bandwidth
� Average Aggregate Processing Cost

It is not possible to directly measure these metrics; instead,
we use analysis based on measured costs of individual ac-
tions to estimate these values (Section 5.2).

Quality of Results. Although we seek to reduce the cost
of the query, we must nevertheless ensure our techniques
do not degrade the user experience. Quality of results are
measured by the following metrics:
� Number of results: the size of the total result set.
� Satisfaction: Some queries may receive hundreds or

thousands of results. Rather than notifying the user of
every result, the clients in many systems (such as Nap-
ster and Gnutella) display the firstZ results only, where
Z is some value specified by the user. We say a query
is satisfiedif Z or more results are returned. The idea is
that given a sufficiently largeZ, the user can find what
she is looking for from the firstZ results. Hence, if
Z = 50, a query that returns 1000 results performs no
better than a query returning 100 results.

� Time to Satisfaction: the time that has elapsed from
when the query is first submitted by the user, to when



the user’s client receives theZth result.
In general, we observe a tradeoff between cost and quality.

3.2 Current Techniques

We will look at the techniques currently used by two
well-known operating P2P systems:
� Gnutella: Uses a breadth-first traversal (BFS) with

depth limitD, whereD is the system-wide maximum
time-to-live of a message in hops. Every node receiving
a Query will forward the message to all of its neighbors,
unless the message has already traveledD hops.

� Freenet: Uses a depth-first traversal (DFS) with depth
limit D. Each node forwards the query to a single neigh-
bor, and waits for a definite response from the neighbor
before forwarding the query to another neighbor (if the
query was not satisfied), or forwarding results back to
the query source (if the query was satisfied).

If the quality of results in a system were measured solely
by the number of results, then the BFS technique is ideal
because it sends the query to every possible node (i.e., all
nodes withinD hops), as quickly as possible. However,
if satisfaction were the metric of choice, BFS wastes re-
sources because, as we mentioned earlier, most queries can
be satisfied from the responses of relatively few nodes. With
DFS, because each node processes the query sequentially,
searches can be terminated as soon as the query is satisfied,
thereby minimizing cost. However, sequential execution
also translates to poor response time, with the worst case
being exponential inD. Actual response time in Freenet is
moderate, becauseZ = 1 and intelligent routing is used.

As we can see, existing techniques fall on opposite ex-
tremes of bandwidth/processing cost and response time.
Our goal is to find some middle ground between the two
extremes, while maintaining quality of results.

4 Broadcast Policies

4.1 Iterative Deepening

In systems where satisfaction is the metric of choice, a
good technique isiterative deepening. Iterative deepening
is a well-known technique used in other contexts, such as
search over state space in artificial intelligence [14]. In iter-
ative deepening, multiple breadth-first searches are initiated
with successively larger depth limits, until either the query
is satisfied, or the maximum depthD has been reached. To
implement the iterative deepening technique, a system-wide
policy is needed that specifies at which depths the iterations
are to occur. For example, say we want to have three iter-
ations: the first iteration searches to a deptha, the second
to depthb, and the third to depthc. Our policy is there-
foreP = fa; b; cg. In addition to a policy, we must specify
the time between successive iterations in the policy,W , ex-
plained in further detail below.

Under the policyP = fa; b; cg, a source nodeS first ini-
tiates a BFS of deptha. When a node at deptha receives
and processes the message, it will store the message tem-
porarily. The query therefore becomesfrozenat all nodes
that area hops from the source. Meanwhile,S receives Re-
sponse messages from nodes that have processed the query.
After waiting for a time periodW , if the query has been sat-
isfied, thenS does nothing; otherwiseS will start the next
iteration, initiating a BFS of depthb.

To initiate the next BFS,S will send aResendwith a
TTL of a. Instead of reprocessing the query, a node that re-
ceives a Resend message will simply forward the message,
or if the node is at deptha, it will drop the Resend mes-
sage and “unfreeze” the corresponding query by forwarding
the Query message (with a TTL ofb � a) to all its neigh-
bors. To match queries with Resend messages, every query
is assigned a system-wide “almost unique” identifier (which
Gnutella does). The Resend message will contain the iden-
tifier of the query it is representing, and nodes will know
which query to unfreeze by inspecting this identifier. Note
that a node need only freeze a query for slightly more than
W time units before deleting it.

After the search to depthb, the process continues in a
similar fashion to the other levels in the policy. Sincec is
the depth of the last iteration in the policy, queries will not
be frozen at depthc, andS will not initiate another iteration,
even if the query is still not satisfied.

