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Abstract

The concept of a consecutive-d digraph was proposed by Du, Hsu and Hwang as a generaliza-
tion of de Bruijn digraphs, Kautz digraphs, and their generalizations given by Imase and Itoh and
Reddy, Pradhan and Kuhl. In this paper, we determine the connectivity of consecutive-d digraphs
and study how to modify consecutive-d digraphs to reach maximum connectivity. Our results
will generalize and improve several existing results on the connectivity of de Bruijn digraphs,
Kautz digraphs and Imase–Itoh digraphs. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

De Bruijn graphs [7], Kautz graphs [22] and their generalizations have been exten-
sively studied [1–6,8–12,14–20]. It was stated in [5] that these graphs are competitive
topological structures for interconnection networks of computers and multiprocessor
systems. For a nice survey, the reader is referred to [1,3].
For integers d; n; q; r satisfying 0¡d6n, −n=2¡q6n=2, and q �=0, a consecutive-d

digraph G(d; n; q; r) (as deEned in [11]) has n nodes, labeled by integers mod n,
with edges from each node i to d consecutive nodes, which are those with labels
qi + r + k (mod n). The concept of the consecutive-d digraph generalizes many
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interconnection networks of computers and multiprocessor systems. The generalized de
Bruijn digraphs [19,23] and the generalized Kautz digraphs [20] are its two useful sub-
classes consisting of GB(d; n)=G(d; n; d; 0) and GI (d; n)=G(d; n; n−d; n−d), respec-
tively. The following results on connectivity of GB(d; n), GI (d; n), and G(d; n; q; r) are
known.

(1) If n¿d3, GB(d; n) and GI (d; n) are (d− 1)-connected [21].
(2) If n¿d4, then GI (d; n) is d connected iI (d+ 1) | n and gcd(d; n)¿1 ([17]).
(3) If gcd(n; q)=d and n¿d2, then G(d; n; q; r) is at least (d − 1)-connected and it

is d-connected iI it has no loop ([14]).

In this paper, we determine the connectivity of G(d; n; q; r) in almost all cases, and as
corollaries, remove condition n¿d4 on n from the result of Homobono and Peyrat [17],
signiEcantly relax condition n¿d3 from the result of Imase et al. [21]. In addition, we
also study how to modify GB(d; n) to get a d-connected digraph by replacing all loops
with a cycle or a set of disjoint cycles.

2. Preliminaries

Let  =gcd(q−1; n). (note:  = n if q=1.) Denote by (x)n the residue of x modulo
n, represented by a number in {0; 1; : : : ; n− 1}. An edge is said to be with k-value i,
where 06i¡d, if it is contained in the subgraph G(1; n; q; r+ i). The following lemma
can be found in [13].

Lemma 1. G(d; n; q; r) has the following properties:

(a) Each node has at most one loop.
(b) G(d; n; q; r) has no loop i7 0¡(r) 6 − d.
(c) If d¡ , then all loops of G(d; n; q; r) are with the same k-value.
(d) If  =1, then for each k-value there exists exactly one loop with the k-value.

If  ¿1, then for each k-value, either there is no loop or there are exactly  
loops with the k-value. Moreover, if i is a loop-node, then the  loop-nodes are
i, i + n= ; : : : ; i + ( − 1)n= . In particular, if d¿2 then G(d; n; q; r) has either
no loop or at least two loops.

(e) If |q− 1|6d and x is a loop-node, then either x+ �n=(q− 1)� or x+ �n=(q− 1)	
is a loop-node.

In particular, notice that if d¿ then there always exists a loop. Next, we show a
new lemma concerning loops in GB(d; n).

Lemma 2. Consider GB(d; n), where d¿1. Let x and y be two distinct loop-nodes.
Then either |x − y|=1 or n=(d− 1)− 16|x − y|6n− (n=(d− 1)− 1). Moreover, if
|x − y|=1, then the loop at x and the loop at y are with k-values 0 and d− 1.
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Proof. Since x and y are loop-nodes, we have

(d− 1)x + k≡0 (mod n); (1)

(d− 1)y + k ′≡0 (mod n) (2)

for 06k; k ′6d−1. Without loss of generality, assume k6k ′. Then 06k ′− k6d−1.
Subtracting (2) from (1), we obtain

(d− 1)(x − y)≡ k ′ − k (mod n)

If |x−y|=1, then k ′−k =d−1 and we must have k ′ =d−1 and k =0. If |x−y| ¿ 1,
then (d − 1)(x − y)= k ′ − k + ‘n for some nonzero integer ‘ and hence |x − y|¿
n=(d− 1)− 1. It is also easy to see that |l|6(d− 2), so that |x−y|6|l|=(d− 1)+16
n− (n=(d− 1)− 1).

