
LAND: Stretch (1 + ε) Locality-Aware Networks for DHTs

Ittai Abraham, Dahlia Malkhi∗and Oren Dobzinski
The Hebrew University of Jerusalem, Israel

{ittaia,dalia,orend}@cs.huji.ac.il

Abstract

This paper proposes the first peer-to-peer network and
lookup algorithm that for any 0 < ε has worst case
stretch bounded by 1 + ε. The construction uses an ex-
pected logarithmic number of links. It is suitable for
a very realistic class of metrics in which the only re-
striction on density is a growth-bound. It is completely
decentralized and readily deployable in dynamic net-
works.

1 Introduction

One of the main challenges of distributed systems is how
to efficiently store and locate ever increasing amounts
of content. The tremendous growth of the Internet
illuminates this challenge. In the traditional basic web
architecture, all requests reach the same server. This
single service-point architecture may result in network
congestion or server swamping as the number of requests
increases.

The solution suggested by Karger et al. [9] is to
use consistent hashing. Using a hash function, web
page URLs are hashed, and from the hashed value a
close-by cache server containing the page is accessed.
Instead of having just one cache server (and suffer
from scalability and fault tolerance problems), multiple
caching servers act together to form a Distributed Hash
Table (DHT). In the DHT paradigm, a lookup request is
routed through the server network to the specific server
that knows the answer to the lookup query.

DHTs are also at the focus of rising interest in file-
sharing programs like Gnutella, Napster, and Freenet.
These motivated a growing interest (e.g., see [19, 4,
22, 18, 11, 14, 13, 12, 1, 16, 15, 5, 3, 8]) in the field
of distributed computing to the challenges of building
DHTs: scale, dynamism, fault tolerance, decentralized
control.

A case for locality-awareness. In many of the
DHT works, one of the main measures of quality is
the number of hops taken until the server with the re-

∗This work was supported in part by the Israeli Science
Foundation (246/02) and by EC Evergrow project.

quired information is found. In most cases, logarith-
mic complexity (e.g., in [19, 4, 22, 14]) or polyloga-
rithmic complexity (e.g., in [15]) is sought. If the only
bound on reaching the target is that the number of hops
is bounded, say by 4, then the lookup request could
go, for example, from Boston through New Zealand,
Brazil, France and finally to New York. Although the
number of hops is small in this example, this clearly
is not a desired outcome. While bounding the num-
ber of hops by a logarithm is important, several works
[17, 18, 4, 22, 11, 3] have argued that a far more impor-
tant measure is the total cost of communication between
peers.

The natural way to model costs is to assume a cost
function c that induces a metric space on the universe
of servers. The main measure of a routing protocol is
it’s stretch, namely, the ratio between the distance and
the cost of a route. More precisely, let x be a lookup
starting point, y be the target of the lookup (i.e., the
closest node containing the searched object). Let x =
x1, x2, . . . , xk = y be the nodes traversed in the lookup
route. Then the stretch is c(x1,x2)+...+c(xk−1,xk)

c(x,y) . The
seminal work of Plaxton, Rajaraman, and Richa [17] is
one of the first works to provide a distributed lookup
protocol with analytical bounds on the stretch. They
present a randomized scheme for a class of metric spaces
representing realistic networks, in which the expected
stretch in finding targets is a (rather large) constant.
Several efforts were made to deploy this scheme, e.g.,
Tapestry [22] and Pastry [4]. These systems construct
a dynamic DHT based on the principles of [17], yielding
efficient, locality-aware lookup programs. Recently, Li
and Plaxton introduce in [11] a simplified version of the
PRR scheme, that yields lookup costs proportional to
the diameter of the network (rather than proportional
to the distance between x and y).

Our work builds on the successful approach intro-
duced and deployed in [17, 22, 4, 18, 11]. It enhances
it by presenting the first constant 1 + ε stretch DHT,
in which for all routes the cost ratio between the dis-
tance and the route is guaranteed to be at most 1 + ε.
The guarantee of constant stretch is achieved while not

impairing on other parameters of the network such as
degree, memory requirements, adaptability, and fault
tolerance.

Locality aware DHT can be viewed as distributed
load balanced designs of compact routing schemes [21],
and are related to distance oracles [20]. For general
metrics, compact routing schemes have stretch of at
least 3 [6]. In contrast, for growth bounded metrics1

we show that stretch 1 + ε is achievable in a distrib-
uted and load balanced scheme using only an expected
logarithmic amount of memory per node 2.

Overview of the scheme. As in several DHTs,
nodes have virtual identifiers composed of string-
identifiers over some base B. Objects also have virtual
identifiers. Routing to a virtual address is done via pre-
fix routing, namely, the i’th routing step fixes the i’th
digit of the address. Likewise, objects publish their exis-
tence via prefix routing destined at their virtual address.
Similar to [17], routing steps geometrically increase in
cost as we fix more digits. Intuitively, this stems from
the fact that there are expected n/Bi nodes matching i
prefix digits in a network with n nodes. Thus, the more
digits are fixed, the harder it is to find a suitable node
to hop to. The total distance taken by i routing steps
forms a geometric series that is dominated by the i’th
step.

The novelty of our scheme lies in the choice of
links, and in the analysis of the routing algorithm.
The links of the network are chosen so that each
node “hosts” log n routing entities (routers), each one
allowing it to “fix” one of its identifier digits to any
desired value. Unlike previous schemes, our choice of
links enforces a distance upper bound on each stage of
the route, rather than probabilistically maintaining it.
This is done by having routers choose their links within
an appropriately bounded distance. If no suitable
endpoint is found for a particular link, we suggest a
novel technique in which the node shadows a router
responsible for routing onward one more digit. The
splitting of a node into distinct routing entities, each
one responsible for only one digit position, is crucial for
the emulation to work properly. It allows bounding the
amount of links emulated by each node to an expected
logarithm.

