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ABSTRACT
We consider small world graphs as defined by Kleinberg
(2000), i.e., graphs obtained from a d-dimensional mesh by
adding links chosen at random according to the d-harmonic
distribution. This model aims at giving formal support to
the “six degrees of separation” between individuals experi-
enced by Milgram (1967), and verified recently by Dodds,
Muhamad, andWatts (2003). In particular, Kleinberg shows
that greedy routing performs in O(log2 n) expected number
of steps in d-dimensional augmented meshes, with O(log n)
bits of topological awareness per node, for any constant
d ≥ 1. We show that giving O(log2 n) bits of topologi-
cal awareness per node decreases the expected number of
steps of greedy routing to O(log1+1/d n) in d-dimensional
augmented meshes. We also show that, independently of
the amount of topological awareness given to the nodes,
greedy routing performs in Ω(log1+1/d n) expected number
of steps. In particular, augmenting the topological aware-
ness above this optimum of O(log2 n) bits would drastically
decrease the performances of greedy routing. Moreover, our
model demonstrates that the efficiency of greedy routing is
sensible to the “world’s dimension”, in the sense that high
dimensional worlds enjoy faster greedy routing than low di-
mensional ones. This could not be observed in Kleinberg’s
model. In addition to bringing new light to Milgram’s ex-
periment, our protocol presents several desirable properties.
In particular, it is totally oblivious, i.e., there is no header
modification along the path from the source to the target,
and the routing decision depends only on the target, and on
information stored locally at each node. Finally, our pro-
tocol can obviously be used for the design of DHTs, in the
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same spirit as Symphony (2003).
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1. INTRODUCTION
We consider augmented graphs as defined in [17], i.e., the

family of graphs H = (G,D) obtained from a graph G by
adding links chosen at random according to a probabilistic
distribution D. The graph G models an awareness common
to all the social entities represented by the nodes of H . In
other words, nodes of H are aware of the topology G. In
particular, any node x can compute the distance distG(x, y)
from x to any other node y in G. The links in G model
acquaintances between social entities that can be easily de-
duced from characteristics of the social entities (geograph-
ical positions, hobbies, professional activities, etc.). The
added links, called long-range links, model acquaintances
that cannot be deduced globally because they correspond
to random events which created acquaintances between en-
tities that have generally little in common. If (u, v) is an
edge of G, then any node x is aware that u and v have
some acquaintance. However, if (u, v) is a long-range link
non-incident to x, then x ignores that there is an acquain-
tance between u and v. In particular, x cannot compute the
distance distH(x, y) from x to any other node y in H .
Milgram’s experiment [14], recently reproduced by Dodds,

Muhamad, and Watts [5] (see also [1]), reports that there are
short chains of acquaintances between individuals, and that
these chains can be discovered in a greedy manner. Roughly
speaking, given an arbitrary source person s (e.g., living in
Wichita, KA), and an arbitrary target person t (e.g., living
in Cambridge, MA), a letter can be transmitted from s to t
via a chain of individuals related on a personal basis. The
transmission rule is that the letter held by an intermediate
person x is passed to the next person y who, as judged by x,
is most likely to know the target among all persons x knows
on a first-basis. Milgram’s experiment conclusion is often
summarized as the “six degrees of separation” phenomenon
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because, for chains that reached the target1, the number
of intermediate persons between the source and the target
ranged from 2 to 10, with a median of 5.

1.1 Greedy routing in Augmented Meshes
In his seminal work [7, 8] (see also [9]), Kleinberg gives a

formal support to the six degree of separation phenomenon.
He considers a d-dimensional mesh augmented with long-
range links chosen according to the d-harmonic distribution
(see Fig. 2). More precisely, the underlying graph G is the

d-dimensional mesh n1/d × · · · × n1/d, and the augmented
graph H is obtained by adding exactly one out-going link
to every node x. If there is a long-range link from x to
y, then y is called the long-range contact of x. The prob-
ability that x chooses y as long-range contact is h(x, y) =
1/(Zx ·dist(x, y)d) where dist() is the Manhattan distance in
the mesh (i.e., the distance in the L1 metric), and the nor-
malizing coefficient Zx satisfies Zx =

P
z �=x 1/dist(x, z)

d.
In Kleinberg’s model, long-range links are directed, i.e., a
long-range link from x to y does not imply a long-range link
from y to x. This is coherent with what can be observed in
the human society. In particular, human relationships are
not always symmetric. More importantly, although directed
long-range links produce nodes with high in-degree, these
“hubs” remain with only an out-degree of one. Hence the
impact of hubs is kept limited in the model2.
A salient property of Kleinberg’s model is that it is a small

world, i.e., a graph in which not only the expected distance
between nodes is small, but also greedy routing is able to
discover short routes between any pair of nodes.
Greedy routing is a metaphor of the way social entities

proceed to search for resources or information in the graph
representing their acquaintances [1, 5, 15, 16]. These entities
are given very limited computational power. This restriction
is motivated by the fact that social entities (e.g., humans)
have bounded storage capability, and are usually unable to
perform complex computations involving more than a small
number of objects. Typically, computing shortest paths in
a graph with more than few vertices is assumed to be a too
complex task to be performed by social entities. Greedy
routing performs as follows: at the current node x, a search
for a target node t is forwarded to the neighboring node y
of x, including its long-range contact, which is the closest
to t in the mesh. In other words, a social entity optimizes
locally the discovery of the target by choosing, among all
its acquaintances, the one that is likely to be the closest to
the target. The distance to the target is however computed
using the Manhattan distance.

1.2 Substratum of Greedy Routing
We want first to lay stress on two points. First, it was ob-

served (cf., e.g., [6]) that searching for the target in Milgram-
like experiments is performed based on at least two criteria

1Many chains did not succeeded in Milgram’s experiment. Ex-
periments by Dodds et al. [5] revealed however that this is not
due to the inability of reaching the target, but rather due to the
fact that individuals do not necessarily benefit from their con-
nectedness: they often stop retransmission simply because they
believe that there is no short chain to the target, although such
a chain does exist.
2Dodds et al. [5] observed that, in contrast with what is often
believed, the presence of hubs appears to have a limited relevance
to social search. Thus it is desirable that a model keeps the role
of hubs limited.

