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Abstract. Arpeggio is a peer-to-peer file-sharing network based on the
Chord lookup primitive. Queries for data whose metadata matches a
certain criterion are performed efficiently by using a distributed keyword-
set index, augmented with index-side filtering. We introduce index gate-
ways, a technique for minimizing index maintenance overhead. Because
file data is large, Arpeggio employs subrings to track live source peers
without the cost of inserting the data itself into the network. Finally, we
introduce postfetching, a technique that uses information in the index to
improve the availability of rare files. The result is a system that provides
efficient query operations with the scalability and reliability advantages
of full decentralization, and a content distribution system tuned to the
requirements and capabilities of a peer-to-peer network.

1 Overview and Related Work

Peer-to-peer file sharing systems, which let users locate and obtain files shared
by other users, have many advantages: they operate more efficiently than the
traditional client-server model by utilizing peers’ upload bandwidth, and can
be implemented without a central server. However, many current file sharing
systems trade-off scalability for correctness, resulting in systems that scale well
but sacrifice completeness of search results or vice-versa.

Distributed hash tables have become a standard for constructing peer-to-peer
systems because they overcome the difficulties of quickly and correctly locating
peers. However, the lookup by name DHT operation is not immediately sufficient
to perform complex search by content queries of the data stored in the network.
It is not clear how to perform searches without sacrificing scalability or query
completeness. Indeed, the obvious approaches to distributed full-text document
search scale poorly [9].

In this paper, however, we consider systems, such as file sharing, that search
only over a relatively small amount of metadata associated with each file, but
that have to support highly dynamic and unstable network topology, content,
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and sources. The relative sparsity of per-document information in such systems
allows for techniques that do not apply in general document search. We present
the design for Arpeggio, which uses the Lookup primitive of Chord [14] to sup-
port metadata search and file distribution. This design retains many advantages
of a central index, such as completeness and speed of queries, while providing the
scalability and other benefits of full decentralization. Arpeggio resolves queries
with a constant number of Chord lookups. The system can consistently locate
even rare files scattered throughout the network, thereby achieving near-perfect
recall.

In addition to the search process, we consider the process of distributing
content to those who want it, using subrings [8] to optimize distribution. Instead
of using a DHT-like approach of storing content data directly in the network on
peers that may not have originated the data, we use indirect storage in which the
original data remains on the originating nodes, and small pointers to this data
are managed in a DHT-like fashion. As in traditional file-sharing networks, files
may only be intermittently available. We propose an architecture for resolving
this problem by recording in the DHT requests for temporarily unavailable files,
then actively increasing their future availability.

Like most file-sharing systems, Arpeggio includes two subsystems concerned
with searching and with transferring content. Section 2 examines the problem of
building and querying distributed keyword-set indexes. Section 3 examines how
the indexes are maintained once they have been built. Section 4 turns to how
the topology can be leveraged to improve the transfer and availability of files.
Finally, Sect. 5 reviews the novel features of this design.

2 Searching

A content-sharing system must be able to translate a search query from a user
into a list of files that fit the description and a method for obtaining them. Each
file shared on the network has an associated set of metadata: the file name, its
format, etc. For some types of data, such as text documents, metadata can be
extracted manually or algorithmically. Some types of files have metadata built-
in; for example, ID3 tags on MP3 music files.

Analysis based on required communications costs suggests that peer-to-peer
keyword indexing of the Web is infeasible because of the size of the data set [9].
However, peer-to-peer indexing for metadata remains feasible, because the size
of metadata is expected to be only a few keywords, much smaller than the full
text of an average Web page.

2.1 Background

Structured overlay networks based on distributed hash tables show promise for
simultaneously achieving the recall advantages of a centralized index and the
scalability and resiliency attributes of decentralization. Distributed hash loca-
tion services such as Chord [14] provide an efficient Lookup primitive that
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maps a key to the node responsible for its value. Chord uses at most O(log n)
messages per lookup in an n-machine network, and minimal overhead for rout-
ing table maintenance. Building on this primitive, DHash [3] and other dis-
tributed hash tables provide a standard Get-Block/Put-Block hash table
abstraction. However, this interface alone is insufficient for efficient keyword-
based search.