Additionally, a node to which an object is published
puts references to the object’s location within its vicin-
ity. Specifically, the node reached in the i’th step of
publishing stores a reference on all nodes matching the
first i digits of its identifier within a certain distance.

1Growth bounded metrics: for any point x and distance r ≥ 1

the number of points within distance 2d of x is at most a constant
factor larger than the number of points within distance r.

2Derandomization of this scheme will appear in the full paper.

The purpose of these reference copies is to terminate the
route quickly when the route from s to t already goes a
distance roughly ε · c(s, t), in order to keep the stretch
bounded by a constant. Here again, our scheme differs
from previous methods in that the references are guar-
anteed to be maintained to within a certain distance,
not probabilistically so.

Routing is done in two stages. Starting from a node,
the first stage performs prefix-routing, fixing one digit
after another in the address of the target. It terminates
when a node containing a reference to the object is
reached. The second stage consists of simply following
the reference pointers until the target is found.

Our analysis shows that the cost of a route from
s to t is deterministically bounded by (1 + ε)c(s, t).
Similar to [10], our locality analysis is given in a realistic
network model whose density is growth bounded from
above. (The network model of [17, 4, 22] is somewhat
more restricted and assumes a density bound from below
as well.)

Contribution. This paper presents a novel DHT
construction that maintains locality in lookup opera-
tions. We borrow heavily from the principles of [17], yet
our design has the following important achievements:

• Most importantly, our stretch factor can be chosen
to be arbitrary low on all lookup routes. We
deterministically bound the cost of lookups in our
scheme to 1 + ε for any 0 < ε, while the cost
bounding analysis of [17] archives only a large
constant in expectation.

• The scheme in [17] assumes, in addition to a growth
bound, also a lower bound on the expansion, a
shrink bound3. Our construction and analysis
eliminates the need for a shrink bound and works
on the larger class of metric spaces that only have
the property of being growth bounded.

• Our construction is simple, and our proofs short
and intuitive. In contrast, proving the expected
locality of [17] requires an involved and lengthy
analysis. In our belief, the simplicity of our scheme
and the elegance of its analysis may lead to im-
proved practical deployments.

• We present an additional construction in Section 6
that embraces the two-tier architecture of current
peer-to-peer networks, where stronger and stable
nodes serve as ultra-peers, and other (e.g., transient
home users) are regular peers. Under this model,

3Shrink bounded metrics: for any point x and distance r ≥ 1

the number of points within distance 2d of x is at least a constant
factor larger than the number of points within distance r.

we improve our scheme parameters to employ only
an expected constant out-degree for nodes. The
construction yields a guaranteed stretch bounded
by 2 + ε. Our two-tier construction is the first
constant-degree locality-aware scheme, compared
with all previous locality-aware schemes that have
logarithmic degree.

2 Preliminaries

The system consists of a set of nodes denoted V , where
the number of all nodes |V | = n. Let c : V 2 7→ R+ be
the cost function, associated with pairs of nodes, that
expresses the cost of communication between nodes. We
assume c has positivity, reflexivity, triangle inequality,
and symmetry. Thus < V, c > forms a metric space.
From here on, we refer to the cost as the distance
between nodes.

Minimum density We assume that the minimal
distance between every pair of nodes is 1.

Growth bounded metrics are considered, e.g.,
in [10] and reflect real-life internets. The set of nodes
within distance r from x is denoted N(x, r). For growth
bounded metrics, we assume an expansion constant ∆,
such that for every node x and r ≥ 1, we have

|N(x, 2r)| ≤ ∆|N(x, r)| .(2.1)

We note that growth bounded metrics are more
general than the metrics assumed in [17, 4, 22], which
also bound from below the shrinking rate of increasing
neighborhoods.

Nodes and routers Each node u hosts an assem-
bly of routing entities (routers). A router r hosted by
node u is denoted u.r. Each router is identified by a
string r.id. When clear from the context, we sometimes
refer to u.r simply as r. Identifier strings are composed
of M digits in radix B = 2b. The radix B is chosen such
that B ≥ ∆2. For a network with n nodes the length of
each identifier, M , is chosen such that M = dxe for x
satisfying Bx = n. A router u.r has an additional level
property, denoted u.r.level, between 1 and M + 1.

Notations for bit sequences Let s be a k-digit
identifier. Denote s[j] as the prefix of the j most-
significant digits, and denote sj as the j’th digit of s. A
concatenation of two strings s, s′ is denoted by s||s′.

Summary of notations and constants All no-
tations and definitions used in our construction (includ-
ing those mentioned above already) are summarized for
convenience here.
• Radix is at least square of expansion B ≥ ∆2.
• Number of identifier-digits M = dxe for x s.t. Bx = n.
• The constant α is chosen such that Be−α < 1.
• Let Ai(x) denote the smallest ball around x containing
min(αBi, n) nodes, let ai(x) denote the radius of Ai(x).

• Denote γ = Blog∆ 2 and note that γ ≥ 4.
• For ε the desired stretch, choose d as in Equation 5.2.

Useful properties The main properties implied
by the growth-bound assumption are summarized in the
following technical lemma. These properties suffice by
themselves to uphold the LAND construction, and from
here on we refer to the network properties only through
them.