(e.g., geography and occupation), and that performing the
search based on one criterion only (e.g., geography) results
in poorer performances. The estimation of the distance to
the target is performed thanks to all available criteria. In
the model, the estimation of the distance to the target is per-
formed based on the coordinates of the nodes in the mesh.
That is, the mesh is not aiming at modeling geography only,
but at capturing all possible criteria used for the search. In
other words, the mesh includes all criteria per se, and the
long-range links model random events capturing the fact
that our acquaintances are not necessarily living close to us,
do not necessarily practice the same religion (if they do),
do not necessarily occupy the same social position, etc. On
the other hand, and this is the second point that we want
to stress, there is no one-to-one correspondence between the
dimensions of the mesh and the criteria used for the search.
In particular, moving along one axis preserves all the co-
ordinates of the mesh, which is not perfectly true in real
life. Nevertheless, most of the time, our acquaintances have
characteristics very similar to ours. (The rare cases of ac-
quaintances with characteristics very different from ours are
modeled by long-range contacts.) A model aiming at captur-
ing the slight variations of the characteristics of our acquain-
tances could be obtained by introducing some randomness in
the Cartesian product operation3, to locally shuffle the con-
nections. This would however significantly complicate the
analysis of the model, without bringing new light on Mil-
gram’s experiment. Thus, we chose to stick to Kleinberg’s
model for analyzing the impact of the number of criteria on
the performances of the search. Hence, for the sake of sim-
plicity, we view every dimension of the mesh as a distinct
criterion.
In a social context indeed, professional as well as leisure

occupation, citizenship, geography, ethnicity, and religious-
ness are all intrinsic dimensions of the human multi-dimen-
sional world, playing different roles with possibly different
impact degrees [6]. Each of these dimensions should be used
as an independent criterion for searching in the social graph.
In this context, one would thus expect that the more cri-
teria used the more efficient the search should be. Sur-
prisingly however, Kleinberg’s model does not reflect this
fact, in the sense that greedy routing has the same per-
formances whether the number of dimensions considered is
one, two, or more. Indeed, Kleinberg has shown that greedy
routing in the n-node d-dimensional mesh augmented with
long-range links chosen according to the d-harmonic dis-
tribution performs in O(log2 n) expected number of steps,
i.e., independently of d (note that this bound is tight as it
was shown in [3] that greedy routing performs in at least
Ω(log2 n) expected number of steps, independently of d).
Kleinberg has also shown that augmenting the d dimen-
sional mesh with the r-harmonic distribution, r �= d, results
in poor performances, i.e., Ω(nαr ) expected number of steps
for some positive constant αr. Furthermore, it is shown
in [2] that, in the 1-dimensional mesh augmented according
to any probabilistic distribution, greedy routing performs in
Ω(log2 n/ log log n) expected number of steps, and this lower
bound is conjectured to hold in higher dimensions.
In the light of the previous observations, one can conclude

that the absence of the dimension parameter from the com-
plexity of greedy routing in augmented meshes is a problem

3The d-dimensional mesh is the Cartesian product of d paths.
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of the greedy routing specification, and not of the links dis-
tribution (it was recently shown [13] that the expected di-
ameter of augmented meshes is O(log n)). In this paper, we
propose a new greedy routing protocol based on Kleinberg’s
model. The key feature of our protocol is that its asymptotic
complexity depends on the dimension of the mesh.

1.3 Our contributions.
We propose a new greedy protocol, called indirect-greedy

routing, based on additional topological awareness given to
the nodes, meaning that every node x is aware of the ex-
istence of a list Ax of long-range links (see Fig. 2). Klein-
berg’s model can actually be seen as a special case of our
model in which the awareness of every node is reduced to its
own long-range contact, i.e., to O(log n) bits. At every step
of indirect-greedy routing towards a target t, there are two
phases. In the first phase, the current node x uses its aware-
ness Ax to select an intermediate destination y, i.e., a node
y such that its long-range contact is close to t. In the second
phase, x applies greedy routing towards y, and forwards the
search to some node x′. In x′, the same process is applied,
a new intermediate destination y′ is selected (thanks to x′’s
awareness Ax′), and greedy routing is applied towards y′.
And so on. Generally, the intermediate destination remains
the same at every step of indirect-greedy routing, until the
search reaches it. Once the search reaches an intermediate
destination y, it is forwarded to y’s long-rank contact, which
is expected to be not too far from the target t. The same
actions are repeated until the search eventually reaches the
target.
It is known that giving additional awareness to the nodes

speeds up the search. For instance, it is known [12] that if ev-
ery node is aware of the long-range contacts of its neighbors,
then greedy routing performs in O(log2 n/(c log c)) expected
number of steps with c long-range contacts per node. We
show that if every node is given a topological awareness of
size O(log2 n) bits or, more specifically, if every node is aware
of the long-range contacts of its O(log n) closest nodes in the
d-dimensional mesh, then indirect-greedy routing performs
in O(log1+1/d n) expected number of steps. We conclude
that additional topological awareness has positive impact,
and that the speed-up factor compared to Kleinberg’s greedy
routing protocol is O(log1−1/d n). Moreover, comparing the
indirect-greedy protocol with other greedy protocols of the
literature (cf. Table 1) demonstrates that, for an awareness
of Θ(log2 n) bits, our protocol is the fastest4.
Note that our protocol is totally oblivious, i.e., there is no

header modification along the path from the source to the
target, and the routing decision depends only on the target,
and on information stored locally at each node. Clearly, ob-
viousness is a desirable property for a routing protocol as it
makes simpler the decisions taken at each node. However, it
makes its analysis harder as the routes may traverse inter-
mediate nodes that are farther to the destination (according
to the Manhattan distance) than the source.
We also show that, surprisingly, the positive impact of

additional topological awareness reaches a certain limit. In-
deed, indirect-greedy routing performs in Ω(log1+1/d n) ex-
pected number of steps, independently of the topological
awareness given to the nodes, that is independently of the
lists Ax, and of their sizes. Above a certain limit, augment-

4Including NoN-greedy routing [12], defined in the Percolation
model of [4].

ing the topological awareness of the nodes not only becomes
useless, but also degrade the performances of indirect-greedy
routing. Precisely, this limit is Θ(log2 n) bits of topological
awareness per node (i.e., the awareness of Θ(log n) long-
range links).
These results prove that there is no trade-off between the

amount of topological awareness given to the nodes and the
performances of indirect-greedy routing, and demonstrate
an intrinsic limitation of the greedy routing strategy in aug-
mented graphs. In particular, if every entity has a topo-
logical awareness of size n, i.e., is aware of all long-range
contacts, then the entities would not perform better than
Kleinberg’s greedy routing, leading an Ω(log2 n) expected
number of steps.
More importantly, our study captures the trade-off that

we expected: if entities are living in a d-dimensional world,
then giving additional topological awareness of O(log2 n)
bits to these entities enable indirect-greedy routing to per-
form in O(log1+1/d n) expected number of steps. (Again,
this is in contrast with Kleinberg’s greedy routing which
performs in Θ(log2 n) number of steps, independently to the
world’s dimension.) In particular, our model demonstrates
a significant difference between routing using one criterion,
which performs in O(log2 n) expected number of steps, and

routing using two criteria, which performs in O(log3/2 n) ex-
pected number of steps. The relative improvement decreases
when the number of dimensions increases, which is coherent
with what was observed by Killworth and Bernard [6].
To summarize, given a fixed number of acquaintances

