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Abstract. A great deal of work has been done to improve peer-to-peer
routing by strategically moving or replicating content. However, there
are many applications for which a peer-to-peer architecture might be
appropriate, but in which content movement is not feasible. We argue
that even in such applications, progress can be made in developing tech-
niques that ensure efficient searches. We present several such techniques.
First, we show that organizing the network into a square-root topology,
where peer degrees are proportional to the square root of the popularity
of their content, provides much better performance than power-law net-
works. Second, we present routing optimizations based on the amount of
content stored at peers, and tracking the “best” peers, that can further
improve performance. These and other techniques can make searches ef-
ficient, even when content movement or replication is not feasible.

1 Introduction

A large number of optimizations have been proposed to improve the perfor-
mance and effectiveness of peer-to-peer searches. Many of these proposals in-
volve moving or replicating content to achieve high performance. For example,
Cohen and Shenker [4] propose replicating files in order to make them easier to
find. Super-peer networks [21,14] replicate content metadata from leaf peers to
super-peers, where the actual search processing is done. Even distributed hash
tables [19,17,18] move data, as content (or pointers to content) are taken from
their original peer and moved to a location in the network based on a hash of
the object identifier. Other examples of proposals to move or replicate content
for efficiency include [20,3,8,7,11,2].

In order for this content movement approach to be effective, it must be
feasible to move objects around. For example, in the traditional application of
multimedia filesharing, it makes sense to move or replicate content: the files and
metadata rarely change and are small enough to replicate. However, in many
cases content movement may not be feasible. First, the data may be very large,
or the index over the data may be very large, and bandwidth and storage require-
ments for moving content or indexes may be prohibitive. For example, consider
a network of digital libraries, each containing multiple gigabytes or terabytes of
data. Full text searches can be accomplished efficiently using inverted indexes,
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but such indexes may be as large as the content itself. In this case, replicating
either the content or the indexes will certainly tax network links, and may cause
problems if storage is limited at peers. Second, if there are many changes in the
system, it will be difficult to keep remote indexes and copies up to date. Fre-
quent content changes, or frequent peer membership changes, will require many
updates, again taxing bandwidth resources. Third, many content providers are
unwilling to export data or index information for intellectual property reasons.
For example, an electronic publisher may be willing to process searches and re-
turn results, as long as it can record which searches are being processed over its
content or attach copyright notices to the content. Such a publisher will oppose
replication, and will probably be resistant to exporting indexing information so
that other peers end up processing searches of its content. Not every application
has these issues, and in many cases content movement makes sense. However,
there are many potential applications where such techniques are not feasible.

Can we still use peer-to-peer search techniques to perform information dis-
covery in these applications? We argue that the peer-to-peer approach can still
be used and made efficient. In particular, if we do not proactively move content,
but instead leave it at its source, we can avoid the cost of shipping replicas or
updates altogether. Unfortunately, existing basic peer-to-peer protocols that do
not require content movement, such as Gnutella’s original flooding approach, are
not scalable or efficient. What is needed is a new set of techniques to optimize
peer-to-peer searches without content movement.

As evidence for our argument, we present three techniques that can be used
to optimize peer-to-peer searches even when content is not moved. Consider a
simple protocol of random walk searches over an unstructured network [1,11].
Without content movement, the performance of simple random walks can de-
grade significantly. Our first optimization is to reorganize the overlay network so
that random walks can operate efficiently. We propose the square-root topology,
where each peer’s degree is proportional to the square root of the popularity of
its content. Our analysis shows that this topology is optimal for simple random
walk searches, and simulations show that other search techniques also perform
best on the square-root topology1. We also provide an adaptive algorithm for
forming the square-root topology without using content movement or global in-
formation.

We then present two more optimizations to simple random walks in square-
root networks. Biased document count and search memory work to quickly route
searches to peers that have the most content, and thus have the highest probabil-
ity of storing matching content. These optimizations complement the square-root
topology to further improve performance. Simulation results show more than a
factor of two performance improvement for our techniques over simple random
walk searches in power law networks.

Our optimizations are only a starting point, but they illustrate that high
performance can be achieved in networks where replicating or moving con-

1 In fact, the square-root topology is often best even when content movement is used;
see [6].
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tent is infeasible. There are a few other techniques that also operate without
content movement, such as “expanding ring” [11,20] or “directed breadth first
search” [20]. However, more work needs to be done. For instance, our results
show that the commonly assumed power-law network is not even the best net-
work for walk-based searches, since the square-root topology is optimal. There
are potentially a whole host of new techniques that can be developed to search
efficiently without using content movement.