2.2 Distributed Indexing

A reasonable starting point is a distributed inverted index. In this scheme, the
DHT maps each keyword to a list of all files whose metadata contains that key-
word. To execute a query, a node performs a Get-Block operation for each of
the query keywords and intersects the resulting lists. The principal disadvantage
is that the keyword index lists can become prohibitively long, particularly for
very popular keywords, so retrieving the entire list may generate tremendous
network traffic.

Performance of a keyword-based distributed inverted index can be improved
by performing index-side filtering instead of joining at the querying node. Be-
cause our application postulates that metadata is small, the entire contents of
each item’s metadata can be kept in the index as a metadata block, along with
information on how to obtain the file contents. To perform a query involving a
keyword, we send the full query to the corresponding index node, and it performs
the filtering and returns only relevant results. This dramatically reduces network
traffic at query time, since only one index needs to be contacted and only results
relevant to the full query are transmitted. This is similar to the search algo-
rithm used by the Overnet network [12], which uses the Kademlia DHT [10]; it
is also used by systems such as eSearch [15]. Note that index-side filtering breaks
the standard DHT Get-Block abstraction by adding network-side processing,
demonstrating the utility of direct use of the underlying Lookup primitive.

2.3 Keyword-Set Indexing

While filtering reduces network usage, query load may be unfairly distributed,
overloading nodes responsible for popular keywords. To overcome this problem,
we propose to build inverted indexes not only on keywords but also on keyword
sets. As before, each unique file has a corresponding metadata block that holds
all of its metadata. Now, however, an identical copy of this metadata block is
stored in an index corresponding to each subset of at most K metadata terms.
The maximum set size K is a parameter of the network. This is the Keyword-Set
Search system (KSS) introduced by Gnawali [6].

Essentially, this scheme allows us to precompute the full-index answer to
all queries of up to K keywords. For queries of more than K keywords, the
index for a randomly chosen K-keyword subset of the query can be filtered.
This approach has the effect of querying smaller and more distributed indexes
whenever possible, thus alleviating unfair query load caused by queries of more
than one keyword.
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Since the majority of searches contain multiple keywords [13], large indexes
are no longer critical to result quality as most queries will be handled by smaller,
more specific indexes. To reduce storage requirements, maximum index size can
be limited, preferentially retaining entries that exist in fewest other indexes, i.e.
those with fewest total keywords.

In Arpeggio, we combine KSS indexing with index-side filtering, as described
above: indexes are built for keyword sets and results are filtered on the index
nodes. We make a distinction between keyword metadata, which is easily enu-
merable and excludes stopwords, and therefore can be used to partition indexes
with KSS, and filterable metadata, which can further constrain a search. Index-
side filtering allows for more complex searches than KSS alone. A user may only
be interested in files of size greater than 1 MB, files in tar.gz format, or MP3
files with a bitrate greater than 128 Kbps, for example. It is not practical to
encode this information in keyword indexes, but the index obtained via a KSS
query can easily be filtered by these criteria. The combination of KSS indexing
and index-side filtering increases both query efficiency and precision.

2.4 Feasibility

Techniques such as KSS improve the distribution of indexing load, reducing the
number of very large indexes — but they do so by creating more index entries.
In order to show that this solution is feasible, we argue that the increase in total
indexing cost is reasonable.

Using keyword set indexes rather than keyword indexes increases the number
of index entries for a file with m metadata keywords from m to I(m), where

I(m) =
K∑

i=1

(
m

i

)
=

{
2m − 1 if m ≤ K

O(mK) if m > K

For files with many metadata keywords, I(m) is polynomial in m. Furthermore, if
m is small compared to K (as for files with few keywords), then I(m) is no worse
than exponential in m. The graph in Fig. 1 shows that I(m) grows polynomially
with respect to m, and its degree is determined by K. As discussed below, for
many applications the desired value of K will be small (around 3 or 4), and so
I(m) will be a polynomial of low degree in m.

