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Abstract— We show that in power law random graphs,
a.s., the expected rate at which a random walk with
lookahead discovers the nodes of the graph is sublinear.

Searching a graph by simulating a random walk is a
natural way to abstract Web crawling [5]. Recently, the
random walk simulation method has been also proposed
to search P2P networks [11], [4], [10]. Therefore, it is
important to characterize the rate at which a random
walk discovers the vertices of large sparse graphs. Strong
bounds indicating behavior similar to coupon collection,
have been obtained by [6] [7] who show that, a.s., the
expected cover time of a random � -regular graph is��������	��

������
 , and by [8] who show that, a.s., the expected
cover time of a random scale free graph in the model of
growth with preferential attachment is

���������

������
 , where� is the average degree. Since the degrees of the WWW
are known to follow heavy tailed statistics, it is important
to study random graph models resulting in heavy tailed
degree distributions.

In this paper we formalize a common practice of
crawling, namely lookahead. In a lookahead 1 scenario,
when a crawler visits a node � , he is assumed to also
discover all the neighbors of � . This is particularly
efficient to implement in a sparse network by having
each node keep a copy of the indices of all his neighbors.
The resulting replication overhead is proportional to
the number of edges in the network, which for sparse
networks is linear. A further practice is lookahead 2,
where, for every visited node � , the random walk is
assumed to also discover all the neighbors of � and all
the neighbors’ neighbors, � ��� ��� (see also [12] for an
application of lookahead 2 in routing).

We show that, in the power law random graph model
[2], a.s. (for all but a vanishingly small fraction of the
graphs), the expected time at which a random walk with
lookahead discovers the graph is sublinear (much faster
than even coupon collection). Intuitively, the reason for
these savings is that the stationary distribution of the
random walk biases the search towards high degree
nodes which yield a large amount of information about

their neighbors. Therefore, in some sense, our results
suggest that the practice of lookahead explores the heavy
tailed statistics of the network to sharply improve the
performance of the search algorithm.

The power law random graph model is as follows.
Given 
 and � , ��� �!�#" , we first generate degrees�%$ , "�&(')& 
 , independently, according to the distribution*�+�, � $�-/.1032 457698;: , �%<>=@?A& . &/B 
 , where C is a normaliz-
ing constant. We then consider D -FEHG$JI � � $ minivertices
which correspond to vertices in the natural way. Finally,
we consider a random perfect matching over D and,
for every edge in the matching between a minivertex
corresponding to vertex ' and a minivertex corresponding
to vertex K , we add a distinct edge connecting vertex '
with vertex K . This is a multigraph with self loops; we
maintain multiple edges and self loops for analytic con-
venience. [9] show that, for a large enough constant �L<>=@? ,
this random graph has conductance M � "�� , almost surely.
Following standard theory of mixing times, this implies
that, after N � ������
 � steps, the distribution of the random
walk is within variation distance N �PO �%��Q ��� � 
 ��� from its
stationary distribution. Now standard coupon collection
arguments suggest expected cover time N � 

�J��� � 
 � . Our
results are Theorems 1 and 2 below.

Theorem 1: For any R , �>�SRA� �� , the expected number
of simulation steps for a random walk (starting from
an arbitrary distribution) with lookahead 1 to discoverM � 
 ���	TVU�W6 �	XZY � vertices is N � 
 W6�[ X ������
 � , a.s.

Theorem 2: For any R , �>�SRA� �� , the expected number
of simulation steps for a random walk (starting from
an arbitrary distribution) with lookahead 2 to discoverM � 
 ���	��TVU�W6 �	XZY9�	X � vertices is N � 
 TVU�W6 �	X\Y ������
 � , a.s.

The proofs of Theorems 1 and 2 follow from the rapid
mixing of the random walk and the structural Lemmas
6, 7 and 8 below. We also need Facts 3, 4 and 5. The
form of Chernoff bounds quoted is from page 29 of [13].

Fact 3: D - E G$JI � � $�- N � 
 � , a.s.
PROOF OF FACT 3. The mean of D is � 
 , for some

constant � , and the variance of D can be computed to be] -_^ � 
a`b � :b � . Now using the tail inequality in Theorem
A.1.19 , page 270 of [3], we get that, for every cd&
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N � ]fe B 
 � , *�+;, Dhgi� 
kj c ] 0 � l �nm 6b . If we pick c -
 Wb � :b we get the desired bound.
Fact 4: There are M � 
 W6 �	TVU�W6 �	X\Y [ X � vertices of degree
 W6 �	X , a.s. We will henceforth call these vertices large.
PROOF OF FACT 4. We first compute that

*�+�, � $_o
 W6 �	X 0p-qEsr G5 I �ut W6�vxw 457698x: - M � 

��U W6 �	X\YyUz� [ TyY � . Hence the

expected number of large vertices is M � 
 W6 �	TVU W6 �	XZY [ X �
and, by Chernoff bounds, there are M � 
 W6 �	TVU�W6 �	X\Y [ X � large
vertices, a.s.

