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Abstract

Graph models for real-world complex networks such as the Internet, the WWW and bio-
logical networks are necessary for analytic and simulation-based studies of network protocols,
algorithms, engineering and evolution. To date, all available data for such networks suggest
heavy tailed statistics, most notably on the degrees of the underlying graphs. A practical way
to generate network topologies that meet the observed data is the following degree-driven ap-
proach: First predict the degrees of the graph by extrapolation from the available data, and
then construct a graph meeting the degree sequence and additional constraints, such as con-
nectivity and randomness. Within the networking community, this is currently accepted as the
most successful approach for modeling the inter-domain topology of the Internet.

In this paper we propose a Markov chain simulation approach for generating a random
connected graph with a given degree sequence. We introduce a novel heuristic to speed-up the
simulation of the Markov chain. We use metrics reminiscent of quality of service and congestion
to evaluate the output graphs. We report experiments on degree sequences corresponding to real
Internet topologies. All experimental results indicate that our method is efficient in practice,
and superior to a previously used heuristic.
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1 Introduction

There has been a recent surge of interest in complex real-world networks. These include the
WWW [26, 35, 6, 9, 14, 27, 28] where a node corresponds to a Web page and there is an edge
between two nodes if there is a hyperlink between the corresponding pages, the Internet at the
level of Autonomous Systems (a.k.a. inter-domain level) [18, 25, 32, 36, 10, 11, 38, 5] where a
node corresponds to a distinct routing administration domain (such as a University, a corporation,
or an ISP) and an edge represents direct exchange of traffic between the corresponding domains,
and biological networks [21] where, nodes correspond to genetic or metabolic building blocks (such
as genes and proteins) and edges represent direct interactions between these blocks. Obtaining
accurate graph models for such real-world networks is necessary for a variety of simulation-based
studies.

A very robust and persistent characteristics of complex networks, including the WWW, the
Internet and biological networks, is that, while the average degree is constant, there is no sharp
concentration around the average degree and there are several vertices with very large degrees. For-
mally, the degree sequence follows heavy tailed statistics in the following sense: (a)The ith largest
degree of the graph is proportional to ¢, with a approaching 1 from below, (b)The frequency
of the ith smallest degree of the graph is proportional to i~#, with B approaching 3 from below
(see [18] for detailed Internet measurements, see [6, 14, 27, 28] for WWW measurements). This is
a sharp departure from the Erdés-Rényi random graph model where the degrees are exponentially
distributed around the mean. Consequently, several papers have proposed plausible graph models,
based on the notion of “preferential attachment” [6, 8, 28, 4, 13] and on the notion of multiob-
jective optimization [17, 5] for explaining this phenomenon; the former is efficient to simulate but
does not capture the primitives driving the evolution of the network, while the latter captures the
evolutionary primitives directly, but is much slower to implement. Despite the elegant principles
of the above approaches, none of them predicts accurately all the observed measurements. In fact,
none of these approaches attempts to explain the heavy tailed statistics on the high-end and the
low-end of the degrees, (a) and (b) above, simultaneously, and there is further evidence that (a)
and (b) cannot be captured by a single evolutionary principle ([1] argues that a Pareto distribution
should result in 8 ~ 1+ é, which is not the case for the observed numbers of the parameters «z and
B mentioned above). On the other hand, graph models for complex networks are often expected
to pass strict performance requirements. For example, the networking community uses such graph
models to simulate a wide range of network protocols [41, 18, 25, 31, 32, 36, 10, 11, 38, 5], and
hence the accuracy of the underlying topology model is considered very important.

Therefore, the following alternative degree-driven approach for generating network topology
models has been adopted. First predict the degrees of the graph to be generated by extrapolation
from available data, for example, according to (a) and (b) above, and then generate a graph that
satisfies the target degree sequence, and additional constraints, the first and most natural of which
is connectivity. It has also been observed that connected graphs that satisfy the degree sequence
and some further “randomness property” are good fits for real Internet topologies [38] (albeit,
“randomness property” is not quantified in [38]).