Example Application. To gain further insight into indexing costs, we analyzed
the number of index entries that would be required to build an index of song
metadata, using information from the FreeDB [4] database. This application1 is
well-suited for Arpeggio’s indexing because it consists of many files which have
large (audio) content and only a few metadata keywords such as the song title
1 Readers familiar with the FreeDB service will be aware that its primary application

is to translate disc IDs to track names, not to perform metadata searches for songs.
We do not propose Arpeggio as a replacement for FreeDB; we are merely using its
database as an example corpus of the type of information that could be indexed by
Arpeggio.
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Fig. 1. Growth of I(m) for various K

Table 1. Index size (FreeDB)

Number of songs 21,195,244
Total index entries (K = 1) 134,403,379
Index entries per song (K = 1) 6.274406

Total index entries (K = 3) 1,494,688,373
Index entries per song (K = 3) 66.078093

or artist. The database contains over 1.5 million discs, with a total of over 21
million songs. Each song has an average of 6.27 metadata keywords.

Table 1 compares the number of index entries required to create a KSS index
over the metadata of discs in FreeDB for K = 1 and K = 3. The K = 1 case
corresponds to a single index entry for each keyword in each song: a simple
distributed inverted index. Increasing K to 3 allows KSS to be used effectively,
better distributing the load throughout the network, but only increases the total
indexing cost by an order of magnitude.

Choosing K. The effectiveness and feasibility of Arpeggio’s indexing system
depend heavily on the chosen value of the maximum subset size parameter K. If
K is too small, then the KSS technique will not be as effective: there will not be
enough multiple-keyword indices to handle most queries, making long indexes
necessary for result quality. If K is too large, then the number of index entries
required grows exponentially, as in Fig. 2. Most of these index entries will be in
many-keyword indices that will be used only rarely, if at all.

The optimum value for the parameter K depends on the application2, since
both the number of metadata keywords for each object and the number of search
terms per query vary. The average number of search terms for web searches

2 We are currently investigating the effectiveness of methods for splitting indexes into
more specific indexes only when necessary (essentially, adapting K per index).
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Fig. 2. Index size increase for varying K (FreeDB)

is approximately 2.53 [13], so assuming queries follow a similar distribution, a
choice of K = 3 or K = 4 would allow most searches to be handled by specific
indexes. Using the FreeDB data, this choice of K requires only an order of
magnitude increase in total index size.

3 Index Maintenance

Peers are constantly joining and leaving the network. Thus, the search index must
respond dynamically to the shifting availability of the data it is indexing and the
nodes on which the index resides. Furthermore, certain changes in the network,
such as nodes leaving without notification, may go unnoticed, and polling for
these changing conditions is too costly, so the index must be maintained by
passive means.

3.1 Metadata Expiration

Instead of polling for departures, or expecting nodes to notify us of them, we
expire metadata on a regular basis so that long-absent files will not be returned
by a search. Nevertheless, blocks may contain out-of-date references to files that
are no longer accessible. Thus, a requesting peer must be able to gracefully handle
failure to contact source peers. To counteract expiration, we refresh metadata
that is still valid, thereby periodically resetting its expiration counter. We argue
in Sect. 4.3 that there is value in long expiration times for metadata, as it not
only allows for low refresh rates, but for tracking of attempts to access missing
files in order to artificially replicate them to improve availability.

3.2 Index Gateways

If each node directly maintains its own files’ metadata in the distributed index,
the metadata block for each file will be inserted repeatedly. Consider a file F that
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has m metadata keywords and is shared by s nodes. Then each of the s nodes
will attempt to insert the file’s metadata block into the I(m) indexes in which
it belongs. The total cost for inserting the file is therefore Θ (sI(m)) messages.
Since metadata blocks simply contain the keywords of a file, not information
about which peers are sharing the file, each node will be inserting the same
metadata block repeatedly. This is both expensive and redundant. Moreover,
the cost is further increased by each node repeatedly renewing its insertions to
prevent their expiration.