Lemma 2.1. Let x and y be any two nodes, for any i
such that y ∈ Ai(x):
(i) Ai(x) ⊆ Ai+1(y).
(ii) Ai(y) ⊆ Ai+1(x).
(iii) ai+1(x) ≥ γ ai(x), where γ = Blog∆ 2.

Proof. Let r = ai(x) denote the radius of Ai(x), so
Ai(x) = N(x, r), where N(x, r) = {v ∈ V | c(x, v) ≤ r}.
Since y ∈ N(x, r) then (see Figure 1)

N(x, r) ⊆ N(y, 2r) ⊆ N(x, 3r) .

From the growth bounded assumption we can bound the
number of nodes in N(x, 3r) using |N(x, r)| as follows:
|N(x, 3r)| ≤ ∆2|N(x, r)| = ∆2|Ai(x)| = ∆2αBi ≤
αBi+1 .

For (i), N(x, 3r) ⊆ Ai+1(x), and so Ai+1(y), the
ball around y with αBi+1 nodes, must contain N(y, 2r)
and so must contain Ai(x). For (ii), Ai(y) ⊆ N(y, 2r) ⊆
N(x, 3r) ⊆ Ai+1(x).

For (iii), Blogδ 2 = 2log∆B , hence |N(x,Blog∆ 2r)| ≤
∆log∆ B |N(x, r)| = αBi+1, so Ai+1(x) ⊇ N(x, Blog∆ 2r).

3 LAND Architecture

The goal of our work is to support a lookup operation
that locates nearest copies of objects, such that the
nodes of the network share the lookup load evenly.
Our method adopts the distributed hash table (DHT)
approach that is employed in several recent systems
[19, 4, 22, 14].

More formally, let A be a set of objects. We make
use of a uniformly distributed hash function H on object
names. For any object obj ∈ A, such that obj is
stored on some node s, reference information about
obj’s location is stored on nodes whose identifiers match
prefixes of various length of H(obj). The object obj may
be replicated in various locations in the network. Our
network is able to locate a nearby copy of every obj ∈ A.

All nodes in the network take part in the routing
algorithm, and pass queries to the nodes they have
outgoing links to. All nodes store partial reference
information about the location of objects. In this sense,
the nodes form a Distributed Hash Table.

X r

3r Y

2r

Figure 1: The circles N(x, r), N(y, 2r), and N(x, 3r)

More precisely, the basic entity in our network is
the router entity (simply referred to as ‘router’). Each
router has an identifier and level. The routers are
connected in a manner similar to the butterfly graph,
i.e., level ` routers have outgoing links only to level `+1
routers. In LAND each node in the system initially
maintains M + 1 routers, each with a different level
from 1 to M + 1. In addition, it is possible that some
nodes will need to maintain additional shadow routers
to ensure worst case locality.

When we mention a router r, we interchangeably
mean either the routing entity itself or the node that
hosts the router. The precise meaning will be evident
from the context.

4 The Routing Network

Each node v hosts an initial set of M+1 routers denoted
R1, ..., RM+1. Router v.Ri has identity v.Ri.id and
level i, i.e., Ri.level = i. The identifiers of routers are
represented as radix B = 2b numbers. The identifiers of
the initial routers are randomly chosen uniformly and
independently.

Recall that the constant B is chosen such that
B ≥ ∆2. In addition a constant α is chosen such
that Be−α < 1. We denote the number of identifier
digits as M chosen such that BM = n. Recall that
Ai(x) denotes the smallest ball around x containing
min(αBi, n) nodes. Recall that ai(x) denotes the radius
of Ai(x).

Let r be a router of level r.level = ` hosted by

node v. The router r could be either the initial v.R`,
or a shadow router hosted by v, as we shall see below.
Router r has outgoing links of two types, neighbor and
publish denoted r.L and r.P respectively. The outgoing
links of r are as follows:

neighbor: If ` ≤ M , then router r has B neighbor
links, denoted L(0), ..., L(B−1). The i’th neighbor
r.L(i) is selected as the closest router within Ci(r)∩
A`(v), where Ci(r) = {u ∈ V | ∃s, u.s.id[`] =
r.id[`−1]||i, u.s.level = `+1}. The link L(i) ‘fixes’
the `’th digit of r.id to i, namely, it connects to the
closest node u that hosts a level ` + 1 router u.s
that matches the id r.id[` − 1]||i, within the ball
A`(v) (i.e., among the αB` closest nodes to v).

If Ci(r) ∩ A`(v) = ∅ then node v hosts a shadow
router s with identifier r.id[` − 1]||i and level
` + 1. Node v maintains all of the links of
the shadow router (including the publish links
described below).

Since a shadow router also requires its own neigh-
bor links, it may be that the jth neighbor link of a
shadow router s does not exist in Cj(s)∩As.level(v).
In such a case v also hosts a shadow router that acts
as the s.L(j) endpoint.

Shadow hosting continues recursively until all links
of all the shadow routers hosted by v are found (or
until the limit of M + 1 levels is reached).

publish: If ` ≤ M , the publish links r.P are all the
nodes hosting any level-(`+1) router with the same
first ` − 1 bits as r.id which are inside the ball
A`+d+5(v). Formally, r.P = C(r) ∩ A`+d+5(v),
where C(r) = {u ∈ V | ∃s, u.s.id[` − 1] = r[` −
1], u.s.level = ` + 1}.