4.2 Directed BFS

If minimizing response time is important to an applica-
tion, then iterative deepening may not be appropriate be-
cause of the time taken by multiple iterations. A better
strategy would be to send queries immediately to a sub-
set of nodes that will return many results, and will do so
quickly. TheDirected BFS(DBFS) technique implements
this strategy by having a source send query messages to just
a subset of its neighbors, thereby reducing cost, but select-
ing neighbors through which nodes with many quality re-
sults may be reached, thereby maintaining quality of results.
For example, one may select a neighbor that has produced
or forwarded many quality results in the past, on the premise
that past performance is a good indication of future perfor-
mance. The neighbors that receive the query then continue
forwarding the message to all neighbors as with BFS.

In order to intelligently select neighbors, a node main-
tains simple statistics on its neighbors, such as the number
of results received through that neighbor for past queries, or
the latency of the connection with that neighbor. From these
statistics, we can develop a number of heuristics to help us
select the best neighbor to send the query, such as:
� Select the neighbor that has returned the highest number

of results for previous queries.
� Select neighbor that returns response messages that

have taken the lowest average number of hops. A low
hop-count may suggest that this neighbor is close to



nodes containing useful data.
� Select the neighbor that has forwarded the largest num-

ber of messages (all types) our client. A high message
count implies that this neighbor is stable and it can han-
dle a large flow of messages.

� Select the neighbor with the shortest message queue. A
long message queue implies that the neighbor’s pipe is
saturated, or that the neighbor has died.

In our experiments, a query source sends the query to a sin-
gle neighbor only. Surprisingly, we will see that the quality
of results does not decrease significantly, provided that we
make intelligent neighbor selections.

4.3 Local Indices

In the Local Indices technique, each noden maintains
an index over the data of all nodes withinr hops of itself,
wherer is asystem-widevariable known as theradiusof the
index (r = 0 is the degenerate BFS case, where a node only
indexes metadata over its own collection). When a node
receives a Query message, it can process the query on be-
half of every node withinr hops. In this way, the data of
many nodes can be searched by processing the query at few
nodes, thereby maintaining satisfaction and number of re-
sults while keeping costs low. Whenr is small, the amount
of metadata a node must index is also quite small, on the or-
der of 50 KB. As a result, Local Indices with smallr should
be easily accepted by a loosely controlled system such as
Gnutella. See Section 6.3 for details on space requirements.

The Local Indices technique works as follows: a system-
wide policy specifies the depths at which the query should
be processed. All nodes at depths not listed in the policy
simply forward the query to the next depth. For example,
say the policy isP = f1; 5g. Query sourceS will send the
Query message out to its neighbors at depth 1. All these
nodes will process the query, and forward the Query mes-
sage to all their neighbors at depth 2. Nodes at depth 2 will
not process the query, but will forward the Query message
to depth 3. Eventually, nodes at depth 5 will process the
query, since depth 5 is in the policy. Because depth 5 is the
last depth inP , these nodes will then drop the Query. Note
the difference between a Local Indices policy and an itera-
tive deepening policy, where depths in the policy represent
the depths at which iterations should end, and nodes atall
depths process the query.

To create and maintain the indices at each node, extra
steps must be taken whenever a node joins, leaves, or up-
dates its data. When a nodeX joins the network, it sends
a Join message with a TTL ofr, containing metadata over
its collection. When a node receives the Join message from
X , it will send a Join message containing metadata over its
collection directly toX (i.e., over a temporary connection).
Both nodes then add each other’s metadata to their own in-
dex. When a node joins the network or a new connection is
made, a path of lengthr may be created between two nodes
where no such path previously existed. In this case, the two

Description Value
Average files shared per user 340 files
Average size of result record 76 B
Average size of metadata for a single file 72 B
Percentage of Query messages dropped ([20])30%

Table 1. General Statistics

nodes can be made aware of this path in a number of ways
without introducing additional messages (see [20]).

When a node leaves the network or dies, other nodes that
index this node’s collection will remove its metadata after a
timeout. When a user updates his collection, his node will
send out a small Update message with a TTL ofr, contain-
ing the metadata of the affected data All nodes receiving
this message subsequently update their index.

To translate the cost of joins, leaves and updates to
query performance, we amortize these costs over the cost
of queries. The parameterQueryJoinRatio gives us the
average ratio of queries to joins in the entire P2P network,
while QueryUpdateRatio gives us the average ratio of
queries to updates.

