
Abstract

The high heterogeneity of large-scale p2p
system leads us to the philosophy that the size
of a node’s routing table and its updating cost
should correspond to the node’s capacity. With
this philosophy, we design a novel structured
overlay: SmartBoa. SmartBoa categorizes
nodes into different levels according to their
capacities. A node at level k has a routing table
with kN 2/ entries (N is the system scale). An
efficient non-redundant multicast algorithm is
introduced to distribute nodes’ changing
reports, with which the routing table’s updating
cost is in proportion to its size. Node can
change its level freely to adapt to the
fluctuation of bandwidth. At the same cost as
the Pastry-like overlay, SmartBoa maintains
rather larger routing tables and has much
higher routing efficiency. A low-bandwidth (64
kbps) node can maintain 10,000 routing entries
at the cost of only 10 percent of its bandwidth.
Without the high bandwidth requirement of
one-hop overlay, SmartBoa is much more
scalable.

1 Introduction

Observations in [5] show that there is great
heterogeneity among p2p nodes: bandwidth of

* This work is supported by The National High
Technology Research and Development Program of
China (G2001AA111010), Chinese National Basic
Research Priority Program (G1999032702) and
National Natural Science Foundation of China
(G60273006)

the most powerful node is 103~105 times higher
than the weakest one. However, there is no p2p
structured overlay fully adapting to this
heterogeneity. By far there are two types of
structured overlay, i.e. Pastry-like overlay (e.g.
Pastry[4], Tapestry[7], Chord[6], CAN[3],
SkipNet[2]) and one-hop overlay[1]. The size
of Pastry-like overlay’s routing table is
()NO log (Pastry, Tapestry, Chord, SkipNet) or
()1O (CAN). Very limited bandwidth is

required to maintain the routing table.
Therefore, the extra bandwidth of powerful
nodes cannot be utilized. On the other hand,
the one-hop overlay’s routing table consumes
too much bandwidth for updating, which may
overburden weak nodes. Its scalability is very
poor. It is this reality that motivates us to
design a new structured overlay, SmartBoa, in
which each node’s available bandwidth is
adequately utilized. We consider an overlay of
this kind the most effective and scalable.

The fundamental idea of SmartBoa is that
the size of a node’s routing table should be in
proportion to the available bandwidth. Nodes
with higher bandwidth have larger routing
table and faster routing speed. A direct
approach to realize it is to control the routing
table size of Pastry-like overlay. This can be
achieved by letting different nodes have
different b1. Routing table is updated through
periodical probing. In this manner, a weak
node can handle no more than 2,000 routing

1 In Pastry, the size of routing table is () Nb

b
2log12 ⋅− .

N is the system scale. b is a constant which is 4 typically.

SmartBoa: Constructing p2p Overlay Network in the

Heterogeneous Internet Using Irregular Routing Tables*
Jingfeng Hu, Ming Li, Weimin Zheng, Dongsheng Wang, Ning Ning, Haitao Dong

Computer Science and Technology Department, Tsinghua University, Beijing, China

{hujinfeng00, lim01, nn02, dht02}@mails.tsinghua.edu.cn, {zwm-dcs, wds}@tsinghua.edu.cn

entries at the cost of its entire bandwidth. In a
p2p system having more than 1,000,000 nodes,
this improvement is too trivial to make
substantial sense.

A novel idea brought out by one-hop overlay
is that a node can maintain a much larger
routing table through event reporting than
periodical probing. However, even through this
effective mechanism, the maintaining cost of
one-hop overlay is still too high to be handled
by normal node. This greatly constrains its
scalability. An applicable idea to improve the
scalability is manipulating routing tables into
different sizes according to nodes’ capacities.
The weaker the node is, the lower the
maintaining cost is.

To manipulate routing tables of one-hop
overlay into different sizes, how to design the
report multicast algorithm is the key issue. It
encounters following challenges: 1) When a
node joins or departures, it is difficult to
determine the multicast scope of the changing
report (we call this scope the report’s “target
group”). 2) The report should be received by
nodes in its target group once and only once.
That is to say, the report algorithm should be
non-redundant. Otherwise, the bandwidth used
to update the routing table will not be in
proportion to its size. 3) There are weak nodes
that do not know all the other nodes in the
target group. They should not be required to
send reports to nodes outside their routing
tables.