2d + c per social entities in an augmented d-dimensional
mesh, greedy routing performs in O( 1

c
log2 n) expected num-

ber of steps, whereas indirect-greedy routing performs in
O( 1

c1/d log
1+1/d n) expected number of steps. These results

lead to the conclusion that the variety d of our relation-
ships has more impact on the distance between people than
the number 2d + c of these relations. Our investigation is
perhaps a first step towards the formalization of arguments
in favor of the sociological evidence stating that eclecticism
shrinks the world.
As a final remark, we observe that, in addition to bringing

new light to Milgram’s experiment, our protocol presents
several properties that can obviously be used for the design
of DHTs for peer-to-peer systems, in the same spirit as [11]
for Kleinberg’s routing protocol.

1.4 Organization.
The paper is organized as follows. The next section pre-

cisely describes indirect-greedy routing, including the notion
of topological awareness. Then, in Section 3, we give a nec-
essary and sufficient condition for indirect-greedy routing to
converge, and we compute an upper bound on the expected
number of steps of indirect-greedy routing when nodes are
aware of the long-range contacts of their O(log n) closest
neighbors in the mesh. In Section 4, we compute a tight
lower bound on the expected number of steps of indirect-
greedy routing, independently of the amount of awareness
given to the nodes. Finally, Section 5 contains some con-
cluding remarks.

2. TOPLOGICAL AWARENESS AND
INDIRECT-GREEDY ROUTING

Our model addresses the following question: what is the
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Expected #steps Amount of
awareness (#bits)

Kleinberg’s greedy [7] O( 1
c
log2 n) O(c log n)

Kleinberg’s greedy [3, 13] Ω( 1
c
log2 n) O(c log n)

Kleinberg’s greedy [2] Ω( 1
c
log2 n/ log log n) O(c log n)

NoN-greedy [12] O( 1
c log c

log2 n) O(c2 log n)

Decentralized algorithm [10] O( 1
log2 c

log2 n) O(c log n)

Indirect-greedy [This paper] O( 1

c1/d log
1+1/d n) O(log2 n)

Table 1: Performances of variants of greedy routing in d-dimensional meshes augmented using d-harmonic distribu-

tions, with c long-range contacts per node. For d ≥ 2, our variant, indirect-greedy, performs faster than all other

greedy algorithms, for any value of c such that the amount of awareness is Θ(log2 n) bits, i.e., c = log n for Kleinberg’s

greedy routing and Decentralized algorithm, and c =
√

log n for NoN-greedy. For c =
√

log n, indirect-greedy performs

in O(log1+1/2d n) steps, that is faster than O(log3/2 n/ log log n) steps for NoN-greedy. For c = log n, indirect-greedy per-

forms in O(log n) steps, as Kleinberg’s greedy routing. [3, 13] is a lower bound on Kleinberg’s greedy routing. [2] is

a lower bound on Kleinberg’s greedy routing in the 1-dimensional directed mesh augmented using any distribution.

The Decentralized algorithm [10] visits O(log2 n/ log2 c) nodes, and distributively discovers routes of expected length

O(log n(log log n)2/ log2 c) links using headers of size O(log2 n) bits.

additional “topological awareness” that could be given to
nodes so that greedy routing performs in less than Θ(log2 n)
expected number of steps in the augmented d-dimensional
mesh, at least for d > 1? By additional topological aware-
ness we do not mean adding long-range contacts to nodes.
Obviously, if entities are given more than one long-range
contact, then the performances of greedy routing can be im-
proved, however to a limited extend only. For instance, with
c long-range contacts per node, Kleinberg’s greedy rout-
ing would perform in O( 1

c
log2 n) expected number of steps,

which remains O(log2 n) for c = O(1). We propose a model
in which the log2 n barrier can be overcome, with a con-
stant number c (say, c = 1) of long-range contacts per social
entity. This is motivated by the fact that every individual
personally knows a constant number of other individuals
only, independently of the size of the world population.

2.1 Topological awareness
Our model is based on the following observation: although

every individual personally knows a constant number of other
individuals only, he or she is often aware of a large num-
ber of personal acquaintances between individuals that he
or she does not personally know. Let us take a simple ex-
ample to illustrate this observation (see Fig. 1). Consider
Milgram’s experiment in which the goal is to send a letter to
Joe Wilson, who is located at Revelstoke, Alberta, Canada.
In addition to Wilson’s location, we are also given the facts
that Wilson is a designer, and that he won a downhill ski
Canadian championship in the 80’s. The letter is currently
held by Alice, a Librarian in San Francisco. Alice has a
friend, Mary, living in Seattle, an uncle, Olson, living in
Bergen where he is training the Norwegian cross country
ski team, and finally a former schoolfriend, Mark, who is
a pianist in the Vienna symphony orchestra. Based on her
acquaintances, Alice may forward the letter either to Mary
or to Olson. In the former case, there is a geographical
improvement. In the latter case, there is also an improve-
ment because a cross country ski trainer is somewhat close
(in terms of occupation) to a downhill ski champion. On
the other hand, Alice would certainly not forward the letter
to Mark because Mark is geographically farther from Joe

Ann

Geography Joe Wilson Occupation

Olson

Alice

Mark

Mary

Figure 1: Searching for Joe Wilson.