4.1 Publish and lookup The publishing of an ob-
ject obj residing on a node t proceeds as follows. Start-
ing with a level-1 router w1.r (where w1 = t, move from
a node wi using the neighbor links of the level i router
wi.r by fixing the i’th digit to that of H(obj). This links
to wi+1, a node hosting a level i + 1 router wi+1.r (this
might be a shadow router in which case wi = wi+1) such
that wi+1.r.id[i] = H(obj)[i]. Thus, router wi+1.r has
level wi+1.r.level = i+1, and id wi+1.r.id[i] = H(obj)[i].
Continue until the M ’th digit (i.e., until there are no
more neighbor links to follow).

Each node wi along the publishing route stores a
reference to obj which points back to wi−1. In addition,
wi stores such a reference on every node of wi.r.P .

A lookup operation of an object obj ∈ A can be
initiated by any node in the system, and its purpose
is to find the closest node storing obj. The lookup

operation from a node x proceeds in two stages. The
first stage fixes target digits one by one. The loop goes
as follows: Starting with a level-1 router at x denoted
x1.r, and so long as the target was not found, then from
the current router xi.r, first check if there is a reference
to obj with a link to wi−1. If so, move to wi−1 and
continue with the second phase. Otherwise, if H(obj)i

is j, continue at a node wi+1 with a router wi+1.r such
that wi+1.r.level = i + 1 and wi+1.r.id[i] = H(obj)[i]
(this might be a shadow router).

The second stage traverses from wi−1 backward to
t using obj’s reference links.

The publish and lookup algorithms for a router u
are provided in pseudo-code in Figure 2 below.

A node t that wants to store an object obj
initiates t.R1.publish(obj, t, 1).

publish (obj, w, `) at router u.r:
store “obj;w” on node u;
send “obj;u” to every node in u.r.P ;
if ` ≤ M

u.r.L(H(obj)`).publish(obj, u, ` + 1);

A node x that wants to lookup object obj
initiates x.R1.lookup(obj, x, 1).

lookup (obj, x, `) at router u.r:
if u stores obj

return obj to x;
else if u stores “obj;v”

v.lookup(obj, x, `);
else if ` ≤ M

u.r.L(H(obj)`).lookup(obj, x, ` + 1);

Figure 2: The publish and lookup algorithms.

5 Analysis

5.1 Expected degree

Lemma 5.1. For every initial router R` hosted by a
node v the expected number of shadow routers hosted
by v due to R` is constant.

Proof. For any level 1 ≤ k ≤ M , the probability
that link L(i) will be found inside Ak(u) is at least

1−
(
1− 1

Bk

)αBk

≥ 1− e−α.
For 0 ≤ i ≤ M − `, let b`+i be a random variable

that counts the number of level-(` + i) shadow routers

that u recursively emulates due to missing links. Such
shadow routers are created if u incurs emulation of a
level-(` + 1) shadow router; one of that shadow router’s
links is also emulated by a level-(` + 2) shadow router;
and so on, up to level (` + i).

So b` = 1 and for 1 ≤ i ≤ M − `, each of the
b`+i−1 routers has B neighbor links with a probability of
emulating each one bounded by e−α. Therefore E[b`+i |
b`+i−1] ≤ b`+i−1Be−α and due to the independence
of the identifiers E[b`+i] ≤ E[b`+i−1]Be−α. Thus by
induction E[b`+i] ≤ (Be−α)i.

The expected total number of shadow routers in-
curred by router u is bounded by:

E[
∑

0≤i≤M−`

b`+i] ≤
∞∑

i=0

(
Be−α

)i =
1

1−Be−α
.

Lemma 5.2. For every router r the expected number of
publish links |r.P | is constant.

Proof. Denote r.level = `. The probability that a node
v hosts an initial level-(`+1) router v.R`+1 that matches
the first `− 1 bits of u.id is most B−(`−1).

Further, we should consider the probability that a
node emulates a shadow router of level (` + 1) with
identifier matching u.id[`−1], hence r also has a publish
link to it. Using the same arguments as in the proof of
Lemma 5.1 above, for 0 ≤ i ≤ `, the probability that a
node v has a level-(`+1− i) router with identifier-prefix
r.id[`−1−i] and needs to emulate a level-(`+1) shadow
router with prefix id[` − 1] (i.e., emulate recursively to
depth i) is bounded by B−(`−i−1)e−iα.

The total probability that a node hosts a level-(`+1)
router (real or shadow) matching u.id[`− 1] is bounded
by

∞∑
i=0

1
B`−1

(
Be−α

)i =
1

B`−1

1
(1−Be−α)

.

Hence, the expected number of nodes among the
αB`+d+5 nodes that match this criterion is bounded by

E[|u.P |] ≤ αB`+d+5 1
B`−1

1
(1−Be−α)

=
αBd+6

1−Be−α
.

As an immediate consequence of the above two lem-
mata, we get the following theorem.

Theorem 5.1. The expected degree of all nodes is
O(M) = O(log n).

Corollary 5.1. The expected number of reference
pointers for each object is O(M) = O(log n)

5.2 Stretch In this section we show that the worst
case stretch of the lookup operation is 1 + ε. For the
analysis of a lookup path, we denote the first node
performing a lookup of an object obj by s, and the
(closest) target node containing obj by t.

Denote the sequence of nodes steps taken by the
routing algorithm as x1, x2, x3, . . ., where x1 = s.
Denote the relevant routers as x1.r, x2.r, x3.r, . . . where
xi.r.level = i and xi.r.id[i−1] = H(obj)[i−1]. Similarly,
let the sequence of publishing nodes taken from t be
t = w1, w2, w3, . . ., and the sequence of relevant routers
be t = w1.r, w2.r, w3.r, Hence, wi.r.level = i and
wi.r.id[i − 1] = H(obj)[i − 1]. Note that some nodes
may repeat within this sequence due to shadow-router
emulation. For ease of notation, below we denote by
x0 = x1 = s.