From the above two lemmas, it is easy to see that GB(d; n) has exactly d − 1 +  
loop-nodes. 2 of them form  pairs of adjacent nodes. The rest of them are isolated.
These d−1 “groups” of size 1 or 2 are almost evenly distributed in Zn with “distance”
at least n=(d− 1)− 1 apart.

3. Consecutive runs

In this section, we show two lemmas which are important in studying the connectivity
of consecutive-d digraphs.
A subset of Zn is called a consecutive run if its elements can be consecutively

numbered mod n. For convenience, we call the d out-edges from the node a claw
and the set of end points of the claw a claw-end. In a consecutive-d digraph a node’s
claw-end forms a consecutive run of size d. Let g=gcd(n; q). Denote Ri= {i; i+n=g; : : : ;
i + (g − 1)n=g}. Then all nodes in Ri have the same set of successors. Each Ri will be
called an orbit. Denote î= {ig+ r; ig+ r + 1; : : : ; ig+ r + g− 1}. Then all nodes in î
have the same set of predecessors. Each î will be called a block.
A good way to visualize orbit, claws, blocks and consecutive runs is to think of

Zn as n points {0; 1; : : : ; n − 1} put clockwise on a circle, spaced equally. An orbit
is then a set of g equally spaced points on the circle with interval n=g. Note that
Zn is partitioned uniformly into orbits. The circle is also partitioned into n=g arcs (or
consecutive runs) of size g, which are our blocks. The start of each block (ig+ r, for
some i∈Zn) is also the start of some claw-end (because there is always an j∈Zn such
that jq+ r≡ ig+ r (mod n)). Claw-ends from diIerent orbits start at diIerent positions
on the Zn-circle.
Since each orbits is of size g, the in-degree of a node of G(d; n; q; r) must be divisible

by g. Thus, if the in-degree of a node is d, then we must have g |d. It was proved in
[14] that g |d iI the in-degree of every node is d. Throughout this paper, we assume
g |d, i.e., the in-degree of every node is d. To emphasize this, we may still mention
this condition in the statements of lemmas and theorems. Also note that when g |d,
each claw-end contains exactly d=g blocks.
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Lemma 3 (Consecutivity Lemma). Suppose g |d and g¡d. Let C;D; E be a partition
of the node set of G(d; n; q; r) such that removal of all nodes in E leaves no path
from any node in C to any node in D. Let S be the union of all claw ends from nodes
in C. If |E|¡d, then S (⊆C ∪E) is a consecutive run of size at least |C|+ d− g.

Proof. Suppose there are y orbits which intersect with C. Each such orbit contributes a
consecutive run of size d in S, which we shall call a C-run. A consecutive run R in S is
maximal if no other consecutive run in S properly contains R. Let x be the number of
maximal consecutive runs in S. Let R be any maximal consecutive run in S, and k be
the number of diIerent C-runs which are entirely contained in R. Then since each C-run
starts at the beginning of some block, we must have 1+(k−1)g+d−16|R|. In other
words, each maximal consecutive run R in S contains at most |R|=g−(d=g−1) diIerent
C-runs. Summing over all maximal consecutive runs in S, we get |S|=g−x(d=g−1)¿y.
Hence, S has at least gy + x(d − g) elements. Since S ⊆C ∪E and |E|6d − 1, we
have

gy + x(d− g)6|C|+ d− 1:

Note that gy¿|C|. If g=1, then it is clear that x=1. If d¿g¿1, then
d− g¿d=2 since g |d. Thus, x=1. Finally, x=1 implies that S is a consecutive run
and |S|¿gy + d− g¿|C|+ d− g.

From the consecutivity lemma, it is easy to see that |E|¿d− g. This means that if
g |d and g¡d, then G(d; n; q; r) is at least (d− g)-connected.

Lemma 4. Let R be a consecutive run of Zn. Suppose S = {a; a + h; : : : ; a + (c −
1)h}⊆R for some natural numbers a, c and h. Let f be any function so that for each
x∈ S, f(x) is a consecutive run of size d in R. Further assume that a + ih∈ ⋃c−1

j=0
f(a+ jh); ∀i=0; : : : ; c − 1. Then we have

(i) If |f(a+ ih)∩f(a+(i+1)h)|¿h for i=0; : : : ; c−2, then there exists an i∈Zc−1,
such that a+ ih∈f(a+ ih).

(ii) If |f(a + ih)∩f(a + (i + 1)h)|¿h − 1 for i=0; : : : ; c − 2, then there exists an
i∈Zc−1 such that either a+ ih∈f(a+ ih) or f(a+ ih)= {a+ ih+1; : : : ; a+ ih+d}
and f(a+ (i + 1)h)= {a+ (i + 1)h− d; : : : ; a+ (i + 1)h− 1}.

