
1740
IEICE TRANS. COMMUN., VOL.E86–B, NO.6 JUNE 2003

INVITED PAPER Special Issue on Content Delivery Networks

Decentralized Meta-Data Strategies: Effective

Peer-to-Peer Search

Sam JOSEPH†, Nonmember and Takashige HOSHIAI††a), Regular Member

SUMMARY Gnutella’s service announcement in March 2000
stirred worldwide interest by referring to P2P model. Basically,
the P2P model needs not the broker “the centralized manage-
ment server” that until now has figured so importantly in pre-
vailing business models, and offers a new approach that enables
peers such as end terminals to discover out and locate other suit-
able peers on their own without going through an intermediary
server. It seems clear that the wealth of content made available
by peer-to-peer systems like Gnutella and Freenet have spurred
many authors into considering how meta-data might be used to
support more effective search in a distributed environment. This
paper has reviewed a number of these systems and attempted
to identify some common themes. At this time the major divi-
sion between the different approaches is the use of a hash-based
routing scheme.
key words: P2P, meta-data, discovery, decentralized

1. Introduction

Recent developments in peer-to-peer networks∗ have
centered on the concept of distributed hashtables
(DHT) [32] or content routing [26]. These approaches
assume possession of a hash or other identifier that pre-
cisely specifies the document the user wishes to retrieve.
Naturally there are some situations in which a user only
has more general information about their needs, e.g.
keywords or other meta-data. A number of different
strategies for handling this kind of search in peer-to-
peer networks have recently come to light. Several are
summarized below along with an attempt to identify
some common themes.

One could consider a document hash or other id to
be a form of meta-data, but in this document we focus
on more general meta-data strategies that involve either
keywords or statements like those used in the Resource
Description Format (RDF). Document hashes are dis-
tinguished from other meta-data in that they can be au-
tomatically generated from the document, and provide
some degree of uniqueness. However hashes are difficult
for humans to remember and the hash space does not
generally reflect relationships in the document space;
qualities that other types of meta-data try to provide.

Searching naturally divides into first determining

Manuscript received October 25, 2002.
Manuscript revised January 15, 2003.

†The author is with Strategic Software Division, The
University of Tokyo, Tokyo, 113-8656 Japan.

††The author is with NTT Network Service Systems Lab-
oratory, NTT Corporation, Musashino-shi, 180-8585 Japan.
a)E-mail: hoshiai.takashige@lab.ntt.co.jp

the unique IDs of documents that match a query, then
finding the actual documents with those IDs. Not all
the systems outlined below support this division of
labour. However, any system that maps meta-data to
document IDs could clearly be used in tandem with
one that maps those IDs to actual document locations.
Once we have established the document location it re-
mains to transfer it to the desired location, allowing
us to divide the document retrieval process into three
steps:

1. Meta-Data Search
2. Document Location Search
3. Document Download

Naturally the first step can be omitted, or merged
with the 2nd, but superficially it would appear that
separating the first two stages is the more efficient and
flexible way to proceed. This division allows us the in-
teresting possibility of creating “Mix & Match” docu-
ment retrieval systems, particularly if inter-operability
standards such as Tristero [36] catch on.

The rest of this paper will be structured as follows:
In the next two subsections we review work in other
fields that is related to our theme, before describing
the different categories of meta-data. The remainder
of the paper is broken up into four main sections. Sec-
tion 2 reviews the strategies used by systems that oper-
ate with decentralized meta-data, while Sect. 3 reviews
the systems themselves. Section 4 discusses some of the
important issues facing systems that try to deal with
decentralized meta-data, and Sect. 5 offers our conclu-
sions.

1.1 Related Work

The field of P2P has much in common with multi-agent
systems since they often require distributed search so-
lutions (see Joseph & Kawamura [19]). However it is
in the field of distributed content systems that we find
approaches more directly related to the issues of decen-
tralized meta-data. For example the Whois++ system

∗Peer to Peer networks are large networks of similarly
enabled nodes (server and client functionality) characterized
by low reliability and high rates of churn; where churn refers
nodes entering and leaving the network, connection failure
etc.

JOSEPH and HOSHIAI: DECENTRALIZED META-DATA STRATEGIES
1741

of Deutsch et al. [13] provides a mechanism for forward-
ing queries to distributed servers on the basis of the con-
tent of those servers. The Harvest system of Bowman et
al. [4] provided a similar service along with caching and
replication, as did the Sheldon et al.’s Content Rout-
ing approach [31], which included query refinement and
merging of result sets. Q-Pilot [33] is a more recent ex-
ample that routes queries to different search engines
based on their specialization.

These systems operate within a web-based envi-
ronment where servers and clients are distinct and
servers can be relied upon to have a static address and
some degree of stability. The main difference with p2p
systems is the melding of the client and server such
that every user is much more likely to contribute con-
tent, which creates a greater demand for decentralized
search. However the greater churn of the p2p network
simultaneously makes meeting this demand all the more
difficult.

Two exemplars of 1st generation Peer-to-Peer
(P2P) systems are Gnutella (see Kan [17] for an
overview) and Clarke et al.’s Freenet [8]. Freenet for-
wards queries according to beliefs about the contents
of other nodes; considering file similarity in terms of
closeness in a “key-space” generated by a cryptographic
hash. Users must know a file’s key in order to retrieve
it from the network. Files are inserted into particu-
lar locations (as opposed to just shared in the Gnutella
network) and combined with aggressive caching activ-
ity the arrangement of files ends up reflecting that of
the key-space. Freenet search operates in serial, in con-
trast to the parallel broadcast search of Gnutella. A
number of other systems have emerged that attempt to
deal with the issues of distributed file storage. Chord
[32] and CAN [26] provide distributed hashtable func-
tionality, which allow the locations of files to be deter-
mined automatically from a single id, as well as offering
guarantees about the number of messages required to
retrieve a file, and the amount of state each node must
store to support effective search. Tapestry [38] and Pas-
try [15] are variants of the Plaxton Mesh [25], using pre-
fix/suffix address routing and publishing mechanisms
based on this routing to distribute files. SWAN [3] im-
proves on CAN’s multi-dimensional routing by adding
long-range connections that create a small world net-
work [35].

Content Distribution/Delivery Networks (CDNs)
redirect file requests to servers that can more rapidly
respond to a particular client, and have a superficial
similarity to the above P2P systems in that a file is
requested via a unique identifier, and then returned
from somewhere in the network. However most CDNs
rely on centralized management schemes and in con-
trast to the above systems, use replication in order to
improve response latency (see Krishnamurthy et al.,
[21] for a review). Very recently Chapeweske’s Tor-
nado project [7] has been attempting to merge P2P dis-

tributed functionality and CDN-like compatibility with
existing HTTP servers and browsers.

1.2 Types of Meta-Data

Meta-data can be defined as additional data associated
with some file or document. While the meta-data might
appear within the document itself (such as a list of key-
words), the idea is that the meta-data can be considered
separately from the parent document. Taking an inclu-
sive view of meta-data it seems that we can consider a
number of possible types:

(1) Document Hash
An id generated from the document contents via some
hashing algorithm that ideally will be unique to each
document
(2) Document Id
An id assigned arbitrarily to a document according to
some scheme—different from a hash in that it must be
generated by some authority
(3) Statistical representation
A representation generated by performing a statistical
operation on a document, that may involve statistics
relating to a larger document collection, e.g. TFIDF
(see Sect. 2.1.1)
(4) Human assigned
Keywords or more complex statements such as RDF
(see Sect. 2.1.4)

The important differences between the types of
meta-data are whether the representation is unique
among documents, whether it can be automatically
generated, and the logical complexity of the associa-
tions. It is conceivable that some future document
summarization process might generate RDF statements
automatically from a document body, but currently it
would appear that these assignments require human
intervention. Clearly the uniqueness property, or the
ability to automatically generate meta-data has strong
implications for how the meta-data can be used in a
decentralized (or for that matter centralized) environ-
ment.