Lemma 5.3. For every i ≥ 1, xi ∈ Ai(xi−1) ⊆ Ai+1(s)
and similarly, wi ∈ Ai(wi−1) ⊆ Ai+1(t).

Proof. By induction on i. For i = 1 we have s =
x1. Assume by induction that xi−1 ∈ Ai(s). If
xi.r is emulated then xi = xi−1 and we are done.
Otherwise, by Lemma 2.1 (ii), Ai+1(s) ⊇ Ai(xi−1). By
construction, xi ∈ Ai(xi−1), and hence, xi ∈ Ai+1(s).
(The case of wi and t is identical).

Corollary 5.2. For every i ≥ 1, the total distance of
the path from s = x1 through xi is at most

γ

γ − 1
ai+1(s)

Proof. By Lemma 5.3 for every 1 < j ≤ i, xj is in
the ball Aj(xj−1) that is fully contained in the ball
A(j+1)(s), hence its radius is at most a(j+1)(s), and
therefore c(xj−1, xj) ≤ a(j+1)(s).

By Lemma 2.1(iii), aj+1(s) ≤ γ−(i−j)ai+1(s).
Hence, the total distance of the path from x1 through
xi is at most

i−1∑
j=1

c(xj , xj+1) ≤
i∑

j=1

aj+1(s)

≤
i−1∑
j=0

γ−j ai+1(s)

≤ γ

γ − 1
ai+1(s) .

Lemma 5.4. Let k be the first index such that s ∈
Ak+d+2(t) then xk contains a reference to obj.

Proof. From Lemma 5.3, xk ∈ Ak+1(s). Applying
Lemma 2.1(ii) on s ∈ Ak+d+2(t) gives Ak+d+2(s) ⊆
Ak+d+3(t). Now, from Lemma 5.3, wk−1 ∈ Ak(t).
Applying Lemma 2.1(i) on wk−1 ∈ Ak+d+3(t) gives
Ak+d+3(t) ⊆ Ak+d+4(wk−1). Combining the above
xk ∈ Ak+d+2(s) ⊆ Ak+d+3(t) ⊆ Ak+d+4(wk−1). Router
wk−1.r has publish links such that it publishes a refer-
ence for object obj in all the nodes containing a level-k
router, whose identifier matches the prefix wk−1.r.id[k−
1], within the ball Ak+d+4(wk−1). Thus, xk must con-
tain a reference of the type “obj;wk−1”.

Using Lemma 5.4, we know that when the lookup
path reaches xk, it proceeds to wk−1, . . . , w1 = t. It
is left to see what is the total distance of the route
x, s = x1, x2, x3, . . . , xk, wk−1, wk−2, . . . , w1 = t.

Theorem 5.2. The stretch of the path from s to t is
1 + ε.

Proof. The first phase of the route is the path from
s = x1 to xk. We now make use of the assumption
that s 6∈ Ak+d+1(t), so N(s, 2c(s, t)) ⊇ Ak+d+1(t) hence
Ak+d+1(s) ⊆ N(s, 2c(s, t)), because of node count, and
thus ak+d+1(s) ≤ 2c(s, t). With Corollary 5.2

k−1∑
j=1

c(xj , xj+1) ≤ γ

γ − 1
ak+1(s)

≤ 2γ1−d

γ − 1
c(s, t) .

The second phase is the hop from xk to wk−1. Using
the triangle inequality c(xk, wk−1) ≤ ak+1(s) + c(s, t) +
ak(t) ≤ (2γ−d + 1 + γ−d−1)c(s, t) .

The third and last phase of the route is the traversal
from wk−1, wk−2... back to w1 = t. Since ak+d+1(t) ≤
c(s, t) and from Corollary 5.2

k−2∑
j=1

c(wj , wj+1) ≤ γ−d

γ − 1
c(s, t) .

The theorem is proven by choosing d = O(log(1
ε))

such that

ε ≥ 1
γd

(
2γ

γ − 1
+ 2 +

1
γ

+
1

γ − 1

)
.(5.2)

6 A Two-tier Construction

Almost all the file sharing systems used currently in
the Internet, e.g., Kazaa, Gnutella2, Fast Track, and

others, use a hierarchical structure. Nodes are divided
into nodes and super-nodes. While all nodes participate
in forwarding and returning lookup requests, only the
super nodes (whose reliability is higher) maintain the
data itself and answer the lookup queries.

In this section, we briefly sketch an alternative
approach that enables to embrace the asymmetrical
structure of real networks, and captures it in a two-tier
architecture. The classification into the two tiers allows
to take into account the difference between nodes in a
number of domains: communication speed, persistence,
CPU power and storage capacity, and so on. The
main difference is that only supernodes store objects,
whereas regular nodes only assist in routing queries to
supernodes.

This distinction leads to a dramatic improvement
in the lookup algorithm. Our two-tier construction
employs only a constant expected number of out-going
links from all regular nodes. As noted in several DHT
works, e.g., in [18, 14, 1, 15, 8, 5, 16], the number of
links maintained by each node affects the adaptability
of the network to changes. Thus, this is an important
improvement over previous locality-aware DHTs which
employ a logarithmic number of out-links per node
[17, 4, 22, 3].

More formally, we assume that there are two types
of nodes in the system, regular nodes and supernodes.
Denote the set of regular nodes R, supernodes S , all
nodes V = R

⋃
S, the number of all nodes |V | = n.