5 Experimental Setup

We chose to base our evaluations on data gathered from
the Gnutella network because Gnutella is the largest open
P2P system in operation, with about 50000 users as of May,
2001. In evaluating our techniques, some metrics can be di-
rectly measured through experiments (e.g., satisfaction of a
BFS query), while others must be indirectly measured (e.g.,
satisfaction for a local indices query, since we could not
force all Gnutella nodes to use this technique for our exper-
iments). For the latter type, we instead collect performance
data for queries under the BFS technique, and combine this
data using analysis to estimate what the performance would
have been under our techniques. Experiments and analysis
are described in Sections 5.1 and 5.2, respectively.

5.1 Data Collection

First, we needed to gather some general information on
the Gnutella network and its users. For example, how many
files do users share? What is the typical size of metadata
for a file? To gather these general statistics, for a period of
one month, we ran a Gnutella client that observed messages
as they passed through the network. Based on the content
of these messages, our client could determine characteris-
tics of users’ collections, and of the network as a whole.
Table 1 summarizes some of the general characteristics we
will use later on in our analysis. Our client also passively
observed the query strings of query messages that passed
through the network. To get our representative set of queries
for Gnutella,Qrep (see Section 3.1) , we randomly selected
500 queries from the 500,000 observed queries.



Symbol Description
L(Q) Length of query string for queryQ
M(Q;n) Number of response messages received for

queryQ, fromn hops away
R(Q;n) Number of results received for queryQ, from

n hops away
S(Q;n; Z) Returns true if queryQ receivedZ or more

results fromn hops away

T (Q;Z;W; P ) Time to satisfaction of queryQ, under iterative
deepening policyP and waiting timeW

N(Q;n) Number of nodesn hops away that processQ
C(Q;n) Number of redundant edgesn hops away

Table 2. Symbols and function names of data extracted
from logs for iterative deepening

5.1.1 Iterative Deepening

For each queryQ in the representative setQrep, our client
submittedQ to the live Gnutella networkD times (spread
over time), whereD = 7 is the maximum TTL allowed
in Gnutella. Each time we incremented the TTL by 1, so
that we submittedQ once for each TTL between 1 andD.
For each Query message submitted, we logged every Re-
sponse message arriving within 2 minutes of submission of
the query. For each Response, we log:
� The number hops that the Response message took.
� The response time (i.e., the time elapsed from when the

Query message was first submitted, to when the Re-
sponse message was received).

� The IP address from which the Response message came.
� The individual results contained in the message.

As queries are submitted, our client sent out Ping mes-
sages to all its neighbors. Ping messages are propagated
through the network in a breadth-first traversal, as Query
messages are. When a node receives a Ping message, it
replies with a Pong message containing its IP. We sent a
Ping message immediately before every second query, and
logged the following information for all Pong messages re-
ceived in the next 4 minutes:
� The number of hops that the Pong message took.
� The IP address from which the Pong came.

From these Response and Pong logs, we can directly ex-
tract information necessary to estimate the cost and quality
of results for each query, summarized in the first half of Ta-
ble 2. Each of these data elements were extracted for every
queryQ 2 Qrep, and for every possible hop valuen (n = 1
toD). In the definitions ofR(Q;n) andM(Q;n), note that
a single Response message can hold more than one result.

We also estimated several values, listed in the second
half of Table 2. These values could not be directly observed,
but they are nevertheless carefully calculated from observed
quantities (see [20] for details).

The data gathered for Iterative Deepening is also used to
evaluate Local Indices. No separate experiments were run

Symbol Description
L(Q) Length of query string for queryQ
M(Q;n; y) Number of response messages received for query

Q, from nodesn hops away, when the Query
message was sent to neighbory

R(Q;n; y) Number of results received for queryQ, from
nodesn hops away, when the Query message was
sent to neighbory

S(Q;n; Z; y) Returns true if queryQ receivesZ or more results
from n hops away, when the Query message was
sent to neighbory

T (Q;Z; y) The time at which queryQ is satisfied, when the
query was sent to neighbory

N(Q;n; y) Number of nodesn hops away that processQ
when the Query message was sent to neighbory

C(Q;n; y) Number of redundant edgesn hops away
when the Query message was sent to neighbory

Table 3. Symbols and function names of data extracted
from logs for Directed BFS

to gather data for Local Indices.

5.1.2 Directed BFS

The experiments for DBFS are similar to the experiments
for iterative deepening, except each query inQrep is now
sent to a single neighbor at a time. That is, rather than send-
ing the same Query message, with the same message ID,
to all neighbors, our node sends a Query message with a
different ID (but same query string) to each neighbor. Sim-
ilarly, Ping messages with distinct IDs are also sent to a
single neighbor at a time, before every other query.

