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Lightwave Networks Based on de Bruijn Graphs 
Kumar N. Sivarajan, Member, IEEE, and Rajiv Ramaswami, Member, IEEE 

Absfmcf- We propose de Bruijn graphs as logical topologies 
for multihop lightwave networks. After deriving bounds on the 
throughput and delay performance of any logical topology, we 
compute the throughput and delay performance of de Bruijn 
graphs for two different routing schemes and compare it with 
our bounds and the performance of shufflenets. For a given 
maximum nodal in- and out-degree and average number of hops 
between stations, a logical topology based on a de Bruijn graph 
can support a larger number of stations than a shufflenet and 
this number is close to the maximum that can be supported by 
any topology. We also propose de Bruijn graphs as good physical 
topologies for wavelength routing lightwave networks consisting 
of all-optical routing nodes interconnected by point-to-point fiber 
links. The worst-case loss experienced by a transmission is pro- 
portional to the maximum number of hops (diameter). For a given 
maximum nodal in- and out-degree and diameter, a physical 
topology based on a de Bruijn graph can support a large number 
of stations using a relatively small number of wavelengths. 

Index Tenns-Optical networks, multihop, de Bruijn, shuffle. 

I. INTRODUCTION 
HIS PAPER IS ABOUT lightwave network topologies. T We distinguish between two types of topologies-the 

physical topology and the logical topology. By the physical 
topology we mean the actual underlying network topology 
which is commonly a broadcast star or bus. It could also 
be a wavelength routing network, which consists of point- 
to-point links interconnecting all-optical routing nodes, as will 
be described later. On any underlying physical topology, one 
can impose a carefully selected connectivity pattern that pro- 
vides dedicated connections between certain pairs of stations. 
Traffic destined to a station that is not directly receiving from 
the transmitting station must be routed through intermediate 
stations. This overlaid topology is referred to as the logical 
topology. We use the term multihop to refer to any network 
where traffic may have to be routed through intermediate 
stations and electronically processed in between. This paper 
considers de Bruijn graphs as logical topologies for multihop 
networks and as physical topologies for wavelength routing 
networks. 

The first part of this paper deals with logical topologies. 
A logical topology can be superposed on a physical topology 
by using many channels at different wavelengths. This tech- 
nique, wavelength-division multiplexing (WDM), significantly 
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enhances the network capacity. In a simple example, the under- 
lying physical topology is a broadcast passive star. Each station 
is provided with two transmitters and two receivers. Each 
transmitter in the network is at a different wavelength. Using 
its two transmitters, a station can be connected directly to two 
other stations whose receivers are tuned to the transmitted 
wavelengths. 

The advantages of using a multihop logical topology are as 
follows [1]-[3]: It is possible to create the logical topology 
to reflect the traffic pattems in the network, and the logical 
topology can be configured so as to simplify the routing 
and flow control in the network and to improve the delay- 
throughput performance. Moreover, the logical topology can 
be implemented using fixed-tuned transmitters and receivers, 
unlike other “single-hop’’ architectures that require tunable 
components and have to deal with collision and contention 
resolution at the media-access layer. 

The second part of the paper considers the design of the 
underlying physical topology. Conventional topologies such 
as the star and the bus are broadcast topologies. Wavelength 
routing networks use all-optical routing nodes interconnected 
by point-to-point fiber links, and avoid the splitting loss 
problems associated with broadcast topologies and also reuse 
wavelengths in the network. 

For both the logical and the physical cases, we find that de 
Bruijn graphs provide a good class of topologies. We compare 
them with the class of topologies called shufflenets [2]-[4]. 
Shufflenets provide a regular logical topology with simple 
addressing and self-routing. We prove that topologies based 
on de Bruijn graphs can support a larger number of stations 
for the same performance measures while retaining the simple 
addressing and self-routing properties of shufflenets. 

For the physical topology, we show that the number of 
wavelengths required to support a given traffic requirement 
is much smaller than in a broadcast star network ‘(with or 
without a superimposed logical topology). 

The outline of the rest of the paper is as follows. The 
next section considers logical topologies. After describing the 
performance measures that we will use to evaluate logical 
topologies and deriving bounds on them, we introduce de 
Bruijn graphs and discuss some of their relevant features. We 
then compare the performance of de Bruijn logical topologies 
with our bounds and with shufflenets. The following section 
describes wavelength routing networks. We again consider de 
Bruijn graphs as a possible physical topology, and also discuss 
the wavelength assignment problem in the network. 

11. LOGICAL TOPOLOGIES 
We can represent the logical topology of a network by a 

directed graph, where each station is represented by a node in 

1063-6692/94$04.00 0 1994 IEEE 



SlVARAlAN et al.: LIGHTWAVE NETWORKS BASED ON DE BRUIJN GRAPHS 71 

the graph and there is an edge from node A to node B in the 
graph if station A can transmit to station B. 

From a practical point of view, we can provide only a 
limited number of transmitters or receivers to each station. 
This limits the number of other stations that a station trans- 
mits to, and hence the degree of each node in the logical 
topology. We define the loading on an edge as the number of 
source-destination pairs that use the edge to communicate. 

The two metrics by which we shall evaluate the performance 
of a logical topology are the average end-to-end packet delay 
and the network throughput. The throughput is the least upper 
bound of the offered traffic for which the average delay is 
finite. The delay experienced by a packet is the sum of two 
components: a propagation delay component and a component 
due to queueing delays at all the nodes the packet passes 
through (this includes the packet transmission time). At low 
offered loads, the waiting times at the nodes are small and 
the average delay is then equal to the average number of hops 
multiplied by the sum of the propagation delay per hop and 
the packet transmission time. As the offered load increases, the 
queuing delay component increases and at high enough loads, 
it becomes much larger than the propagation delay. In the high- 
speed metropolitan-area environment, since the propagation 
delay is usually much larger than the packet transmission 
time, this dominance occurs only at heavy loads very close 
to the throughput. Hence minimizing the average number of 
hops minimizes the average delay at low offered loads. The 
throughput of the network is determined by the edge with the 
maximum loading, assuming all edges have the same capacity. 
Lower the maximum loading, higher the throughput. Both the 
delay and throughput will depend on the routing scheme used. 