Each regular node hosts only one initial router, chosen
from among R1, ..., R(M+1) arbitrarily. Supernodes
always host R1 in addition.

In order to make up for the fact that finding
a node hosting a router with certain characteristics
becomes M times harder, we redefine Ai(v) to be
the smallest neighborhood around v containing αBiM
nodes. The definitions of neighbor and publish links
carry identically, with the distinction that they make
use of the new neighborhood definitions.

Initiating a search path requires an additional stage.
In this stage, a node hosting a level-1 router (R1) is
sought. Once such a node is reached, the digit-fixing
phase of routing can commence. In order to find a level-
1 router, each node maintains one additional type of
link, closest, which connect to the closest super-node in
its vicinity.

Analysis similar to the above shows the following
properties. In the two-tier construction, finding a target
t from an initiating node x incurs a stretch of at most
1 + ε from the x.closest to t (this part is proven just
as before); and an additional stretch-1 hop from x to
x.closest. The total stretch is therefore bounded by
2+ε. The construction uses a constant expected number

of outgoing links per node. The incoming degree of
nodes are affected by the overall density of supernodes
among regular ones. The density of super-nodes can be
controlled by system policy in various ways. Assuming
that |R| = m|S| and that dispersal of super-nodes is
uniform in the space, then the in-degree of regular nodes
is also expected constant, and that of super-nodes is
logarithmic.

Full details of the two-tier construction appear in
[2], and will be included in the full version of the paper.

7 Dynamic Node Arrivals and Departures

In this section we sketch how nodes may dynamically
arrive and depart from the system.

We assume that once two nodes x, y connect (by x
sending a message that arrives to y) they may exchange
messages and discover the real distance c(x, y) between
them.

7.1 Node arrival When a new node arrives to the
system it needs to do several things: (1) acquire an id for
each of its routers, (2) establish network links for each
of its routers, (3) acquire necessary object references.

Acquiring identifier for each router Each node
chooses for each initial router, R1 . . . R(M+1), an identi-
fier of M uniformly independent random radix B digits.
Note that due to a significant change in the number of
nodes, the parameter M may change. In such a case,
routers may need to add a new digit to each of their
identifiers.

Finding the nearest neighbor As part of the
process of establishing router links, a node first needs
to identify the closest neighbor it has in the network.
Hildrum, Kubiatowicz and Rao [7] propose to use the
PRR routing scheme in a backward manner, in order
to locate the nearest neighbor with high probability in
PRR like networks. As the authors note in their con-
clusion, it is possible to combine the techniques of [7]
with the LAND construction. Using the basic LAND
architecture a load balanced distributed nearest neigh-
bor search will take an expected logarithmic number of
steps. The nearest neighbor is always found, unlike [7]
which has only high probability guaranties.

Algorithm find-closest for a node x is as follows.
Let u be any node in the network known to x, e.g., an
initial contact point. We denote wM+1 = y, and its
level-(M + 1) initial router by wM+1.r = wM+1.RM+1.
For ` = M + 1 down to 2, take from among all
incoming links into w`.r the router w`−1.r closest to
x. By construction, w`−1.r is a level-(`− 1) router with
w`−1.r.id[`−2] = w(M+1).r.id[`−2]. At the end, set the
closest node known to x, denoted x.closest to w1.

The find-closest algorithm is depicted in pseudo-

code in Figure 3.

A node v that wants to find its closest neighbor
invokes v.closest = v.R(M+1).find-closest(v,M + 1).

find-closest(v, `) at router u.r:
If ` = 1 send u to v and return;

Let Si denote the set of all incoming links into u.r;
Let w among Si be the closest to v;
w.r.find-closest(v, `− 1);

Figure 3: The find-closest algorithm.

Establishing network links Once the id and
level of a router is set, and the closest node to the node
hosting it is known, the router is left with the task of
establishing links as defined in Section 4.

For a router v.r with level `, the main difficulty is
to find all the level `+1 routers with prefix v.r.id[`− 1]
in the ball A`+d+5(v). Router v.r also needs to inform
all routers u.r of level `−1 with prefix v.r.id[`−2] such
that v ∈ A`+d+4(u). This can be done, again, by finding
all routers u.r in A`+d+5(v) with prefix v.r.id[`− 2].

The locate algorithm for a router v.r of level ` is
as follows. Let s be the closest node to v. For every
combination of digits b1, b2 ∈ [0..B − 1], route from s
to a level-(` + 2) router u.r such that u.r.id[` + 1] =
v.r.id[`− 1]||b1||b2. This routing is done in an identical
manner to the routing phase of lookup in Figure 2,
i.e., using the L(i) links. Let Y denote the set of routers
u.r reached by this procedure. Let S(` + 3) be the set
of level-(` + 3) routers that appear as publish links of
routers in Y , i.e., S(`+3) =

⋃
y∈Y y.P . Obtain S(`+2)

by taking all incoming publish links into S(` + 3) from
routers of level ` + 2. Then recursively, obtain S(` + 1)
by taking all publish links going into S(` + 2). And
so on, until we have S(` − 1). From S(` + 1), router
v.r selects neighbor links whose distance from v does
not exceed a`, and keeps publish links whose distance
from v does not exceed a`+d+5. Then v informs nodes
in S(`− 1) about its arrival.

The locate algorithm in depicted in pseudo-code
in Figure 4.