Wilson than Ann, and Mark’s vitae has little to do with
Wilson’s vitae. Now, assume that in Alice’s recent phone
conversation with Mark, she learnt that Mark moved to a
new house, entirely designed by his new girlfriend, Ann, an
architect who graduated from Vancouver. Based on this
“topological awareness”, it makes sense for Alice to forward
the letter to Mark, because he may then forward it to his
girlfriend Ann. Once the letter will be in Ann’s hands, the
improvement will be significant because an architect who
graduated in Vancouver is reasonably close to a designer
living in Alberta. Note that there is no personal acquain-
tance between Alice and Ann (she hardly remembers her
name). However, Alice is aware that there is an acquain-
tance between Mark and somebody from Vancouver. This
acquaintance is a long-range link because an acquaintance
between a member of the Vienna symphony orchestra and
a Canadian architect can be hardly guessed. The fact that
Alice is aware of Mark’s long-range contact significantly im-
proves the search for Joe Wilson. This phenomenon cannot
be captured by Kleinberg’s model because, in his model, a
social entity is not aware of any long-range links not incident
to it.
In this paper, we define a model that captures the “in-

direct” routing strategy based on Alice’s awareness of the
social characteristics of Mark’s long-range contact. In this
model, we assume that, in addition to the underlying graph
G, and to its long-range contact in the augmented graph
H , every social entity is aware of some list of acquaintances
between pairs of other entities. This idea is formalized as
follows.
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y’

a

xd
c’

c

b

x’

d’

b’y

a’

Figure 2: Long-range links in the 2-dimensional
mesh. The topological awareness of node x is com-
posed of the four plain long-range links.

Definition 1. The topological awareness of a node x of
G is a list Ax of long-range links in the augmented graph H.

In Kleinberg’s model Ax = {ex} where ex is the long-range
link of x. We consider the case in which Ax = {e1, e2, . . . , ek}
with ex ∈ Ax and where, for every i, ei is a long-range link
not necessarily incident to x. Note that the degree of x re-
mains unchanged compared to Kleinberg’s model, i.e., the
number of long-range contacts of every node x is the same in
our model and in Kleinberg’s model. For instance, in Fig. 2,
node x has four neighbors in the 2-dimensional mesh: a, b, c,
and d. It also has one long-range contact x′. The topolog-
ical awareness of x is Ax = {(x, x′), (a, a′), (d, d′), (y, y′)}.
This means that node x is aware that there is a long-range
link from a to a′, from d to d′, and from y to y′. Note
that x does not have any acquaintance with either y or y′,
but is just aware of an acquaintance from y to y′. On the
other hand, x ignores the long-range contacts of b and c.
To be realistic, the number of nodes y that x is aware of
should not be too large. Furthermore, these nodes should
be preferably located not too far from x. However, it is
a reasonable assumption that the topological awareness of
every individual grows (though slowly) with the total num-
ber of individuals in the world. Indeed, although the total
number of individuals has a limited impact on the number
of our personal acquaintances (relatives, close friends, etc.),
the more individuals, the more stories every individual hears
about other individuals, increasing his or her awareness of
some inter-individual acquaintances.
This gives rise to the following second question: how to

benefit from the additional topological awareness given to
the nodes to perform simple (i.e., greedy) routing in the
augmented d-dimensional mesh?

2.2 Indirect-greedy routing
To answer the previous question, let us return to our sim-

ple example in which Alice is searching for Joe Wilson. Ac-
cording to Kleinberg’s greedy routing, Alice chooses, among
all her personal acquaintances, the one who is most likely
to know Wilson. As we mentioned before, this strategy re-
sults in having Alice choosing either Olson or Mary, but not
Mark, although Mark is more likely to be closer to Wilson
than both Olson and Mary. Being aware of Mark’s long-
range contact Ann, Alice may then decide to use Mark as
an “intermediate destination”. Mark is farther to the target

Joe Wilson than Alice. However, from Mark, the search may
be forwarded close to Wilson, thanks to the long-range link
Mark-to-Ann. We define indirect-greedy routing in which, at
every routing step towards a target t, there are two phases.
In the first phase, the current node x uses its topological
awareness Ax to select an intermediate destination y, i.e., a
node y such that its long-range contact is close to t. In the
second phase, x applies greedy routing towards y. (Clearly,
x makes use of the intermediate destination y only if y is
closer to x than t in the mesh. Otherwise, x discards y and
simply applies greedy routing towards t.) More formally, we
define indirect-greedy routing as follows.

Indirect-greedy routing:
For a directed edge e = (u, v), we denote u = tail(e), and
v = head(e). The 2d neighbors of the current node x in
the d-dimensional mesh are denoted by w1, . . . , w2d, and the
long-range contact of x is denoted w0. Finally, let t be the
target node, t �= x.
Phase 1. Among all edges in {(x,w1), . . . , (x,w2d)} ∪ Ax,

x selects an edge e such that head(e) is the closest
to the target t in the mesh (according to the Man-
hattan distance); If there are several such edges e, x
selects the one such that tail(e) is the closest to x in
the mesh. Possible remaining ties are broken arbitrar-
ily. If tail(e) = x or if dist(x, tail(e)) ≥ dist(x, t), then
set y = t, otherwise set y = tail(e).

Phase 2. Node x selects, among its 2d+ 1 neighbors
w0, w1, . . . , w2d, the one that is the closest to y, and
the search is forwarded to that neighbor.

In the following, the node y selected during Phase 1 is
called the intermediate destination.

Remark. Indirect-greedy routing is totally oblivious, i.e.,
there is no header modification along the path from the
source to the target, and the routing decision depends only
on the target, and on information stored locally at each
node. That is, in contrast with non-oblivious protocols (see,
e.g., [10, 13]), the computation of the intermediate desti-
nation is performed at every node involved in the routing
process. In particular, if x is the current node, and if wi is
the neighbor of x to which the search is forwarded during
Phase 2, then the intermediate destination for wi may be
different from the intermediate destination for x.

Let us take two extreme examples to illustrate the behav-
ior of indirect-greedy routing:

(a) If the topological awareness of every node is reduced to
its own long-range contact, then the edge e selected during
Phase 1 is necessarily incident to the current node x, i.e., y =
tail(e) = x. Thus, during Phase 2, the search is forwarded
to head(e). Therefore, indirect-greedy routing reduces to
greedy routing in this case.

(b) If the topological awareness of every node is the whole
graph, i.e., if every node is aware of all long-range contacts
(a very unrealistic hypothesis), then let e1, . . . , ek be the
k ≥ 1 long-range links such that, for every i, 1 ≤ i ≤ k,
dist(head(ei), t) is minimum among all long-range links. At
every node involved in the search, the intermediate desti-
nation is yi = tail(ei) for some i. (The intermediate desti-
nation may change if the current node is at equal distance
from two intermediate destinations.) For a source s, let
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m = min1≤i≤k dist(s, yi). Most of the process actually con-
sists to travel distance m in the mesh, from s to one of
the yi’s, using Kleinberg’s greedy routing. Hence, indirect-
greedy routing also reduces to greedy routing in this case.
Obviously, in the latter example, a faster search would be

obtained by computing a shortest path from the source to
the target in the augmented mesh. However, such a complex
computation is assumed to be beyond the computing capa-
bilities of the entities. For instance, although most humans
would be able to go through a reasonably large directory
to select one key (say, the smallest), most humans would
be unable to sort a directory based on the keys contained
into it. We underline here that indirect-greedy routing fully
preserves the greediness assumption.