For each Response and Ping received, our client logs the
same information logged for iterative deepening, in addition
to the neighbor from which the message is received. From
our logs, we then extract the same kind of information as
with iterative deepening, for each query and neighbor. The
data we extract from the logs is listed in Table 3. Note that
unlike with iterative deepening, the time to satisfaction in
Directed BFS –T (Q;Z; y) – is directly observable by our
client. We also estimate several values that could not be
directly extracted, listed in Table 3, in the same manner as
the values in Table 2.

In addition to gathering Response and Pong information,
we also recorded statistics for each neighbor right before
each query was sent out, such as the number of results that
a neighbor has returned on past queries, and the latency of
the connection with a neighbor. Recall that these statistics
are used to select to which neighbor we forward the query.

5.2 Calculating Costs

Given the data we collect from the Gnutella network, we
can now estimate the cost and performance of each tech-
nique through analysis. The following subsections summa-



Symbol Value (Bytes) Description
a(Q) 82 + L(Q) Size of a Query message
b 80 Size of a Resend message
c 76 Size of a single result record
d 108 Size of a Response message header
e(Q; r) see discussion Size of a full Response message

in [20] under Local Indices
f 24560 Size of a Join message
g 152 Size of an Update message

Table 4. Sizes of messages

rize our calculations for cost. Calculations for time to satis-
faction can be found in [20].

5.2.1 Bandwidth Cost

To calculate the average aggregate bandwidth consumed
under a particular technique, we first estimate how large
each type of message is. We base our calculations of mes-
sage size on the Gnutella network protocol, and the general
statistics listed in Table 1. For example, a Query message
contains a Gnutella header, a query string, and a field of 2
bytes for options. Headers in Gnutella are 22 bytes, TCP/IP
and Ethernet headers are 58 bytes, and the query string is
L(Q) bytes (Table 2). Total message size is therefore 82 +
L(Q) bytes. Table 4 lists the different message types used
by our techniques, giving their estimated sizes and the sym-
bol used for compact representation of the message size.

We can now use the message sizes and logged informa-
tion to estimate aggregate bandwidth consumed by a single
query under the various techniques. For example, aggregate
bandwidth for a query under BFS is:

BWbfs(Q) =

DX
n=1

�
a(Q) �

�
N(Q;n) + C(Q;n)

�

+ n �
�
c �R(Q;n) + d �M(Q;n)

��
(1)

The first term inside the summation gives us the bandwidth
consumed by sending the query message from leveln � 1
to leveln. There areN(Q;n) nodes at depthn, and there
areC(Q;n) redundant edges between depthsn � 1 andn.
Hence, the total number of Query messages sent on thenth
hop is equal toN(Q;n) + C(Q;n). If we multiply this
sum bya(Q), the size of the Query message, we get the
bandwidth consumed by forwarding the query on thenth
hop. The second term gives us the bandwidth consumed by
transferring Response messages fromn hops away back to
the query source. There areM(Q;n) Response messages
returned from nodesn, and these Response messages con-
tain a total ofR(Q;n) result records. The size of a response
message header isd, and the size of a result record isc (on
average), hence the total size of all Response messages re-
turned fromn hops away isc�R(Q;n)+d�M(Q;n). These
messages must taken hops to get back to the source; hence,
bandwidth consumed isn times the size of all responses.

Symbol Cost (Units) Description
s 1 Cost of transferring a Resend message
t(Q) 1 + :007 � L(Q) Cost of transferring a Query message
u .5 Additional cost of sending a Response

message when a result record is
appended to the message

v 1.2 Base cost of transferring a Response
message with no result records

w 1.1 Additional cost of processing a query
per result discovered

x 14 Base overhead of processing a query
y(Q; r) see discussion Cost of transferring a Response

in [20] message under Local Indices
z(Q; r) see discussion Cost of processing a query under

in [20] Local Indices
h 3500 Cost of processing a Join message
j 160 Cost of transferring a Join message
k 3500 Cost of processing a timeout

(removing metadata)
l 1.4 Cost of transferring an Update message
� 30 Cost of processing an Update message

Table 5. Costs of actions

Formulae for calculating aggregate bandwidth consump-
tion for the remaining policies – iterative deepening, Di-
rected BFS, and Local Indices – follow the same pattern,
and include the same level of detail, as Equation 1. Due
to space limitations, the formulae and derivations are not
included here, but can be found in [20].

5.2.2 Processing Cost

To calculate processing costs, we first estimate how much
processing power each type of action requires. Table 5
lists the different types of actions needed to handle queries,
along with their cost in units and the symbol used for com-
pact representation of the actions’ cost. Costs are expressed
in terms of coarse units, where the base unit is defined as the
cost of transferring a Resend message, roughly 7300 cycles.
Costs were estimated by running each type of action on a
Pentium III 930 MHz processor (Linux version 2.2) While
CPU time will vary between machines, the relative cost of
actions should remain roughly the same.