We consider only the uniform traffic case, i.e., a new packet 
arriving at a station is equally likely to be destined to any 
one of the other stations in the network. Let C denote the 
capacity of a link' in bits/s. Assume all links have the same 
capacity. For each source-destination pair, let packets arrive 
at the source as a Poisson process with rate X packetsls. 
Packet lengths are assumed to be exponentially distributed 
with mean length 1/p bits. Assuming infinite buffers at each 
node and assuming that traffic patterns at different nodes 
are independent, the service discipline on each link can be 
modelled as an M/M/l queue [ 5 ] .  Let Li denote the loading 
on link i, E the average loading on a link, and L,,, the 
maximum loading on a link. The total arrival rate of packets 
for link i is L;X and hence, the average queueing delay for a 
packet at link i, f ( L i ) ,  in seconds/packet is given by 

r 

the normalized offered load per station ( N  - l)A/(pC). The 
normalized throughput per station is the least upper bound 
on the normalized offered load for which d is finite. Hence, 

Y = ( N  - l)/LtnaX. 

We define the length of a path to be the number of edges in 
that path and the diameter of any graph, denoted by D, as the 
maximum, over all pairs of nodes in the graph, of the length 
of the shortest path between a pair of nodes. The diameter 
of a graph whose nodes are identified with the stations in a 
network is the maximum number of hops required for any two 
stations in that network to communicate. Let n(i) denote the 
number of source-destination pairs in the graph for which the 
shortest path between the source and destination has i hops. 
(We define n(0) = N . )  The average number of hops (for 
shortest-path routing) is then 

D 

Observe that for any graph and any routing scheme, the 
average link loading, satisfies, 

D 

M E  = N ( N  - l)Z = Cin(i). (3) 
i=O 

A .  General Bounds 

maximum out-degree A, let 
Theorem 1 :  For any directed graph with N nodes and 

- { ~ ~ ~ m i 1 + N m ( A - l ) 2 + m ( A - l ~ ,  (N-l)(A-l)* a 2, 
Hmin(N, A ) e f  

A = 1, 
(4) 

where m is the largest integer that satisfies 

( 5 )  
A m - 1  N 2 1 + A + a2 + . . . + am-' = - 
A - 1 .  

Then, 2 Rmin(N,A). 
Proof: We prove the theorem only for A 2 2. The proof 

for A = 1 is similar. 
Let the maximum distance between any pair of nodes in 

the graph be denoted by D (the diameter of the graph). For 
each node, the number of nodes with minimum distance 5 k 
is I 1 + A + A2 + - . .  + Ak; hence 

j = O  for 0 < A 5 l /Li,  hi f(W = pc - LiX' 
Since the graph has diameter D and there are a total of N 2  
source-destination pairs, and the average queueing delay for a packet through the 

network, d(X), in seconds/packet is given by [5 ]  
D 

.(j) = N 2 .  (7) 
d ( X )  = 5 for 0 5 A 5 l/Lmax, j = O  

(1) Also, 
N ( N  - 1) i=l p c  - LiX' 

where N is the number of nodes and M is the number of links. k 
For convenience, we shall use the normalized delay, dpC and xn(j) 5 N 2 ,  0 5 k 5 D - 1. (8) 

' In this paper, we use the words link and edge interchangeably. j = O  
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Combining (6) and (8) yields 

(9) 

where m is defined as in (5). (Note that m 5 0.) Subtracting 
(9) from (7), we get, 

m 5 k 5 D -  1, 

Summing from k = 0 to D - 1 and using (2 ) ,  we get 

A - Am+' +"(A - 1)2 + m(A - 1) 
(N - l ) (A  - 1)2 

- 
H 2  

0 
This bound is a variation of the Moore bound and a proof 

for the case of a regular directed graph with in- and out-degree 
A appears in [3]. The directed-cycle graph on N vertices has 
A = 1 and satisfies p = N / 2 .  

Note that (4) can be inverted to yield an upper bound, 
Nup(Bl A), on the number of nodes in any directed graph 
with a given p and maximum out-degree A. 

Since, by (3), M E  = N (  N - l)p, we can obtain a lower 
bound on and hence on L,, from any lower bound on z. 
Specifically, from Theorem 1 and M 5 NA,  we have that for 
any topology with N nodes and maximum out-degree A, and 
any routing scheme, 

For N = 1024 and A = 4, this yields L,, 2 1166.75 and 
(normalized) throughput per station y 5 0.877. 

The following theorem provides a lower bound on the delay 
versus offered traffic characteristic of a given topology. 

Theorem 2: For a given topology with N nodes, M (di- 
rected) edges and in- and out-degree 5 A, the average 
queueing delay under a given routing scheme satisfies, 

- 

for 0 5 X 5 l/Lmax. H A  
pCA - (N - 1 ) p X '  

(1 1 )  
Proof: For 0 5 X 5 l/Lma,, 

2 
N(N - l ) ( p C  - %A) 

(since f (L)  is convex U in L )  
- 
H A  

pCA - (N - 1 ) p X  2 

(using M 5 N A  and L; = N(N - 1)rr). 