Fact 5: There are M � 
 � vertices of degree �{<>=@? , a.s.
PROOF OF FACT 5. The probability that a vertex has

degree � <>=@? is a constant, therefore the expected number
of vertices of degree �|<>=@? is M � 
 � and, by Chernoff
bounds, there are M � 
 � vertices of degree �{<>=@? , a.s.

Lemma 6: Each large vertex has M � 
 W6 �	��TVU�W6 �	XZY � edges
incident to distinct large vertices, a.s.

PROOF OF LEMMA 6. We first bound the probability
that the large vertex has at least }�~s" edges incident
to distinct large vertices, conditioned on the fact that
it has at least } edges incident to distinct large ver-
tices, for } -�^ � 
 W6 �	T�U W6 �	XZY � . This can be bounded by�pU G W6 v :J� W6 vxw�� 8 w YJ��U G W6 vxw Y9�	� G W6��U G Y - M � 
 �	TVU W6 �	XZY � . Now we can
see that, over } edges incident to the large vertex,
the expected number of edges incident to distinct large
vertices is M � } 
 �	TVU�W6 �	X\Y � - M � 
 W6 �	��TVU�W6 �	X\Y � and, by Cher-
noff bounds, there are M � 
 W6 �	��TVU�W6 �	XZY � edges incident to
distinct large vertices, a.s.

Lemma 7: Each large vertex has M � 
 W6 �	X � edges in-
cident to vertices of degree �|<>=@? , a.s.

PROOF OF LEMMA 7. Let � be the degree of a large
vertex. First notice that, if we condition on the fact that
the first ��gH" edges incident to the large vertex have
their other endpoint incident to vertices of degree �L<>=@? ,
the probability that the � -th edge has its other endpoint
incident to a vertex of degree �{<>=@? is M � "�� . Now it can
be seen that the expected number of edges incident to
the large vertex that have their other endpoint incident
to a vertex of degree �|<>=@? is M � 
 W6 �	X � and, by Chernoff
bounds, there are M � 
 W6 �	X � such edges, a.s.

Lemma 8: For every large vertex � , � � � �L� -M � 
 ���	��TVU W6 �	X\Yy�	X\Y � , a.s.
PROOF OF LEMMA 8. By Lemma 6, � hasM � 
 W6 �	��TVU W6 �	XZY � distinct large neighbors. By Lemma 7,

each large neighbor has M � 
 W6 �	X � edges incident to
vertices of degree �)<>=@? , for a total of M � 
 ���	��TVU W6 �	XZY9�	X �
edges incident to vertices of degree �{<>=@? . But each vertex
of degree �)<>=@? can take at most �)<>=@? edges, hence there
are M � 
 ���	��TVU W6 �	X\Yy�	X � distinct vertices of degree �{<>=@? in� ��� �L� .

PROOF OF THEOREM 1. By the rapid mixing shown
in [9], N � ������
 � simulation steps get a sample from a

distribution arbitrarily close to the stationary. By Lemma
4 and Fact 3, we can compute the stationary probability
of the set of large vertices as M � 
 �	TVU�W6 �	X\Y � , and hence, in
expected time N � 
 TVU W6 �	X\Y � we get a large vertex. Now by
coupon collection we will get M � 
 W6�[ X��	TVU�W6 �	XZY � distinct
large vertices in expected time N � 
 W6�[ X �J����
 � . Let � be
the set of sampled large vertices. By by Lemma 7, �
has M � 
 ���	TVUuW6 �	XZY � edges incident to vertices with degree�%<>=@? , and since each vertex with degree �{<>=@? can be
incident to at most � <>=@? distinct large vertices, we getM � 
 ���	TVU W6 �	XZY � distinct vertices of degree �|<>=@? .

PROOF OF THEOREM 2. The expected time to see one
large vertex is N � 
 TVU W6 �	XZY � . Now Theorem 2 follows from
the size of the size of the 2-neighborhood of this large
vertex established in Lemma 8.

Finally, we should mention that the first reference to
the potential power of lookahead in searching power
law graphs is due to [1]. However, their analytic results
refer to a graph with all its crucial random variables
behaving as their expected values. In particular, the main
theorem in [1], namely cover time N � �J��� � 
 � for random
walk with lookahead 2, almost surely does not hold in a
power law random graph. This is because, a.s., the graph
will have M � 
 � small degree vertices with their entire 2-
neighborhoods also consisting of small degree vertices,
hence we need M � 
 � sample points to discover this set.
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