SmartBoa develops a novel multicast
algorithm, which solves above problems
successfully. Nodes in SmartBoa are
categorized into different levels according to
their capacities. Size and content of a node’s
routing table are related to its ID and level.
Reports flow from powerful nodes to weak
nodes. When node M’s state change, whether
node N should know about it is determined by
M’s ID, N’s ID and N’s level. No additional
information is required to determine the target

group. In the target group, the upper level
nodes’ routing tables contain those of the lower
level nodes. It means that the upper level nodes
know, and can control where the lower level
nodes send the report. Therefore, if a report
flows strictly from upper level nodes to lower
level nodes, the multicast can be confined in
the target group without redundancy.

Under current network environments, in
SmartBoa even the weakest node (with a
bandwidth of 64 kbps) can maintain thousands
of routing entries at the cost of 10 percent of its
bandwidth. Routing efficiency in SmartBoa is
very high. On the other hand, when the
system’s scale or changing frequency increases
to a degree that a node cannot handle, the node
can freely debase its level to decrease the
maintenance cost. This gives SmartBoa
remarkable scalability. The long joining period,
which is typical in one-hop overlay, can be
avoided through warm up, a process in which
the node’s level rises gradually when joining.

2 Core Designs

2.1 Routing entries

In SmartBoa, nodes in different levels have
routing tables of different size and having
different number of routing entries (Entries in
routing table are pointers to remote nodes: ID +
IP address + port).

As in Pastry and Chord, each node in
SmartBoa is assigned a 128-bit node identifier,
which indicates the node’s position in a
circular key space. ID is generated randomly
(for example, by SHA-1 hashing function) and
supposed to scatter evenly in the ID ring. A
message with a 128-bit key is sent to nodes
whose ID is closest to the key in the ID ring.
We call this node the key’s holder.

SmartBoa categorizes nodes into different
levels (from level 0 to no more than level 127)
according to their bandwidth. A node in level k

maintains routing entries whose ID’s k-bit
length suffix is the same to local node. For
example, a node in level 2 with ID of 101~110
maintains routing entries whose ID is xxx~x10.
A node in level k maintains kN 2/ routing
entries if all the nodes’ IDs scatter evenly in the
ID ring (N is the system scale). Nodes in level
0 maintain routing entries covering all the
other nodes in the system, just like nodes in
one-hop overlay. The lower the node’s level is,
the fewer routing entries it has to maintain.

We define the k-bit length suffix of a node
M2 in level k as the node’s “label”, denoted
by Mα . Labels of nodes in level 0 are empty,
which is denoted by Φ. All nodes with the
same label α form a set, which is denoted by
{ }α .

2.2 Multicast algorithm。

Before discussing the multicast algorithm,
we first make the following definitions:
[Definition 1] If node A’s label Aα is a suffix
of node B’s label Bα , and BA αα ≠ , then say
A is superior to B, or A is B’s super node,
denoted as BA > . Obviously, B’s routing table
is a subset of A’s.
[Definition 2] If node A has no super node in
the system, A is called a top node.
[Definition 3] If BA > or BA αα = , and A is
a top node, then say A is B’s top node.

In normal conditions, the set of top nodes
is { }Φ . But if the scale of system is gigantic,
there may be no node powerful enough to stay
at level 0. At that time, the set of top nodes
may split into { }"0" and { }"1" or sets in even
lower level.

In SmartBoa, we call the set of nodes whose
routing table contains pointer to node M as M’s
“target group”, which is the union of { }Φ ,
{ }"" 1M , { }"" 12 MM , … ,
{ }"" 12127128 MMMM L (iM denotes the i-th to

2 In order to simplify discussion, we name a node with
nodeId M as node M.

last bit of M). Obviously, in the target group
the upper-level nodes have routing tables
entirely containing those of the lower-level
nodes.

The pseudo code of the multicast algorithm
is in Figure 1. The basic principle is that at step
k, the node receiving the report forwards it to
another node whose ID’s last k bits are
identical to local node but the (k+1)th to last bit
is different. Figure 2 illustrates how a report
flows among the target group. Figure 3 shows
those nodes that have received the report after
each step. From Figure 2 and Figure 3 we can
see that reports flow from powerful nodes to
weak nodes, and every node in the target group
receives the report once and only once.

rcv_bcast(ID m, Step s):
//Receive event notification related to node
m at the step s.

Rs = getTargetGroup(routing_entries, m)
//Get target group of M from local routing
entries

For i := s+1 to 128 do
Rn := getSuffix(Rs, i−1)

//Get set of nodes in Rs whose ID’s
(i-1)bit length suffix is the same as
local ID’s, but the i-th to last bit is
different.

 If Rn = null then
 continue
fi

 P := getHighestLevel(Rn)
//Select one of the highest level nodes

send_bcast(P, m, i)
//Send the message to P, mark it as the
i-th step.