In this paper, we first define and analyze the square-root topology (Section 2).
Next, we discuss the biased document count and search memory optimizations
(Section 3). We present simulation results that show the performance benefit of
our techniques (Section 4). We survey related work (Section 5), and then discuss
our conclusions (Section 6).

2 The Square-Root Topology

In “unstructured networks,” such as that in Gnutella, the topology of the network
is built up over time as peers choose neighbors essentially randomly. Without
any outside interference, such networks tend toward a power-law distribution,
where the number of neighbors of the ith most connected peer is proportional
to 1/iα. Here, α is a constant that determines the skew of the distribution. For
such networks, random walk searches have shown to be effective [1,11]. A simple
random walk search starts at one peer in the network, and is processed over
that peer’s content. That peer then forwards the search to a random neighbor,
who processes and forwards the query again. In this way, the search “walks”
randomly around the network, until it terminates, either because enough results
have been found or because a time-to-live (TTL) has been reached [11].

Consider a peer-to-peer network with N peers. Each peer k in the network
has degree dk (that is, dk is the number of neighbors that k has). The total
degree in the network is D, where D =

∑N
k=1 dk.

We define the square-root topology as a topology where the degree of each
peer is proportional to the square root of the popularity of the peer’s content.
Formally, if we define gk as the proportion of searches submitted to the system
that are satisfied by content at peer k, then the square-root topology has dk ∝√

gk for all k.
We now show that a square-root topology is optimal for random walk searches.

Imagine a user submits a search s that is satisfied by content at a particular peer
k. Of course, until the search is processed by the network, we do not know which
peer k is. How many hops will the search message take before it arrives at k, satis-
fying the search? We can model the search process as a Markov chain. Each state in
the Markov chain represents a peer, and the transitions between states represent a
search being forwarded from a peer to one of its neighbors. For simple random walk
searches, the probability of transitioning from peer i to peer j is 1/di if i and j are
neighbors, and 0 otherwise. Under this formulation, Markov chain theory tells us
that the expected number of hops for an arbitrary search to reach its goal peer is
inversely proportional to the goal peer’s degree:
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Lemma 1. If the network is connected (that is, there is a path between every
pair of peers) and non-bipartite, then the expected number of hops for search s
to reach peer k is D/dk.

This result is shown in [13].
To simplify our analysis, we assume a peer forwards a search message to a

randomly chosen neighbor, even if that search message has just come from that
neighbor or has already visited that neighbor. Lv et al [11] notes that avoiding
previously visited peers can improve the efficiency of walks. Simulation results
show that the square-root topology is still best; experiments are discussed in
Section 4.

If a given search requires D/dk hops to reach peer k, how many hops can
we expect an arbitrary search to take before it finds results? For simplicity, we
assume that a search will be satisfied by a single unique peer; this assumption is
relaxed in simulation studies in Section 4. We define gk to be the probability that
peer k is the goal peer; gk ≥ 0 and

∑N
k=1 gk = 1. The gk will vary from peer to

peer. The proportion of searches seeking peer k is gk, and the expected number
of hops that will be taken by peers seeking peer k is D/dk (from Lemma 1), so
the expected number of hops per search over all searches (called H) is:

H =
N∑

k=1

gk · D

dk
(1)

How can we minimize the expected number of hops taken by a search mes-
sage? It turns out that H is minimized when the degree of a peer is proportional
to the square root of the popularity of the peer’s content. This is the square-root
topology.

Theorem 1. H is minimized when

dk =
D
√

gk
∑N

i=1

√
gi

(2)

Proof sketch. We use the method of Lagrange multipliers to minimize equation
(1). Our constraint is that

∑N
k=1 dk = D. Taking the gradient of our constraint,

and also of equation (1), and setting them equal to each other gives us a series
of N equations of the form −D · gk · d−2

k · ûk = λûk where λ is the Lagrange
multiplier and ûk is a unit vector. Solving for dk, and substituting back into the
constraint equation (to eliminate λ), gives us the statement of the theorem. The
full proof is in [6]. �

Theorem 1 shows that the square-root topology is the optimal topology over
a large number of random walk searches. Our analysis shows that D, the total
degree in the network, does not impact performance: substituting equation (2)
into equation (1) eliminates D. Thus, any value of D that ensures the network
is connected is sufficient. Also, the actual topology does not matter, as long as
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peers have the proper degrees. The result in Lemma 1 is independent of which
peers are connected to which other peers.