0 

- Corollary 1: For a given topology and routing scheme, if 
H 2 p l . b . 9  

- 
H1.b.A 

pCA - (N - 1)ZTl.b. X * 
d ( 4  2 

Proof: This follows from Theorem 2 and the observation 
that the r.h.s. in (1 1) is a monotonically nondecreasing function 

For many topologies and routing schemes, it may be difficult 
to calculate exactly but we can still obtain a lower bound 
on the delay characteristic using Corollary 1 if we can lower- 
bound z. We will apply this Corollary later to obtain a lower 
bound on the delay characteristic of shufflenets. 

Corollary 2: For any topology with N nodes, M (directed) 
edges and in- and out-degree 5 A and any routing scheme, 

of rr. 0 

- - 
where Hmin = Hmin(N,A) is defined by (4). 

Proof: From Theorem 1, for any topology with N nodes, 
M (directed) edges and in- and out-degree 5 A and any 
routing scheme, rr 2 zmin. The result now follows from 

0 
The results of this section serve as benchmarks for the 

performanceof any logical topology and we will use them to 
compare the performance of de Bruijn graphs and shufflenets. 

Results similar to Theorem 2 and its corollaries can be 
derived for any monotonically non-decreasing, convex U mea- 
sure of the delay other than f ( L )  as well. 

In the following sections we describe de Bruijn graphs, 
propose two routing algorithms, present results for the average 
number of hops, the average and maximum edge-loading, and 
the delay and throughput performance, and then compare their 
performance with that of shufflenets. 

Corollary 1 with Z1.b. = Hmin. 

B. de Bruijn Graphs 
For any positive integers A 2 2 and D 2 1, the de Bruijn 

graph G(A, D )  [6] is the directed graph with the set of nodes 
(0, 1, 2, . . . , A - 1) with an edge from node (a1 , u2, , a g )  
to node ( b l ,  b2 ,  . . . , b ~ )  if and only if b; = a;+l for 1 5 i 5 

The de Bruijn graph G(A, D )  has diameter D. The in- 
degree and out-degree of every node in G(A, D )  is A. (Note 
that A of the nodes have self-loops, which are present in graph 
but will not be present in the actual network.) The number of 
nodes and hence the number of stations, is given by 

D - 1. 

N = aD. 
Consider a A-ary shift register of length D. There is a one- 

to-one correspondence between all the possible states of the 
shift register and the nodes of the de Bruijn graph G(A, 0). 
There is an edge joining node xi to node xj if node (state) 
xj can be reached from state z; with one shift (and a new 
input digit) [7]. In other words, the de Bruijn graph is the 
state transition diagram of the shift register. For example, the 
de Bruijn graph G ( 2 , 3 )  is shown in Fig. 1. 
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A 

Fig. 1 .  The de Bruijn graph G(2,3) (degree = 2 and diameter = 3). Each 
node can be viewed as the state of a binary (in general A-ary) shift register 
with D = 3 stages. There is an edge from a node to all nodes that can be 
reached in one shift and a new input digit. 

From the shift-register analogy, a node (or state) in the de 
Bruijn graph can be represented by a string (or sequence) of D 
digits. An edge from node A to node B can be represented by 
a string of D + 1 digits, the first D digits representing node A 
and the last D digits representing node B. Similarly, any path 
of length k hops can be represented by a string of D + k digits. 

In any graph with maximum out-degree A, there can be at 
most A node-disjoint paths between any pair of nodes. In the 
de Bruijn graph G(A, D), there are A - 1 node-disjoint paths 
between every pair of nodes [8]. Therefore, networks based on 
de Bruijn graphs can tolerate up to A - 2 node failures without 
disruption in communication between any pair of nodes. It has 
further been shown that in the presence of A - 2 node faults, 
the diameter of the network increases by at most one hop [8]. 

I. Shortest-Path Routing: A shortest-path algorithm 
to route from node A = (al,a2,..-,a~) to node 
B = ( b l ,  b 2 , . . . , b ~ )  is as follows. Define the 
s h i f t - m a t c h ( i , A , B ) ,  0 5 i 5 D operation on the two 
strings A and B to be TRUE if and only if 

( b l ,  b2, ’ . ‘  I bD-Z) = (‘&+I, ai+27 ‘ * *  7 a D )  

Theorem3: For de Bruijn graphs, the average number of 
hops for shortest-path routing, 3 satisfies 

N A D D--- 
N - 1 (A - 1)2 + (AD - l ) (A - 1) 

(A 2 2, D 2 1). 
N 1 5 g <  D- - - 

N - i  a - 1 )  
Proof: For the de Bruijn graph G(A, D) the largest 

integer m such that 
A m - 1  

N L -  
A - 1  

is m = D. Therefore, from Theorem 1, together with 
N = AD, we get the lower bound for g.  

The number of source-destination pairs with distance k 
is NOk for 0 5 k 5 D - 1, since from each node we 
can reach Ak nodes in k hops. Note that some of these 
source-destination pairs may have a minimum distance less 
than k. Therefore (recalling that n(i) denotes the number of 
source-destination pairs in the graph for which the shortest 
path between the source and destination has i hops), 

k 

Cn(j) 2 N A ~ ,  o 5 IC D - 1. (12) 
j = O  

Since the de Bruijn graph has diameter D and there are a total 
of N 2  source-destination pairs, 

D 

n(j) = N2. (13) 
j = O  

Subtracting (12) from (13) yields, 
D 

n D ( j ) ~ ~ 2 - ~ ~ k ,  o ~ ~ c ~ D - I .  
j = k + l  

Summing from k = 0 to D - 1 and using (2), we get the 

Note that the difference between the upper and lower bounds 
for p is O(l/A2) for large A. Therefore, w for de Bruijn 
graphs is arbitrarily close to the minimum achievable for 
any graph with the same number of nodes and maximum out- 
degree A for sufficiently large A. In the appendix, we give a 
recursive technique for calculating p exactly for these graphs. 

