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Abstract

The preferential attachment graph G,,(n) is a random graph formed by adding a
new vertex at each time step, with m edges which point to vertices selected at random
with probability proportional to their degree. Thus at time n there are n vertices and
mn edges. This process yields a graph which has been proposed as a simple model of the
world wide web [2]. In this paper we show that whp the cover time of a simple random
walk on G, (n) is asymptotic to 22nInn.

1 Introduction

Let G = (V, E) be a connected graph, let |V| =n, and |E| = m. A random walk W, v € V
on the undirected graph G = (V, E) is a Markov chain Xy = u, Xj,...,X;,... € V associated
to a particle that moves from vertex to vertex according to the following rule: the probability
of a transition from vertex 4, of degree d(i), to vertex j is 1/d(i) if {3, j} € E, and 0 otherwise.
For u € V let C, be the expected time taken for W, to visit every vertex of G. The cover
time Cg of G is defined as Cg = max,cy C,. The cover time of connected graphs has been
extensively studied. It is a classic result of Aleliunas, Karp, Lipton, Lovasz and Rackoff [1]
that Cg < 2m(n — 1). It was shown by Feige [7], [8], that for any connected graph G

4
(I—o0(1))nlogn < Cg < (1+ 0(1))5713.
The lower bound is achieved by (for example) the complete graph K, whose cover time is
determined by the Coupon Collector problem.
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In a previous paper [5] we studied the cover time of random graphs G, when np = clogn
where ¢ = O(1) and (¢ — 1)logn — oo. This extended a result of Jonasson, who proved in
[11] that when the expected average degree (n — 1)p grows faster than logn, whp a random
graph has the same cover time (asymptoticaly) as the complete graph K,,, whereas, when
np = Q(logn) this is not the case.

Theorem 1. /5] Suppose that np = clogn = logn + w where w = (¢ — 1)logn — oo and
c>1. If G € G,,, then whp'

Cg ~ clog <C_L1) nlogn.

The notation A, ~ B, means that lim, ,,, A,/B, = 1.

In another paper [6] we used a different technique to study the cover time of random regular
graphs. We proved the following:

Theorem 2. Let r > 3 be constant. Let G, denote the set of r-reqular graphs with vertex set
V=A{1,2,...,n}. If G is chosen randomly from G,, then whp

r—1

Cg ~ 5 nlogn.

r —

In this paper we turn our attention to the preferential attachment graph G,,(n) introduced
by Barabdsi and Albert [2] as a simplified model of the WWW. The preferential attachment
graph G,,(n) is a random graph formed by adding a new vertex at each time step, with m
edges which point to vertices selected at random with probability proportional to their degree.
Thus at time n there are n vertices and mn edges. We use the generative model of [3] (see
also [4]) and build a graph sequentially as follows:

e At each time step ¢, we add a vertex v;, and we add an edge from v; to some other vertex
u, where u is chosen at random according to the distribution:

di(vs) . ‘
Pr(u= ;) = {ﬁ it v; £ v

1 ; — .-
2%—17 if Vi = Uy,

where d;(v) denotes the degree of vertex v at time ¢.

e For some constant m, every m steps we contract the most recently added m vertices to
form a single vertex.

Let Gi,(n) denote the random graph at time step mn after n contractions of size m. Thus
G (n) has n vertices and mn edges and may be a multi-graph.

LA sequence of events &, occurs with high probability whp if lim,,_, -, Pr(&,) = 1.
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This is a very nice clean model, but we warn the reader that it allows loops and multiple
edges, although whp there will be very few of them.

We write d(j) in place of d,(j).
We prove

Theorem 3. If m > 3 then whp the preferential attachment graph G = G,(n) satisfies

2
Cg ~ 2
m_

1 .
7 nlogn

Conjecture: The theorem holds for m = 2 as well.