To construct the square-root topology, each peer k must estimate the pop-
ularity of its content (gk) by dividing Qk

match, the number of queries processed
so far that matched the peer’s content, by Qk

total, the total number of queries
processed by the peer. Since D is unconstrained, we choose D = dmax ·

∑N
i=1

√
gi,

and substituting this equation into equation (2) gives the ideal degree of a peer

as dk = dmax ·
√

Qk
match/Qk

total. The dmax value is a constant we choose and
fix as part of the peer-to-peer protocol. Each peer continually tracks its queries
and calculates its ideal dk, and then adds or drops connections to achieve its
ideal degree (rounding dk as necessary). In order to keep the network connected,
we also choose a constant dmin, which is the minimum number of connections a
peer can have.

3 Optimizations to Random Walks

The square-root topology is optimal for simple random walk searches. But are sim-
ple random walk searches the best search strategy for the square-root topology?
Previous work [11,4,1] has shown that content movement can improve simple ran-
dom walks significantly. However, we can still optimize random walks for cases
where content movement is not feasible. In this section, we describe two optimiza-
tions that work together to improve search efficiency for random walks in square-
root networks.Both optimizations introduce determinism into the routing process,
so to avoid routing loops between the same sets of nodes, statekeeping must be
used [11]. With statekeeping, nodes remember where they have forwarded searches
and avoid forwarding them to the same neighbors over and over again.

3.1 Biased Document Count

With the biased document count technique, peers forward searches to the neigh-
bors that have the most documents. Then, searches are quickly processed over
a large amount of content, increasing the probability of finding matches. This
technique is similar to biasing random walks toward high degree peers [1], which
quickly routes searches to peers that know many other peers (and consequently
know about a large amount of content). When it is too expensive for peers to
track their neighbors’ content, we can do the next best thing: forward queries to
peers that have the most content themselves.

3.2 Search Memory

Search memory tracks the “best” peers the search has seen so far, and forwards
the search directly to those best peers. Consider for example the network frag-
ment shown in Figure 1. Imagine that a search is at peer p1. This peer has two
neighbors, p2 (with 1,000 documents) and p3 (with 500 documents). Using the
biased document count technique, peer p1 would forward the query to p2. Peer
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p5
(20 documents)

p4
(10 documents)

p1
(5 documents)

p3
(500 documents)

p2
(1000 documents)

...

...

...

...

...

Fig. 1. Search memory example

p2 has neighbors p4 (with 10 documents), p5 (with 20 documents) and p1 (with 5
documents). Under the biased document count strategy alone, the search would
next be forwarded to p5. However, if the search message tracks that it has seen,
but was not forwarded to, peer p3 with 500 documents, peer p2 can determine
that p3 is a better choice than any of its neighbors. Peer p2 would then send the
message to p3 using UDP or a temporary TCP connection.

Searches are likely to encounter many possible peers along their path, and
remembering document counts for all of them will significantly increase the size
of the search message. For example, consider a system where peers are identified
by their 32 bit IP address and 16 bit port number, and a 16 bit document
count is “remembered” for each peer. In our simulations of search memory in a
20,000 peer network, the average search message had to remember 7,460 peers
and counts, adding 58 KB on average to the search message size. Since peer-to-
peer searches otherwise require a few hundred bytes at most, adding 58 KB per
message will prohibitively increase the bandwidth used by search messages.

We can approximate search memory at much lower cost by remembering
only the best n peers. For example, if a search message remembers 10 peers, this
adds only 80 bytes to the message. Our experimental results (reported in the next
section) show that even this limited search memory can result in performance
improvement.

With the search memory optimization, search messages are not strictly routed
according to the overlay topology. However, the overlay is still important as a
mechanism for discovering peers; a search message learns about new peers be-
cause they are the neighbors of the current peer. Thus, the square-root topology
is still a good network organization, because it ensures the probability that a
search message learns about a new peer is in proportion to the popularity of the
content at the peer.

4 Experimental Results

In this section we present simulation results to confirm our analysis for scenarios
where queries may match content at multiple peers. We use simulation because
we wish to examine the performance of large networks (i.e., tens of thousands
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of peers) and it is difficult to deploy that many live peers for research purposes
on the Internet.