Proof. (i) Let

A= {a+ ih | x¡a+ ih; ∀x∈f(a+ ih)};
B= {a+ ih | x¿a+ ih; ∀x∈f(a+ ih)}:

Suppose to the contrary that such an i does not exist; then since a∈f(a + ih) for
some i and a + (c − 1)h∈f(a + jh) for some j, both A and B are not empty. It
follows that there exists an i such that a+ ih and a+ (i + 1)h are not both in A nor
both in B. If a + ih∈A and a + (i + 1)h∈B, then f(a + ih)∩f(a + (i + 1)h)= ∅,
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contradicting |f(a+ ih)∩f(a+ (i+ 1)h)|¿|h|¿0. If a+ ih∈B and a+ (i+ 1)h∈A,
then f(a+ ih)∩f(a+ (i + 1)h) lies between a+ ih+ 1 and a+ (i + 1)h− 1, so that
|f(a+ ih)∩f(a+ (i + 1)h)|¡h, contradicting |f(a+ ih)∩f(a+ (i + 1)h)|¿h, too.
(ii) Similarly, we can prove the second half of the lemma.

4. Connectivity

In this section, we determine the connectivity of consecutive-d digraphs. The results
are described by two theorems, as consequences of which the results of Imase et al.
[21] and Homobono and Peyrat [17] are extended to smaller n. The approaches we use
here diIer very much from theirs.

Theorem 5. If g |d and 1¡g¡d, then G(d; n; q; r) is at least (d− g)-connected and
it is d-connected i7 it has no loop.

Proof. The Erst half has been proven in the last section. We prove the second half
here.
If our graph has a loop at i, then removing d − 1 nodes other than i from the

claw-end of i disconnects i to the rest of the graph. In other words, if G(d; n; q; r) is
d-connected then it has no loop.
For the other direction, let E be a node-cut of the smallest size, which disconnects

D from C, i.e. removal of all the nodes in E leaves no path from nodes in C to those
in D. Assume |E|6d− 1. We will prove the existence of a loop.
Let S be the union of claw-ends from nodes in C. By Lemma 3, S is a consec-

utive run of size at least |C| + d − g. Without loss of generality, we may assume
that all nodes not in S are in D, since otherwise they can be moved into D without
increasing the size of the node-cut E. Thus, S =C ∪E. Since S is a consecutive run,
so is its complement D. The following facts are important in the remainder of the
proof.

(i) For any consecutive run R of Zn and any orbit O, there are at least �|R|g=n�
elements of O in R, and at least g− �|R|g=n	 elements of O not in R.

(ii) Every claw from E catches some node in D. (Otherwise, E can be decreased,
contradicting the minimality of E.)

(iii) If an orbit contains an element of C, then it contains no element of E. (Otherwise,
E can be decreased by putting such elements into C.) An orbit having an element
in C(E) is called a C-orbit (E-orbit). Notice that no claw-end from any C-orbit
intersects D.

(iv) D has at most g − 1 elements in C-orbits. (Otherwise, putting all such elements
into C does not change the set E, but makes |E|+ |C| − |S|¿g− 1, contradicting
|S|¿|C|+ d− g.)

Now, for any k ∈Zn, let k∗ denote the integer between 0 and n=2 such that k ≡ k∗ or
−k∗ (mod n). k∗ is called the magnitude of k. To prove the existence of a loop, we
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may assume q∗¿d since if q∗¡d, then certainly  ¡d, so that a loop must exist by
Lemma 1. We consider three cases based on where |D| lies between 0 and n.
Case 1: (g − a)n=g6|D|¡(g − a + 1)n=g for some a=0; : : : ; �g=2�. By (i), each

C-orbit contains at least g − a elements in D. Let y be the number of C-orbits, then
D has at least y(g− a) elements in C-orbits. By (iv), y(g− a)6g− 1. So, y=1. It
follows that |S|=d. Since S =C ∪E, |E|6d− 1 and the claw-end of our C-orbit has
size d, every node in C has a loop.
Case 2: an=g¡|D|6(a+1)n=g for some a=0; : : : ; �g=2�−1. Again, by (i) we have

that of g elements in an orbit, at least a must be in D and at least g− a− 1 must not
be in D. It is not hard to see that there are at least �(|D| + d − 1)=g	 orbits whose
claw-ends intersect D, because each starting point of a block in D is also the starting
point of a claw-end and the size of a claw-end, d, is greater than the size of a block, g.
These orbits have to be disjoint from C, hence E has at least (g−a−1)�(|D|+d−1)=g	
elements. So, d− 1¿(g− a− 1)�(|D|+ d− 1)=g	, i.e.