2 The first visit time lemma.

2.1 Convergence of the random walk

In this section G denotes a fixed connected graph with n vertices. u is some arbitrary vertex
from which a walk W, is started. Let W,(t) be the vertex reached at step ¢, let P be the

matrix of transition probabilities of the walk and let Pét)(v) = Pr(W,(t) = v). Let m be
the steady state distribution of the random walk W,. Let m, = m(v) denote the stationary
distribution of the vertex v. Let AnLax be the second largest eigenvalue of P. Then,

|P1Et) (-73) - '/Twl < (7Tz/7ru)1/2Afnax‘ (1)

See for example, Jerrum and Sinclair [10].

2.2 Generating function formulation
Fix two vertices u,v. Let h; be the probability Pr(W,(t) = v) = P (v), that the walk W,
visits v at step t. Let H(s) generate h;.

Similarly, considering the walk W,, starting at v, let r, be the probability that this walk
returns to v at step t = 0,1,.... Let R(s) generate ;. We note that ro = 1.

Let f;(u—wv) be the probability that the first visit of the walk W, to v occurs at step . If
u # v then fo(u—v) = 0. Let F(s) generate f;(u—v). Thus

H(s) = F(s)R(s). (2)

Let
T =4logy-1 n (3)



and note that

max |IPW(z) — 7y <n™3 fort > T. (4)
ze
For R(s) let
-1
Ry(s) =) rjs’. (5)
=0

Thus Rr(s) generates the probability of a return to v during steps 0, ..., 7—1 of a walk starting
at v. Similarly for H(s), let

HT(S) = ihjsj. (6)

2.3 First visit time: Single vertex v

The following lemma was proved in [6]. Here €, €5 are constants in (0, 1).
Lemma 4. Let T be as defined in (3). Suppose that

(a) Hr(1) < (1 —e1)Rr(1).

Rr(s)—Rr(1
(b) Il?li}lc% <1—e.

(c) Tm, =o0(1), T, = Q(n2).

Let .
A= T (7)
for some sufficently large constant K.
Let
Ty
v = 5 8
P Rr(1)(1+ O(Tr)) (®)
Hqp(1)
wo = 1-— . 9
G, Rr(1)(1 + O(T,)) )
Then p
_ v —At/2 >
fi(u—v) cu,vi(1 o +O0(e ) forallt > T. (10)

Corollary 5. Let A;(v) be the event that W, has not visited v by step t. Then fort > T,

Pr(A;(v)) = ﬁ +O(NeM/?),

As we leave this section we introduce the notation R, H, to replace Ry(1), Hy(1) (which are
not attached to v).



3 The random graph G,,(n)

In this section we prove some properties of G,,(n). Let

w=Inlnlnn.

We first derive crude bounds on degrees.

Lemma 6.
(a)
Pr(3i < n'/1°: d() < n'/*) = o(1).

(b)
Pr(3s,t: dy(s) > (t/s)/*(Inn)®) = O(n73).

Proof For this we use a model devised in [3]. Let Y = X'/2 where X is uniform [0, 1].
Let y; < y2 < --+ < Ymn be the order statistics of mn independent copies of Y. Let yo =
0, Ymnt1 = 1. Ij = [Y-1)m:Yjm) for 5 = 1,2,...,n. Then for k = 1,2,...,mn choose zj
uniformly from [0, y,). If 2, € I; then add the edge (4, [k/m]) to G. The resulting graph G
at the end of this process has precisely the same distribution as G,,(n).

The random variables y; can be generated via

s Art+ Ayt + A
v A+ Az + -+ Amnia

where A1, As, ..., Anni1 are independent exponentially distributed with mean 1.

It is not difficult to prove that S = A; + Ay + - -+ + Apny1 € J = [mn — n?3 mn + n?/?] gs.
Next let £ be the event that S ¢ J or that there exists i < mn'/'? such that A; < n~/9 or
A; > logn. Then

Pr(€) < o(1) + mnO((1 — e ")+ n71) = o(1).