Table I shows the number of stations and the average 

upper bound for H .  0 

.+ 

number of hops for de Bruijn graphs of different degrees and 
diameters. Also shown in each row is the upper bound, Nup, 
on the number of nodes that can be supported in any directed 
graph with the same average number of hops. Table I shows 
that even for small, practically feasible values of A, de Bruijn 
graphs are fairly close to the optimal topology. 

We next determine the edge loading for the shortest-path 
routing scheme. On the average, a transmission uses edges, 
and there are N ( N  - 1) possible combinations of source and 
destination nodes, all of which are assumed to be equally 
likely. The number of edges in the network is A N  - A 
(excluding the edges from a node to itself). Therefore, the 

and FALSE otherwise. Define merge(i’ 
to be the string (Or sequence) Of length 2 given by 
( a l , .  . . , UD, b ~ - i + l  ,.. . , bD). The routing algorithm is given 
below. 

B)’ 

number of hops 
i = 0 while (shift-match(i ,  A ,  B) is FALSE) 

end while 
shortest-path = merge(i, A ,  B)  

i = i + l  

(o’071) 
shift-mutch(07 A’ B, 

Example: Consider G ( 2 , 3 )  and let A = 
(17 O7 Here and B = 

and shift-match(1, A ,  B) are FALSE, and average edge-loading 

yields (0 ,0,1,0,1) .  Hence the shortest path is 
shift-match(2, A ,  B) is TRUE. Then merge(2, A ,  B) - - 

- - HAD,  (14) 
- H N ( N - 1 )  L =  

( O , O ,  1) + (0,1, 0) -i (1,071). A N - A  A 
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TABLE I 
NUMBER OF STATIONS N ,  AND AVERAGE NUMBER OF HOPS FOR THE DE 
BRUIJN GRAPH AS A FUNCTION OF THE DEGREE A AND THE DIAMETER D. 

N u ,  IS AN UPPER BOUND ON N FOR THE SAME AVERAGE NUMBER OF HOPS. 
L,,, IS THE MAXIMUM EEGE LOADING AND IS SHOWN HERE FOR 
SHORTEST-PATH ROUTING (SP), AND LONGEST-PATH ROUTING (LP) 

de Bruijn Graph - 
A, D H N Nup N/Nup Lrnax(SP) Lmax(LP) 

2, 2 1.5000 4 5 0.8000 3 4 
2, 3 2.1071 8 9 0.8889 11  12 
2, 4 2.8333 16 19 0.8421 29 32 
2, 5 3.6492 32 39 0.8205 81 80 
3, 2 1.6667 9 10 0.9000 7 6 

3, 4 3.3861 81 88 0.9205 138 108 
3 3  4.3440 243 266 0.9135 535 405 
4, 2 1.7500 16 17 0.9412 9 8 
4, 3 2.6399 64 67 0.9552 57 48 
4 , 4  3.5985 256 269 0.9517 313 256 
4 , 5  4.5844 1024 1079 0.9490 1589 1280 
5 , 2  1.8000 25 26 0.9615 1 1  10 
5, 3 2.7277 125 129 0.9690 86 75 
5 , 4  3.7059 625 647 0.9660 586 500 
5 , 5  4.7000 3125 3234 0.9663 3711 3125 
6, 2 1.8333 36 37 0.9730 13 12 
6, 3 2.7823 216 221 0.9774 121 108 
6 , 4  3.7694 1296 1327 0.9766 985 864 
6 , 5  4.7665 7776 7966 0.9761 7465 6480 

3, 3 2.4786 27 29 0.9310 31 21 

An upper bound on the maximum edge loading for de Bruijn 
graphs using the shortest-path routing strategy2 can be obtained 
by determining the maximum number of paths of length 5 D 
that use an edge. We first find the maximum number of paths 
of length k, Pk, that use a given edge. As noted earlier, an 
edge can be represented by a string of length D + 1 and a path 
of length k by a string of length D + k .  So the problem is 
transformed to that of determining how many strings of length 
D + k contain a given string of length D + 1. The string of 
length D + 1 can be positioned at one of k positions in the 
string of length D + k and there are A choices for each of the 
remaining k - 1 digits in the string of length D + k .  Therefore, 

Pk 5 kA"', 15 k 5 D. 

Therefore the maximum number of paths of all lengths 5 D 
that use an edge is 

(15) 
DAD+1 - ( D  + l )AD + 1 D 

( A  - 1)2 Lmax = pk 5 
k=l 

D 
A (16) M -AD for large A .  

If D 5 A - 1 we leave it to the reader to verify that the 
edge (0, 1,2 , .  , 0) will have a loading equal to L,, with 
shortest-path routing, proving that the bound is tight in this 
case. 

For G(4,5) with 1024 nodes and a = 4.5844, E = 1174 
from (14) and L,,, 5 1593 from (15). (Exact calculation 
yields L,, = 1589.) 

*This bound is also valid for any routing strategy that does not use routes 
of length > D. 

2 .  Longest-Path Routing: Shortest-path routing minimizes 
H and hence d at low loads. However, as we saw in the 
previous section, with shortest-path routing, the loading on 
some edges is significantly higher than others. In order to 
increase the throughput, we consider another routing scheme 
that lowers the maximum edge-loading in most cases, at the 
cost of increasing the average number of hops. 

The routing rule is as follows. In the de Bruijn graph 
G(A,D) ,  to route from a node A = (ul,uz,..-,u~), to 
a node B = ( b l , b 2 , . . . , b ~ ) ,  use the unique D-hop path 
( a l ,  UZ, + . . , aD, b l ,  b z ,  . + . , b ~ ) .  If this path has any circuits, 
they are removed from the route. Note that if these circuits 
are not removed, all routes are of length D hops. We call 
this longest-path routing because, before circuits are removed, 
this routing scheme uses the longest path between a pair of 
nodes subject to the constraint that its length is 5 D. With 
the circuits removed, there may exist other circuit-free routes 
between nodes that are longer but of length 5 D hops and 
hence our algorithm is not strictly a longest-path algorithm. 