|D|6(d− 1)(a+ 1)=(g− a− 1)6d− 1:

We will prove that D must contain a loop node. Notice that since S is a union of
claw-ends and g |d, S is also a union of (consecutive) blocks. Hence, D is a union of
consecutive blocks, too. Let B be the rightmost block of D (clockwise). If B contains
a loop node, then we are done. Thus, we may assume that B has no loop node. For
any node i, let ce(i) denote the claw-end from i. The inequality d6q∗6n=2 implies
that if for some i∈B, ce(i) has its right end point in D\B then the right end point
of ce(i + 1) is not in B, neither is the left end point of ce(i + 1) since B has no
loop. In other words, no two consecutive claw-ends from B both intersect D. Hence,
B has at most �g=2	 elements whose claw-ends intersect D. Let O be the orbit whose
claw-end intersects D only in B. Then O⊂ (D − B)∪E. As we have noticed, there
are at least g − a − 1 elements of O not in D. These elements have to be in E, so
|O∩E|¿g− a− 1¿g− (�g=2� − 1)− 1= �g=2	.
When B is removed from D, only the nodes whose claw-ends intersect D\B (there

are at most �g=2	 of these nodes) have to be moved into E and others can be moved
into C. However, all elements in O∩E can be moved from E to C. Thus, this move
does not increase |E|. In this way, we can reduce D to have only one block. However,
as g |d each node in this block has d in-edges. One of them must be from a node in
D, which forms a loop.
Case 3: �g=2�n=g6|D|¡�g=2	n=g. This case exists only for g odd and at most two

C-orbits exist by the same argument as that in Case 1. If there exists only one orbit,
we can prove, as in Case 1, that each of the nodes in C has a loop. If there are two
C-orbits, then each C-orbit must have at most (g+ 1)=2 elements in C since it has at
least (g−1)=2 elements in D. So, |E ∪C|6d−1+2(g+1)=2=d+g. It follows that the
claw from each node in a C-orbit can miss only one block in E ∪C. If C has no loop,
then we must have |E ∪C|= |S|=d+ g and hence each C-orbit has exactly (g+1)=2
elements in C. Furthermore, (g+ 1)=2 elements of C in a C-orbit must Et in a block
which is not contained in any claw-end of this C-orbit. Thus, 1+((g+1)=2−1)n=g6g.
So, n62g6d. Thus, q∗¡d, a loop must exist.
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Theorem 6. If g=1, then G(d; n; q; r) is at least (d − 1)-connected. Moreover, if
n¿3d then it is d-connected if and only if none of the following occurs:

(1) It has a loop.
(2) r≡ 1 (mod(d+ 1)) and q≡ − d (mod n).
(3) r≡ 1 (mod(d+ 1)) and qd≡ − 1 (mod n).

Proof. Let E be any node-cut such that removal of all nodes in E leaves no path from
C to D. When d=1, the theorem trivially holds; thus, we assume d¿1= g.
We Erst show that G(d; n; q; r) is (d−1)-connected. Suppose |E|6d−1, then by the

consecutivity lemma we have |C|+ d− 16|S|6|C|+ |E|; hence, |E|=d− 1 and S is
exactly the union of C and E. So, G(d; n; q; r) is at least (d−1)-connected. Moreover,
both S and D are consecutive runs. It also follows that each claw from D or E contains
at least one node in D and each claw from C contains at least a node in C. For the
sake of description, let us Erst introduce some notation.
For any node i, let l(i) (respectively r(i)) be the left (right) end point of ce(i)

looking clockwise on the Zn-circle. Let i; j∈Zn; then we use the phrase nodes between
i and j to mean all nodes from i to j or from j to i clockwise around the circle,
depending on which one has fewer nodes. Let m be the multiplicative inverse of
q (mod n) and m∗ be the magnitude of m. We will prove the theorem by showing the
following two claims.

Claim 7. If n¿3d, |E|6d − 1 and |D|6|C|, then (q∗ − 1)(|D| − 1)¡d where q∗ is
magnitude of q. Furthermore, D has a loop-node unless q≡ − d (mod n).

Claim 8. If n¿3d, |E|6d−1 and |C|6|D|, then (m∗−1)(|C|−1)¡d. Furthermore,
C has a loop-node unless qd≡ − 1 (mod n).

Before proving these facts, let us show how the claims enable us to prove the second
part of our theorem.
For the forward direction, if G(d; n; q; r) is d-connected, then clearly it has no loop.