 End do

Figure 1: Pseudo-code for SmartBoa’s multicast
algorithm. Describing what a node to do when it
receives a message about node m’s changing
event.

Considering the limited space, formal
proving of the completeness and
non-redundancy of the multicast algorithm will
not be presented in this paper.

In order to broadcast the reports, every node
in SmartBoa maintains top entries pointing to
some top nodes. Top entries are maintained by
lazy update because powerful nodes are stable.

The new joining node or a node changing its
level sends the report to a top node by itself.
But a node may depart or break down silently
without warning. To detect nodes’ silent
departure, node M probes its right neighbor
node N in set { }Mα periodically. If M finds
N’s departure, it sends report to one of its top
nodes (obviously, M and N have the same top
nodes).

With the multicast algorithm, a weak node in
SmartBoa can maintain a quite large routing
table. For example, a modem-linked node
whose bandwidth is only 64 kbps can maintain
almost 15,000 routing entries. The result is
drawn from following calculations. Assuming
10 percent of the node’s bandwidth, i.e. 6.4
kbps, is used for updating its routing table. The
size of a report is no more than 500 bits. Thus,
the node can receive 12 reports per second.
Assuming a node’s average online period is
one hour[5]. In one of its life circle, a node

may cause 3 reports (joining, departure and
level changing in warm up). Suppose the size
of routing table is r. r nodes will trigger

1200/3600/3 rr = reports per second. A node
can receive 12 reports per second, 121200/ =r ,

400,14=r . When the system scale is about
14,000, even the weak node can maintain
routing table containing all the nodes in the
system, and the routing can be done in one
hop.

1

2

3

4

3

0010

0100

0110

0111
1000

1001

1010

1101

1110

0101
2

Figure 2.1: An example of multicast process.
Red point is the changing node. Green points
are nodes in the target group of the changing
report. Arrows show the flow of report.
Numbers besides the arrows are step numbers.
Framed bits are labels.

Routing Entries

0010 1000 0110 1010 1110

0010 1010 1110

0010 0100 0110 1010 1110

0010 0110 1110

0010 0110 1010

0010

0100

0110

1000

1001

1010

1101

1110

0111

0101

0111 1001 0100 1000 0110 1010 1101 11100101

0111 1001 0100 1000 0110 1010 1101 11100010

0010 1001 0100 1000 0110 1010 1101 11100101

0111 11010101

10010101

Node

Figure 2.2: Routing entries of nodes in Figure
2.1. The nodeIds with green background are in
the target group of node 1110.

0010 0010 0111

0010 0111

0100 0101

0010

0111

0100

0110 1000

0101
0010

0111

0100

0110 1000

1010

0101

Figure 3: Nodes having received report in step 0
to step 4. Bold bits of nodeIds show that in step
k the k-bit length suffix of any the nodes having
received report is different from that of any
others.

2.2 Routing

SmartBoa adopts greedy routing algorithm.
A message with key M is sent to the closest (in
ID space) node in local routing table in every
routing step. Unlike the broadcast algorithm,
the routing algorithm has no bias to powerful
nodes, in order to not over burden them. From
the following discussions we can see that even
without bias to powerful nodes, the routing
efficiency is good enough.

Because not all the nodes are powerful
enough to maintain one-hop routing tables,
SmartBoa introduces leaf set to ensure the
convergence of routing. Leaf set records l (l is
16 or 32 normally) nearest nodes in ID space
on each side of local node. SmartBoa maintains
leaf set through heartbeat messages, just as
Pastry does. In a system with

000,23016400,142/ ≈×=× lr nodes, generally
a message can be route by weak node to its
destination in two hops (first hop via routing
entries, and second hop via leaf set).

When system scale is gigantic, in weak
nodes’ routing tables there are too many nodes
between nearby entries to be covered by leaf
set. Then after the first hop via routing entries,
a message has to make several hops via leaf set.
To accelerate routing, SmartBoa introduces
finger entries. Finger entries are bisearch
pointers between local node M and its right
(left) neighbor node N in routing entries. They
are pointers to node () 2/NM + , node

()() 2/2/NMM ++ , … (until overlapping with
leaf set). Finger entries are maintained by
heartbeat messages.