2. Strategies

In this section we review a number of different dis-
tributed meta-data strategies. Looking through the
various systems we can see certain shared techniques
that occur in various combinations. Table 1 gives an
overview of which strategies are employed by which
systems. The systems themselves will be considered
in detail in Sect. 3.

The systems use overlapping sets of strategies;
for example, FASD and PlanetP use TFIDF to rank
documents, while both FASD and Anthill use hash
based routing. In addition, Bloom filters are com-
mon to PlanetP, LimeWire Query Routing, YouServ

1742
IEICE TRANS. COMMUN., VOL.E86–B, NO.6 JUNE 2003

Table 1 Strategies overviews.

and Routing Indices, and the semantic routing concept
is widely used. Alpine, JXTASearch and NeuroGrid
share the strategy of learning node reputations, while
JXTASearch, SIONet and Alpine all employ some form
of query spaces.

The commonly used strategies and techniques
are listed below, divided into meta-data markup ap-
proaches and more general techniques for filtering, rout-
ing and learning.

2.1 Approaches to Markup

(1) TFIDF
Term Frequency Inverse Document Frequency (TFIDF)
is an Information Retrieval approach of Salton & Yang’s
[29] that rates the degree to which words are represen-
tative of a document. Thus, Term Frequency (TF), the
number of times a word appears in the document, is ad-
justed by dividing by the Document Frequency (DF),
the number of documents in which this word appears
(assuming some collection of documents). Thus a high
occurrence word like “the” is penalized for occurring
in many documents, whereas a word like “simulation”
that appears less frequently will receive a higher TFIDF
rating (for the documents in which they occur). There
are a number of variations on the basic TFIDF ap-
proach, and it can be calculated automatically from
a document’s text. TFIDF is a commonly used ex-
ample of the Vector Space Model (VSM), whereby a
document is represented as a vector to a point in a
phase space. Alternative representations naturally in-
clude simple term frequency and LSI transformations
(see below).
(2) Bayesian Analysis
A statistical procedure that tries to estimate a prob-
ability distribution based on an observed distribution.
Probability estimates taken from the observed data are
multiplied by a prior distribution (beliefs about what
the probability distribution should be), and then nor-
malized to create a posterior distribution. Thus both
prior beliefs and observed data can be taken into ac-
count. Naturally Bayesian Analysis can be employed
in a wide variety of fields, however it is mentioned here
along with other markup schemes since it was used as

the basis for one of the major alternatives to TFIDF
in the information retrieval field. The Bayesian rel-
evance weighting technique of Robertson and Sparck-
Jones [27] involves attaching different weights to differ-
ent search terms in order to reflect the way in which
they are distributed over the document collection, and
perhaps more importantly, the way that the search
terms are distributed over relevant and irrelevant doc-
uments. Specifically, given some document collection,
search terms and associated relevance judgements, each
search term can be assigned a weight, which in turn al-
lows the documents to be ranked in order of relevance
to the query. The wide applicability of Bayesian Anal-
ysis is evidenced by its use in determining which nodes
to query in the Associative P2P networks model.
(3) XML
eXtendible Markup Language—XML is a ‘meta-
language’ (a language for describing other languages)
that lets you design your own customized markup lan-
guages for limitless different types of documents. XML
can do this because it’s written in SGML, the interna-
tional standard meta-language for text markup. XML
is a simplified version of SGML, but it does allow the
user to specify a DTD or Document Type Definition.
The DTD describes the rules of a language’s syntax.
Given the DTD one can parse a document to check
that it conforms to the language syntax.

A markup language (be it HTML or XML) allows
you to include meta-statements about the text of the
document and XML goes further allowing you to de-
fine a DTD that will specify the precise syntax of your
meta-statements. So rather than just including a list
of keywords in your document like so “keyword: ap-
ples” you can have “<keyword>apples</keyword>,”
which would specified by a DTD statement like
“<!ELEMENT keyword (#PCDATA)>.” An XML
parser could then take the DTD and check that the
document specified keywords in the correct format.
(4) RDF
Resource Description Framework—a framework for de-
scribing and interchanging metadata. RDF descrip-
tions are typically exchanged in XML syntax; with the
W3C RDF specification (http://www.w3.org/RDF/)
defining a recommended encoding of RDF statements in
XML. RDF statements consist of a resource, a property
and a value, or Subject, Predicate, Object. A resource
might be a URL or a document hash, and are named
with URIs; e.g. traditional http URLs, or content
hashes such as urn:sha1:blah-blah, so an example state-
ment would be something like [urn:sha1:blahblahblah
author “Dan”]. While the full RDF specification has
many features regarding encoding of this data, essen-
tially it is allowing us to go one step beyond pure
resource-keyword association. If we think of RDF
values as keywords we can see that use of RDF al-
lows us to specify the type or relation between key-
word and document, e.g. instead of just associat-

JOSEPH and HOSHIAI: DECENTRALIZED META-DATA STRATEGIES
1743

ing the term “Dan” with a document, we can say
whether he is the author, or if the document is about
him. Another important point is that all the ele-
ments in an RDF statement can be URIs, thus allow-
ing us to distinguish between different definitions of the
term Author, e.g. http://dc.org/predicate/author and
http://ng.org/predicate/author. Dornfest and Brickley
provide a good overview of RDF and other p2p meta-
data issues [14].
(5) LSI
Latent Semantic Indexing (LSI) after Deerwester et
al. [12] tries to overcome some of the problems faced by
Vector Space Models (VSM) such as synonymy, poly-
semy, and errors in documents. LSI uses singular value
decomposition (SVD) to transform and truncate a ma-
trix of term vectors computed from a VSM like TFIDF
to discover the semantics of terms and documents. For
example: bird, eagle and wing are distinct terms but
they might be considered similar under an appropriate
LSI transformation. The axes of the new semantic sub-
space are computed using SVD, a technique for finding
singular vectors and singular values of a matrix. Sin-
gular vectors are directions in the phase space, while
singular values indicate the extent to which the varia-
tion in the data is explained by the corresponding sin-
gular vector. Thus if the terms bird, eagle and wing are
frequently found in the same documents then they can
be represented by a single semantic vector. Singular
vectors with high singular values thus become a set of
semantic vectors that can be normalized and used as
the basis for a new VSM.