Furthermore, if r≡ 1 (mod(d+1)) and q≡ −d (mod n), then we can assume r= x(d+
1)+1 for some x∈Zn. By deEnition, x is connected to {x+1; : : : ; x+d} and x+1 is
connected to {x−d+1; : : : ; x}. Of the d claws containing x, there is exactly one claw not
containing x+1 which is the claw from x+1. Similarly, of the d claws containing x+1,
there is exactly one claw not containing x which is the claw from x. The remaining
d − 1 claws contain both x and x + 1. No other claw intersects x or x + 1. Hence,
removing all d−1 nodes whose claws intersect both x and x+1 disconnects x and x+1
from the rest of the nodes, contradicting G(d; n; q; r) being d-connected. We are left
to show that condition (3) does not hold. Again, let r= x(d+1)+ 1 for some x∈Zn.
Notice that if qd≡ − 1 (mod n), then xd connects to {xd+ 1; : : : ; xd+ d} and xd+ d
connects to {xd; : : : ; xd+ d− 1}. Thus, removing d− 1 nodes {xd+1; : : : ; xd+ d− 1}
disconnect the rest of the nodes from xd and xd+ d. So if G(d; n; q; r) is d-connected
then (3) cannot happen either.
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For the backward direction, if none of the three conditions holds and G(d; n; q; r)
is still not d-connected, then there exists a node cut E with size less than d. When
|C|6|D|, by Claim 7 it must be the case that q≡ − d (mod n). However, by part
(b) of Lemma 1 our graph has no loop only if 0¡(r) 6 − d. But  =gcd(q −
1; n)= gcd(d+ 1; n) which is less than d unless d+ 1=  . It follows that (r) =1 or
r≡ 1 (mod (d + 1)), a contradiction. When |D|6|C|, by Claim 8 it must be the case
that qd≡ − 1 (mod n), thus (q − 1)d≡ − d − 1 (mod n). So  |d + 1. Similar to the
previous case, we conclude that d+ 1=  , which implies r≡ 1 (mod(d+ 1)), another
contradiction.

Proof of Claim 7. Without loss of generality, we assume q¿0. The case when q¡0 is
symmetric. Notice that q∗¡n=2 since g=1. Moreover, as we have discussed, |E|6d−1
implies that both S =C ∪E and D are consecutive runs and |E|=d− 1.
We Erst show that for any two nodes i and i + 1 of D, S cannot Et between l(i)

and r(i + 1). (When q¡0, we will show that S cannot Et between l(i + 1) and r(i).)
The number of nodes between l(i) and r(i + 1) is q∗ + d. If S Ets between them
then |S|= |C ∪E|6q∗ + d − 2 because any claw-end from D must also intersect D.
If follows that q∗¿|C|. Moreover, |D|6|C| and n= |D| + |C| + d − 1 implies that
|C|¿(n− d+ 1)=2¿|D|, and n¿3d gives us

q∗¿|C|¿n− d+ 1
2

¿
(
n− n

3
+ 1

)
=2¿n=3:

Let l and r be the left and right end point of S, respectively. Consider the nodes
between l(i + 2) and r(i + 3) if i + 2 and i + 3 are both in D. It follows from
l(i) =∈ S, r(i + 1) =∈ S, and n=3¡q∗¡n=2 that l(i + 2) lies between r(i + 1) and l(i),
thus l(i + 2) =∈ S. Now, if l(i + 3) =∈ S then it must be the case that |D| is at least as
large as the number of points from r(i+ 1) to l(i+ 3), which is 2q∗ − (d− 2). Thus,
2q∗−(d−2)6|D|6(n−d+1)=2, which leads to q∗6n=3−3=4, contradicting q∗¿n=3.
Consequently, l(i+3)∈ S. Again, as each claw-end from D intersects D, r(i+3) =∈ S;
hence, the elements of S also lie between l(i + 2) and r(i + 3). The same conclusion
holds if we consider i − 1 and i − 2.
Continuing this way, it is obvious that there are at least k = �|D| − 1=2� diIerent

adjacent pairs (i; i + 1) of nodes in D such that the elements of S lie between l(i)
and r(i + 1). Let these pairs be (i1; i1 + 1); : : : ; (ik ; ik + 1). Without loss of generality,
assume l(ik) is closest to l, which means that r(ik + 1) is furthest from r. Since all
r(ij)’s are diIerent and not in S, considering the points between l(ik) and r(ik + 1)
we obtain q∗ + d− 1− k¿|S|= n− |D|. So,

q∗¿n− |D| − d+ 1 + k¿n− |D| − d+ 1 +
|D|
2

− 1¿
n
2
− 1

4

contradicting q∗¡n=2.
Since S cannot Et between l(i) and r(i + 1) for any i; i + 1∈D, all nodes between