Remark. As opposed to Kleinberg’s greedy routing, the
Manhattan distance to the target is not strictly decreasing
at each step. Indeed, an intermediate destination can be
farther to the target than the current node, and thus going
to this intermediate destination may result in increasing the
Manhattan distance to the target. We will see in the next
section that this phenomenon has, under some weak condi-
tion, little impact on the expected performances of indirect-
greedy routing because it is counter balanced by the fact
that the intermediate destination has a long-range contact
leading close to the target.

3. PERFORMANCES OF INDIRECT
GREEDY ROUTING

In this section, we give a necessary and sufficient condi-
tion for indirect-greedy routing to converge, i.e., to always
route correctly the search for any setting of the long-range
links. We later prove that if every node is aware of the
long-range contacts of its O(log n) closest nodes in the d-
dimensional mesh, then indirect-greedy routing performs in
O(log1+1/d n) expected number of steps.
Let Ax be the topological awareness given to every node

x. The set {Ax | x ∈ V } is called the system of awareness of
the augmented mesh H = (V,E). Now, for every node x, let
us denote by Nx the set of x’s neighbors in H (thus including
x’s long-range contact). For every link e with tail(e) �= x,
we then define

Nx(e) = {y ∈ Nx | dist(y, tail(e)) ≤ dist(z, tail(e))

for every z ∈ Nx} .
Our condition for convergence of indirect-greedy routing is
based on the following definition.

Definition 2. A system of awareness {Ax | x ∈ V } is
monotone if, for every x, and for every e ∈ Ax \ {ex} where
ex is the long-range link of x, we have e ∈ Ay for every
y ∈ Nx(e).

Observe that monotonicity is a property that a system
of awareness usually satisfies. Indeed, if a social entity x is
aware of the acquaintance that some node u has with v, then
a node y that is closer to u than x is certainly also aware if
this acquaintance. For instance, if you become aware that
Bob, the companion of the sister Sophie of your friend Tom,
meets some unrelated guy Charles in a plane, then certainly
Tom is aware of that, and this is even more certainly the
case of Sophie.

Remark. If all sets Sx = {tail(e) | e ∈ Ax} have the same
shape S for all nodes x, in the sense that S = Sx0 = {tail(e) |
e ∈ Ax0} for some fixed node x0, and Sx is obtained by
translating Sx0 along x0x, then monotonicity is equivalent
to the fact that S is x0-convex, i.e., every shortest path from
x0 to any node in S is included in S. “Be monotone” is more
general than “having the same shape” because it does not
require the structure of the topological awareness to be the
same for all nodes.

Lemma 1. Indirect-greedy routing converges if and only
if the system of awareness is monotone.

Proof. Assume first that the system of awareness is not
monotone, and let us prove that indirect-greedy routing does
not always converges in this case, i.e., there is a setting of
the long-range contacts for which indirect-greedy does not
converge. If the system of awareness is not monotone, then
there exists a node x, and e ∈ Ax, such that e �∈ Ay where
y is the neighbor of x that is the closest to z = tail(e). We
denote by e′ the long-range link of x. We construct a setting
of the long-range contacts yielding non convergence of the
indirect-greedy protocol. First of all, if there are several such
y, we choose one that is closest to x. We set t = head(e) as
the target, and we set dist(t,head(f)) > dist(t, y) for every
long-range link f �∈ {e, e′}. Now, we consider two cases,
depending whether y is the long-range contact of x or not.
In both cases, we place t so that x is on a shortest path from
y to t.
— If y is not the long-range contact of x, i.e., y is one of

the four neighbors of x in the mesh, then we set the long-
range link e′ of x such that dist(t,head(e′)) > dist(t, y). By
definition of indirect-greedy routing, x forwards the search
to its neighbor y. Next, greedy routing is applied at node y.
Since e �∈ Ay, and since all other long-range links lead away
from t, the search is sent back to x, creating an infinite loop
between nodes x and y, and thus indirect-greedy routing
does not converge.
— If y is the long-range contact of x, i.e., y = head(e′),

then, from the setting of all long-range links different from
e and e′, the search is sent from y to a neighbor y′ on the
mesh that is on a shortest path from y to t. We place t so
that y′ is also on a shortest path from y to x. Thus, by the
choice of y as the closest node from x satisfying e �∈ Ay, we
have e ∈ Ay′ . Therefore, the search is sent back from y′

to y, creating an infinite loop between y and y′, and thus
indirect-greedy routing does not converge.
We now assume that the system of awareness is monotone,

and we prove that indirect-greedy routing always converges,
for any setting of the long-range contacts. Let s be the
current node, and let t be the target. Let u be the current
intermediate destination, and let v be the long-range contact
of u. We define the potential of s as:

φ(s) = dist(s, u) + n · dist(v, t)
From s, the search is forwarded to some node s′ on a short-
est path from s to u. If the intermediate destination at s′ is
the same as the one at s, then φ(s′) ≤ φ(s)− 1. If the inter-
mediate destination changes, then let u′ be the new interme-
diate destination, and let v′ be its long-range contact. Since
the system of awareness is monotone, we have (u, v) ∈ As′ .
Therefore dist(v′, t) ≤ dist(v, t). If dist(v′, t) < dist(v, t)
then φ(s′) = dist(s′, u′) + n · dist(v′, t) ≤ (n − 1) + n ·
(dist(v, t)−1) = dist(v, t)−1 < φ(s). If dist(v′, t) = dist(v, t)
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then Phase 1 of indirect-greedy routing specifies that since
s′ chooses u′, u′ is at least as close to s′ as u. Therefore,
φ(s′) = dist(s′, u′)+n·dist(v′, t) ≤ dist(s′, u)+n·dist(v, t) ≤
φ(s)− 1. Therefore, in all cases, the potential is strictly de-
creasing after each step of indirect-greedy routing. Thus
indirect-greedy routing eventually reaches the target.

Now, we prove the following:

Theorem 1. In the d-dimensional mesh augmented with
one long-range link per node chosen according to the d-harmonic
distribution, if every node is aware of the long-range contacts
of its O(log n) closest nodes in the mesh, then indirect-greedy

routing performs in O(log1+1/d n) expected number of steps.