Our primary metric is to count the total number of messages sent under each
search method. We used a message-level peer-to-peer simulator that we have
developed to model networks with 20,000 peers storing a total of 631,320 docu-
ments. A total of 100,000 searches were submitted to random peers in the system,
and each query sought to find 10 results. Because the square-root topology is
based on the popularity of documents stored at different peers, it is important to
accurately model document and peer popularity; we use a content model based
on traces of real documents, peers and queries [5].

First, we conducted an experiment to examine the performance of random
walk searches in the square root topology. We generated two square-root topolo-
gies: one constructed a priori with global knowledge, and another constructed
adaptively using only local information at peers (with dmax = 160, dmin = 3
and dk = 4 when a peer first joins the network). We compared these topologies
to low-skew (α = 0.58) and high-skew (α = 0.74) power-law networks, both
generated using the PLOD algorithm [15].

Figure 2 shows the number of messages per search, calculated as a running
average every 1,000 queries. As the figure shows, the adaptive square-root topol-
ogy quickly converges to the ideal a priori square root topology (after about
8,000 queries). The square-root topology is significantly better than the power-
law topologies, requiring 26 percent fewer messages than the low-skew network,
and 45 percent fewer messages than the high-skew network.

Other results (not shown) indicate that the square-root topology is in fact
better than a power-law topology for several other types of peer-to-peer routing
techniques, and when statekeeping [11] is used. In fact, the square-root topol-
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Table 1. Results for optimizations

Routing Topology Msgs per search

Random walk Power-law (high skew) 16340

Random walk Power-law (low skew) 12110

Random walk Square-root 8850

Doc count Square-root 7780

Doc count + memory Square-root 7030

ogy is often best even when content movement is allowed. Detailed results are
reported in [6].

Next, we conducted an experiment to measure the effect of the biased doc-
ument count and search memory optimizations for searches in the square-root
topology. Table 1 shows the results averaged over 100,000 queries. As the ta-
ble shows, using the biased document count and limited memory optimizations
provided good performance, with 21 percent fewer messages than random walks
in the square-root topology. Even though we used limited memory, we achieved
high performance; for comparison, unlimited search memory only reduced the
message cost by a further 3 percent in our experiments. The combination of
all three of our techniques (square-root topology, biased document count and
limited memory) results in 42 percent fewer messages than random walks in
the low skew power-law topology, and 57 percent fewer messages than random
walks in the high-skew power-law topology. Clearly, it is possible to achieve high
performance even without content movement.

Other optimizations may be possible to further improve performance, and
examining such optimizations is worthy of further study.

5 Related Work

Avariety of techniques for efficientpeer-to-peer searcheshavebeenproposed.Many
investigators have proposed ways to move or replicate content, or replicate indexes
over content, in order to improve performance [11,4,20,8,3,2,7,19,17,18,21,14,4].
For applications where content movement is too expensive or resisted by peers,
other techniques must be developed. There have been several proposed techniques
that do not use content movement, such as expanding ring [11] or directed breadth
first search [20]. We argue that these techniques are just a starting point, and that
there is unexplored potential for further significant performance enhancements.

Some investigators have looked at building efficient topologies for peer-to-
peer searches. For example, Pandurangan et al [16] discuss building low diam-
eter networks for efficient flooding. However, random walk searches have been
shown to be more scalable than flooding [11]. Lv et al [12] presented a dynamic
algorithm for load balancing when random walks are used. It may be possible to
combine these techniques with our square-root topology in order to take both
popularity and peer capacity into account.
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Several investigators have examined peer-to-peer systems analytically, in-
cluding models for peer behavior [9], download traffic [10], and so on. To our
knowledge, there have been no published analytical results on the optimal topol-
ogy for random walk searches.

6 Conclusions

We have argued that new techniques must be developed to deal with networks
where it is infeasible to move or replicate content. Although many of the most
effective techniques developed so far utilize content movement, we believe that
progress can be made on efficient searching while leaving content at its original
peer. We have presented three techniques as support for our assertion, and as
a starting point for further investigation. First, we have shown that for simple
random walk searches, the optimal topology is a square-root topology, not a
power-law network. This topology can be constructed using purely local infor-
mation at peers. Second, biasing searches towards peers with a large amount
of content further improves performance. Third, adding search memory allows
messages to be quickly routed to the best peers. These techniques show the vi-
ability of further research into routing in unstructured networks, even when we
cannot move or replicate content.
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