1/10

If £ does not occur then ¢ < mn implies that

A 1/2
T — 5*1/214 +"'+Ail/2 1_<1_—1)
Y Yi— ( 1 ) A1++A2

> §7U2 A
- 2(A1 + -+ + A2
1
nl1/18;1/2 logn' (11)

Now put W; = ¥im — Y@-1)m and condition of the values of W; for ¢ = 1,2,...,n. Then for
j < n'/'% we find that d(j) dominates Bin(mn/2,W,) in distribution. This is becaue for
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k > mn/2, the probability that z; € I; is at least W,. Part (a) now follows from (11) and the
Chernoff bounds.

(b) Fix s <t and let X, = d(s,7) for T =s,s+1,...,t and let \ = G/ Now conditional

10lnn
on X, = z, we have
Xy =X, + B (m, i) . (12)
2mr
Thus
E AX 1 X‘r — — Az ( _ T x )\)m
(e | x) € 2mr + 2m7‘6
T
< M- — 4+ Z a2 }
< exp{ x 27+27( + A+ X%
1+ A
= exp{/\x <1+ + )}
2T
Thus

E (M) <E <exp {XT)\ <1 + 1;:) }) :

If we put Ay = Xand \,_1 =\, (1 + %) then provided A\; < 1 we will have
E (e*t) < ™,

Now provided A, < A = —— we can write

Inn
1+ A
A1 < A (1 + i )

2T

and then

t
1+A
As < )\II<1+ ;_ )
-

< 10A(t/s)Y?
which is < A by the definition of .
Putting u = (t/5)"/?(Inn)? we get

em/\s —Au

exp{A(10m(t/s)"? — u)}
= O(n®)

Pr(Xt Z U)

and part (b) follows. 0

Let a cycle C be small if |C| < 2w + 1. Let a vertex v be locally tree-like if the sub-graph H,
induced by the vertices at distance 2w or less is a tree. Thus a locally tree-like vertex is at
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distance at least 2w from any small cycle. Suppose that v is locally tree-like. We say that v is
locally reqular if H, is a tree of depth 2w, rooted at v, in which every non-leaf has branching
factor m.

For j € [n] we let X(j) denote the set of neighbours of j in [j — 1] i.e. the vertices “chosen”
by j (although not including j, loops are allowed in this construction).

Lemma 7. Whp, G,,(n) contains at least n*=°(V) locally reqular vertices.

Proof Let I, = [n(l—%k),n(l 2k+1)) for 1 <k <w. Let
Jo={j€l: X(j) C I, |X(H)|=m, X({§)NX(@) =0, forj #j'}.
(|X(j) = m| so that there are no parallel edges emanating from j.)
Then for 2 < k < w we let
Jo={j € I+ X(j) C Jr—r, [X(G)| =m, X(F)NX(5) =0, for j #j'}.
By construction, J,, consists of locally regular vertices and so it remains to bound |J,|.
Forjel, imi1=7—1,
Pr(j e J;) =

mlk+1 m m mn m2
2 H 11 ( 27—1> m!gm' 11 (1_27—1>

{i1<<im}CI k=1 T=mip+1 r=mj+1

m . m/2 2
Ik m! ™
- x (@) e

{i1<-<im}CL \k=1 J

:m—3/2\ ™
~ <j2nm > m! Z Hzl/2

{i1<-- <im}C11k 1

m 3/2 1/2
~ (L) (0
i€l
o (VB-vE\"
nm 3

So we can write, for some A,,, B,, which depend only on m,

/8
E (| J2) Z J™ ~ Bpn.
j=3n/4+1
We argue next that |J;| is concentrated around its mean. Let Y7,Ys,...,Y,,, denote the

sequence of single choices of edges added. Here when vertex ¢ is choosing one of its m neigh-
bours, we consider each edge {u,v} of G,,(i — 1) as being 2 directed arcs (u,v) and (v,u).
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When choosing a neighbour, i chooses (z,y) randomly from the 2m(i — 1) arcs available and
adds the edge {7, y}. In this way, each vertex is chosen proportioanl to its degree in G, (i —1).
We let

Z;=E (|| [ Y1,Y,..., Y}, A) = E (| 2] | Y1, Y5,..., Vi, A)

and prove that
7] < 4. (13)