Proof. Clearly, the system of awareness induced by balls
of same radius is monotone (since a ball centered at x is
x-convex). Therefore, thanks to Lemma 1, indirect-greedy
routing converges. We compute the expected number of
steps to reach any target from any source.
Let x be the current node, and t be the target node. First,

we consider the case where x is far from the target t in the
mesh, that is m = dist(x, t) > c · log1/d n for some con-
stant c large enough. Let us compute the expected num-
ber of steps required by indirect-greedy routing for reach-
ing a node x′ at Manhattan distance ≤ m/2 from t. Let
B = {u | dist(u, t) ≤ m/2}. For any node u, let V (u) = {v |
dist(u, v) ≤ log1/d n}. Let Pr(V (u)→ B) be the probability
that at least one node in V (u) has its long-range contact in
the ball B. We have Pr(V (x)→ B) ≥ Pr(V ′(x)→ B) where
V ′(x) = {u ∈ V (x) | dist(u, t) ≤ m}. Note that |V ′(x)| ≥
1
2d |V (x)| as t �∈ V (x), so that |V ′(x)| = Θ(logn). For any
node u, let Eu be the event “u has its long-range contact in
B”. We have Pr(V ′(x) → B) = 1 − Πu∈V ′(x)(1 − Pr(Eu)).
Let p = Pr(Ex). Since Pr(Ex) ≤ Pr(Eu) for any u ∈ V ′(x),
we get Pr(V ′(x)→ B) ≥ 1− (1− p)|V ′(x)|. Now, we have

p =
X
u∈B

h(x, u) =
1

Zx

X
u∈B

1/dist(x, u)d

where Zx =
P

w �=x 1/dist(x,w)
d.

On one hand Zx =
P

i≥1 |Si|/id where Si is the set of
nodes at Manhattan distance exactly i from x. We have
|Si| = O(id−1) for any i. Thus Zx = O(log n).
On the other hand,X

u∈B

1/dist(x, u)d ≥ |B|/(3m/2)d ≥ Ω(md)/(3m/2)d ≥ Ω(1).

Therefore p is at least Ω(1/ log n). Since |V ′(x)| = Θ(logn),
we get 1 − (1 − p)|V ′(x)| is at least some constant > 0, and
thus Pr(V (x)→ B) is at least some constant β > 0.
Let us return to the indirect-greedy routing process, and

let x1 ∈ V (x) be the intermediate destination selected by
x = x0 during phase 1 of indirect-greedy routing. In phase 2,
the search is routed from x0 to x1 according to Kleinberg’s
greedy protocol. However, on the way to x1, new long-range
links are discovered, and possibly a new node x2 whose long-
range contact is a node closer to t than the long-range con-
tact of x1 is discovered (see Fig. 4(a)). If such a new node x2

is discovered, x1 is discarded, and the new intermediate des-
tination becomes x2. In this case, x2 is discovered after per-
forming O(log1/d n) steps of routing toward x1 in the worst-
case. Indeed, every node is aware of the long-range contacts
of its log n closest neighbors, which correspond to a ball of

is

s

(a)

i+1x

(b)

i+1xi

Figure 3: The set Ci is included in the grey area,
and in the 2-dimensional mesh |Ci| ≤ 3 log n.

radius Θ(log1/d n). Again, on the way to x2, possibly a new
node x3 whose long-range contact leads to a node closer to t
than the long-range contact of x2 is discovered, and routing
switches to x3. This phenomenon may occur many times,
constructing a sequence x1, x2, x3, . . . of unreached interme-
diate destinations (see Fig. 4(a)). The Manhattan distance
between every two consecutive unreached intermediate des-
tinations xi and xi+1 satisfies dist(xi, xi+1) ≤ O(log1/d n),
for every i ≥ 0.
We show that the expected number of unreached inter-

mediate destinations xi is a constant. Let si be the node
where greedy routing switches from xi to xi+1. Let Ci be the
set of all tails of the new long-range links discovered while
going from si to xi+1, and let a0, a1, a2, . . . , al be the path
from si to xi+1 generated by Kleinberg’s greedy routing,
where a0 = si and al = xi+1. By definition, we have Ci =
(∪l

j=1V (aj)) \ V (si). The path a0, a1, a2, . . . , al is included
in the ball centered at xi+1 and of radius dist(si, xi+1) (see
Fig. 3). This inclusion holds even if the path contains long-
range links (aj , aj+1). Hence |Ci| ≤ (2d − 1) log n. From
this fact, one cannot conclude that Pr(Ci → B) ≤ (2d −
1) ·Pr(V (si)→ B) because the probability of having a long-
range contact in B changes with the distance to the target.
Nevertheless, since the radius of Ci is only a small frac-
tion of m for c large enough, one can show that, for any
ε > 0, there is a setting of the constant c such that Pr(Ci →
B) ≤ ((2d − 1) + ε) · Pr(V (si) → B) for every i such that

dist(si, t) ≥ c · log1/d n. Therefore, if dist(si, t) ≥ c · log1/d n,
then the probability that, going from si to xi+1, a new
intermediate destination is discovered is at most roughly
(2d − 1)/2d. It follows that one can set the constant c large
enough so that the expected number of successive interme-
diate destinations xi’s is a constant. Therefore, after at
most O(log1/d n) expected number of steps, one eventually
reaches an intermediate destination y1 (see Fig. 4(a)).
Starting from y1, we argue the same as when starting from

y0 = x, and thus, after at most O(log
1/d n) expected number

steps, one eventually reaches another intermediate destina-
tion y2. And so on, we construct in this way a sequence
y1, y2, . . . of intermediate destinations that are reached dur-
ing indirect-greedy routing (see Fig. 4(b)). Let Ei be the
event “at least one node in V (yi) has its long-range contact
in B”. We show that the expected number of reached inter-
mediate destinations yi before the event Ei holds is constant.
The events Ei are not pairwise independent. Nevertheless,
if dist(yi, yj) > 2 · log1/d n, then Ei and Ej are independent.
Thus, we consider a subsequence (y′i)i≥0 of reached inter-
mediate destinations yi’s such that (1) the events E ′

i =“at
least one node in V (y′i) has its long-range contact in B”
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Figure 4: Intermediate destinations before jumping into B.

are pairwise independent, (2) dist(y′i, y
′
i+1) = Θ(log1/d n),

and (3) y′0 = y0 = x. (Note that the expected number
of reached intermediate destinations between y′i and y