In the theory community the above degree-driven approach was first formalized in [3, 12] who
especially addressed the connectivity issue, by isolating ranges of the parameter S for which the



resulting random graph has a giant connected component. In particular, for target degree sequence
dy > dy > ... > dp over vertices v;, 1 < i < n, [3] proposed to consider D =}, d; vertices by
expanding vertex v; to d; vertices, construct a random perfect matching of size D/2 over the D
vertices, and consider a graph on the initial n vertices in the natural way: v; is connected to v; if
and only if, in the random perfect matching, at least one of the d; vertices that correspond to v; is
connected to one of the d; vertices that correspond to v;. [3] further proposed to eliminate self loops
and parallel edges, and consider the largest component of the resulting graph. The advantages of
this approach are its implementational efficiency, and the guarantee of uniform sampling. However,
the approach also has two drawbacks: It does not produce a graph that matches the degree sequence
exactly, and, for the critical range 2 < 8 < 3, the method gives small components of size ©(logn)
(while, for example, for 5 < 2 the small components would be of constant size). There is no known
performance guarantee concerning how accurately the method of [3] approximates the target degree
sequence.

In the networking community the same degree-driven approach is typified by the Inet topology
generator [25], which is currently the method of choice. The implementation of Inet uses the
following heuristic: It first predicts a degree sequence by using d; ~ o ! for the highest 1% of the
degrees, and frequency of the 7th smallest degree proportional to i ~? for the remaining 99% vertices.
It then constructs a connected graph that meets a predicted degree sequence by placing a spanning
tree to guarantee connectivity, and tries to match the remaining degrees “as much as possible”
using a preferential connectivity heuristic. Again, there is no known performance guarantee on
how well the method of [25] approximate the target degree sequence, or to what extend their graph
approximates a graph sampled uniformly at random from the target degree sequence.

In this paper we propose a Markov chain simulation approach for generating a random connected
graph with a given degree sequence. In Section 2 we review the necessary graph theory to obtain
an initial connected realization of the degree sequence. We point out that the underlying theory
allows great flexibility in the produced output. In Section 3 we point out a Markov chain on the
state space of all connected realizations of the target degree sequence. We note that, even though
similar Markov chains were considered before without the connectivity requirement, the additional
connectivity requirement needs a non-trivial theorem of [39] to result in a connected state space.
This Markov chain requires a connectivity test in every simulation step. In Section 4 we introduce
a novel speed-up of the Markov chain which saves greatly on connectivity tests. For example, we
can simulate 1M steps of the speed-up process in the same time as a few thousand steps of the
original process. Section 5 contains experimental results. We use metrics reminiscent of quality of
service and congestion to evaluate the output graphs. We report experiments on degree sequences
corresponding to real Internet topologies. All experimental results indicate that our method is
efficient in practice, and superior to a previously used heuristic.

2 Markov Chain Initialization: Erdos-Gallai Conditions and the
Havel-Hakimi Algorithm

In this Section we address the problem of constructing a connected graph that satisfies a given
target degree sequence, if such a graph exists. We point out that such constructions follow from



classical graph theory, and that they allow substantial flexibility in the generated output graph.
We will use these constructions as initial states of the Markov chains of Sections 3 and 4. (In
addition, these fundamental theoretical primitives can replace all ad-hoc heuristics of the current
implementation of Inet[25]).

Let n denote the number of nodes of the graph we wish to generate. Let v;,1 <7 <mn denote
the nodes and d; > ds > ... > d, denote the intended degrees of these nodes. We would like a
simple, undirected, connected graph meeting the above degree sequence. A sequence of degrees
di >do>...>d, is called realizable if and only if there exists a simple graph whose nodes have
precisely this sequence of degrees. A straightforward necessary condition for a degree sequence to
be realizable is that for each subset of the k£ highest degree nodes, the degrees of these nodes can
be “absorbed” within the nodes and the outside degrees. Stated formally, for 1 < k <n-—1:

k n
Y di <k(k—1)+ > min{k,d;}. (1)
=1 i=k+1

A necessary condition for the realization to be connected is that the graph contains a spanning
tree, which means that:

S d; > 2n 1), 2)

The Erdos-Gallai theorem states that these necessary conditions are also sufficient [7, 16]. The proof
is inductive and provides the following construction, known as the Havel-Hakimi algorithm [19, 20].
The algorithm is iterative and maintains the residual degrees of vertices. In each iteration, it picks
an arbitrary vertex v and adds edges from v to d, vertices of highest residual degree, where d, is
the residual degree of v. The residual degrees of the latter d, vertices are updated appropriately.
The significance of connecting with d, highest degree vertices is that it ensures that condition (1)
holds for the residual problem instance.

For example, the algorithm can start by connecting the highest degree vertex v; with d; other
high degree vertices and obtain a residual degree sequence by reducing the degrees of these vertices
by one, and repeat the same process until all degrees are satisfied (otherwise output “not realiz-
able”). Alternatively, the algorithm can connect the lowest degree vertex v, with d, (resp. or a
randomly chosen vertex v;) with the d,, (resp. d;) highest degree vertices, reduce their degrees and
proceed as above.

Clearly the above algorithm runs in n iterations, each iteration invoking the degree of a vertex
(and some book-keeping for maintaining residual degrees in sorted order). Thus the running time
is very efficient, both in theory and in practice. In addition, since the sequence in which it picks
vertices can be chosen, it provides the flexibility alluded to above. For example, when we start
with higher degree vertices we get topologies that have very “dense cores”, while when we start

with low degree vertices we get topologies that have very “sparse cores”.’

®The Erdés-Gallai condition (1) allows for further flexibility, at the cost of additional tests for condition (1), and
repeated efforts until condition (1) is satisfied. In particular, the d, vertices can be chosen according to any criterion,
provided that, after each iteration, we ensure that condition (1) is satisfied by the residual graph (this part was
automatic in case maximum degree vertices are chosen). If not, the choice of the d, vertices needs to be repeated.
This observation indicates several ways in which the implementation of [25] can be improved, however, we shall refrain
from such discussions since this is not the main focus of this paper.



Next, let us deal with the second requirement of obtaining a connected topology. If the graph
constructed as described turns out to be unconnected, then one of the connected components must
contain a cycle. Let (u,v) be any edge in a cycle and let (s,t) be an edge in a different connected
component. Clearly, the graph does not have edges between the pairs u, s and v,t. By removing
the edges (u,v) and (s,t), and inserting the edges (u, s) and (v,t), we merge these two components.
Note that the resulting graph still satisfies the given degree sequence. Proceeding in this manner,
we can get a connected topology.

3 A Markov Chain on Connected Graphs with Prescribed Degree
Sequence

We now turn to the question of generating a random instance from the space of all possible connected
graphs that realize a target degree sequence. In experiment, it has been observed that “random”
such instances are good fits for several characteristics of complex network topologies [3, 38] (albeit,
all these experiments fall short of guaranteeing that the generated instances are either “correct”
connected realizations of the target degree sequence).

For any sequence of integers that has a connected realization, consider the following Markov
chain. Let Gy be the graph at time ¢. With probability 0.5, Gy11 will be G; (this is a standard trick
to avoid periodicities). With probability 0.5, G¢41 is determined by the following experiment. Pick
two edges at random, say (u,v) and (z,y) with distinct endpoints. If (u,z) and (v,y) are not edges
then consider a graph G’ by removing the edges (u,v) and (z,y) and inserting the edges (u,z) and
(v,y). Observe that G’ still satisfies the given degree sequence. We further have to check whether
G’ is a connected graph. If it is connected then we perform the switching operation and let Gyyq
be G'. Otherwise we do not perform the switching operation and Gy remains G;. It follows from
a theorem of Taylor [7, 39] that, using the above switching operation, any connected graph can be
transformed to any other connected graph satisfying the same degree sequence (we note that the
proof of Taylor’s theorem is somewhat more involved than the corresponding fact for realizations
without the connectivity constraint; the latter fact is straightforward). It now follows from standard
Markov chain theory [33, 37] that this Markov chain converges to a unique stationary distribution
which is the uniform distribution over the state space of all connected realizations. This is because,
by definition, all transitions have the same probability. Thus, in the limit, the above Markov chain
will generate a random graph with the given degree sequence.