Because of space limitations, we do not present formulae
for calculating average aggregate processing cost. Please
see [20] for the formulae and their derivations.

6 Experiments

In this section, we present the results of our experiments
and analysis. As a convenience to the reader, some sym-
bols defined in previous sections are re-defined in Table 6.
Note that our evaluations are performed over a single “real”
system, and that results may vary for other topologies. Nev-
ertheless, since Gnutella does not control topology or data
placement, we believe its characteristics are representative
of the type of system we want to study.



Symbol Definition
D Maximum time-to-live of a message, in terms of hops
Z Number of results needed tosatisfya query
Qrep Representative set of queries for the Gnutella network
W Waiting time (in seconds) between iterations

Table 6. Definition of Symbols

Due to space limitations, we will not show figures for the
processing cost metric, though we will cite specific num-
bers. Behavior of this metric is analogous to that of band-
width cost; hence, the bandwidth cost figures give us the
shape (i.e., illustrate the same tradeoffs) for processing cost.

6.1 Iterative Deepening

In order for iterative deepening to have the same satis-
faction performance as a BFS of depthD, the last depth
in the policy must equalD. For the sake of comparison,
we evaluate only these kinds of policies. To understand the
tradeoffs between policies of different lengths, we choose
the following subset of policies to study:

P = fPd = fd; d+ 1; ::::; Dg; for d = 1; 2; :::; Dg

= ff1; 2; :::; Dg; f2; 3; :::; Dg; :::; fD� 1; Dg; fDgg:

Since a policyPd is defined by the value ofd, the depth of
its first iteration, we calld the “policy number”. Recall that
PD = P7 = f7g is the degenerate case, a BFS of depth
7, currently used in the Gnutella network. Similarly, we
looked only at a few possibleW values:f1; 2; 4; 6; 150g.
These values are measured in seconds.

In our experiments, our client maintained 8 neighbors,
and we defined the desired number of resultsZ = 50.
In [20] we study the effects of varyingZ and the number
of neighbors of our client. In general, increasingZ results
in a lower probability of satisfaction and higher cost, but in-
creased number of results. Decreasing the number of neigh-
bors results in slightly lower probability of satisfaction, but
significantly lower cost.

We note that our client ran over an 10 Mb Ethernet con-
nection. To ensure that our client would not die and inter-
rupt the ongoing experiments, we had to ensure that the con-
nection was stable and did not saturate. Most peer-to-peer
clients will be connected via lower bandwidth connections,
so we must keep in mind that the absolute numbers that we
see in the following graphs may not be the same across all
clients, though the tradeoffs should be comparable.

Cost Comparison. Figure 1 shows the cost of each pol-
icy, for each value ofW , in terms of average aggregate
bandwidth and processing cost, respectively. Along the x-
axis, we varyd, the policy number. The cost savings are
immediately obvious in these figures. PolicyP1 atW = 8
uses just about 19% of the aggregate bandwidth per query
used by the BFS technique,P7, and just 40% of the aggre-
gate processing cost per query.

To understand how such enormous savings are possible,
we must understand the tradeoffs between the different poli-
cies and waiting periods. First, notice that the average ag-
gregate bandwidth ford = 7 is the same regardless ofW .
SinceW is the waiting time between iterations, it does not
affectP7 = f7g, which has only a single iteration.

Next, notice that asd increases, the cost of policyPd
increases as well. The largerd is, the more likely the pol-
icy will waste bandwidth by sending the query to too many
nodes. For example, if a queryQ can be satisfied at a depth
of 4, then policiesP5; P6, andP7 will “overshoot” the goal,
sending the query out to more nodes than necessary to sat-
isfyQ. Sending the query out to more nodes than necessary
will generate extra bandwidth from forwarding Query and
Response messages.

Now, notice that asW decreases, cost increases. IfW is
small, there is a higher likelihood that the source will pre-
maturely determine that the query was not satisfied, leading
to the “overshooting” effect we described for large policy
numbers. For example, sayW = 6 andd = 4. If a queryQ
can be satisfied at depth 4, but 8 seconds are required before
Z results arrive at the client, then the client will only wait
for 6 seconds, determine that the query is not satisfied, and
initiate the next iteration at depth 5. In this case, the client
overshoots the goal. The smallerW is, the more often the
client will overshoot.