The Azuma-Hoeffding martingale inequality then implies that

u2
Pr(|al ~ B ()] 2 u | A) S exp{ -2} (14)

It follows that qs?
|| 2] — E (|Js])] < n'2nn. (15)
Fix Y1,Ys,...,Y; and let Y; = (z,v), ¥; = (2,0). Of course # = z if m does not divide
i. Then for each complete outcome Y = Y3,Y5,..., Y we define a corresponding outcome

Y = Y1,Y,,...,Y, 4, Y;, .. YT where for 57 > 1, Y is obtained from Y as follows: If Y creates
a new edge (w,v) by randomly choosing edge (x,v) arising from Y, then in Y}, ( ,v) is
replaced by (w, ), otherwise Y; =Y.

The map Y — Y is measure preserving and in going from Y to Y |Jo| changes by at most 4.
(13) follows.

Repeating the argument for Pr(j € J;) we see that for j € I3 and some B,, < 1,

. 45m T\ \" | Jo [ 2mt1
Pr(] S J3 | JQ) ~ <7nm+1) <Z Z) > B n—m BmAm n

1€ Jy

and given J, of size ~ A,,n, |J3| will be concentrated around its mean.
Proceeding in this way we find that for 2 < k£ < w we have gs

2m+1
| Jet1] > Ck|J :

where we can choose C} < 1, depending only on m.

From this we get

PAERD H C(2m+1 2m+1)“’ T i)

A small cycle is light if it contains no vertex v < n!/!° (it has no “heavy” vertices).

2A sequence of events &, occurs quite surely (qs) if Pr(&£,) = 1 — O(n~¥) for any constant K > 0.



Lemma 8. Whp G,,(n) does not contain a small cycle within 2w of a light cycle.

Proof First consider the number pairs Z; of disjoint cycles C;, Cs joined by a short path
P. Here C; is light and Cj is small. Then (with a,y1 = a; and b, 1 = b;)

E(Z)<ol)+ > > ((i?ziyl)m (logn) H(lb(;ii) ﬁ(logn) (16)

ara CuC

3<rs<2w+1 4 ap>n1/10 =1 kWk+1 1=1 =1 K p+1
0<i< 2w e bs

1<i<r1<j<s cl,...’,ct

Explanation: ay,...,a,, b,...,bs are the vertices of Cy,Cy respectively and cy,...,c; are
the internal vertices of the path P which joins a; to b;. Next suppose that 1 < o < g < n.

Then Pr(G,,(n) contains edge (, 3)) is at most ?"Eﬁ% This is because when [ chooses its
m(logn)?(8/a)'/?
2m(B—1)
bound on the degree of o in G,,,(8—1). We are using Lemma 6 here and the o(1) term accounts
for the failure of this bound. Furthermore, this remains an upper bound if we condition on

the existence of some of the other edges of Cy, Cs, P

neighbours, the probability it chooses « is at most . Here the numerator is a

Thus, if Hy is the kth harmonic number 1 + % + -+ %,

(logn)3(1+r+s+t) -

E(Z) < o)+ Y, e Hro
3<r,s<2w+1
0<t<2w

1<i<r1<5<s
— O((lOg n)16w+3w2n 1/20)

= o(1).

A similar argument deals with the case of a light cycle with a short path joining two of its
vertices. O

We need to deal with the possibility that G,,(n) contains many cycles.

5w

Lemma 9. Whp G,,(n) contains at most (logn)> small cycles.

Proof Let Z be the number of small cycles in G,,,(n) (including parallel edges). Then
2w+1

<3 3 18 o(og ™)

k=2 ai,...,ax =1 i+
and the result follows from the Markov inequality. O
We estimate the number of non tree-like vertices.

Lemma 10. Whp there are at most O(n'/?*°)) non tree-like vertices.