r(i) and l(i+1) (if q∗¿d) or between l(i+1) and r(i) (when q∗¡d) must be in D.
Counting this way and taking into account the fact that both D and S are consecutive
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runs, it is easy to see that D must have at least 2 + q∗ − d+ (|D| − 2)q∗ nodes. Thus
|D|¿1 + q∗ − d+ (|D| − 2)q∗, or (q∗ − 1)(|D| − 1)¡d.
If |D|=1, then the node in D is clearly a loop-node. If |D|¿2, then q∗−1¡d. When

q∗¡d, every pair of claws from adjacent nodes overlap. By Lemma 4, D has a loop-
node. When q∗ =d, D has either a loop-node or a pair of nodes i and i+ 1 such that
claws from i and i+1 end with f(i)= {i+1; : : : ; i+d} and f(i+1)= {i−d+1; : : : ; i},
respectively. The latter one implies that r + qi≡ i + 1 (mod n) and r + q(i + 1)≡
i − d+ 1 (mod n). Thus, q≡ − d (mod n), the exceptional case.

Proof of Claim 8. Since g=1, the claw-ends coming out from C can be ordered so
that the second node of each is the Erst node of the next claw-end. Then, C must
consist of nodes with indices a; a + m∗; : : : ; a + (|C| − 1)m∗, and these must all lie
among the d−1+ |C| consecutive nodes in S =C ∪E. If m∗ =1, then the claim holds
trivially. If m∗¿1, then either all the nodes lying between these nodes of C are in E,
so that (m∗ − 1)(c− 1)¡d, or the size of D, |D|, is at most m∗ − 1 so that D can Et
between adjacent nodes of C in this order. The lemma is proven if we show that this
latter case cannot happen when n¿3d.
We use the word “interval” to mean the nodes lying between adjacent nodes of

C exclusively in the order above. Clearly m∗¡n=2, thus either every other interval
of C contains D, so that m∗¿|D| + �|C|=2�, or there are 3 consecutive intervals
such that the Erst one or the third one contains D and the other two do not, so that
n − 2m∗¿|D|. If the former occurs, then n=2¿|D| + |C|=2¿(3=2)|C|, so that
n6|D|+ |C|+d−1¡n=2+n=6+n=3−1¡n, a contradiction. If the latter case occurs,
then n¿2m∗ + |D|¿3|D|¿3|C|, so n6|D| + |C| + d − 16n=3 + n=3 + n=3 − 1¡n,
again a contradiction.
If |C|=1, then the node in C is obviously a loop-node. If |C|¿2, then m∗ − 1¡d.

When m∗¡d, by Lemma 4 C contains a loop-node. When m∗ =d, also by Lemma 4 C
has either a loop or a pair of nodes i and i+m∗ such that the claws from i and i+m∗

end with {i + 1; : : : ; i + d} and {i; : : : ; i + d − 1}, respectively. The latter one implies
r + qi≡ i + 1 (mod n) and r + q(i + m∗)≡ i (mod n). Thus, qd= qm∗ ≡ − 1 (mod n),
the exceptional case.

The following corollary removes the condition n¿d4 from the result of Homobono
and Peyrat [17].

Corollary 9. GI (d; n) is d-connected i7 gcd(n; d)¿1 and (d+ 1) | n.
Proof. Note that GI (d; n) has no loop iI (d + 1) | n by Lemma 1 part (b). When
g=gcd(d; n)¿1 and (d + 1) | n we must have g¡d, thus by Theorem 5, GI (d; n) is
d-connected. Conversely, if d+ 1 does not divide n, then GI (d; n) is not d-connected
because it has a loop; and if g=1 and (d+1) | n, then by Theorem 6, GI (d; n) is not
d-connected. Notice that we proved this direction independent of n¿3d. Therefore,
GI (d; n) is d-connected iI gcd(n; d)¿1 and (d+ 1) | n.
The following corollary uses a weaker condition, namely n¿d gcd(n; d), instead of

the condition n¿d3 in the result of Imase, Soneoka and Okada [21].
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Corollary 10. If n¿d gcd(n; d), then GB(d; n) and GI (d; n) are at least (d − 1)-
connected.