Quality of Results. Recall that one of the strengths of it-
erative deepening is that it can decrease the cost of queries
without detracting from its ability to satisfy queries. Hence,
satisfaction under any iterative deepening policy is equal to
satisfaction under the current BFS scheme used by Gnutella,
which, according to our data, equals .64. Because the itera-
tive deepening technique is best applied in cases where sat-
isfaction, and not the number of responses, is the more ap-
propriate metric, we will not compare policies by the num-
ber of results returned per query.

The remaining quality of results metric, time to satisfac-
tion, is shown in Figure 2 for each policy and value ofW .
We see that there is an inverse relationship between time to
satisfaction and cost. AsW increases, the time spent for
each iteration grows longer. In addition, asd decreases, the
number of iterations needed to satisfy a query will increase,
on average. In both cases, the time to satisfaction will in-
crease. Note, however, that delay is often caused by satu-
rated connections or thrashing nodes. If all nodes used iter-
ative deepening, load on nodes and connections would de-
crease considerably, thereby decreasing these delays. Time
to satisfaction should therefore grow less quickly than is
shown in Figure 2, asd decreases orW increases.

In deciding which policy would be the best to use in prac-
tice, we must keep in mind what time to satisfaction the user
can tolerate in an interactive system. Suppose a system re-
quires the average time to satisfaction to be no more than 9
seconds. Looking at Figure 2, we see that several combina-
tions ofd andW result in this time to satisfy, e.g.,d = 4



1 2 3 4 5 6 7
2

4

6

8

10

12

14

16
x 10

5

Policy Number

A
ve

ra
ge

 A
gg

re
ga

te
 B

an
dw

id
th

 (
B

yt
es

)

w=1  
w=2  
w=4  
w=6  
w=150

Figure 1. Bandwidth consump-
tion for iterative deepening poli-
cies

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Policy Number

A
ve

ra
ge

 T
im

e 
to

 S
at

is
fy

 (
S

ec
on

ds
) w=1

w=2
w=4
w=6

Figure 2. Time to satisfaction
for iterative deepening policies

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Heuristic

P
ro

ba
bi

lit
y 

of
 S

at
is

fy
in

g

Z=20 
Z=50 
Z=100

RAND >RES <TIME <HOPS >MSG <QLEN <LAT >DEG 

Figure 3. Probability of satis-
faction for Directed BFS policies

Symbol Heuristic: Select neighbor that...
RAND (Random)
>RES Returned the greatest number of results in the past

10 queries
<TIME Had the shortest average time to satisfaction in the

past 10 queries
<HOPS Had the smallest average number of hops taken by

results in the past 10 queries
>MSG Sent our client the greatest number of messages (all types)
<QLEN Had the shortest message queue
<LAT Had the shortest latency
>DEG Had the highest degree (number of neighbors)

Table 7. Heuristics used for Directed BFS

andW = 4, or d = 5 andW = 6. Looking at Figure 1,
we see that the policy and waiting period that minimizes
cost, while satisfying the time constraint, isP5 andW = 6
(with savings of 72% in aggregate bandwidth and 53% in
aggregate processing cost over BFS). We would therefore
recommend this policy for our system.

6.2 Directed BFS

We studied 8 heuristics for Directed BFS, listed in Ta-
ble 7. The RAND heuristic, choosing a neighbor at random,
is used as the baseline for comparison with other heuristics.

Quality of Results. Figures 3 and 4 shows the probabil-
ity of satisfaction and time to satisfaction, respectively, for
the different heuristics and values ofZ. All heuristics ex-
cept<HOPS have a marked improvement over the baseline
heuristic RAND. In particular,>RES, sending the query
to the neighbor that has produced the most results in past
queries, has the best satisfaction performance. It is fol-
lowed by<TIME, sending the query to the neighbor that
has produced results with the lowest time to satisfaction in
past queries. As with iterative deepening, increasingZ de-
creases satisfaction for all heuristics. Under the time to sat-

isfaction metric, the<TIME heuristic has the best perfor-
mance, followed by>RES. As expected, we see that past
performance is a good indicator of future performance.

We were surprised to see that>DEG, sending the query
to the neighbor with the highest degree, did not perform as
well as most other heuristics. Past work such as [1] show
that in a power-law network, sending the query to nodes
with the highest degree should allow one to reach many
nodes in the network, and therefore get many results back.
However, this past work did not have real-time data to make
decisions as we did, such as the past performance of neigh-
bors. It is possible that with this additional real-time infor-
mation, their routing algorithm might be enhanced.