′
i+1 is

constant). Let pi = Pr(E ′
i). In particular p0 = β. Since

dist(y′i, y
′
i+1) = O(log1/d n), for any positive α < 1, one

can set the constant c such that pi+1 ≥ αpi for any i ≥ 0.
(Recall that c determines how far the current node is from
the target.) We are let with a sequence of trials, such that
the ith trial succeeds with probability at least αiβ. The
expected number of trials before we get a success is con-
stant. Therefore, starting from x, indirect-greedy routing
eventually reaches an intermediate destination yk, for some
k = O(1), such that at least one node in V (yk) has its long-
range contact in B (see Fig. 4(b)). Since going from yi to

yi+1 takes O(log
1/d n) expected number of steps, going from

x to yk takes no more than O(log
1/d n) expected number of

steps in total.
We are now in the situation in which the current node

x′ = yk satisfies that at least one node in V (x′) has its
long-range contact in B. Indirect-greedy routing applies,
that is an intermediate destination x′1 is selected, and the
search goes toward x′1. The long-range contact of x

′
1 is in

B because there is a node in V (x′) that has its long-range
contact in B. As when the search was routed from x to x1,
new long-range links are discovered on the way to x′1. Thus,
a new intermediate destination x′2 may be selected on the
way from x′ to x′1. Again, the long-range contact of x

′
2 is

in B. In fact, the same analysis as for x can reproduces
for x′. One can thus show that, after O(log1/d n) additional
expected number of steps, the search reaches an intermedi-
ate destination z1 = x′k. Similarly to x

′
1, x

′
2, . . . , node z1

has its long-range contact in B. Now, the long-range link e
going from z1 to B may not be taken at z1, because indirect-
greedy routing may discover at z1 a better long-range link,
i.e., a long-range link going closer to t than head(e). How-
ever, if such a long-range link f does exist, then tail(f) is
on the frontier of V (z1). Indeed, otherwise, z1 would not be
a reached intermediate destination because indirect-greedy
routing would have switched to tail(f) before reaching z1.
Since tail(f) is on the frontier of V (z1), the probability of ex-

istence for f is O(1/ log1/d n) = o(1). Hence this event does
not occur too often. Applying the same kind of analysis
as before, we consider the sequence of reached intermedi-
ate destinations z1, z2, . . . , all having their long-range con-
tact in B, and such that dist(zi, zi+1) ≤ O(log1/d n). The
expected length of such a sequence is constant, and thus
indirect-greedy routing eventually reaches an intermediate
destination z� such that the long-range link e of z� is in B,
and all long-range contacts of the nodes in V (z�) are further
from t than head(e). At z�, indirect-greedy routing applies,

and the search is forwarded to head(e) ∈ B.
Putting everything together, starting from x at Manhat-

tan distance m from t, it takes O(log1/d n) expected number
of steps to reach a node in B. In other words, decreas-
ing the Manhattan distance by a factor of 2 takes at most
O(log1/d n) expected number of steps. Therefore, from any

source at Manhattan distancem ≥ c·log1/d n from t, it takes
O((logm) · (log1/d n)) = O(log1+1/d n) expected number of

steps to reach a node at Manhattan distance < c · log1/d n
from t.
Hence, it remains to consider the case where the cur-

rent node x is close to the target t, i.e., m = dist(x, t) ≤
c · log1/d n. Let u be the current intermediate destination
(i.e., the one selected by x), and let v be the long-range con-
tact of u. We proceed similarly as in the proof of Lemma 1,
and define the potential of x as φ(x) = dist(x, u)+dist(v, t) ·
(1 + log1/d n). From x, the search is forwarded to some
node x′ on a shortest path from x to u. If the interme-
diate destination at x′ is the same as the one at x, then
φ(x′) ≤ φ(x) − 1. If the intermediate destination changes,
then let u′ be the new intermediate destination, and let v′ be
its long-range contact. Since balls form a monotone system
of awareness, we have (u, v) ∈ Ax′ . Therefore dist(v′, t) ≤
dist(v, t). If dist(v′, t) < dist(v, t) then φ(x′) = dist(x′, u′)+
dist(v′, t) · (1 + log1/d n) ≤ log1/d n + (dist(v, t) − 1) · (1 +
log1/d n) < φ(x). If dist(v′, t) = dist(v, t) then Phase 1
of indirect-greedy routing specifies that since x′ chooses u′,
dist(x′, u′) ≤ dist(x′, u). Therefore, φ(x′) = dist(x′, u′) +
dist(v′, t)·(1+log1/d n) ≤ dist(x′, u)+dist(v, t)·(1+log1/d n) ≤
φ(x)− 1. Therefore, in all cases, the potential is strictly de-
creasing after each step of indirect-greedy routing. The po-
tential of a node x at distance m from t is at most log1/d n+
m·(1+log1/d n). Thus, a node at distance at most c·log1/d n

from t has potential ≤ O(log2/d n) ≤ O(log1+1/d n). There-

fore, the target is reached after at most O(log1+1/d n) steps,
which completes the proof.

4. LOWER BOUNDS FOR INDIRECT-
GREEDY ROUTING

Theorem 1 shows that, comparatively to Kleinberg’s greedy
routing, augmenting the awareness up toO(log n) long-range
per node links speeds up indirect-greedy routing. In Theo-
rem 2, we show that the excepted number of steps of indirect-
greedy routing is Ω(log1+1/d n) for any amount of awareness.
More interestingly, Theorem 2 demonstrates that log n is an
optimum for the awareness. If the awareness is smaller than
log n then the expected number of steps is a decreasing func-
tion of the awareness. However, after the threshold of log n,
the expected number of steps is an increasing function of
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Figure 5: The expected number of steps v.s. the awareness. For v(n) = (log n)α, the expected number of steps

is s(n) = Ω((log n)2+α/d−α) if α < 1 (by Lemma 2), and is s(n) = Ω((log n)1+α/d−o(1)) if 1 ≤ α ≤ d (by Lemma 3).
For α ≥ d, s(n) = Θ(log2 n) (by Lemma 3).

the awareness (see Fig. 5).

Theorem 2. In the d-dimensional mesh augmented with
one long-range link per node chosen according to the d-harmonic
distribution, for any 1 ≤ v(n) ≤ n, if every node is aware
of the long-range contacts of its v(n) closest nodes in the

mesh, then indirect-greedy routing performs in Ω(log1+1/d n)
expected number of steps. Moreover, if d > 1, then a perfor-
mance of O(log1+1/d n) expected number of steps cannot be
reached if v(n) �= Θ(logn).