2.2 Techniques

(1) Bloom Filter
A Bloom filter is an approach to efficiently repre-
sent non-Boolean data in a bit-array. Bloom [6] in-
troduced its use to improve performance for hyphen-
ation/capitalization checking in word processing. The
hash of each word is taken and the first N bits are taken
to indicate the words position in a Boolean array. This
bit can then be set to 1 or 0 to indicate something
about that word; in Bloom’s original application this
indicated if the word could be hyphenated without re-
sorting to complex rules. In peer-to-peer networks it
can indicate the presence of a document that contains
that word in a particular peer. Thus one can talk of
a Bloom filter as summarizing a peer’s contents. False
positives can be created due to hash collisions, but not
false negatives.
(2) Semantic Routing
Under semantic routing, a query is routed according to
the meta-data contained in that query. Thus the use
of semantic routing implies that each node will need to
maintain some routing table that associates meta-data
with other nodes. This data can be thought of as the
“reputation” of other nodes from the perspective of the

node storing the routing table.
(3) Reputation Learning
Reputation Learning is the process whereby belief in
the ability of a peer to satisfy a query is updated in
line with their previous responses to similar queries.
Reputation learning differs from trust metrics in that
trust metrics tend to focus on making an overall assess-
ment of trust in a peer based on knowledge about the
entire network. Reputation learning operates locally
such that each peer maintains reputations information
about only those other peers it has interacted with di-
rectly. The emphasis is on tracking a variety of types of
trust in a small number of peers as opposed to tracking
a single type of trust in all peers in the network.
(4) Query Spaces (Event Spaces, Group Forma-
tion)
Query spaces are subsets of nodes in a system that will
be queried on a particular topic, or using a particular
query format. JXTASearch uses queryspaces to specify
the type of XML metadata that can be queried against
for a given set of nodes. In SIONet the same concept is
called EventSpaces, and in Alpine there are node groups
associated with a particular topic. The idea behind a
query or event space is to place some kind of limit on
the set of nodes that will potentially receive a query. In
all the above systems the nodes in a queryspace are not
automatically queried. They provide a set from which
the most suitable candidates will be selected.
(5) Trust Metrics
Trust metrics (see Levien [22] for a review) can be di-
vided into scalar trust metrics and group trust metrics.
In the simplest trust metric there are three inputs: a
directed graph, a designated “seed” node indicating the
root of trust, and a “target” node. In order to deter-
mine if the target node is trustworthy, we evaluate if
the target is reachable from the seed. Each edge from a
node s to a node t in the graph indicates that s believes
that t is trustworthy. If no route can be found then
there is no reason to believe that t is trustworthy, given
the data available. More complex scalar trust metrics
may associate weights with the graph edges, allowing a
finer grained quantification, but analysis suggests them
to be equally susceptible to attack. Group trust met-
rics like those used in Google [24] and Advogato [22]
(both centralized systems) overcome some of the weak-
nesses of scalar trust metrics by performing random
walks through the network starting from a number of
trusted sources. Effectively the final trust in each node
is equal to the probability that a random walk will end
at that node. Thus it is important to make sure that
the initial set of nodes are trustworthy, and that the
random walk is not too short (some nodes will never be
reached in a short walk), and not too long (the trust-
worthy influence of the initial nodes will end up having
no effect, i.e. we might as well just select nodes at ran-
dom). Effectively what Advogato and Google are doing
is choosing some set of trustworthy nodes and saying

1744
IEICE TRANS. COMMUN., VOL.E86–B, NO.6 JUNE 2003

that trust in other nodes in the network is equal to the
likelihood that a random walk will take us there. Thus
highly connected nodes, and nodes closely connected to
the trustworthy nodes will have higher rankings. Anal-
ysis suggests that these group trust metrics are less
easy to attack, but there are many outstanding issues
about how such a system could be deployed without a
centralized hub (see Reptile discussion).
(6) Query Forwarding
In some systems each query is sent to only a single
intended recipient. In others query forwarding is em-
ployed whereby a node unable to satisfy a query will
pass it on to another node or nodes. Note that it is im-
portant to distinguish this from normal routing, where
messages are forwarded from node to node until they
reach a specific destination or destinations. A system
that does not forward queries at the application level
may well be relying on some type of message forwarding
(routing) in the network layer.
(7) Distributed Hash Table (DHT)
A distributed hash table or DHT specifies a relation
between entities (files, documents etc.) and a position
in a distributed network. Chord [32] is an example of
a distributed hashtable. Each entity is hashed and the
position of the entity in the network is determined us-
ing the hash. Chord nodes take responsibility for a sec-
tion of the hash space, and maintain a finger table that
points to the next node in the hash space and then oth-
ers at logarithmically increasing distances. Thus when
a Chord node receives a query for an entity, the hash
can be calculated and then the query is forwarded to the
closest matching node in the finger table. Because of
the logarithmic spacing of the finger table Chord offers
guarantees that the desired entity can be located within
Log(N) hops, where N is the total number of nodes in
the network. Each node has detailed information about
the nodes responsible for immediately following points
in the hash space, and this information thins out as we
move further away in the hash space. The logarithmic
spacing ensures that each hop will at least halve the
hash space distance to the desired entity.
(8) Caching
Decentralized meta-data involves the storage of meta-
data information throughout a network. While some
systems leave the meta-data created by a particular
user in a particular location, others attempt to cache
and replicate that data throughout the system. FASD
employs the aggressive caching techniques of Freenet
such that whenever meta-data information is passed
through a node, it is cached in that location, and can be
used to answer subsequent queries. Anthill InsertAnts
carry individual document-keyword relations around
the network storing them in multiple nests. The differ-
ence between this caching of meta-data and the stor-
age of meta-data related routing information (such as
semantic routing) is that it enables nodes that may ini-
tially have had no relation to the meta-data creator to

respond directly to queries related to that meta-data
without having to refer to the original source of the
meta-data relations.
(9) CAN
The Content Addressable Network (CAN) [26] orga-
nizes the logical space of a distributed network as a
d-dimensional Cartesian space (a d-torus) and parti-
tions it into zones. Some number of nodes will take
responsibility of each zone. Each file is represented by
a point within the d-torus, and will be stored in the
node or nodes that are responsible for the zone that
contains that point. Routing involves transversing from
one zone to another within the Cartesian space. Each
node maintains connections to the nodes responsible
for neighbouring zones allowing any other zone to be
reached in the a number of hops proportional to the
size and dimensionality of the space. As nodes leave
and join the network zones merge and split appropri-
ately to maintain the zone structure.

2.3 Strategy-System Summary

To summarize, Table 2 details the use of various com-
mon techniques for each of the systems. In the next
section we consider the specifics of each system in turn.

3. System Summaries

In this section we consider each of the systems in term,
with a brief summary of each. The summaries are not
presented in any particular order, and for each system
we emphasis the key distinguishing features and use of
the various meta-data strategies and techniques.

3.1 Anthill

AntHill, created by Babaoglu et al. [1], is a complex
adaptive systems analogy with lots of ant-related ter-
minology. Part of the main thrust of the project is to
eventually use genetic algorithms to evolve the ants,
but work so far has focused on developing a live sys-
tem and simulator that share code for efficiency. The
project uses the JXTA framework and is designed as
a general framework for P2P multi-agent based appli-
cations. Some preliminary simulation results are given
for a document sharing application, employing a dis-
tributed keyword index. The crucial difference in their
scheme (apart from calling messages ants) is that each
nest (node) stores a routing table associating keyword
hashes with sets of other nests. Different nests be-
come associated with different parts of the hashed key-
word space thus avoiding the problem that keyword
space itself is highly clustered (presumably around var-
ious spellings of “Britney Spears”). Three types of ant
(message) are used to support the document search.
An insertAnt carries information about the document
and its URL and is associated with a single keyword

JOSEPH and HOSHIAI: DECENTRALIZED META-DATA STRATEGIES
1745

Table 2 System-strategy summary.

hash. The insertAnt wanders around adding the docu-
ment hash and URL to each nest, updating the hashed
keyword—nest table and then moving to other nodes
that store data about similar keywords. One insertAnt
is generated for each keyword that is to be associated
with the new document. A searchAnt is generated for
each keyword in a query, and moves around generating
replyAnts at each nest that has a related document.
Both the insertAnt and searchAnt are forwarded to
other nests using routing tables that associate keyword
hashes with sets of other nests. The replyAnt carries
the relevant URL back to the original nest, and the
searchAnt continues searching until its TTL expires.
Thus a set of URLs related to the query keywords is
sent back to the original query location. Initial simu-
lations show the path length dropping over time, even
with hard limits set on the sizes of routing tables.