Proof A non tree-like vertex is within w of a small cycle. So the expectation of the
number Z of such vertices satisfies

E(7) < (logn)?® ¢ (logn)® 3 (logn)®
(2) < Z Z (aobs) 1/211 H bibit

0<r<w Q0y:+ar akak+1 =1
3<5<2w+1 bi...,bs
1<i<s

O(nY/2eW),

The result follows from the Markov inequality. O

Finally, we state the following consequence of a result in Mihail, Papadimitriou and Saberi
[12]:

Lemma 11. For m > 2, whp,
)\max <1- C

where ¢ is a positive constant.

4 Cover time of G,,(n)

4.1 Parameters

Asume now that G,,(n) (i) has n'=°M) locally regular vertices, (i) d(s) > n!/* for s < n'/10,
(iii) no small cycle close to a light cycle, (iv) O((logn)®@) small cycles and (v) O(n'/2+°()
non tree-like vertices.

Cosider first a locally regular vertex v. It was shown in [6] (Lemma 6) that R, = == +o(w™!)
for a locally tree-like vertex w of an r-regular graph. We obtain the same result for v by
puting m = r + 1. Note that the degree of v is irrelevant here. It is the branching factor of
the rest of the tree H, that matters.

Lemma 12. Suppose that m > 2. Suppose that v is locally tree-like.

(a) If v is locally regular then R, = -~ + o(w™!).

m—1

(b) In general, R +o(w™h).

v—m2m1

(c) If d(v) = m and v is not locally regular then R, < -2 + o(w™ ).

Proof (a) We project the first w steps of W, onto a random walk X on {0,1,2,...,}.
Here 0 replaces v. The probability of going right at a point £ £ 0 is p = —"=. Let E be the
expected number of visits to 0 for such a walk starting at i and continuing 1ndeﬁn1tely Then
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This is because F; is Ej times the expected number of visits to 0 between right moves from
1. Solving gives

> m
P m—1
1-p)

Note that po;1 = 0, pa; < (211) (p( )¢ and so

Sresate)

t=w+1 j=w/2 J

We compare this with R,. First observe that r; = p; for i < w. Then from (1) we see that

T T
DS Y (Tt ) = 0w ).
i=w+1 i=w+1

Part (a) now follows from (17) and (18).

(b) If every non-leaf vertex other than v of H, has degree at least m+ 1 then the projection X
on {0,1,2,...,} is such that probability of going right at a point ¢ depends on the degree of
the vertex w where W, finds itself but is at least %+ and so the expected number of returns
to 0 by X will be at most —™+. The rest of the argument in (a) is unchanged.

Unfortunately, the situation is a little more complicated due to H, posibly having vertices of
degree m, in which case the probability of moving right is only ™—. However, if this is the
probability of moving right at ¢ and ¢ # 1 then after moving to £ — 1 the probability of going
right will be at least mié and after moving to £ + 1 the probability of going right will be at
least ™. This is because the move right probability is ™= only if the degree of w is exactly
m and then w > w' where w' is the ancestor of w in H This forces w' to have degree at
least m + 2 and the successors of w to have degree at least m + 1. To bound R, we consider 2
cases. The first will be used when d(v) > m + 1. Then to maximise the number of posible go
right probabilities of ™= 1 we sandwich them between go right probabilities of %5, except for
the first. This will prove (b). To prove (c) we sandwich a go rlght probability of =1 between
a go right probability of m+1 and a go right probability of =

We first analyse a non-uniform random walk on {0,1,2,..., } wth reflecting barrier at 0 which
we will use when d(v) > m+ 1. At 2k + 1 the probability of moving right is par41 = ™=+ and
at 2k the probability of moving right is po, = 7. Suppose now that E; denotes the expected
number of visits to 0 for such a random walk, started at . Then

Ey = 1+ F;
1 m—1
E, = —Ey+—F,
m m
E, = EyZ

where Z is the expected number of visits to 0 between right moves from 2.
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Now consider starting the random walk at 7 and going left immediately. Define Z; to the
expected number of visits to 0 before the next return to i. Then Z = Z;/m. The factor
1/m = (1 — ps)/p2 is the expected number of left moves at 2 between going right. Then
Zy=1and Zy = Z;(1 — p1)/p1 =1/(m — 1). Thus Z = m giving