What is the mixing rate? Similar questions have been considered elsewhere [37, 22, 23, 24]
without the connectivity requirement. In particular, it is known that uniform generation of a
simple graph with a given degree sequence d = d; > ds > ... > d,, reduces to uniform generation
of a perfect matching of the following graph My [29]: For each 1< i<n, Mq contains a complete
bipartite graph H; = (L;, R;), where |R;| = n—1 and |L;| = n—1—d;. The vertices of R; are
labeled so that there is a label for each 1 < j < n other than #; let us denote these labels by
{wi,. ., Uig1,Uiia,---,Uin}. In addition, for each 1 < 4,5 < n with j # i, Mg has an edge
between u; ; and u;;. Now each perfect matching M of My gives rise to a unique realization G of
d in the natural way: G has a link between v; and v; if and only if M contains the edge between
u;; and u; ;. Similarly, each realization G of d is associated with [ (n—1—d;)! perfect matchings



of My. It is known that a random perfect matching M, and hence a random realization G, can
be generated in time polynomial in n, only when d corresponds to a regular or near-reqular graph,
or when d corresponds to a bipartite graph. This does not include the case of arbitrary power-law
graphs, and hence that theory does not apply. Indeed, generating a random graph that meets an
arbitrary degree sequence d is a major open problem, at least since the original paper of Jerrum
and Sinclair on approximating permanents [22].

In addition, we note here that the problem of rapid mixing of connected realizations is strictly
harder than that of arbitrary realizations without the connectivity requirement, as indicated by the
following reduction: For a degree sequence d = d; > dy > ... > d,, introduce an additional vertex
with degree n, thus forcing any realization of the new sequence to have the new vertex connected
to every other vertex, and hence it is connected and the realizations are one-to-one.

We thus have to devise efficient heuristics to estimate the mixing rate of the Markov chain. We
have used the following heuristic to decide if a particular run of the Markov chain has converged
sufficiently: Consider one or more quantities of interest, and measure these quantities every T
steps. For example, one such quantity could be the diameter. In Section 5 we will consider further
quantities that are related to quality of service (and use average shortest path from a node to every
other node as an indicator) and network congestion (and use number of shortest paths through a
node, or link, as an indicator). We may use the criterion of the quantities having converged as
an indication of convergence of the Markov chain. However, the quantities under consideration
may not converge, even under uniform sampling. For example, the diameter appears to deviate
substantially from its mean, in the sense that the variance appears large. Therefore, a better
heuristic is to estimate (this method of sample averages has been first considered in [2]). In
addition, we will consider two (or more) separate runs of the Markov chain, where the initial points
of each run are qualitatively different. For example, we may consider a “dense core” and a “sparse
core” starting point, as mentioned in Section 2. Now, we may consider the case where the sample
averages converge to the same number for the two separate runs of the Markov chain.

4 Speed-Up of the Markov Chain Simulation

Notice that the main bottleneck in the implementation of the Markov chain of Section 3 is the
connectivity test that needs to be repeated in every step. This connectivity test takes linear time,
for example, using DF'S. On the other hand, all other operations, namely picking two random edges
and performing the swap take time O(logn) (logn for the random choice, and constant time for
the swap).