3.2 FASD

Kronfol’s FASD [18] (fault-tolerant, adaptive, scalable,
and distributed) is a keyword search layer for Freenet.
The idea is that when documents are inserted into
Freenet the TFIDF values for the words in the doc-
ument are calculated and used to create a vector space
representation of the document. This is a meta-data
key that indicates how representative each word in
the document is and a pointer to the document it-
self. Thus the meta-data key is inserted into Freenet

at the same time as the document, and the meta-data
key ends up in a different location from the document.
Freenet nodes store routing tables that associate keys
with other nodes. In normal Freenet operation these
keys are document hashes, but FASD uses meta-data
keys (i.e. TFIDF vectors). A closeness operator is re-
quired in order to know where to route an insert request
or a search query. In Freenet, document searches use
simple distance in the hash space. FASD uses cosine
correlation to assess doc-doc similarity and doc-query
similarity. Thus a serial search is performed in which
each node tries to pass the query to a node that holds
meta-data keys that are similar to the query. Each node
tries to pass back the top n metadata keys that are
found in the serial search starting from itself. The cur-
rent set of meta-data scores (degrees of closeness) are
passed along with the search query, allowing each node
to ensure it only passes back higher quality matches.
Ultimately the originally querying node will receive a
set of meta-data keys, which can be used to retrieve
the documents themselves. Kronfol performs simula-
tions showing that use of the closeness operator is much
more effective than random forwarding, and that FASD
exhibits similar scaling characteristics to Freenet.

3.3 Edutella

Nejdl et al.’s Edutella [23] project is developing a fully
featured RDF query language that will allow a variety

1746
IEICE TRANS. COMMUN., VOL.E86–B, NO.6 JUNE 2003

of RDF queries to be supported on top of the JXTA
framework. The main focus appears to be on devel-
oping a query model with multiple layers, the most
detailed of which will allow complex recursive queries.
The routing of queries is supported through a peer reg-
istration framework, whereby each peer registers with
a local hub its data schema and the level of query com-
plexity it will support. An initial Edutella application
is being created with educational materials in mind,
i.e. documents that require structured meta-data. As
such the project falls more into the distributed database
systems category, rather than the high-churn, low reli-
ability environment often associated with P2P systems
like Gnutella and Freenet.

3.4 Routing Indices

Crespo & Garcia-Molina [10] have each node use a lo-
cal routing index to choose which neighbouring nodes to
forward queries to. These Routing Indices (RIs) spec-
ify relations between query “topics” and neighbouring
nodes, meaning that in their basic “compound” form,
the indices are proportional in size to the number of
neighbours and topics rather than the number of doc-
uments in the system. Two variations are presented,
namely “hop-count” and “exponential” indices, that in-
corporate information about how many hops along a
particular route content is likely to be discovered. Sim-
ulations based on serial routing indicate that RIs can
improve performance over flooding by 1 or 2 orders of
magnitude, and 50–100% over random routing.

RIs are created and maintained by each node ag-
gregating and sending their indices to their neighbors.
Thus any RI update leads to a cascade of updates as
each node passes on its new RI. Similarly when a node
leaves the network, each neighbor node must remove
entries, recompute RIs and forward the change and so
on. Crespo & Garcia-Molina suggest there is a trade off
between the advantages gained with RIs and the over-
head generated in terms of updates. Numbers taken
from Gnutella suggest that it could benefit from this
approach.

3.5 LimeWire Query Routing

Rohr’s Query Routing [28] involves each node creates a
routing table by hashing the keywords from the files it
stores, and then swapping these tables with neighbours.
Inspired by an idea of Prinkey’s that used an efficient
bitmap encoding to reduce the size of the routing ta-
bles being exchanged between nodes. Query Routing is
an extension that overcomes Prinkey’s assumption of a
tree network.

Prinkey’s bitmap scheme involved hashing each
keyword and storing the results in a bitmap. For ex-
ample, if “good” hashes to 2 and “book” to 5, the rout-
ing table for {“good,” “book”} can be compressed to

the bitmap 001001. . . . The tables formed through this
process are an example of Bloom filters. Rohr’s major
modification is to the representation of the keywords.
He replaces the binary code with an integer code, each
keyword being indicated not just as present or absent,
but by an integer that tells us how many hops away
a match to this keyword can be found. As routing
tables are propagated from node to node the integers
can be incremented allowing unreachable matches to be
pruned off the routing table by setting them to some ar-
bitrarily high value. High occurrences of this “infinity”
value can then aid compression, e.g. a scarce encoding
will be created.

3.6 Associative Peer to Peer Networks

Associative Peer-to-Peer Networks involve the use of
possession rules stored in each node, that describe the
precise route to other nodes that contain particular con-
tent. This allows the routing of query messages to more
closely match the underlying network topology. Co-
hen et al. [9] perform simulations to compare a number
of strategies. Random search, search biased to nodes
with more rules (i.e. more content in general), search
biased towards nodes with rules relating to content be-
ing search for (RAPIER) and a Greedy Approxima-
tion Strategy (GAS) that biases search towards query
terms with higher information (i.e. those that are less
frequent across the network). The GAS strategy uses a
Bayesian approach that also allows information from
failed searches to be used to update the search pri-
orities (i.e. the posterior probability can be adjusted
as certain nodes are eliminated from enquiries). Se-
rial Simulations indicated that the best strategy de-
pended on how rare an item was being searched for,
but GAS and RAPIER consistently outperformed the
simpler strategies. It remains unclear how much effort
must be expended to maintain up-to-date associative
rules throughout the network.

3.7 Alpine

Alpine nodes allow the user to define any number of
groups, e.g. a “music” group, a “photography” group,
and add other nodes to those groups. Thus a group of
friends could simply create a group within which they
wanted to share certain files (by adding each other to
their local groups). Note that group information is local
to each node, so that each node may use a different
term to refer to the group, and the group may contain
slightly different members for each local user.

Each node maintains an index of its local content.
Queries for content are passed between members of a
group and each node assigns a quality rating to the
other members of the group depending on how well
they can respond to the queries. This allows the dis-
tribution of queries within this group to be optimized,

JOSEPH and HOSHIAI: DECENTRALIZED META-DATA STRATEGIES
1747

i.e. queries can be sent to those peers most likely to be
able to answer them. New members may be introduced
into the group via transitive introduction, or an existing
member may add them explicitly. A user may form a
new group with an existing set of nodes by cloning the
“default” group that contains all the nodes currently
known about by the local node.

The process of ranking the other nodes in a group
may use implicit information such as uptime, and also
explicit information such as the user indicating that
they got spammed. Each node’s ranking within the
group is aggregated over all queries. The relationship
between a group and the kinds of queries generated
is not fixed. One of the main features of Alpine is
that there is no query forwarding—each node main-
tains connections to all members of a particular group
using lightweight UDP connections.

3.8 PlanetP

Cuenca-Acuna et al. [11] adapt the TFIDF strategy to
work with summaries of document indexes, rather than
individual document data. The index of content of each
peer is summarized using a Bloom filter. The sum-
maries for each peer are diffused through the whole
network using gossiping algorithms. The collection of
Bloom filters allows each peer to approximate the in-
verted index of the entire community. In terms of
choosing which peers to query first, nodes are ranked
according to the presence of the query term in their
Bloom filters, adjusted to the extent that the term is ca-
pable of resolving between different peers, i.e. the IDF
term in TFIDF gives us an indication of how a term
is used across a document collection, Cuenca-Acuna et
al. use a similar approach to determine how a term is
distributed across a set of peers. Thus a query for “clas-
sical mp3” would involve a calculation over the Bloom
filters to determine that while most nodes had “mp3”
related documents, “classical” related documents oc-
curred in only a few nodes—thus these nodes would
receive a higher ranking and be preferentially queried.
Nodes are queried in series and the query process is
halted after some significant number of nodes has failed
to contribute documents to the top k documents. The
precise details of the stopping condition are determined
by a heuristic that is a function of the number of nodes
in the network, and the value k. Simulations indicate
that for networks of several thousand nodes the re-
call and precision of a centralized search engine can be
matched, although naturally the time and bandwidth
taken to diffuse the Bloom filters to all nodes scales as
a linear function of the nodes in the network.