We were also surprised to see that<HOPS performed so
poorly. On closer examination of our logs, we found that a
low average number of hops does not imply that the neigh-
bor is close to many nodes with data, as we had hypothe-
sized. Instead, it typically means that only a few nodes can
be reached through that neighbor, but those few nodes are
close to the neighbor.

Cost. Figure 5 shows the cost of Directed BFS under each
heuristic in terms of average aggregate bandwidth. The cost
of Directed BFS in unaffected by the value ofZ, so the
single curve in this figure represent all values ofZ. We
see a definite correlation between cost and quality of re-
sults. Many of our heuristics return higher quality results
than RAND because they select neighbors that are directly
or indirectly connected to many other nodes. Because more
nodes process the query when using these heuristics, more
quality results are returned, but also more aggregate band-
width and processing power is consumed.

We feel that since users of a system are more acutely
aware of the quality of results that are returned, rather than
the aggregate cost of a query, the heuristics that provide the
highest quality results would be most widely accepted in
open systems such as Gnutella. We would therefore rec-
ommend>RES or<TIME. Both heuristics provide good



4000

5000

6000

7000

8000

9000

10000

11000

12000

Heuristic

A
ve

ra
ge

 T
im

e 
T

o 
S

at
is

ac
tio

n

Z=20 
Z=50 
Z=100

RAND >RES <TIME <HOPS >MSG <QLEN <LAT >DEG 

Figure 4. Time to satisfaction
for Directed BFS policies

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Heuristic

A
ve

ra
ge

 A
gg

re
ga

te
 B

an
dw

id
th

 (
B

yt
es

)

RAND >RES <TIME <HOPS >MSG <QLEN <LAT >DEG 

Figure 5. Bandwidth consump-
tion for Directed BFS

Policies
P0 = f1; 2; 3; 4; 5; 6; 7g
P1 = f0; 3; 6g
P2 = f0; 5g
P3 = f4g
P4 = f3g
P5 = f2g
P6 = f1g
P7 = f0g

Figure 6. Policies for Local In-
dices

time to satisfaction, and a probability of satisfaction that
is 9% and 13% lower than BFS with 8 neighbors, respec-
tively. Furthermore, despite the fact that they are the most
costly heuristics, they still require roughly 73% less pro-
cessing cost than BFS, and 65% less bandwidth.

Compared with iterative deepening, the strength of Di-
rected BFS is time to satisfaction. Comparing Figures 2
and 4, we see that Directed BFS heuristics yield times to
satisfaction comparable to the best times achievable by it-
erative deepening. However, by sacrificing time to satis-
faction, iterative deepening can achieve lower cost than any
Directed BFS heuristic. Table 8 in Section 7 summarizes
the comparisons between these two techniques.

6.3 Local Indices

Due to space limitations, here we only summarize per-
formance for the Local Indices technique. For full experi-
mental results, please refer to [20]. Figure 6 lists the poli-
cies we consider for each possible value of radiusr (assum-
ing r does not exceedD, the maximum depth of search).
These policies were chosen to minimize the number of
nodes that process the query.

Figure 7 gives us the cost of the Local Indices policies
for various values ofQueryJoinRatio (QJR) in terms of
average aggregate bandwidth. Along the x-axis we varyr.
Recall that QJR gives us the ratio of queries to joins/leaves
in the network; the default value observed in Gnutella is
roughly 10 [17]. We do not varyQueryUpdateRatio
because it has the same types of effects as varying QJR, to
a lesser degree. We see huge cost savings from the Local
Indices technique, especially as QJR increases. At QJR =
10, policy P1 uses about 39% of the bandwidth used by
BFS (i.e.,r = 0), and about 51% of the processing cost.
When QJR = 100, only 28% of the bandwidth and 21% of
the processing cost of the default scheme is required.

Note that cost decreases as QJR increases. Because there
are more queries to joins and leaves as QJR increases, the
amortized cost of joins and leaves decreases. Cost atr = 0

is unaffected because no indexes are being maintained at
r = 0. Also note that asr increases, the cost of the poli-
cies decrease, and then increase again. The reason for this
behavior can be found in Figure 8, where we see individual
costs of actions for QJR=20. Whenr is small, the cost of
queries dominates. Whenr is large, the amortized cost of
logins dominates. The minimum of the sum of all costs is
found somewhere in the two extremes.

Figure 9 shows us the size of the index that our node
would have as a function ofr, if we implemented Local
Indices. The size requirement for a policy is the number of
nodes withinr hops, multiplied by the average number of
files per user, and the average size of each file metadata. The
number of neighbors directly affect the size of the index,
so we show results for our client with 4 and 8 neighbors
(average degree is roughly 3 in Gnutella). Atr = 7 with
4 neighbors, the size of our index would have been roughly
21 MB, which is not unreasonable, but perhaps larger than
many users would like to keep in memory. Forr = 1, the
size of our index would be roughly 71 KB – an index so
small that almost certainly no users would object.