In this Section we describe a process which maintains convergence to uniform distribution over
all connected realizations, but, in practice, performs much fewer connectivity tests. In particular,
we consider the following process. Initially we have a connected realization of the target degree
sequence, as mentioned in Sections 2 and 3. Let us call this Gy. We will be also maintaining
a window W. This will be an estimate of how many steps of the Markov chain we can simulate
without a connectivity test, and still have a reasonable probability of having a connected realization
Gw after W steps (however, we do not require that every intermediate step between Gy and Gy is
connected). Initially the window is W = 1. The algorithm proceeds in stages, each stage consisting



of W simulation steps without a connectivity test. In general, if after W simulation steps we ended
in a connected realization, then we will accept this realization as the next state and we will increase
the window for the next stage by one: W = W + 1. If after W simulation steps we ended in a
non connected realization, then we will return to the connected realization of the beginning of the
current stage and we will decrease the window of the next stage to half its current size: W = [W/2]
(this heuristic was inspired by the linear increase, multiplicative decrease of the TCP protocol). In
this way, we hope to result in much fewer connectivity tests.

Notice that the above process is not strictly a Markov chain. In fact, we need to argue that its
stationary distribution remains the uniform distribution over the set of all connected realizations.
To see this, realize that the above process can be partition in stages Pi, P,..., P;,..., where P;
contains the transition from initial state at the beginning of stage j to final state at the end of
stage j, for the window size W during stage j. Now notice that, for this stage, W is fixed, and
the process P; is a Markov chain on the state space of connected realizations. In addition, the
process P; is symmetric, in the sense that the probability of ending at state X given that we
started at state Y is the same as the probability of ending at state Y given that we started at
state X. This follows from the symmetry of the initial Markov chain, which holds with or without
connectivity tests (all transitions, with or without connectivity tests, have the same probability).
We may now invoke the well known fact that aperiodic symmetric Markov chains converge to the
uniform distribution [33, 37], and conclude that each one of the processes P; has a unique stationary
distribution, which is uniform. Therefore, their synthesis Py, P, ..., P}, ..., also converges to the
uniform distribution.

We will use the term fast Markov chain, or Markov chain speed-up, to refer to the process with
the sliding window W (as we said, strictly speaking, this is not a Markov chain, but a synthesis of
Markov chains).

5 Evaluation

In this Section we evaluate the efficiency of the Markov chain in Section 3 with the speed-up
proposed in Section 4. Our main application focus is the case of Internet topologies at the level
of Autonomous Systems. We use data made available by the National Laboratory of Applied
Networking Research[34] as well as Traceroute at Oregon[30]. These involve sparse power-law
graphs (average degree is less than 3), whose size (number of nodes) has gown from 3K in November
1997 (when the data collection started), to approximately 14K, today. The maximum size of these
graphs, under the current numbering, will be 64K.

The main results are as follows:
(1) We observe that, all quantities related to (a)shortest paths from a node to every other node
and (b)number of shortest paths through a node converge is less than 2M steps of the speed-up
chain. The corresponding running time is less than 1K secs on a Pentium III.
(2) The convergence of the Markov chain without the speed-up, for the same running time, is
substantially weaker. Thus the speed-up indeed resulted in improvement.
(3) The convergence time appears to scale slowly with the size of the topology, which is encouraging
when larger topologies will need to be generated.



(4) The results of the real Internet, the method of the random matching [3] discussed in the
Introduction, and the Markov chain, do not coincide in all parameters. This indicates that no
model captures the real Internet in full accuracy, and so all models are plausible candidates. In
particular, the Markov chain method has the advantage over the method of [3] that it achieves the
exact target degree sequence (we will see that the degree sequence of [3] can differ from the target
sequence substantially in the large degrees), while the method of [3] has the advantage over the
Markov chain method that it samples from a provably uniform distribution.

(5) The Markov chain method has the following additional advantage. If we start from an extreme
initial point, like a dense or sparse topology, we can measure the parameters of interest at inter-
mediate simulation points, and see how these parameters converge. Such simulations can be useful
in stress tests of protocols.

More specifically, we have measured the following quantities:

(1) For each node v, the average path from v is the average of the shortest path from v to every
other node. In the networking context, this is an indication of the quality of service perceived by
v. We will consider the quantities mean average path, when the mean is taken over all the nodes,
as well as the variance and mazimum of the average path.