We now prove that the maximum loading on an edge 
is L,,, = DAD-' for the longest-path routing algorithm. 
To show that L,, 5 DAD-', consider the longest-path 
algorithm without removing circuits. We have to determine 
the number of paths of length D that contain a given edge. 
An edge can be represented by a string of length D + 1 and a 
path of length D by a string of length 2 0 .  So the problem is 
transformed to that of determining how many strings of length 
2 0  contain a given string of length D + 1. The string of length 
D + 1 can be positioned at one of D positions in the string of 
length 2 0  and there are A choices for each of the remaining 
D - 1 digits in the string of length 2 0 .  Therefore, 

- 

L,, 5 D A ~ - I  

We leave it to the reader to verify that the edge 
( 1 , 0 , 0 , - . - , 0 )  will have a loading equal to DAD-' with 
longest-path routing. 

Table I compares the average number of hops and themax- 
imum edge-loading for the two routing schemes. In all cases 
except A = 2, D 5 4, the longest-path scheme has a lower 
maximum edge-loading and hence a higher throughput. For 
G(4,5) with 1024 nodes, with this scheme, we get = 
4.9829 and L,, = 1280 while L,,, for the shortest-path 
scheme is 1589. 

3. Delay and Throughput Performance: Fig. 2 shows the 
normalized average queueing delay dpC plotted against the 
normalized offered load per station ( N -  l)X/pC for the 1024- 
node de Bruijn graph G(4,5) for both the shortest-path and 
longest-path routing schemes. Also shown is the lower bound 
on the average queueing delay for any topology and routing 
scheme with N = 1024 and A = 4 computed using Corollary 
2. (The fourth curve corresponds to the shufflenet and will 
be discussed in the following section.) Observe that at low 
offered loads, the normalized queueing delay is essentially 
equal to the average number of hops, which corresponds to 
the transmission time of the packet. The normalized network 
throughput per station, y, is 0.779 for longest-path routing and 
0.644 for shortest-path routing. 
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Fig. 2. Normalized average queueing delay versus normalized offered load 
for the 1024-node de Bruijn graph and shufflenet, both with A = 4. Both 
shortest (SP) and longest (LP)-path routing are shown for the de Bruijn graph. 
A lower bound on the delay for any 1024-node topology with A = 4 is also 
shown. 

At low offered loads, we can use shortest-path routing so 
that the delay is minimized and at high offered loads, we 
can obtain a higher throughput by switching to longest-path 
routing. 

C .  Comparison with ShufJlenets 
The (A, k)-shufflenet consists of kAk stations arranged in 

k columns with A‘ stations per column [4]. Adjacent columns 
are connected in a perfect A-shuffle [4]. The kth column is 
connected back to the first column, also in a perfect A shuffle. 
The (2,2)-shufflenet is shown in Fig. 3. The in- and out- 
degree of the (A, k)-shufflenet are both A and the diameter 
is D = 2k - 1. Thus, the number of stations that can be 
supported by the (A, k)-shufflenet is 

The average number of hops between nodes is [3] 
- 
H =  . (17) 

kAk(A - 1)(3k - 1) - 2k(Ak - 1) 
2(A - l ) (kAk - 1) 

Table I1 shows the number of stations that canbe supported 
by shufflenets along with the average number of hops, for 
different degrees and diameters. Also shown is the upper 
bound, Nup, on the number of stations that can be supported by 
any topology for the same average number of hops. Shufflenets 
perform well when the diameter is small (and the number of 
stations is small). A comparison with Table I shows that logical 

I.. . . . . . . 4 O ]  

Fi 3 
A$’ = 4 nodes per column arranged in a perfect shuffle. 

The kAk = 8-node shufflenet consisting of k = 2 columns with 

TABLE II 

SHUFFLENETS AS A FUNCTION OF THE DEGREE A AND THE DIAMETER D. 
Nup IS AN UPPER-BOUND ON N FOR THE SAME AVERAGE 

Shufflenet 

NUMBER OF STATIONS N ,  AND AVERAGE NUMBER OF HOPS a FOR 

NUMBER OF HOPS. L IS THE AVERAGE LOADING ON AN EDGE 

- 
A, D H N Nup NfNup 
2, 3 2.0000 8 9 0.8889 7.00 
2, 5 3.2609 24 30 0.8000 37.50 
2. 7 4.6349 64 84 0.7619 146.00 
2, 9 6.0692 160 256 0.6250 482.50 
3, 3 2.1765 18 19 0.9474 12.33 
3, 5 3.5625 81 122 0.6639 95.00 
3, 7 5.0217 324 549 0.5902 540.67 
3, 9 6.5074 1215 3289 0.3694 2633.33 
4, 3 2.2581 32 33 0.9697 17.50 
4, 5 3.6911 192 343 0.5598 176.25 
4, 7 5.1730 1024 2192 0.4672 1323.00 
4, 9 6.6683 5120 21864 0.2342 8533.75 
5, 3 2.3061 50 51 0.9804 22.60 
5, 5 3.7620 375 784 0.4783 281.40 
5 , 7  5.2525 2500 6522 0.3833 2625.20 
599 6.7505 15625 97688 0.1599 21094.00 
6, 3 2.3380 72 13 0.9863 21.67 
6 5  3.8068 648 1559 0.4157 410.50 
6 7  5.3012 5184 16014 0.3237 4579.33 
6, 9 6.8002 38880 335971 0.1157 44064.17 

topologies based on de Bruijn graphs support more stations 
than shufflenets for the same average number of hops. 