3.9 SIONet

Hoshiai’s SIONet [16] is a “brokerless” meta network
that, in contrast to conventional networks that require

a destination address for packets to reach their proper
destinations, delivers packets based on semantic infor-
mation. This enables entities to perform search and
discovery within a distributed environment. There are
a number of different types of SIONet configuration
elements—semantic switches, routers, and gateways as
well as event-places and sessions that work together as
needed to build the self-network organization from the
bottom up. SIONet’s central concepts are filter based
subscription and event delivery. Individual entities de-
scribe the kinds of event they would like to receive using
XML filters. Network entities then forward matching
events to the appropriate entities.

The event place concept is important and allows
the network to restrict certain classes of queries to cer-
tain parts of the network, to realize ‘self-organization.’

3.10 JXTA Search and JXTA

JXTA is short for Juxtapose—a peer-to-peer interoper-
ability framework created by Sun Microsystems. It in-
corporates a number of protocols, but the most relevant
to our discussion of decentralized meta-data is the Peer
Discovery Protocol (PDP). PDP allows a peer to adver-
tise its own resources, and discover the resources from
other peers. Every peer resource is described and pub-
lished using an advertisement, which is an XML docu-
ment that describes a network resource. JXTASearch
operates over the lower level JXTA protocols.

JXTASearch is based on an earlier project called
“InfraSearch.” InfraSearch was based on the idea of
distributing queries to network peers best capable of
answering them. JXTASearch is a part of Sun’s JXTA
project and is comprised of Hubs, Consumers and
Providers. The Hub concept is similar to that used
in the Gnutella Reflector and FastTrack systems. JX-
TASearch specifies an XML Query Routing Protocol
(QRP) that allows information providers to register
available services at search hubs. Search queries from
the consumers are received by the hubs and then for-
warded to the most appropriate providers based on how
well the query matches the provider registration. Infor-
mation providers register for the queries they are inter-
ested in receiving by specifying a “queryspace” and a
set of XML predicates that describe possible queries.
These predicates are sets of clauses in conjunctive nor-
mal form (sets of OR possibilities ANDed together),
where individual clauses can refer to any single ele-
ment of the XML that is permitted in the queryspace.
Thus a set of predicates and a “queryspace” definition
comprise the information provider registration, which is
then added to an inverted index for that particular hub
(one index for each queryspace), each clause becoming
a pattern/posting pair (or XML path—provider asso-
ciation).

When an XML query arrives at the search hub,
the index is queried against each element of the in-

1748
IEICE TRANS. COMMUN., VOL.E86–B, NO.6 JUNE 2003

coming query to generate a list of possible informa-
tion providers. Forwarding depends on how many of
an information provider’s registered patterns match the
query. The possibility of feedback-based scoring of the
individual pattern/posting elements is also mentioned,
however the effects of different feedback schemes, or in-
deed different matching threshold possibilities are not
explored. QuerySpaces allow the system to support
multiple different query domains, each with their own
specific XML syntax. Individual providers can register
to receive specific or general queries, for example, all
queries for jpeg files, or all queries for books with the
word “java” in the title. The hub collects all queries re-
turned by the providers, merges them and passes them
back to the original querant.

3.11 NeuroGrid

Joseph’s NeuroGrid [20] maintains routing tables at
each node that associate nodes with query keywords.
The strength of these associations is varied over time
in response to user feedback. For example a user may
generate a query for “used car auctions,” which will be
forwarded by the local node to other nodes that have
previously been associated with these keywords. As
the user receives potential matches from other nodes
the local node monitors whether the user ignores them,
or performs some feedback activity, either implicit—
bookmarking the match, or explicit—clicking a “spam”
button. Depending on this feedback the local node ad-
justs the relation between the query keywords and the
remote node that provided the recommendation. Thus
nodes that consistently provide results unsatisfactory
to users will not be queried in future. Each node for-
wards incoming queries to a subset of the most relevant
nodes, and simulations show that this allows the path
length to drop to close to 1 in a 1000 node network,
where a random forwarding case fails to show much im-
provement over starting conditions. The current sim-
ulations assume an “ideal” user and document model,
where meta-data is accurate and users get what they
desire. A web-based version of the system has been im-
plemented that takes real user feedback into account,
and supports full RDF metadata markup.

3.12 Reptile

Reptile, designed by Burton [5], is a distributed news-
paper that uses reputation to build a distributed publi-
cation, subscription and search infrastructure. Reptile
uses reputation to determine which peers to route ar-
ticle queries to (e.g. give me all articles generated in
the last 10 minutes). Reputation determines channel,
articles and user rankings. For example, the average
Reptile peer receives about 100–300 articles a day syn-
dicated from other peers, weblogs, and web sites. Us-
ing reputation Reptile narrows this down to the highest

quality articles in a manageable format; top 10 articles
for the day, top 100 articles for the month, top 10 arti-
cles from an individual peer, etc. Reputations networks
are composed of many individual “certifications” which
are signed chunks of meta-data indicating the degree of
trust placed in an entity along with a confidence rating.
Centralized systems can transitively calculate the trust-
worthiness of any one individual entity by taking all re-
putes into account. In the decentralized environment,
one must calculate trust based on locally stored reputes,
or query the network to gain enough reputes to make a
trust judgement. It is not yet clear how strategies for
acquiring sufficient certifications in the distributed en-
vironment compare performance-wise with centralized
versions like Advogato [22].

3.13 Semplesh

Semplesh is a system that stores RDF Triples in a num-
ber of distributed hash-tables (DHT) e.g. chord. Dis-
tributed hash tables conventionally work with docu-
ment hashes, however Semplesh takes the hash of each
possible pair of elements of an RDF triple (Subject,
Predicate, Object) and maps it to the remaining el-
ement. Thus there are three DHTs each supporting
on of the following mappings subj:pred->obj, pred:obj-
>subj, subj:obj->pred. Thus different queries are di-
rected to the appropriate DHT. In order to perform
queries where only one element of the RDF triple is
specified, the same DHTs are used but additional wild
card insertions are made when triples are inserted. The
insert process involves breaking the triple up into three
relations, one for each DHT, and then also adding
each of these relations three times, so for a triple like
“John” “loves” “Mary” being added to the subj:pred-
>obj DHT would involve three inserts: John:loves-
>Mary, John:*->Mary, and *:loves->Mary. Thus one
can query the DHT for Subject=“John” and receive all
triples with John as the subject. Naturally the opera-
tion of the DHT is such that high popularity triples will
lead to a heavy load at certain points in the network. It
would also appear difficult to support substring match-
ing.