Proof. When gcd(n; d)=d, G(d; n; q; r) is the line-graph of G(d; n=d; q; r). To
see this, consider a digraph RG with nodes R0; : : : ; n′ − 1 where n′ = n=d, and with
edges labeled by 0; : : : ; n; each node Ri has in-edges i; i + n′; : : : ; i + (d− 1)n′ and out-
edges qi + r; qi + r + 1; : : : ; qi + r + d − 1. Clearly, there is an edge from Ri to Rj iI
j≡ qi+ r+k (mod n′) for some k =0; : : : ; d−1. Thus, RG is isomorphic to G(d; n′; q; r).
On the other hand, the line graph of RG is G(d; n; q; r).
It was proved in [14] that if g |d, then G(d; n; q; r) is at least (d− 1)-line-connected

and it is d-line-connected iI it has no loop. This implies that if g=d and n¿d2, then
G(d; n; q; r) is at least (d− 1)-connected and it is d-connected iI it has no loop. This
fact and Theorem 6 allow us to assume that 1¡gcd(n; d)¡d.
Consider the proof of Theorem 5. We show |E|¿d − 1. In Case 1, if |C|=1,

|E|¿d − 1; if |C|¿2, then we must have 1 + n=g6d since only one C-orbit exists.
Thus, n6g(d− 1), a contradiction. In Case 2, by the reduction, we may assume that
D has only one block. Since n¿gd¿(g− 1)d, exactly one claw from D intersects D.
However, there are d claws intersecting D. Realize that d−1 of them must come from
E, i.e. |E|¿d− 1. In Case 3, if there is only one C-orbit, then it is similar to that in
Case 1. If two C-orbits exist, then each C-orbit contains at least (g − 1)=2 elements
of C. Clearly E ∪C must have at least n=g elements in this case. Any consecutive run
of size n=g in E ∩C contains exactly 2 elements of C and the rest are in E. So, if
|E|6d− 2, then n=g62 + |E|=d, a contradiction.

5. Modi%cation of GB(d; n)

A purpose of this study is to End good candidates for the topological structure of
communication networks. Here is a basic problem: Given the number of nodes and
an upper bound on degree, End a digraph to achieve the smallest diameter and largest
connectivity. Suppose that G is a digraph with n nodes and each node of G has
in-degree and out-degree at most d. By a simple calculation, it was shown that the
diameter of G is at least �logd n(d − 1) + 1	 − 1 [8]. In general, for given n and d,
determining whether a digraph exists to achieve this lower bound of diameter is not an
easy job. However, if we allow a diIerence of one from the optimal value, then the
generalized de Bruijn digraphs GB(d; n) and the generalized Kautz digraphs GI (d; n)
meet the requirement (see [19,20,23]). A question is, could these graphs be modiEed
to have largest connectivity? In fact, loops do nothing to contribute to the connectivity.
One can “improve” them by deleting whatever loops occur according to the deEning
formulae, replacing them by a single cycle or several disjoint cycles. This improvement
has been studied for d=2 in [9,24].

From Theorem 6, we see that GI (d; n) can be at most (d − 1)-connected with-
out a loop. So, the improvement does not always exist for GI (d; n). However, it al-
most always exists for GB(d; n). We give this result in this section. We Erst prove a
lemma.
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Lemma 11. Let n¿max(5d; d2 + 1) and d¿2. Suppose that E is a node-cut of size
at most d− 1 in GB(d; n), such that removal of the nodes in E leaves no path from
any node in C to any node in D; then either

(1) C has a loop node, and the number of nodes between any loop node in E and
any loop node in C is at most 2d− 1, or

(2) D has a loop node, and the number of nodes between any loop node in E and
any loop node in D is at most 2d− 1.

Proof. First, assume gcd(n; d)= 1. Since 1¡d¡d2 + 1¡n, we have q∗ �=1, m∗ �=1,
d �≡ − d (mod n) and d2 �≡ − 1 (mod n). Moreover, by the consecutivity lemma, the set
S has |C| + d − 1 elements and both S =C ∪E and D are consecutive runs. In this
case, |E| is indeed minimum, so every claw-end from E must intersect D. Consider the
proof of Theorem 6. If |D|6|C|, then by Claim 7 D has a loop node and |D|6d. A
claw-end from an E-loop node has to intersect D, so that the number of nodes between
an E-loop node and any node in D is at most 2d− 1. If |C|6|D|, then by Claim 8 C
has a loop node and |C|6d. Hence |S|62d − 1. Consequently, the number of nodes
between any two nodes in E ∪C is at most 2d− 1.
Now, assume 1¡gcd(n; d)¡d. Notice that in the proof of Theorem 5, the minimality