Shufflenets and de Bruijn graphs are related. The de Bruijn 
graph G(A, k) can be viewed as two columns, each column 
containing the same Ak nodes. The two columns are connected 
in a perfect A-shuffle. 

Fig. 2 compares the delay performance of the 1024-node 
shufflenet and the 1024-node de Bruijn graph, both with 
A = 4. For the shufflenet, we use the lower bound on the 
delay for any routing scheme from Theorem 2. 

The maximum loading on a link in the shufflenet is at 
least 1323 (using the fact that L,, 2 E, (3), and (17)) 
and the maximum loading on a link in the de Bruijn graph 
using longest-path routing is 1280. Therefore, the normalized 
throughput per station is at most 0.773 for the shufflenet and 
at least 0.779 for the de Bruijn graph. Thus the shufflenet has 
a lower throughput than the de Bruijn graph. With longest- 
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Fig. 4. Architecture of a 3 x 3 optical routing node. The network consists of 
many of these nodes (stations) interconnected to form a particular topology, 
for example, a de Bruijn graph. 

path routing, the de Bruijn graph has a lower delay than the 
shufPenet at all offered loads. 

III. PHYSICAL TOPOLOGIES 
We now consider a network architecture consisting of 

all-optical wavelength-routing nodes interconnected by point- 
to-point links. A routing node of this type is described in [9] 
and is shown in Fig. 4. The node is capable of routing a 
wavelength at an input port to an output port independent 
of the remaining wavelengths, subject to the constraint that 
the same two wavelengths at two different input ports cannot 
be routed to a single output port. The routing pattern can be 
changed by reconfiguring the switches. 

A .  Network Topology 
Our aim is to support the maximum number of end-stations 

given a certain end-to-end power loss requirement, or equiv- 
alently, to minimize the end-to-end power loss requirement 
given a certain number of stations to be supported. At the 
same time, we desire a topology where addressing and routing 
are simple. 

Given the maximum out-degree of a node, say A (we 
assume in-degree = out-degree), and the loss parameters of 
the switches and the gratings, the power loss through a node 
can be determined as follows. The maximum switch size is 
(A + 1). Assuming that each (A  + 1) x (A + 1) switch is 
built as a crossbar consisting of (A  + 1)2 2 x 2 switches, the 
maximum loss incurred by the signal in going through a single 
(A + 1) x (A  + 1) switch is (2A + l )L + 2W dB where L 
is the loss (in dB) incurred in each 2 x 2 switch and W is the 
fiber-to-switch coupling loss [lo]. Since there can be up to D 
hops (D is the diameter) in a transmission path, if (Y is the 
maximum link loss (in dB) per hop, the maximum loss is 

(D + 1) ((2A + l )L + 2W) + Da dB 

which is proportional to the diameter D. In practice, there is a 
limit on the maximum allowable loss because the transmitter 
power is limited and at the receiver, a certain power is needed 

TABLE III 

DIFFERENT MAXIMUM OUT-DEGREES A AND DIAMETERS D. THE NUMBER 
N M ~ ~ ~ ~  IS AN UPPER BOUND ON THE MAXIMUM NUMBER OF STATIONS THAT 

ODD VALUES OF D ,  THE NUMBER OF STATIONS SUPPORTED BY THE 
CORRFSPONDING SHUFFLENETS (FOR THE SAME A) IS h o  SHOWN 

NUMBER OF STATIONS THAT CAN BE SUPPORTED IN DE BRUIJN GRAPHS FOR 

BE SUPPORTED IN ANY GRAPH FOR THE SAME DEGREE AND DIAMnWc. FOR 

Nshuf f 
NMoore  

NdeBr NMoore NdeBr Nshuf  
NMoore 

A D 

2 2 4 7 0.571429 
2 3 8 15 0.533333 8 0.533333 
2 4 16 31 0.516129 
2 5 32 63 0.507937 24 0.380952 
2 6 64 127 0.503937 
3 2 9 13 0.692308 
3 3 27 40 0.675000 18 0.45oooO 
3 4 81 121 0.669421 
3 5 243 364 0.667582 81 0.222527 
3 6 729 1093 0.666972 
4 2 16 21 0.761905 
4 3 64 85 0.752941 32 0.376471 
4 4 256 341 0.750733 
4 5 1024 1365 0.750183 192 0.140659 
4 6 4096 5461 0.750046 
5 2 25 31 0.806452 
5 3 125 156 0.801282 50 0.320513 
5 4 625 781 0.800256 
5 5 3125 3906 0.800051 375 0.096006 
6 2 36 43 0.837209 
6 3 216 259 0.833977 72 0.277992 
6 4 1296 1555 0.833441 

in order to achieve a required bit-error-rate performance. This 
limits the number of stations that can be supported in the 
network. 

For given values of A and D (and hence a given value 
of the maximum loss), the best network topology is the one 
that maximizes the number of stations in the network. The 
network topology problem can be formulated as follows: 
Given the maximum in- and out-degree and the diameter, 
find the graph with the maximum number of nodes. The 
corresponding problem for undirected graphs is known to be 
hard, but the family of de Bruijn graphs are good though not 
necessarily optimal [6].  We consider directed de Bruijn graphs. 
In this section, when we refer to a de Bruijn graph, we mean 
the physical topology based on that de Bruijn graph. 

Table I11 shows the number of nodes that can be supported 
in de Bruijn graphs of different degrees and diameters. Also 
shown is an upper bound on the maximum number of stations 
that can be supported in any graph (the Moore bound [6] given 
by 

NM,,,, = 1 + A + A2 + * . . + AD 
AD+1 - 1 - - 

A - 1  * 

This bound is obtained by observing that from any node, there 
can be A nodes at distance 1, A2 nodes at distance 2, and so 
on, and hence 1 + A + A' +. . . + AD nodes at distance 5 D. 