(2) For each node v, the mazimum path from v is the maximum length shortest path from v to every
other node. In the networking context, this is an indication of the worst case quality of service
perceived by v. Again, we will consider the mean and mazimum over all nodes of the graph. Notice
that the mazimum mazimum path is the diameter.

(3) For each link e, the link load of e is the number of shortest paths through e, when n? shortest
paths from each node to every other node have been considered (we break ties at random). We
normalize by dividing with n?. In the networking context, this is an indication of the congestion
of the link. We will consider the mean, variance, and maz of the link load, over all links of the
network.

In Tables 1 and 2 we indicate the convergence of the speed-up Markov chain for the degree
sequence of Internet inter-domain topology on June 2002. Table 1 corresponds to a dense initial
topology, and Table 2 corresponds to a sparse initial topology. The last column correspond to a
Markov chain without the speed-up for the same number of connectivity tests (thus approximately
the same running time). We may observe, both the convergence of the speed-up Markov chain, as
well as the weaker behavior of the slow Markov chain: For example, look at the Max Average Path
and the Max Max Path (diameter) of the slow Markov chain. We have repeated these experiments
10 times, and the results are almost identical.

In Table 3 we compare the output of the Markov chain method to those of the power-law random
graph (PLRG) method of [3], and to the results of the real Internet topology. It is clear that the
Markov chain is a better fit. In addition, in experiment, we have found that the PLRG method of
[3] produces graphs whose highest degrees deviate substantially from the real Internet topology.

In Tables 4 and 5 we indicate how the converge time, as the topology scaled, from approximately
3K nodes to approximately 14K nodes. We consider the two metrics of average path and normalized
average link load. We should note that the number of steps indicated is the minimum number of
steps that we needed to take in order for the metrics under consideration to converge accurately.
The first thing to notice is the robustness of the method. We have actually performed further



Property Initial Fast MC | Fast MC | Fast MC | Slow MC
0.5M steps | 1M steps | 2M steps
Mean Average Path 13.9920 3.4277 3.4255 3.4252 3.4671
Variance Average Path 601.5923 0.2811 0.2795 0.2794 0.3044
Max Average Path 200.6095 7.9392 7.9760 8.0868 7.4373
Mean Max Path 205.8013 7.9634 7.9992 8.1179 7.4931
Variance Max Path 1.2605 0.4089 0.4070 0.3999 0.4184
Max Max Path (diameter) 213 12 12.1 12.3 11
Mean Link Load 4.94e-4 1.21e-4 1.20e-4 1.20e-4 1.22e-4
Variance Link Load 1.20e-5 3.17e-7 3.18e-7 3.18e-7 2.90e-7
Max Link Load 7.97e-2 5.49e-2 5.53e-2 5.55e-2 5.41e-2
Connectivity Tests 14,257 27,878 55,535 27,878
Running time (sec) 222.17 434.18 887.59 411.67
Table 1:
Property Initial Fast MC Fast MC | Fast MC | Slow MC
0.2M steps | 0.5M steps | 1M steps
Mean Average Path 4.6661 3.4296 3.4270 3.4282 3.2726
Variance Average Path 0.8181 0.2837 0.2802 0.2826 0.1977
Max Average Path 10.1008 8.0073 8.0158 8.2066 6.5994
Mean Max Path 10.1693 8.0307 8.0451 8.2490 6.8558
Variance Max Path 1.3050 0.4101 0.4141 0.4013 0.3355
Max Max Path (diameter) 14 12 12 12.3 10
Mean Link Load 1.64e-4 1.21e-4 1.21e-4 1.21e-4 1.16e-4
Variance Link Load 1.44e-6 3.28e-7 3.26e-7 3.26e-7 2.55e-7
Max Link Load 5.95e-2 5.68e-2 5.64e-2 5.65e-2 4.50e-2
Connectivity Tests 4,165 12,224 25,736 12,224
Running time (sec) 64.82 190.11 397.47 176.20
Table 2:

simulations on parts of the network (such as Europe, or North America), and on projected degree
sequences for the network in the next 5 years (as given by the Inet topology generator[25], and we
have found qualitatively similar results. The second important thing to notice is that the scaling
of the convergence time from the 3K node topology to the 13K node topology is very mild. We
find this an encouraging evidence, that the convergence times will be reasonably efficient, as the
topologies scale further.