To prove Theorem 2, we consider separately the cases
v(n)� log n, and v(n)� log n. Intuitively, if every node is
aware of the long-range contacts of its v(n) � log n closest
neighbors, then reaching an intermediate destination is fast,
but a large number of intermediate destinations must be
visited before expecting reaching a node whose long range-
contact leads close to the target. In fact, we show the fol-
lowing:

Lemma 2. If v(n) = O(logα n), for some 0 ≤ α < 1, then
the expected number of steps to reach the target is at least

Ω
�
(log n/v(n))1−1/d · log1+1/d n

�
.

Proof. We assume that the distance m = dist(x, t) be-

tween the current node x and the target t is ≥ c · log1/d n for
c large enough. We use the same notations as in the proof
of Theorem 1. Let B = {u | dist(u, t) ≤ m/2}, and, for
any node u, let V (u) = {v | dist(u, v) ≤ v(n)1/d}. We have
observed that an expected number of Ω(log n) long-range
contacts must be considered before finding one that leads to
a node in B. Hence, we compute the expected number of
steps required to learn about Ω(log n) long-range contacts.
Starting from x, the search reaches a sequence y1, . . . , yk of

intermediate destinations satisfying that at least one node in
V (yk) has its long-range contact in B, and no node of V (yj)
has its long-range contact in B for j < k (see Fig. 4). Let us
compute the expected number of steps required to go from yj

to yj+1 using Kleinberg’s greedy routing. Let x0, x1, . . . , x�

be the sequence of considered intermediate destinations be-
fore the search eventually reaches the intermediate destina-
tion yj+1 starting from yi. I.e, x0 = yj and x� = yj+1.
Let r = dist(x0, x1) (note r ≤ v(n)1/d as x1 ∈ V (x0)),
and let A = {u | dist(u, x1) ≤ r/2}. For every node v such
that dist(v, x1) ≥ 3r/4, we have Pr(v → A) ≤ O(1/ log n).
Therefore, the probability that a long-range contact is used
during the first quarter of the path from x0 to x1 is at most
O(r/ log n), that is at most O(v(n)1/d/ log n). Thus, with
probability 1 − o(1), no long-range contacts is used on the
path from x0 to x1. Since the expected Manhattan distance
r̄ between x0 and x1 is Ω(v(n)

1/d), we get that the expected
number of steps required to go from x0 to x1 using Klein-
berg’s greedy routing is Ω(v(n)1/d). Actually, the routing
does not reach x1 if a new intermediate destination x2 is dis-
covered. However, one can easily check that a constant por-
tion of the path from x0 to x1 must be traversed before ex-
pecting discovering a new intermediate destination. There-
fore, the portion of the path from x0 to x1 that is traversed
before possibly switching toward x2 requires Ω(v(n)

1/d) ex-
pected number of steps. Hence, the expected number of
steps required to go from yj to yj+1 is Ω(v(n)

1/d).
On the other hand, using the same arguments as in the

proof of Theorem 1, we prove that the expected number of
steps required to go from yj to yj+1 is actually Θ(v(n)

1/d)
because the sequence x0, x1, . . . , x� is of constant expected
length. Since the probability that a long-range contact is
used between xi and xi+1 is o(1), the expected number of
long-range contacts discovered while going from yj to yj+1

is O(v(n)). Therefore, learning about an expected number
of Ω(log n) long-range contacts implies that the expected
length of the sequence y1, y2, . . . , yk is Ω(log n/v(n)).
To summarize, starting from x at distancem from the tar-

get, the search visits an expected number of Ω(log n/v(n))
intermediate destinations y1, . . . , yk, and the expected num-
ber of steps required to go from yj to yj+1 is Ω(v(n)

1/d).
Therefore, the expected number of steps required to reach
B, and thus to reduce the distance to the target by a factor
at least 2, is Ω(log n/v(n)1−1/d). Now, one can show that,

177



after this amount of steps from a node at distance m from
the target t, the distance from t is reduced by an expected
constant factor. Therefore, starting from a node at expected
Manhattan distance Θ(n1/d) from the target, the expected

number of steps to reach a node at distance < c · log1/d n

from the target is Ω
�

log n

v(n)1−1/d · log
�

n1/d

log1/d n

��
, which com-

pletes the proof.

Conversely, if every node is aware of the long-range con-
tacts of its v(n)� log n closest neighbors in the mesh, then
it is easy to find a long-range link that leads close to the
target. However, traveling from the current node to the in-
termediate destination that is the tail of this long-range link
requires a large number of steps. More precisely, we show
the following:

Lemma 3. If v(n) = Ω(log n), then the expected number
of steps to reach the target is at least

Ω

�
log n

log(v(n)/ log n)
·min

n
(log n) · (log v(n)), v(n)1/d

o�
.

Proof. We consider first the case v(n) � n. Assume,
in the same spirit as in the proof of Theorem 1, that the
distance m = dist(x, t) between the current node x and the

destination t is ≥ c · v(n)1/d where c is a constant large

enough. Let B = {u | dist(u, t) ≤ m/2r(n)} where r(n) =
1
d
log(γv(n)/ log n) where γ > 0 is a constant fixed such

that r(n) ≥ 1. From the setting of r(n), one can easily
show that Pr(V (x)→ B) is at least some positive constant.
The expected Manhattan distance between x to a node in
V (x) whose long-range contact is in B is Ω(v(n)1/d). To
travel such a distance using Kleinberg’s greedy routing, the
expected number of steps is

Ω(min{(log n) · (log v(n)), v(n)1/d}).
Thus, reducing the distance to the target by a factor 2r(n) re-
quires Ω(min{(log n)·(log v(n)), v(n)1/d}) expected number
of steps. Therefore, starting from a node at expected dis-
tance Θ(n1/d) from the target, the expected number of steps

to reach a node at Manhattan distance < c · v(n)1/d from

the target is Ω
�

log n
r(n)

·min
n
(log n) · (log v(n)), v(n)1/d

o�
.

If v(n) = Θ(n), then indirect-greedy routing reduces to
Kleinberg’s greedy routing since most of the time is spent
while routing to an intermediate destination, which is at
expected distance Ω(n1/d) from the source. Hence, the ex-
pected number of steps to reach the target is Ω(log2 n).

5. CONCLUSION
In this paper, we proposed a model for the small world

phenomenon. This model demonstrates that eclectic re-
lationships are desirable, as far as connectedness to other
individuals is concerned. This is coherent with what can
be observed in every-day life. In particular, searching us-
ing two criteria is significantly faster than searching using
only one criterion. For instance, Killworth and Bernard [6]
have observed that, in a search for an individual, at least
two criteria (occupation and geography) were used by the
participants. Determining whether individuals involved in
Milgram’s experiment used intermediate destinations (con-
sciously or unconsciously) to route the letter to the target
would allow us to validate our model.
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