For moderate values of A, de Bruijn graphs are close to this 
bound. On the same table, the number of stations that can be 
supported by different shufflenets is shown. Originally, shuf- 
flenets were proposed as logical topologies in [2]. However, 
recently, shufflenets have also been considered as physical 
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[ 111, [ 121. As can be seen, shufflenets are inferior to de Bruijn -3 .  ** 
graphs as physical topologies. 8U...88888m88.a8 
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lengths to support one connection per station simultaneously. 
If a logical topology with each node having an in- and out- 
degree of A is superimposed on this, N A  wavelengths are 
required. In the case of the wavelength routing topology, we 
expect that the number of wavelengths required will be less 
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Given (a) the (physical) topology of the network, (b) the 
maximum number of duplex (i.e., if node A is transmitting to 
node B, node B is also transmitting to node A) connections, 
m, per station, and (c) the maximum blocking probability, find 
the number of wavelengths required, with the constraint that 
none of the connections that have been set up may change 
their wavelengths. 

The determination of the number of wavelengths required 
to support a given set of connections is equivalent to solving 
a certain graph-coloring problem [9]. If we are interested in 
finding the number of wavelengths required to support m 
duplex connections per station (with no blocking), we have 
to find the maximum of the chromatic numbers of the graphs 
corresponding to all possible sets of m duplex connections. 
Moreover, even if this number of wavelengths were made 
available, it may not suffice to set up any combination of 
m duplex connections per station if we are not permitted to 
change the wavelengths of existing connections. 

The analytical solution of the wavelength assignment prob- 
lem, even for regular topologies like de Bruijn graphs, appears 
to be difficult. However, we can easily estimate the number 
of wavelengths required for networks of moderate sizes (a 
few thousand), for a small number of duplex connections per 
station (m 5 5) by Monte Carlo simulation methods. 

In our simulation, for the case of one duplex connection per 
station, the procedure used for each trial is as follows: (1) Pick 
a pair of nodes A and B from the nodes that are not busy, at 
random. (2) Set up a connection from node A to node B using 
the first available wavelength on the shortest path between A 
and B. Set up the reverse connection from node B to node A 
also on the shortest path using the first available wavelength. 
(The wavelengths are preordered in an arbitrary fashion.) If 
there is no wavelength available to set up either of these 
connections, the duplex connection is considered blocked. 
Otherwise the connection is considered successful and the 
nodes are labelled as busy. Already existing connections are 
not disturbed. 

In order to set up m > 1 duplex connections per station, the 
procedure above is repeated m times. Each time, one duplex 
connection is set up for each station. 

It may be possible to obtain a lower number of blocked con- 
nections by changing the method by which the wavelengths are 

Fig. 5. Fraction of blocked connections versus number of wavelengths 
provided for networks with 1024 nodes and a distributed-switch physical 
topology based on two different de Bruijla graphs with 1024 nodes viz. 
G(2,lO) and G(4,5). The number of connections per station is denoted 
by m. 

selected, and in the case of multiple connections per station, 
the order in which the connections are set up. For example, 
one might select the most- or least-used wavelength among 
the available wavelengths when setting up a connection, and 
in the case of multiple connections per station, one can set 
up all m duplex connections per station before proceeding to 
another station. 

The results of our simulation for the physical topologies 
corresponding to the de Bruijn graphs G(2,lO) and G(4,5), 
both of which have N = 1024 nodes, are shown in Fig. 
5. It can be seen that six wavelengths for m = 1, and 15 
wavelengths for m = 5 suffice to limit the fraction of blocked 
connections to less than lop5 if the topology is G(4,5). On the 
other hand, with G(2, lo), 14 wavelengths for m = 1, and 42 
wavelengths for m = 5 are required. Recall that the number of 
wavelengths is equal to the number of switches in each node 
and the size of each switch is (A + 1) x (A + 1). Increasing 
A increases the size of the switches but reduces the number 
of wavelengths and hence the number of such switches that 
are needed. The choice of the particular de Bruijn graph that 
is used as the topology in this architecture will be determined 
by this trade-off between the size and number of switches as 
well as the loss properties of the switches. 

IV. CONCLUSION 
We found that for the same maximum degree and aver- 

age number of hops, logical topologies based on de Bruijn 
graphs can support a much larger number of stations than 
shufflenets, while retaining the simple addressing and self- 
routing properties of shufflenets. In the 1024-node example 
considered, the network based on the de Bruijn graph has a 
higher throughput and a lower average delay at all offered 
loads compared to the shufflenet. In general, except for small 
networks, compared to shufflenets, networks based on de 
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Bruijn graphs have lower average delays at low offered loads 
and comparable throughputs. 

We also found that de Bruijn graphs are good topologies for 
wavelength-routing networks consisting of all-optical routing 
nodes. These graphs can support a large number of stations for 
a given degree and diameter (and hence loss budget), and are 
regular with a simple routing rule. The number of wavelengths 
that are required to support a certain number of connections 
C is much smaller than C, unlike in a star network where 
C wavelengths are required, because wavelengths are reused 
spatially and switched independently of one another at the 
routing nodes. 

v. APPENDIX 

In Theorem 3, we stated lower and upper bounds on the 
average number of hops, z, for de Bruijn graphs with shortest- 
path routing. We now proceed to compute it exactly. A small 
change in notation is required. Denote n(.) for the de Bruijn 
graph G(A, D) by no(.). Let so(i )  denote the number of 
nodes for which the shortest circuit containing that node has 
length i. We then have the following theorem. 