1 1
E0:1+—E0+—2E0
m m

implying that
2

m
Ey=—f—"-—.
T m2—m-—1
We now analyse a non-uniform random walk on {0,1,2,...,} wth reflecting barrier at 0 which

we will use when d(v) = m. At 3k + 1 the probability of moving right is pagy1 = ﬁ—i;, at
—1

3k + 2 the probability of moving right is psxy2 = ™~ and at 3k the probability of moving
right is psr = %5 Suppose now that E; denotes the expected number of visits to 0 for such
a random walk, started at . Then

Ey, = 1+ E;
1 m+1
E, = Ey + FE
! m+ 2 0 m+ 2 2
1 m—1
Ey = —FEi+ E3
m

Ey = EyZ3(1—ps)/ps
Here Z; =1, Zy = (1 —p1)/p1 = 1/(m + 1) and Z3 = Z5(1 — p2)/pe which implies

m(m? +m — 1) m

FEy= .
0 m3—m—1 m—1

We deal with non-tree like vertices in a somewhat piece-meal fashion.

Lemma 13. Suppose that m > 2.

(a) Suppose that G, contains a unique light cycle C,. Assume that v ¢ C, and that the
shortest path P = (wg = v, w1, . .., wg) from v to C, is such that max{d(w),...,d(wg)}
> w?®. Then

m2

(i) Ry <

+o(w™) or (i) d(v) >m+1 and R, <

— — Folw™). (19)

2-m-—1

(b) Suppose that H, contains only heavy cycles. Then (19) holds in this case too.
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Proof

(a) Let H! be obtained from H, by deleting those vertices, other than w, whose only path to
v in H, goes through w. Let R] be the expected number of returns to v in a random walk of
length w on H, where w is an absorbing state. We claim that

R, < R, +o(w™). (20)

Once we verify this, the proof of (a) follows from (the proof of) Lemma 12. To verify (20)
we couple random walks on H,, H, until w is visited. In the latter the process stops. In the
former, we find that when at w, the probability we get closer to v in the next step is at most
w™3 and so the expected number of returns from now on is at most w x w™> and (20) follows.

(b) Now consider the case where H, contains only heavy cycles. We argue first that a random
walk of length w that starts at v might as well terminate if it reaches a vertex w < n'/1°, w # v.
We can assume d(w) > n!/4. Now we can assume from Lemma 9 at least ng = n'/* — (logn)>
of the edges incident with w are not in cycles contained in H,. But then a walk that arrives

at w has a more than -29; chance of entering a sub-tree T;, of H, rooted at w for which

every vertex is separated from v by w. But then the probability of leaving T, in w steps is
O(w(logn)® /n'/*) and so once a walk has reached w, the expected number of further returns
to v is o(w™!). We can therefore remove T,, from H, and then replace an edge (x,w) by an
edge (z,w,) and make all the vertices w, absorbing. Repeating this argument, we are left
with a tree to which we can apply the argument of Lemma 12. O

Note that if v € Vg then no bound on R, has been established:

Vg = {v: G, contains a unique light cycle C, and the path from v to C,
contains no vertex of degree at least w3}

We now establish Part (b) of Lemma 4.
Lemma 14. If m > 3 and v ¢ Vg then

max |R1)(8])%—_Rv| <8/9+o(1).

|s]=1 v

Proof For any s,

T
|Ry(s) = Ry| <D _rjls? —1].
j=1

As |s| = 1 we have that

T T
Zrﬂsj -1 < Qer.
j=1 j=1

13



But, Lemmas 12 and 13 imply

T

2(m* —m — 1) 8
2R, =2-2R; <2-— 1) < = +o(1).
v ;T] v — m2 +0()—9+0()
O
We now establish Part (a) of Lemma 4.
Lemma 15. I[f m > 3 and v ¢ Vg then
H, < C,R, + o(1)
where C,, < 1.
Proof Let f; be the probability that W, has a first visit to v at time ¢t. As H(s) =
F(s)R(s) we have
H, < Pr(W, visits v by time T — 1) R,
-1
- w3
t=1
Equation (1) implies that
-1
Y fi=o(1). (21)
t=w

We now estimate ), , f/, the probability that W, visits v by time w. Let vy, vs,...,v; be
the neighbours of v and let w be the first neighbour of v visited by W,. Then

k
Pr(W, visits v by time w) = Z Pr(W, visits v by time w | w = v;)Pr(w = v;)
i=1
k
< Z Pr(W,, visits v by the time w)Pr(w = v;).
i=1

So it suffices to prove the lemma when v is a neighbour of v.