3.14 HyperCuP

HyperCuP (of Schlosser et al. [30]) uses broadcast
search coupled with a multi-dimensional hypercube
topology that allows messages to be sent once and once
only to each node in the network. Each node in the
network has some set of neighbours in each dimension,
and messages include information about the dimension
along which they have been forwarded. Subsequent
transmissions are then restricted to be along higher di-
mensions, and this ensures that any message will be
sent only once to each node. Thus the network diame-
ter will be the logb N , where N is the number of nodes

JOSEPH and HOSHIAI: DECENTRALIZED META-DATA STRATEGIES
1749

in the network, and b is the base of the hypercube. Hy-
perCuP includes a decentralized topology maintenance
algorithm that can handle nodes joining and leaving
the network and supports routing within partially com-
pleted hypercubes. The number of messages generated
when nodes leave and join the network is O(logb N). An
ontology based routing system is proposed whereby a
separate hypercube is created and maintained in order
to support searches related to a particular concept, and
each possible combination of concepts. Thus each node
might participate in multiple hypercubes, each of which
would provide efficient search for documents/resources
associated with that concept, or combination of con-
cepts. Naturally this increases the complexity of joining
and leaving the network, and forces nodes to maintain
(b−1) times the dimensionality of the hypercube addi-
tional connections for each concept or combination of
concepts. No simulations of the system appear to have
been performed yet, and there is no consideration of
malicious nodes.

3.15 YouServ (Formally Usearch)

YouServ, created by Bawa et al. [2], is a distributed
search application for personal web servers operat-
ing within a shared environment such as a corpo-
rate intranet. Almost 1900 people within IBM use
the YouServ personal web serving system every week.
YouServ enhances web servers with a search component
consisting of a content indexer and a query evaluator,
that supports keyword-based search.

The indexer regularly monitors shared files, imme-
diately updating its local index when changes are de-
tected. A Bloom filter content summary is created by
each peer and pushed to a centralized registrar. When
a browser issues a search query at a peer, the peer first
queries the summaries at the registrar to obtain a set of
peers R in the network that are hosting relevant docu-
ments. It then directly contacts the peers in R to obtain
relevant URLs. These results are cached for a limited
time at the peer that issued the query, which is also
responsible for notifying the registrar of the caching ac-
tivity. This allows other peers that happen to be han-
dling an identical query to locate and return the cached
results instead of executing the query from scratch.

The fact that YouServ has been deployed with a
significant number of users allows Bawa et al. to per-
form interesting and useful analyses of their network to
assess responsiveness and user satisfaction. YouServ in-
cludes other features such as the ability to search within
a community context, or over data that has received
explicit recommendation by different sub-sets of users.
The impact of malicious nodes is minimized given one
assumes the co-operative intranet environment in which
YouServ is deployed. Bawa et al. also describe how the
registrar acts as the limiting factor on the number of
nodes that can be supported, indicating that a registrar

with a T1-line bandwidth would easily support at least
10000 nodes.

3.16 pSearch

The goal of pSearch [34] is to build a scalable P2P In-
formation Retrieval (IR) system, that has efficiency of
DHT systems and accuracy of state-of-the-art IR algo-
rithms. Tang et al. present two algorithms, pLSI and
pVSM, which project either a latent semantic index
(LSI) or vector space model (VSM, e.g. TFIDF) onto
eCAN [37], a hierarchical version of CAN. eCAN im-
proves CAN’s logical routing cost to O (log(n)), and
takes only routes that closely approximate the under-
lying Internet topology.

In pVSM, documents, or pointers to documents are
stored under hashes of the most heavily weighted VSM
terms (keywords). Thus each zone in the CAN network
is responsible for a set of keywords, and nearby zones
are not necessarily semantically related. Conversely,
pLSI stores each document pointer directly against the
transformed semantic vector generated by LSI, meaning
that semantically related documents will be in close to
one another within the CAN network space. A query
in pVSM involves contacting all the nodes responsible
for the keywords present in the query, while in pLSI the
query defines a point in the CAN space, and the query
is flooded to all the neighbouring nodes within a small
radius.

pLSI simulations suggest that it is able to achieve
accuracy comparable to a centralized algorithm while
visiting only 0.4–1% nodes in the system. Analysis of
pVSM indicates the number of visited nodes is bounded
by the number of terms in a query, which is usually
small. The authors address various issues such as un-
even distribution of document pointers over the nodes,
and the global state required to support the VSM and
LSI calculations.

4. Discussion

A number of key issues arise when trying to create a
distributed meta-data scheme that will provide consis-
tently good results for multiple users. Many of the
systems described above attempts to deal with some of
these issues, but none of them address them all.

4.1 Representation of the Document

Keyword associations suffice for some applications, but
others require more complex representations. How will
this meta-data be generated and maintained? The sim-
ple solution is to use an automatic approach such as
TFIDF, but this limits the representation of the doc-
uments to a single standard that might not meet the
needs of all users.

For example FASD automatically generates a

1750
IEICE TRANS. COMMUN., VOL.E86–B, NO.6 JUNE 2003

TFIDF representation when a document is stored, but
TFIDF does not necessarily reflect the desired meta-
data of the author, since it is simply a statistical oper-
ation. In contrast, Edutella allows documents to be
marked up in detailed RDF. Clearly, more complex
forms of meta-data make greater storage demands on
each individual node in the distributed system, as each
node must somehow maintain records of this more com-
plex markup. However more detailed meta-data would
seem to be essential if complex queries are to be sup-
ported, and a fixed representation of each entity (such
as TFIDF) does not allow for differences in opinion
about the document meta-data.

4.2 Maintaining up to Date Indices/Routing-Tables

If messages are to be routed according to the contents of
their meta-data, how does one maintain the accuracy of
the routing tables in every node? What kind of messag-
ing overhead is required to support these updates and
how much storage space can be devoted to the rout-
ing tables themselves? Given that there are storage
space limits a data-removal policy becomes necessary
for when these limits are exceeded.

Routing Indices and LimeWire’s Query Routing
distribute updates as node contents change, and both
suggest compression or batch updates to reduce over-
head. Conversely, Alpine and NeuroGrid do not dis-
tribute routing table information at all; instead they in-
fer routing information from search results. The extent
to which routing tables need to be updated will reflect
the degree of peer and meta-data churn in the network.
In systems that require explicit routing updates, there
will be a trade off between the accuracy of the data
and the update message overhead. Systems such as
Alpine and NeuroGrid that leverage existing messaging
to support updates ensure that a highly active system
will be frequently updated to take account of changes,
but this does not cover situations where there is a sig-
nificant difference in the frequency of queries and the
frequency of change in the underlying meta-data. For
example, in some systems the incidence of queries may
be low, but the actual meta-data assignments may be
frequently changing, in which case updates in response
to content change may be more appropriate, such as
those employed by YouServ.

In addition there will be practical limits to the stor-
age space available for routing at each node. Clearly
the more space devoted the more successful the node
is likely to be in acquiring useful data for its users—
thus if the quality of the search results is poor one can
simply add more storage resources. However the pol-
icy employed for deleting data when the storage capac-
ity is exceeded will also have an effect. It would seem
profitable for nodes to try and maintain information
about high-quality sources of data that are related to
the needs of their users. Thus deleting routing infor-

mation related to infrequently queried meta-data would
seem like a good strategy. In a network with many
dishonest nodes it might also be profitable to actively
maintain information about nodes that were particu-
larly untrustworthy.

4.3 Honesty

Given that indices or routing tables and meta-data are
stored in multiple locations how can one be sure that
this information is being supplied honestly? What is to
stop unscrupulous individuals from marking up their
product pitches in meta-data that misleads the user?
Or routing queries to inappropriate destinations. Inde-
pendently of malicious activity there is a fundamental
question concerning pure differences of opinion about
markup.