In a system having 1,000,000 weak nodes,
the routing efficiency of SmartBoa is much
better than Pastry. In SmartBoa the first hop of
a message is via routing entries. If IDs scatter
evenly, after the first hop there are at most

rN 2/ nodes(averagely rN 4/ nodes)
between the message’s current position and its
target node. The following f hops are via finger

entries. The last hop is via leaf set. Each side of

leaf set has 2/l entries, 2/2/)4/(lrN f = ,

()rlNf 2/log2= . The total number of hops is
()rlNfh /2log2 2=+= . When 000,000,1=N ,

12.2≈h . This is much fewer than that of
typical 16-based Pastry (98.4log16 ≈N).

2.3 Joining & Warm up

A node X’s joining process is as follows. 1)
X contacts one existing node B, which called
X’s “bootstrap”. Suppose the level of B is kB,

and the bandwidth used to update B’s routing
table is WB. Thus the highest level of X
is ()⎡ ⎤XBB WWkk /log 2max += . 2) X gets its k
top entries from one of B’s top nodes. 3) X
downloads its own routing table from its top
nodes. The download may consume too much
bandwidth. To relieve the pressure on top
nodes, the downloading can be redirected to
another supper node or even different supper
nodes concurrently.

A node can change its level freely to adapt to
the bandwidth fluctuation. A node can debate
its level by reducing routing entries and
reporting to top nodes. Changing to an upper
level requires the node to download some
routing entries from its supper nodes
additionally.

One serious drawback of one-hop overlay is
its long starting up process. In a system having
100,000 nodes, a modem-linked node has to
take 5 minutes to download its routing table
even using up all of its 64 kbps bandwidth. If
the system scale reaches 1,000,000, above
process takes 50 minutes.

SmartBoa adopts a “warm up” process to
hide this boring period. When a node joins, it
can select a lower level in which the
downloading can be done in a few seconds.
Then the node runs in this level temporarily
with the downloading going on in background,
which may take several minutes. After the
downloading is accomplished, the node

elevates its level to normal.

3 Conclusion

Considering the great heterogeneous
between nodes in p2p systems, we want to
achieve the highest efficiency by making full
utilize of every node’s permitting bandwidth.
SmartBoa is a beginning step, which relates the
routing table’s size and maintenance overhead
to the node’s capacity. Without a formalized
proving, we cannot determine the difference
between routing efficiencies of SmartBoa and
the optimum algorithm. However, SmartBoa
do have much higher routing efficiency and
better scalability than previous overlays.

Generally speaking, SmartBoa has
following good qualities:
a) Fully utilize nodes’ available bandwidth.
b) Without the uniform bandwidth

requirement, any node can join the overlay.
c) Nodes can change their levels freely to

adapt to the fluctuation of network
condition.

d) Simple but effective routing algorithm
e) Routing does not overburden any section

of nodes
f) Remarkable scalability
g) Using warm up process to hide the long

starting up period.
h) Can provide information about nodes’

capabilities to upper applications.
There are still some open problems with
SmartBoa:
a) Incentive mechanism. Without an incentive,

Users tend to remain in lower level
because of the high maintenance overhead
in higher level. In fact, this is an open
problem to the whole p2p realm.

b) How to pack messages in multicast to
decrease the overhead of IP address and
UDP message head.

c) Relate routing entries to the network layer
to increase the efficiency of every hop.

References

[1] Anjali Gupta, Barbara Liskov, Rodrigo
Rodrigues. One Hop Lookups for
Peer-to-Peer Overlays. HOTOS IX. May
2003.

[2] Nicholas J.A. Harvey, Michael B. Jones,
Stefan Saroiu, Marvin Theimer, Alec
Wolman. SkipNet: A Scalable Overlay
Network with Practical Locality
Properties. USITS 2003. March 2003.

[3] S. Ratnasamy, P. Francis, M. Handley, R.
Karp, and S. Shenker. A Scalable
Content-Addressable Network. In Proc. of
ACM SIGCOMM, Aug. 2001.

[4] A. Rowstron and P. Druschel. Pastry:
Scalable, distributed object location and
routing for large-scale peer-to-peer
systems. In International Conference on
Distributed Systems Platforms.
(Middleware) November 2001.

[5] SAROIU, S., GUMMADI, P. K., AND
GRIBBLE, S. D. A Measurement Study of
Peer-to-Peer File Sharing Systems. In
Proceedings of MMCN’02. San Jose, CA,
Jan. 2002.

[6] I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for
internet applications. In Proceedings of
the ACM SIGCOMM ’01 Conference,
San Diego, California, August 2001.

[7] Ben Zhao, John Kubiatowicz, and
Anthony Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area
location and routing. Technical Report
UCB/CSD-01-1141, Computer Science
Division, U. C. Berkeley. April 2001.