Let the neighbours of u be wuy,us,...,uq, d > m and that v = ug. Suppose first that u is
tree-like.

m—1

2
Pr(W, does not visit v by time w) > (2 — 2m7> —o(l)>0. (22)
m

m —m-—1

Here we use the fact that szi:zfl — 1+ 0(1) bounds the probability of return to u;, 1 < d—1,
assuming that the first neighbour of u visited by W, is u;.
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If H, contains a unique light cycle then because v ¢ Vz we have either (i) d > w?® or (ii)
u ¢ C,. In the former case we have Pr(W, visits v by time w) = O(w 2). In the latter case
either (a) the distance from u to C, is at least w/2 and we can replace w by w/2 from (21)
onwards i.e. act as though u is tree-like to obtain (22) or (b) the path from u to C, contains
a vertex = of degree more than w®. In which case we could “truncate” H, at x as in the proof
of Lemma 13(b) and proceed as if H, is tree-like to obtain (22) .

If there is more than one cycle then we deal with them as we did in Lemma 13(c) and then
once again obtain (22) . O

4.2 Upper bound on cover time

From now on, assume that m > 3.

Let tg = [2™-nlogn]. We prove that whp, for G,,(n), for any vertex u € V,

Cu S to + O(to). (23)

e V] denotes the set of vertices which are either (i) locally regular or (ii) are locally tree-
like but not locally regular and have degree m or are not locally tree-like but (iii) satisfy
condition (a) or (b) of Lemma 13 and satisfy (i) of (19).

e V5 denotes the set of vertices which have degree > m + 1 and are either (i) locally tree-
like, not locally regular or are not locally tree-like but (ii) satisfy conditions (a) or (b)
of Lemma 13 and satisfy (ii) of (19).

e V3 denotes the set of not locally tree-like vertices for which there is a path of length < w
to a short cycle which only uses vertices of degree w?® or less. (V3 contains the vertices
of small cycles). Note that

|Va| < w(logn)™w* < (logn)®™.

Note that Vi, Vs, V3 partition V' \ Vg where Vg was defined following Lemma 13.

Let T (u) be the time taken to visit every vertex of G by the random walk W,. Let U, be the
number of vertices of G which have not been visited by W, at step t. We note the following:

C,=ETg(u) = Z Pr(Tg(u) > t), (24)
Pr(Tg(u) >t) = P>r(Ut > 0) < min{1,E U,}. (25)
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It follows from (24), (25) that for all ¢

C, < t+) EU,

s>t

= t+ZZPr(A v

veEV s>t

= DS PrAm 3 Y (2 one )
veVR s>t ’UEV\V s>t

< t+ ) ) Pr(4, (1+0(Tm)) Y <&e‘(l+O(T”v))t”v/Rv + O(Ae—“ﬂ))
veVR s>t veV\VE o

(26)
Let t; = (1 + €)ty where ¢ = n™'/3 can be assumed by Lemma 6 to satisfy T'r, = o(e) for all
veV.
If v € V; then by Lemmas 12 and 13,

—1
1nlogn %-m?:logn. (27)

2
ti(1+O(Tm))m/Ry 2 — =

If v € V5 then by Lemmas 12 and 13,

m+1 m2—-m-—1

2m
t1(1+ O(Tmy,))my /Ry > m_lnlogn- Sy — > logn. (28)
If v € V5 then,
2m m
1 T > logn:-—— -w™ > w 'logn. 2
t1(1+ O( ’/Tv))ﬂ'v/Rv_m_ln ogn: g w 2w logn (29)