Alpine, NeuroGrid and JXTASearch are systems
that provide a framework for handling these kinds of
issues, although the applications that employ TFIDF
could argue that they are attempting to enforce an un-
biased approach to markup. However this relies on the
assumption that all nodes will actually implement the
TFIDF markup scheme, rather than just generating rel-
evance values to meet their own ends. Honesty and dif-
ferences of opinion about what is the “correct” meta-
data for a document become crucial in a distributed
network environment. It would seem paramount that
nodes should be able to identify which nodes are able
to meet their information needs. Whether the underly-
ing motive is dishonest or purely a difference of opinion
might be profitably considered, but how to distinguish
between the two is problematic. A person trusted to
have consistently different opinions from ourselves but
who is intrinsically honest will be treated differently
from someone who is behaving dishonestly. Assuming
that systems can establish a mechanism whereby infor-
mation providers and consumers can maintain mutually
profitable relationships, new concerns emerge. How do
new information providers break into these “cliques”?
Many of the problems associated with human social
networks would appear to be replicated in such sys-
tems. Superficial solutions might be to add some degree
of probabilistic behaviour to nodes such that occasion-
ally they will take a chance and query nodes with little
or no reputation.

Given that each node is maintaining data on the
relative trustworthiness of other nodes it would make
sense for nodes to restrict access to their resources on
this basis. For example a node might be more inclined
to forward the queries of another node that consistently
supplied useful information. Some systems such as Mo-
joNation (now Mnet) make this relationship explicit by
introducing currency that must be handed over in order
to make queries, but can be generated by handling the
queries of others. It would be interesting to compare
the relative merits of a network wide currency, where

JOSEPH and HOSHIAI: DECENTRALIZED META-DATA STRATEGIES
1751

doing someone a favour generates credits that can be
traded with anyone for anything and those where cur-
rency is only good with specific nodes, e.g. a node will
only forward messages for other nodes that have done
reciprocal favours.

4.4 Integration of New Meta-Data Schemes into Ex-
isting Networks

Given that simulations show the potential effectiveness
of distributed meta-data schemes, can they be inte-
grated piece-wise into existing peer-to-peer networks?

LimeWire’s Query Routing proposal explores the
issue of networks where some nodes have implemented
a meta-data routing scheme and some have not. Clearly
one can avoid this issue by assuming that a network is
implemented from scratch. However existing networks
have various desirable properties, such as large pools of
users that make these considerations important. Out of
the systems described above only the LimeWire Query
Routing Proposal considers the complexity of trying
to add a distributed meta-data search strategy to an
existing network, and concludes that further study is
required to ensure that any losses will not outweigh the
gains.

4.5 Timeliness and Accuracy

Some systems assume/assert the information returned
in a query is accurate at the moment a response is
generated; others would have no way of knowing and
make no guarantees. What are the implicit assump-
tions made by systems about the lifetime of a query
result or document identity?

This is a complex issue, with some systems that
use Bloom filters attempting to show that the filters can
be updated in time to have query responses reflect the
state of the documents in the network. Other systems
that avoid explicit updates may easily end up supplying
out of date results, i.e. pointers to documents that no
longer exist in the network (and potentially out-dated
meta-data—document associations). However part of
the motivation behind reputation learning, is that rep-
utations will also reflect the availability (as well as the
relevance) of the documents recommended in response
to particular queries. Although clearly one can provide
an accurate recommendation to a document that is not
available through no fault of one’s own.

Naturally systems that identify documents in
terms of hash id do not suffer from this problem in as
much as the id—document relationship is constant, still
systems like Chord and Freenet have to remove docu-
ments when cache limits are reached, but this becomes
a document storage issue, rather than one of meta-data.

4.6 Effects of Query Forwarding

Does query forwarding distort the precision/recall/
honesty of a result set? And what measures can be put
in place to counter ill effects? Does query forwarding
effect reach or result set size?

Systems like Alpine avoid any query forwarding by
relying on minimal footprint UDP connections to sup-
port multiple connections between one peer and the
other peers that it intends to communicate with. This
allows Alpine to maintain direct statistics on the re-
sponses from each peer. Alpine allows peer groups to
grow through transitive introductions, so if no one in
your peer group can satisfy your query it may take some
time before someone can be found who does. Neuro-
Grid nodes, on the other hand, forward queries that
they can’t satisfy, potentially expediting the satisfac-
tion of the query. Clearly, forwarding messages can
lead to an increase in reach and result set size, but its
effect on precision and recall is less clear. The informa-
tion retrieval metrics of precision and recall are, respec-
tively, the ratio of relevant/non-relevant documents in
the result set, and the ratio of relevant documents in
the result set and the total number of relevant docu-
ments in the system. Query forwarding will plausibly
increase recall but its effect on precision is more dif-
ficult to discern. At least one system, FASD, ensures
that forwarded queries generate only answers that are
closer matches than those found so far.

It seems unlikely that query forwarding would par-
ticularly affect the honesty of the search results, unless
different nodes had different opinions about the honesty
of other nodes—a possibility. The only system to use
both query forwarding and honesty measures is Neuro-
Grid, and one can assume that if one is querying high
honesty nodes, then subsequent query forwarding will
potentially reach nodes considered less honest by the
query originator. The solution would appear to be to
consider the quality of a node in terms of both the re-
sponses it makes to queries, and the performance of the
nodes it chooses when it forwards queries.

4.7 Knowing When to Stop Searching

One of the major advantages of a centralized search
system is that it can offer guarantees about whether all
of the available data has been searched or not. In a
distributed search system of potentially unknown size,
it is very difficult to be sure that every possible match
to your query has been assessed. And given that some
query is currently underway it is difficult to ascertain
whether a slightly longer wait might generate some
more appropriate match to a query. Systems that use
DHTs seem to offer the potential to offer some sort
of guarantee that if a match exists it will be found.
However the use of hashing imposes a particular level

1752
IEICE TRANS. COMMUN., VOL.E86–B, NO.6 JUNE 2003

of granularity on the search interface. For example, if
we hash keywords and use them in a DHT, it is then
difficult to search for documents that have keywords
containing a certain substring. One possible solution is
then to place hashes of every possible substring from a
given keyword into the DHT, but this greatly increases
the number of nodes that will contain references to a
particular entity, and also increases the amount of time
taken to insert a new entity into the system. The need
for decentralized search derives from the fact that the
amount of data we desire to search over is exceeding
the storage limits of centralized systems. It may be
that in order to navigate greater volumes of data we
must put up with ever increasing degrees of uncertainty
about whether we have obtained the best match for our
query. That said, it may yet be the case that there is
some form of hybrid meta-data DHT scheme that offers
the best of both worlds, just waiting to be discovered.

5. Conclusion

It seems clear that the wealth of content made avail-
able by peer-to-peer systems like Gnutella and Freenet
have spurred many authors into considering how meta-
data might be used to support more effective search
in a distributed environment. This paper has reviewed
a number of these systems and attempted to identify
some common themes. At this time the major divi-
sion between the different approaches is the use of a
hash-based routing scheme. Several of the systems de-
scribed above use Bloom filter hashes to describe the
contents of other nodes. The systems that do not use
a hash-based approach tend to use more exotic meta-
data formats and incorporate some form of reputation
measure.

While simulations may show that hash based tech-
niques scale well with increasing network size, they have
yet to prove themselves in real peer-to-peer networks.
Considerable effort is still required on the simulation
level to assess the relative scalability of the different ap-
proaches, and there is a particular need for more com-
parative simulations. Additionally, the anarchic nature
of decentralized peer-to-peer networks would seem to
demand consideration of how to cope with meta-data
reliability and dishonest markup.

References

[1] O. Babaoglu, H. Meling, and A. Montresor, “Anthill: A
framework for the development of agent-based peer-to-peer
systems,” Technical Report, UBLCS-2001-09, Nov. 2001.

[2] M. Bawa, R.J. Bayardo, Jr., S. Rajagopalan, and E.J.
Shekita, “Make it fresh, make it quick: Searching a network
of personal webservers,” WWW2003, Budapest, Hungary,
May 2003.

[3] E. Bonsma, “Fully decentralized, scalable look-up in a net-
work of peers using small world networks,” Proc. Systemics,
Cybernetics and Informatics (SCI), 2002.