Theorem 4: 

Proof: If ( a l , - . . , a o - l )  is the source node and 
( bl , + . , bo- l )  is the destination node of a source-destination 
pair with minimum distance i - 1 in G ( A , D  - l ) ,  then 
we can find A’ source-destination pairs in G(A,D)  with 
distance i namely, all source-destination pairs with source 
nodes of the form ( a , a l , . . . , a o - l )  and destination nodes 
of the form (b l ,  . . . , bo-1, b), where we have A choices 
for each of a and b. i must be the minimum distance for 
each of these source-destination pairs; otherwise we can find 
a path of distance less than i - 1 between ( ~ 1 , .  . . , ao-1) 

and ( b l , .  . . , bo-1). By definition, so ( i )  of these A2 pairs 
in G(A, D) have the same source and destination nodes. 
Therefore, 

The proof of the reverse inequality is similar. 0 
We define n o ( 0 )  = AD for D 2 0 so that the above 

recurrence holds for D 2 1. In order to compute the no(.) 
for D 2 1 from the recurrence relation above, it only remains 
to find so(.) .  We have not been able to find any “simple” 
expression for the so(.) but we have the following partial 
results. 

Theorem 5: 

where the summation is over all the divisors d of k and p ( n )  
is the Mobius function which is defined as follows ([13, p. 
101): Let 

be the unique factorization of n > 1 as a product of prime 
powers. Then, 

4 1 )  = 1, 
p ( n )  = 0, 
p ( n )  = (-I)T, 

if any of the e; > 1, 
if el = e2 = ... =e, = 1. 

In order to prove this theorem, we need the following defini- 
tions and lemmas. 

Definition: A string (a1 , a2, . . . , UD) of length D has a 
period of length k if 

and the sequence ( a l ,  a2,. . . , a k )  of length k is called its 
period. 

Note that the nodes in G(A, D) can be identified with 
strings (or sequences) of length D. With this identification 
observe that if a node is contained in a circuit of length k, the 
sequence (or string) corresponding to that node has a period 
of length k. 

Lemma 1 ([14]): If D 2 m + n - g c d ( m ,  n)and a sequence 
of length D has a period of length m and a period of length 
n, it has a period of length g c d ( m , n ) .  

Lemma 2: If D 2 2k - 2 and a sequence of length D has 
a period of length k, the length of the shortest period of that 
sequence is a divisor of k. 

Proofi Consider any sequence of length D 2 2k - 2 
with a period of length k. If the length of the shortest period 
of this sequence is k, there is nothing to prove. Otherwise let 
p 5 k - 1 be the length of the shortest period of this sequence. 
Suppose p is not a divisor of k. Since gcd(k ,p )  2 1, we have 
k+p-gcd(k ,p )  5 k+(k-1)-1 5 D. Therefore, by Lemma 
1, the sequence has a period of length gcd(k,p)  < p ,  which 
is a contradiction. U 

Proof of Theorem 5: Consider the A‘sequences of length 
D which have a period of length k. (Note that the number of 
sequences of length D which have a period of length k is Ak, 
since each sequence of length k occurs exactly once as a period 
of a sequence of length D 2 k.) Among these sequences with 
a period of length k, some of them have a shortest period of 
length k while the others have shortest periods whose lengths 
are divisors of k (from Lemma 2). Moreover, all sequences 
which have a period whose length is a divisor of k also have 
a period of length k. Hence, 

The theorem follows by applying Mobius Inversion [13, 
0 theorem 2.1.1., p. 111 to the equation above. 

Using Theorem 5 ,  we get, 

so(1) = A, 
~ o ( 2 )  = A’ - A, 
s ~ ( 3 )  = A3 - A, 
s ~ ( 4 )  = A4 - A’, 

D 2 1, 
D 2 2, 
D 2 4, 
D 2 6, 



SlVARAJAN et 01.: LIGHTWAVE NETWORKS BASED ON DE BRUUN GRAPHS 79 

and so on. All the values of S D ( . )  required to calculate no(z) 
for D 5 5 are provided by Theorem 5 together with 

D 

S D ( k )  = AD> 
k=1 

with the exception of 55(4), which is given by 

~ 5 ( 4 )  = A4 - 2A2 + A. 

This is computed as follows. The general sequence of length 
5 with a period of length 4 is of the form ( a , b , c , d , a )  and 
there are A4 such sequences. Among these sequences, the 
length of the shortest period of the A sequences which satisfy 
a = b = c = d is 1, the A(A - 1) sequences which satisfy 
a = c # b = d is 2 and the A(A - 1) sequences which satisfy 
a = b = d # c is 3. Therefore, 

55(4) = A4 - A -  A(A-  1) - A(A-  1) = A4 -2A2 + A .  

The other values of S D ( . )  may be calculated similarly but 
the calculations become progressively more complex as D 
increases. 

Example: Let us compute for G(A,2). We have 

n2(l) = n1(0)A2 - ~ 2 ( 1 )  
= A A ~ - A  
= A3 - A. 

~ ( 2 )  = nl( l )A2 - ~ 2 ( 2 )  
= (A2 - A)A2 - (A2 - A) 
= A4 - A3 - A2 + A .  

Then, 

- 2742)  + ln1(l) 
A2(A2 - 1) 

H =  

1 
= 2 - E *  

Similarly, we can calculate that for G(A, 3), 

- 
H =  3A4 + 2A3 - 2A - 1 

A 2 ( A 2 + A + 1 )  ’ 
for G(A,4), 

- 
H =  4A5 + 3A4 + A3 - A2 - 4A - 2 

A 2 ( A 3 + A 2 + A + 1 )  ’ 
and for G(A,5), 

- 
H =  5A7 +4A6 + 2A5 - 3A3 - 6A2 - 3A - 1 

A3(A4 + A 3  + A2 + A +  1) 
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