To minimize this redundancy, we introduce an index gateway node that ag-
gregates index insertion. Index gateways are not required for correct index oper-
ation, but they increase the efficiency of index insertion. With gateways, rather
than directly inserting a file’s metadata blocks into the index, each peer sends
a single copy of the block to the gateway responsible for the block (found via a
Lookup of the block’s hash). The gateway then inserts the metadata block into
all of the appropriate indexes, but only if necessary. If the block already exists
in the network and is not scheduled to expire soon, then there is no need to
re-insert it into the network. A gateway only needs to refresh metadata blocks
when the blocks in the network are due to expire soon, but the copy of the block
held by the gateway has been more recently refreshed.

Gateways dramatically decrease the total cost for multiple nodes to insert
the same file into the index. Using gateways, each source node sends only one
metadata block to the gateway, which is no more costly than inserting into a
centralized index. The index gateway only contacts the I(m) index nodes once,
thereby reducing the total cost from Θ (sI(m)) to Θ (s + I(m)).

3.3 Index Replication

In order to maintain the index despite node failure, index replication is also
necessary. Because metadata blocks are small and reading from indexes must
be low-latency, replication is used instead of erasure coding [3]. Furthermore,
because replicated indexes are independent, any node in the index group can
handle any request pertaining to the index (such as a query or insertion) without
interacting with any other nodes. Arpeggio requires only weak consistency of
indexes, so index insertions can be propagated periodically and in large batches
as part of index replication. Expiration can be performed independently.

4 Content Distribution

The indexing system we describe above simply provides the ability to search for
files that match certain criteria. It is independent of the file transfer mechanism.
Thus, it is possible to use an existing content distribution network in conjunction
with Arpeggio. A simple implementation might simply store a HTTP URL for
the file in the metadata blocks, or a pointer into a content distribution network
such as Coral [5]. A DHT can be used for direct storage of file contents, as in
distributed storage systems like CFS [2]. For a file sharing network, direct storage
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Fig. 3. Two source nodes S1,2, inserting file metadata block MF to three index nodes
I1,2,3, with (right) and without (left) a gateway node G

is impractical because the amount of churn [7] and the content size create high
maintenance costs.

Instead, Arpeggio uses indirect storage: it maintains pointers to each peer
that contains a certain file. Using these pointers, a peer can identify other peers
that are sharing content it wishes to obtain. Because these pointers are small,
they can easily be maintained by the network, even under high churn, while the
large file content remains on its originating nodes. This indirection retains the
distributed lookup abilities of direct storage, while still accommodating a highly
dynamic network topology, but may sacrifice content availability.

4.1 Segmentation

For purposes of content distribution, we segment all files into a sequence of
chunks. Rather than tracking which peers are sharing a certain file, Arpeggio
tracks which chunks comprise each file, and which peers are currently sharing
each chunk. This is implemented by storing in the DHT a file block for each file,
which contains a list of chunk IDs, which can be used to locate the sources of
that chunk, as in Table 2. File and chunk IDs are derived from the hash of their
contents to ensure that file integrity can be verified.

The rationale for this design is twofold. First, peers that do not have an entire
file are able to share the chunks they do have: a peer that is downloading part
of a file can at the same time upload other parts to different peers. This makes
efficient use of otherwise unused upload bandwidth. For example, Gnutella does
not use chunking, requiring peers to complete downloads before sharing them.
Second, multiple files may contain the same chunk. A peer can obtain part of a
file from peers that do not have an exactly identical file, but merely a similar
file.
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Table 2. Layers of lookup indirection

Translation Method

keywords → file IDs keyword-set index search
file ID → chunk IDs standard DHT lookup
chunk ID → sources content-sharing subring

Though it seems unlikely that multiple files would share the same chunks,
file sharing networks frequently contain multiple versions of the same file with
largely similar content. For example, multiple versions of the same document may
coexist on the network with most content shared between them. Similarly, users
often have MP3 files with the same audio content but different ID3 metadata
tags. Dividing the file into chunks allows the bulk of the data to be downloaded
from any peer that shares it, rather than only the ones with the same version.