Local Indices has the same number of results and sat-
isfaction as BFS. In the absence of data from a system that
actually uses indices, calculating time to satisfaction for Lo-
cal Indices is hard. Qualitative analysis indicates that Local
Indices will have performance comparable to BFS; please
see [20] for a detailed discussion.

For today’s system with QJR = 10, we recommend using
r = 1, because it achieves the greatest savings in cost (61%
in bandwidth, 49% in processing cost), and the index size is
so small. future, when QJR increases, the best value forr
will also increase.

7 Conclusion

This paper presents the design and evaluation of three ef-
ficient search techniques over a loosely controlled, pure P2P
system. Compared to current techniques used in existing
systems these techniques greatly reduce the aggregate cost



0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3
x 10

6

Radius (r)

A
ve

ra
ge

 A
gg

re
ga

te
 B

an
dw

id
th

 (
B

yt
es

)

QJR = 5 
QJR = 10
QJR = 20
QJR = 30
QJR = 40

Figure 7. Bandwidth consump-
tion for Local Indices

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6
x 10

6

Radius (r)

A
ve

ra
ge

 A
gg

re
ga

te
 B

an
dw

id
th

 (
B

yt
es

)

Query               
Amortized Join/Leave
Amortized Update    

Figure 8. Comparison of Band-
width Consumed by Actions

0 1 2 3 4 5 6 7
0

1

2

3

4

5
x 10

7

Radius (r)

S
iz

e 
of

 In
de

x 
(B

yt
es

)

8 neighbors
4 neighbors

Figure 9. Size of the Index for
different Radii(r)

Technique Time to Probability of Number Aggregate Aggregate
Satisfy Satisfaction of Results Bandwidth Processing

BFS 100% 100% 100% 100% 100%
Iterative Deepening (d = 5,W = 6) 190% 100% 19% 28% 47%
Directed BFS (>RES) 140% 86% 37% 38% 28%
Local Indices (r = 1) � 100% 100% 100% 39% 51%

Table 8. Relative performance of techniques, using BFS as the baseline. For each technique, we show the performance of a single
policy we recommend for today’s systems.

of processing queries over the entire system, while main-
taining equally high quality of results. Table 8 summarizes
the performance tradeoffs among our proposed techniques.
Because of the simplicity of these techniques and their ex-
cellent performance, we believe they can make a large pos-
itive impact on both existing and future pure P2P systems.

References

[1] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman.
Search in power-law networks. Available at http://www.-
parc.xerox.com/istl/groups/iea/papers/plsearch/, 2001.

[2] E. Adar and B. A. Huberman. Free Riding on Gnutella.
http://www.firstmonday.dk/issues/issue510/-
adar/index.html, September 2000.

[3] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. InProc. of ICDCS 2002, July 2002.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with cfs. InProc. ACM
SOSP, October 2001.

[5] Freenet website. http://freenet.sourceforge.net.
[6] Gnutella website. http://www.gnutella.com.
[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,

P. Eaton, D. Geels, R. Gummadi, S. Thea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. InProc. ASPLOS,
pages 190–201, November 2000.

[8] Morpheus website. http://www.morpheus-os.com.
[9] Napster website. http://www.napster.com.

[10] NeuroGrid website. http://www.neurogrid.net.
[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. InProc.
ACM SIGCOMM, August 2001.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InProc. Middleware 2001, November 2001.

[13] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In Proc. ACM SOSP, October 2001.

[14] S. Russel and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice-Hall, 1995.

[15] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. Technical Report
UW-CSE-01-06-02, University of Washington, July 2001.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. InProc. ACM SIGCOMM, August
2001.

[17] K. Truelove. To the bandwidth barrier and beyond.
Available at http://web.archive.org/web/20010107185800/-
dss.clip2.com/gnutella.html.

[18] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-
peer systems. InProc. of the 27th Intl. Conf. on Very Large
Databases, September 2001.

[19] B. Yang and H. Garcia-Molina. Designing a super-peer net-
work. Technical report, Stanford University, Feburary 2002.
Available at http://dbpubs.stanford.edu/pub/2002-13.

[20] B. Yang and H. Garcia-Molina. Improving search in peer-to-
peer networks. Technical report, Stanford University, March
2002. Available at http://dbpubs.stanford.edu/pub/2001-47.

[21] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, Computer Sci-
ence Division, U. C. Berkeley, April 2001.