7.2 Node departure When a regular node x of level
` leaves the network, the level `−1 nodes whose neighbor
link contained a router x.r need to be updated, and x.r
removed from their list. If x.r was a neighbor link of a
router v.r, then v.r’s next closest publish link becomes
the neighbor link, unless this link is too far away in
which case v emulates a shadow node. The links for this
emulation are acquired using the locate algorithm.

locate at router v.r of level `:
for every combination of digits b1, b2 ∈ B

v.closest.R1.search(v.r.id[`− 1]||b1||b2, `, v);
wait for replies, accumulate in S;
set v.r.L(i) = argminu.r∈S{c(u, v) | u.r.level = ` + 1 ∧

u.r.id[`] = v.id[`− 1]||i ∧ c(v, u) ≤ a`} ;
// emulate v.r.L(i) if empty

set v.r.P = {u.r ∈ S | u.r.level = ` + 1∧
u.r.id[`− 1] = v.r.id[`− 1] ∧ c(v, u) ≤ a`+d+5};

inform all level-(`− 1) routers in S about v’s arrival;

search(prefix, `, v) at router u.r:
if u.r.level = ` + 1

inlinks(v, 3);
else u.r.L(prefixu.level).search(prefix, `, v);

inlinks(v, j) at router u.r
// recurse for j levels searching for in-links

let I denote the incoming publish links of u.r;
send v the set I;
if (j > 1)

for each w.r ∈ I : w.r.inlinks(v, j − 1);

Figure 4: The locate algorithm.

7.3 Analysis of dynamic algorithms

Lemma 7.1. For a node x, Algorithm find-closest
finds the closest neighbor of x.

Proof. Denote by u the node at which find-closest is
initiated by x. Denote wM+1.r = u.RM+1, and denote
the sequence of routers traversed by the algorithm by
w(M+1).r, wM .r, ..., w1.r. Let s denote the closest node
to x in the network.

We show by induction backward from M + 1 to 1
that wi ∈ Ai+2(x) and wi.r is the closest router to x
which satisfies wi.r.id[i − 1] = w(M+1).r.id[i − 1]. The
base obviously holds. We now prove the induction step.

Consider the routing path from s to w(M+1)r..id
using the regular digit-fixing routing method. Denote
the router reached in the i’th routing step by yi.r, i.e.,
yi.r.level = i and yi.r.id[i − 1] = w(M+1).r.id[i − 1].
By Lemma 5.3, yi ∈ Ai+1(s). Since s ∈ A1(x), by
Lemma 2.1(ii), Ai+1(s) ⊆ Ai+2(x), and so yi ∈ Ai+2(x).
Hence, if there is any level-i router ci.r closer to x
than yi.r, then ci ∈ Ai+2(x) as well. By the induction
hypothesis, wi+1 ∈ Ai+3(x), hence, by Lemma 2.1(i),
Ai+2(x) ⊆ Ai+3(x) ⊆ Ai+4(wi+1). From Lemma 2.1(i),
this means Ai+4(wi+1) ⊆ Ai+5(ci), and therefore, ci.r
has a publish pointer to wi+1.r. Therefore, Algorithm
find-closest would find ci.r in this step, and in fact,
wi.r = ci.r. This completes the proof.

Lemma 7.2. For a router x.r with level `, Algorithm
locate finds all the appropriate level-(` + 1) routers
in A`+d+5(x) and all appropriate routers w.r with level
`− 1 such that x ∈ A`+d+4(w).

Proof. Let s be the closest node. By applying
Lemma 2.1, A`+d+5(x) ⊆ A`+d+6(s). By Lemma 5.3
each router y.r that is routed to in algorithm locate is
in A`+3(s) ⊆ A`+d+6(s). In addition, each such router
has level ` + 2 so its publish links cover all appropriate
level `+3 routers in A`+2+d+5(y). Applying Lemma 2.1
again we get A`+d+5(x) ⊆ A`+d+6(s) ⊆ A`+d+7(y).
Hence, by following incoming links backwards down to
level ` − 1, all appropriate level-(` − 1) routers within
A`+d+5(x) are guaranteed to be found.

For every w such that x ∈ A`+d+4(w), we have that
A`+d+4(w) ⊆ A`+d+5(x). By a similar reasoning to the
above, we find all such w’s.

Lemma 7.3. For a node arrival:
(i) The expected number of nodes that change their state
is logarithmic.
(ii) The expected number of messages sent is O(M2)

Proof. For each ` ∈ [1 . . .M], routing to each of the level
` + 2 routers takes ` + 2 messages.

Once such a router is reached, a message is sent
to each of its links. The expected number of links
is constant (see Theorem 5.1), and all choices are
independent. Thus recursively finding all appropriate
links for all M routers will cause sending an expected
O(M) number of messages.

The number of nodes that change their state for
each ` ∈ [1 . . .M] is the number of appropriate routers
in A`+d+5(x), the expected number of these routers is
constant.

8 Conclusions

LAND is the first peer-to-peer network and lookup
algorithm that has worst case 1+ε stretch. The network
is a variation on the access scheme of [17], yet whereas
PRR achieves an expected (high) constant stretch, our
construction yields any desired stretch in the worst case.

The two-tier variant of LAND embraces current
file-sharing architectures, in which data is stored only
on super-nodes. Two-tier LAND is the first constant-
degree locality-aware DHT.

In the future, we plan to explore in full the following
extensions of our scheme.

First, it is possible to make use of our approach
with different parameters, e.g., trade higher degree for
lower diameter, while keeping the goal of guaranteed
low stretch.