6 Further Directions

A very challenging open problem in this area is the following: In addition to a target degree
sequence, we may consider an underlying metric of distances. (In reality, these would be geographic
distances for which data is available). We would then want to construct a minimum cost connected
realization of the degree sequence. Even without the connectivity requirement, for a degree sequence
on n nodes, this would be a mincost perfect matching problem on O(n?) nodes (along the reduction



Dense Sparse
Property Initial Final Initial Final | Internet PLRG
Path mean 13.9920 | 3.4261 4.6661 | 3.4337 3.6316 3.8735
Path var 601.5923 | 0.2851 0.8181 | 0.2863 0.3181 0.4738
Path max 200.6095 | 8.2758 | 10.1008 | 8.3023 7.5005 | 10.2855
Load mean 4.94e-4 | 1.21e-4 | 1.65e-4 | 1.21e-4 1.28e-4 | 1.54e-4
Load var 1.20e-5 | 3.17e-7 | 1.44e-6 | 3.30e-7 2.94e-7 | 1.21e-7
Load max 7.97e-2 | 5.58e-2 | 5.95e-2 | 5.67e-2 5.26e-2 | 1.94e-2
Table 3:
Dense Sparse
Graph | Nodes | Links | Internet | PLRG | Initial Steps Final | Initial Steps Final
1997 3055 5678 3.7676 | 3.9802 | 4.0489 | 1000000 | 3.5744 | 5.2917 | 1000000 | 3.6046
1998 3666 7229 3.7376 | 3.9009 | 4.0732 | 1100000 | 3.5335 | 5.3540 800000 | 3.5554
1999 5053 | 10458 3.7148 | 3.9410 | 5.0164 900000 | 3.5270 | 5.5231 800000 | 3.5353
2000 7580 | 16153 3.6546 | 3.9020 | 5.7000 600000 | 3.4717 | 5.8082 | 1300000 | 3.4884
2001 10915 | 22621 3.6350 | 3.8422 | 7.0962 800000 | 3.4107 | 4.8178 900000 | 3.4169
2002 13155 | 27041 3.6316 | 3.8735 | 6.1559 | 1100000 | 3.4255 | 4.6610 | 1000000 | 3.4282
Table 4:
Dense Sparse
Graph || Nodes || Links | Internet | PLRG | Initial Steps Final | Initial Steps Final
1997 3055 5678 7.19e-4 | 8.62e-4 | 1.01le-1 | 1000000 | 6.82e-2 | 1.00e-3 | 1000000 | 6.83e-2
1998 3666 7229 5.62e-4 | 6.57e-4 | 8.56e-2 | 1100000 | 5.66e-2 | 7.01e-4 800000 | 5.65e-2
1999 5053 || 10458 3.85e-4 | 4.54e-4 | 9.92¢-2 900000 | 3.66e-2 | 3.69e-4 800000 | 3.68e-2
2000 7580 || 16153 2.42e-4 | 2.88e-4 | 8.50e-2 600000 | 2.30e-2 | 3.84e-4 | 1300000 | 2.32e-2
2001 10915 || 22621 1.61le-4 | 1.91e-4 | 6.23e-2 800000 | 1.15e-2 | 7.85e-5 900000 | 1.16e-2
2002 13155 27041 1.28e-4 | 1.54e-4 | 4.94e-4 | 1000000 | 1.21e-4 | 1.65e-4 | 1000000 | 1.21e-4
Table 5:
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of Section 3). For n equal to several tens of thousands, all known exact mincost perfect matching
algorithms are inefficient. Is there an efficient approximation [40]?
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