However, it is not sufficient to use a segmentation scheme that draws the
boundaries between chunks at regular intervals. In the case of MP3 files, since
ID3 tags are stored in a variable-length region of the file, a change in metadata
may affect all of the chunks because the remainder of the file will now be “out
of frame” with the original. Likewise, a more recent version of a document may
contain insertions or deletions, which would cause the remainder of the document
to be out of frame and negate some of the advantages of fixed-length chunking.

To solve this problem, we choose variable length chunks based on content,
using a chunking algorithm derived from the LBFS file system [11]. Due to the
way chunk boundaries are chosen, even if content is added or removed in the
middle of the file, the remainder of the chunks will not change. While most recent
networks, such as FastTrack, BitTorrent, and eDonkey, divide files into chunks,
promoting the sharing of partial data between peers, Arpeggio’s segmentation
algorithm additionally promotes sharing of data between files.

4.2 Content-Sharing Subrings

To download a chunk, a peer must discover one or more sources for this chunk.
A simple solution for this problem is to maintain a list of peers that have the
chunk available, which can be stored in the DHT or handled by a designated
“tracker” node as in BitTorrent [1]. However, the node responsible for tracking
the peers sharing a popular chunk represents a single point of failure that may
become overloaded.

We instead use subrings to identify sources for each chunk, distributing the
query load throughout the network. The Diminished Chord protocol [8] allows
any subset of the nodes to form a named “subring” and allows Lookup oper-
ations that find nodes in that subring in O (log n) time, with constant storage
overhead per node in the subring. We create a subring for each chunk, where the
subring is identified by the chunk ID and consists of the nodes that are sharing
that chunk. To obtain a chunk, a node performs a Lookup for a random Chord
ID in the subring to discover the address of one of the sources. It then contacts



Arpeggio: Metadata Searching and Content Sharing with Chord 67

that node and requests the chunk. If the contacted node is unavailable or over-
loaded, the requesting node may perform another Lookup to find a different
source. When a node has finished downloading a chunk, it becomes a source
and can join the subring. Content-sharing subrings offer a general mechanism
for managing data that may be prohibitive to manage with regular DHTs.

4.3 Postfetching

To increase the availability of files, Arpeggio caches file chunks on nodes that
would not otherwise be sharing the chunks. Cached chunks are indexed the
same way as regular chunks, so they do not share the disadvantages of direct
DHT storage with regards to having to maintain the chunks despite topology
changes. Furthermore, this insertion symmetry makes caching transparent to the
search system. Unlike in direct storage systems, caching is non-essential to the
functioning of the network, and therefore each peer can place a reasonable upper
bound on its cache storage size.

Postfetching provides a mechanism by which caching can increase the supply
of rare files in response to demand. Request blocks are introduced to the network
to capture requests for unavailable files. Due to the long expiration time of meta-
data blocks, peers can find files whose sources are temporarily unavailable. The
peer can then insert a request block into the network for a particular unavailable
file. When a source of that file rejoins the network it will find the request block
and actively increase the supply of the requested file by sending the contents
of the file chunks to the caches of randomly-selected nodes with available cache
space. These in turn register as sources for those chunks, increasing their avail-
ability. Thus, the future supply of rare files is actively balanced out to meet their
demand.

5 Conclusion

We have presented the key features of the Arpeggio content sharing system.
Arpeggio differs from previous peer-to-peer file sharing systems in that it im-
plements both a metadata indexing system and a content distribution system
using a distributed lookup algorithm. We extend the standard DHT interface
to support not only lookup by key but complex search queries. Keyword-set in-
dexing and extensive network-side processing in the form of index-side filtering,
index gateways, and expiration are used to address the scalability problems in-
herent in distributed document indexing. We introduce a content-distribution
system based on indirect storage via subrings that uses chunking to leverage file
similarity, and thereby optimize availability and transfer speed. Availability is
further enhanced with postfetching, which uses cache space on other peers to
replicate rare but demanded files. Together, these components result in a design
that couples reliable searching with efficient content distribution to form a fully
decentralized content sharing system.
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