[4] C.M. Bowman, P.B. Danzig, D.R. Hardy, U. Manber, and
M.F. Schwartz, “The harvest information discovery and ac-
cess system,” Computer Networks and ISDN Systems 28,
pp.119–125, 1995.

[5] K. Burton, “Design of the OpenPrivacy distributed
reputation system,” http://www.peerfear.org/papers/open
privacy-reputation.pdf, 2002.

[6] B. Bloom, “Space/time trade-offs in hash coding with al-
lowable errors,” Commun. ACM, vol.13, no.7, pp.422–426,
1970.

[7] J. Chapeweske, “HTTP extensions for a content-
addressable Web,” http://open-content.net/specs/draft-
jchapweske-caw-03.html, Open Content Network Specifica-
tion, 2002.

[8] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet:
A distributed anonymous information storage and retrieval
system,” Proc. Workshop on Design Issues in Anonymity
and Unobservability, ed. H. Federrath, Berkeley, CA, July
2000.

[9] E. Cohen, A. Fiat, and H. Kaplan, “A case for associative
peer to peer overlays,” HotNets-I, Princeton, New Jersey,
USA, 2002.

[10] A. Crespo and H. Garcia-Molina, “Routing indices for peer-
to-peer systems,” The 22nd International Conference on
Distributed Computing Systems (ICDCS’02), Vienna, Aus-
tria, 2002.

[11] F.M. Cuenca-Acuna, C. Peery, R.P. Martin, and T.D.
Nguyen, “PlanetP: Using gossiping to build content ad-
dressable peer-to-peer information sharing communities,”
International Workshop on Peer-to-Peer Computing, Pisa,
2002.

[12] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer,
and R. Harshman, “Indexing by latent semantic indexing,”
J. Am. Soc. Inf. Sci., vol.41, no.6, pp.391–397, Sept. 1990.

[13] P. Deutsch, R. Schoultz, P. Faltstrom, and C. Weider,
“Architecture of the WHOIS++ service,” http://www.ietf.
org/rfc/rfc1835.txt, RFC 1835, 1995.

[14] R. Dornfest and D. Brickley, “Metadata,” in Peer to Peer:
Harnessing the power of disruptive technologies, ed. A.
Oram, pp.191–202, O’Reilly & Associates, 2001.

[15] P. Druschel and A. Rowstron, “Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-
peer systems,” Proc. 18th IFIP/ACM International Con-
ference on Distributed Systems Platforms, 2001.

[16] T. Hoshiai, “P2P communications,” HPSR2002 Tutorial,
pp.1–62, 2002. http://www.geocities.co.jp/SiliconValley/
8143

[17] G. Kan, “Gnutella,” in Peer-to-Peer: Harnessing the Ben-
efits of Disruptive Technologies, ed. A. Oram, pp.94–122,
O’Reilly & Associates, 2001.

[18] A.Z. Kronfol, “FASD: A fault-tolerant, adaptive scalable,
distributed search engine,” Princeton University Techni-
cal Report, http://www.cs.princeton.edu/˜akronfol/fasd/,
2002.

[19] S.R.H. Joseph and T. Kawamura, “Why autonomy makes
the agent,” in Agent Engineering, pp.7–28, World Scientific
Publishing, 2001.

[20] S.R.H. Joseph, “NeuroGrid: Semantically routing queries
in peer-to-peer networks,” International Workshop on Peer-
to-Peer Computing, Pisa, 2002.

[21] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use
and performance of content distribution networks,” ACM
SIGCOMM Internet Measurement Workshop, 2001.

[22] R. Levien, Attack Resistant Trust Metrics, Draft Doctoral
Thesis, University of California, Berkeley, 2002.

[23] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve,
M. Nilsson, M. Palmer, and T. Risch, “Edutella: A P2P

JOSEPH and HOSHIAI: DECENTRALIZED META-DATA STRATEGIES
1753

networking infrastructure based on RDF,” White Paper,
http://edutella.jxta.org/, 2001.

[24] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
PageRank citation ranking: Bringing order to the web,”
Technical Report, Stanford University, 1998.

[25] C.G. Plaxton, R. Rajaraman, and A.W. Richa, “Accessing
nearby copies of replicated objects in a distributed environ-
ment,” Proc. ACM SPAA. ACM, June 1997.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Schenker, “A scalable content-addressable network,” Proc.
ACM SIGCOMM, 2001.

[27] S.E. Robertson and K. Sparck-Jones, “Relevance weighting
of search terms,” J. Am. Soc. Inf. Sci., pp.129–146, 1976.

[28] C. Rohrs, “Query routing for the Gnutella network,”
http://www.limewire.com/developer/query routing/key
word%20routing.htm, 2002.

[29] G. Salton and C. Yang, “On the specification of term values
in automatic indexing,” J. Doc., vol.29, pp.351–372, 1973.

[30] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl,
“HyperCuP—Hypercubes, ontologies and efficient search
on P2P networks,” Proc. International Workshop on Agents
and Peer-to-Peer Computing (AP2PC), ed. G. Moro & M.
Koubarakis, pp.85–96, 2002.

[31] M.A. Sheldon, A. Duda, R. Weiss, and D.K. Gifford, “Dis-
cover: A resource discovery system based on content rout-
ing,” Proc. 3rd International World Wide Web Conference,
Elsevier, North Holland Computer Networks and ISDN Sys-
tems, 1995.

[32] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup ser-
vice for internet applications,” Proc. ACM SIGCOMM’01
Conf., 2001.

[33] A. Sugiura and O. Etzioni, “Query routing for Web search
engines: Architecture and experiments,” Proc. 9th Inter-
national World-Wide Web Conference, Foretec Seminars,
2000.

[34] C. Tang, Z. Xu, and M. Mahalingam, “pSearch: Informa-
tion retrieval in structured overlays,” HotNets-I, Princeton,
New Jersey, USA, 2002.

[35] D. Watts and S. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol.393, pp.440–442, 1998.

[36] B. Wiley, “Tristero,” http://tristero.sourceforge.net, 2002.
[37] Z. Xu, C. Tang, and Z. Zhang, “Building topology-

aware overlays using global soft-state,” The 23rd Inter-
national Conference on Distributed Computing Systems
(ICDCS’03), Providence, Rhode, Island, May 2003.

[38] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, “Tapestry:
An infrastructure for fault-resilient wide-area location and
routing,” Technical Report CSD-01-1141, U.C. Berkeley,
2001.

Sam Joseph is a research associate at
the University of Tokyo, where he works
on peer to peer and distributed informa-
tion management systems. Dr. Joseph re-
ceived a B.Sc. (Hons) in physics with as-
trophysics at the University of Leicester,
UK, followed by a M.Sc. in cognitive sci-
ence and natural language and a Ph.D.
in neural networks from the University of
Edinburgh, UK. He is a recipient of the
Raymond-Hide prize for Astrophysics and

a Toshiba Fellowship. As part of the Toshiba Fellowship he
worked on software agents at Toshiba’s Research and Develop-
ment Center in Japan. Dr. Joseph continues to provide consulting
services ranging from cognitive science to peer to peer network-
ing, to a number of Japanese technology companies.

Takashige Hoshiai is a senior re-
search scientist supervisor at NTT Net-
work Service Systems Laboratories, in
Japan. He holds a Ph.D. degree in
Communications and Systems from The
University of Electro-Communications,
Japan. His research areas are distributed
systems, distributed object technologies,
real-time systems, agent systems and
P2P. Since he proposed a new business
model called “Brokerless Model” in 1998,

especially, he has studied SIONet architecture that is a solution
of P2P platforms.