Plugging (27), (28), (29) into (26) and using R, < 10 and m, > 5- for all v € V' \ Vi we get

Cu < tito(1)+ Y > Pr(A.(v)) +2((Vil +[Va]) - 20n - n~" + V3] - 20n - n~1/%)
veEVp s>t
< t1+o Z ZPr ) + 40n(1 + (log n)%n~1/«)
veVR s>t
= (1+o0(1 tg—i—ZZPr (30)
veEVR s>t

It remains to deal with Vz We first observe that
[Va| < (logn)>w. (31)

Now fix v € V. By “walking away from C,” we see that there exists w ¢ Vp such that there
is a path P from v to w of length ¢ < w such that all internal vertices of P have degree at
most w®. Let d < n'/2t°() (see Lemma 6(b)) be the degree of w.
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Let v = o + 21mn/d. If our walk visits w, it will with probability at least d 'w 3* visit v

within the next o steps. Therefore

Pr(A,(v)) < (1-Pr(A, ,(v)d 'w™
(- {-

(1—eHd w3,

IN

IN

Thus if y = (1 — e !)d w3,
D Pr(A,(v) < Y (1-m)b

s>to s>to

Z(l _ 7)3/(21/)

s>to

(1 — 7)to/(2v)
1= (-
2V7—1e—t07/(21’)

IN

IN A

50mw3wn1—1/(100mw3“’)

and so, using (31),
3 S Pr(A,(v)) < 50m(logn)™wnt/100mt) — o(4e),
veVR s>to

This completes our proof of the upper bound on cover time for m > 3.

4.3 Lower bound on cover time

For some vertex u, we can find a set of vertices S such that at time t; = to(1 —€), € — 0, the
probability the set S is covered by the walk W, tends to zero. Hence T (u) > t; whp which
implies that CG Z to — O(to).

We construct S as follows. Let S be some maximal set of locally regular vertices all of which
are at least distance 2w + 1 apart. Thus |S| > n!=o(Mm~w+D),

Let S(t) denote the subset of S which has not been visited by W, after step t. Now, provided
t>T

E(IS() > (1—0(1)) 3 (ﬁ ; o(n*)) |

veES 1+ Pv
Let u be a fixed vertex of S. Let v € S and let Hr(1) be given by (6), then (1) implies that

!
-

Hp(1) <Y (m + M) =o0(1). (32)

w

o~
I
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Thus ¢y, = 1 — o(1). Setting t = t; = (1 — €)t where € = 2w !, we have
E(ISt))) = (1+0(1))[S]e 1w
> pllv, (33)

Let Y, be the indicator for the event that W, has not visited vertex v at time {. Let
Z ={v,w} C S. We will show (below) that that for v,w € S

Cu,z _
E (K),th,tl) = W + O(n 2), (34)

where ¢, 7z ~ 1 and pz ~ (m — 1)/(mn). Thus
E (Yo, Yus) = (1+0(1))E (Yo, )E (Yo, ). (35)
It follows from (33) and (35), that
E (S(t)))” 1

Pr(S(t) #0) = = =1-o(1),

2 E(|St, [(|St, -1 —
E(S@)P) 2Bl 4 g (15, [) !

Proof of (34). Let I" be obtained from G by merging v, w into a single node Z. This node
has degree 2m.

There is a natural measure preserving mapping from the set of walks in G which start at u
and do not visit v or w, to the corresponding set of walks in I' which do not visit Z. Thus the
probability that W, does not visit v or w in the first ¢ steps is equal to the probability that
a random walk W, in I' which also starts at u does not visit Z in the first steps.

We apply Lemma 4 to . That 7 = — is clear, and ¢,z = 1 — o(1) is argued as in (32). The
derivation of Rz in Lemma 12 is also valid. The vertex Z is tree-like up to distance w in I'.
The fact that the root vertex of the corresponding infinite tree has degree 2m does not affect
the calculation of Fj. O
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