Second, our router-hosting abstraction leads to an
intuitive yet powerful form of fault tolerance. Specif-
ically, the number of initial routers hosted by a node
may be increased, and accordingly, links may be repli-
cated, in order to achieve fault tolerance with locality
guarantees.

Finally, the deployment of algorithms such as [17]
and LAND remains an active area of research, e.g., in
[22, 4]. We envision that many of the insights and
optimizations in these systems may be applied for a
real-life implementation of LAND.

References

[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal D.
Malkhi and E. Pavlov. “A Generic Scheme for Build-
ing Overlay Networks in Adversarial Scenarios”. In In-
ternational Parallel and Distributed Processing Sympo-
sium (IPDPS 2003), April 2003, Nice, France.

[2] I. Abraham, D. Malkhi and O. Dobzinski . “LAND:
Locality Aware Networks for Distributed Hash Ta-
bles”. Technical Report 2003-75, Leibnitz Center of the
School of Computer Science and Engineering, the He-
brew University of Jerusalm, July 2003.

[3] R. Chand and P. Felber. “A Scalable Protocol for
Content-Based Routing in Overlay Networks”. In IEEE
International Symposium on Network Computing and
Applications (NCA’03), Cambridge, MA, April 2003.

[4] P. Drushel and A. Rowstron. “Pastry: Scalable,
distributed object location and routing for large-
scale peer-to-peer systems”. Proceeding of the 18th
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), November 2001.

[5] P. Fraigniaud and P. Gauron. “The Content-
Addressable Network D2B”. Technical Report 1349,
LRI, Univ. Paris-Sud, France, January 2003.

[6] C. Gavoille and M. Gengler. Space-efficiency for
routing schemes of stretch factor three. Journal of
Parallel and Distributed Computing, 61(5):679–687,
2001.

[7] K. Hildrum, J. Kubiatowicz and S. Rao Another Way
to Find the Nearest Neighbor in Growth-Restricted
Metrics UC Berkeley, Computer Science Division
Tecnical Report UCB/CSD-03-1267, August, 2003.

[8] F. Kaashoek and D. R. Karger. “Koorde: A Sim-
ple Degree-optimal Hash Table”. In 2nd International
Workshop on Peer to Peer Systems (IPTPS ’03), Feb-
ruary 2003, Berkeley, CA.

[9] D. Karger, E. Lehman, F. T. Leighton, M. Levine, D.
Lewin, and R. Panigrahy. “Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving
hot spots on the World Wide Web”. Proceedings of the
29th Annual ACM Symposium on Theory of Comput-
ing (STOC), pp. 654–663, May 1997.

[10] D. R. Karger and M. Ruhl. “Finding Nearest Neighbors
in Growth-restricted Metrics”. ACM Symposium on
Theory of Computing (STOC ’02), Montreal, May
2002.

[11] X. Li and C. G. Plaxton. “On name resolution in
peer-to-peer networks.” In Proceedings of the 2nd ACM
Worskhop on Principles of Mobile Commerce (POMC),
pp. 82–89, October 2002.

[12] N. Lynch, D. Malkhi and D. Ratajczak. “Atomic data
access in distributed hash tables”. In Proceedings of the
International Peer-to-Peer Symposium, March 2002.

[13] D. Malkhi. “Dynamic Lookup Networks: A position
paper”. In Proceedings of the International Workshop
on Future Directions in Distributed Computing (Fu-
DiCo), LNCS Volume 2584, pp. 93–96. Bertinoro, Italy,
2002,

[14] D. Malkhi, M. Naor and D. Ratajczak. “Viceroy: A
scalable and dynamic emulation of the Butterfly”. In
Proceeding of the 21 st ACM Symposium on Principles
of Distributed Computing (PODC’02), July 2002.

[15] G.S Manku, M. Bawa, P. Raghavan. “Symphony:
Distributed Hashing In Small World”. In Proceedings of
the 4th USENIX Symposium on Internet Technologies
and Systems, 2003.

[16] M. Naor and U. Wieder. “Novel Architectures for P2P
Applications: the Continuous-Discrete Approach”. In
The Fifteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’03), 2003.

[17] C. Plaxton, R. Rajaraman, and A. Richa. “Accessing
nearby copies of replicated objects in a distributed
environment”. Proceedings of the Ninth Annual ACM
Symposium on Parallel Algorithms and Architectures
(SPAA 97), pp. 311–320, June 1997.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp and
S. Shenker. “A scalable content-addressable network”.
In Proceeding of the ACM SIGCOMM 2001 Technical
Conference. August 2001.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.
Balakrishnan. “Chord: A scalable peer-to-peer lookup
service for Internet applications”. In Proceedings of the
SIGCOMM 2001, August 2001.

[20] M. Thorup and U. Zwick. Approximate distance
oracles. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing (STOC ’01), pages
183–192. ACM Press, 2001.

[21] M. Thorup and U. Zwick. Compact routing schemes.
In Proceedings of the thirteenth annual ACM sympo-
sium on Parallel algorithms and architectures (SPAA
’01), pages 1–10. ACM Press, 2001.

[22] B.Y. Zhao, J. D. Kubiatowicz and A.D. Joseph.
“Tapestry: An infrastructure for fault-tolerant wide-
area location and routing”. U.C. Berkeley Technical
Report UCB/CDS-01-1141, April, 2001.

	Introduction
	Preliminaries
	LAND Architecture
	The Routing Network
	Publish and lookup

	Analysis
	Expected degree
	Stretch

	A Two-tier Construction
	Dynamic Node Arrivals and Departures
	Node arrival
	Node departure
	Analysis of dynamic algorithms

	Conclusions