of |E| is assumed. Here, we do not assume it. However, by Corollary 10, |E|=d− 1
is indeed minimum. The diIerence is that D may not be consecutive. To meet the
assumption S =C ∪E in the proof of Theorem 5, we have to move at most g − 1
elements from C into D. Those elements are in A=(C ∪E)\S and cannot have a loop.
So, the movement aIects only the sizes of C and D. Let C′ =C\A and D′ =D∪A.
Now, consider the proof of Theorem 5 applied to E; C′ and D′. In case 1, every node in
C′ has a loop, so that C has a loop. Moreover, |S|=d so |C′|=1 and |C|61+g−1¡d.
Clearly the loop node of C′ is within d of every node in E. The claw-end from a loop
node i in A has to intersect S, so i is also within 2d− 1 of every node in E. In sum,
the number of nodes between a C-loop node and an E-loop node is at most 2d − 1.
In case 2, |D′|6d − 1 and D′ has a loop, so that |D|6d − 1 and D has a loop.
The cardinality of E is minimum so every claw-end from E intersects D′. It follows
that every E-loop node is within 2d − 1 from every loop node in D (⊆ D′). In case
3, of g elements in an orbit, �g=2	 − 1 must not be in D′ and clearly are elements
of E. Moreover, just as we have noted in the proof of Theorem 5, there are at least
�(|D′|+d−1)=g	 orbits whose claw-ends intersect D′; therefore, |E|¿�(|D′|+d−1)=g	.
This gives us

⌊g
2

⌋ n
g
6|D′|6 g|E|

�g=2− 1	 − (d− 1):

Since g in this case must be odd, g=gcd(d; n)¿1, and |E|6d − 1, it is easy to see
that this contradicts n¿max(5d; d2 + 1).
Finally, we consider the case of gcd(n; d)=d. Note that GB(d; n) is the line-graph

of GB(d; n=d). Thus, E gives a line-cut of size at most d−1 for GB(d; n=d). However,
it was proven in [13] that such a line-cut must be incident to a node of GB(d; n=d),
which implies that C or D is a singleton. So, the lemma holds.
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A digraph is called a modi;ed G(d; n; q; r) if it is constructed from G(d; n; q; r) by
connecting all loop-nodes into disjoint cycles with sizes at least two and deleting all
loops. The modiEcation is said to be cyclic if all loop-nodes are connected into a single
cycle. The modiEcation is said to be simple if there is no multiple edge in the resultant
simple graph.

Theorem 12. When n¿2d(d−1) and d¿4, there exists a cyclically modi;ed GB(d; n)
of connectivity d.

Proof. Consider two loop-nodes x and y where the number of nodes between them is at
least 2d. When (1) in Lemma 11 occurs, x∈C implies y∈D. When (2) in Lemma 11
occurs, x∈D implies y∈C. This means that as long as all loop-nodes are connected
by a cycle (or disjoint cycles) with edges of “distance” at least 2d−1, the node-cut E
of size less than d will no longer exist in the modiEed graph. Hence, the connectivity
becomes d. We next show the existence of such a modiEcation. Consider a graph H
with node set consisting of all loop-nodes of GB(d; n) and an edge between x and y
exists iI x and y are at a distance at least 2d−1 from each other. If H is Hamiltonian,
then the theorem is proved. We prove the Hamiltonian property of H by showing that
minimum degree %(H) of H is at least half the number of its nodes. Consider any
loop-node i of GB(d; n). As we have mentioned in section 2, except for the possible
loop node right next to i, all other loop nodes are at least n=(d− 1)− 1¿2d− 1 from
it, i.e. the number of nodes between them is at least 2d. Hence, %(H)¿d− 2 +  . It
is easy to see that when d¿4, d− 2 +  ¿(d− 1 +  )=2.

Notice that as n¿max(5d; d2 + 1), our cyclic modiEcation is also simple. The next
theorem relaxes the conditions on n and d a bit further.

Theorem 13. Let  =gcd(d− 1; n). If 1¡ ¡d− 1, then for n¿d2 and d¿2, there
exists a simply-modi;ed GB(d; n) of connectivity d.

Proof. For each k-value such that  | k, there are exactly  loop-nodes which are
evenly distributed with distance n= . Note that n=&¿2n=d¿2d. We connect each loop-
node x to another loop-node x + n= . Then, all loop-nodes are connected by several
disjoint cycles of size  , and all edges are in the graph H of the proof of Theorem 12.
Finally, we notice that the above connections produce no multiple edges. The details
are easy to verify.

6. Discussions

In this paper, we have determined the connectivity of consecutive-d digraphs
G(d; n; q; r) in almost all cases, and studied how to modify these graphs to maximize
connectivity. Our results generalized and improved existing results on de Bruijn
digraphs, Kautz digraphs, and their generalizations.
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There are still, however, a few small gaps in our characterization of the connectivity
of G(d; n; q; r). In particular, several problems remained to be solved:

(a) When gcd(q; n)=d and n6d2, what are the necessary and suVcient conditions
for G(d; n; q; r) to be d-connected.

(b) When gcd(q; n)= 1 and n63d, what are the necessary and suVcient conditions
for G(d; n; q; r) to be d-connected.

(c) When 1¡gcd(q; n)¡d, what are the necessary and suVcient conditions for
G(d; n; q; r) to be (d− i)-connected, where 0¡i¡gcd(q; n).
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