Unstructured Routing : Gnutella and Freenet

Presented By Matthew, Nicolai, Paul

Presentation Overview

- Gnutella
 - 1. What Gnutella is
 - 2. How it works
 - 3. Its positives and negatives
- Freenet
 - 1. Motivation and Philosophy
 - 2. Architecture and use
 - 3. Performance, Strengths and Weaknesses

What is Gnutella?

- Gnutella is a protocol for distributed search
- Each node in a Gnutella network acts as both a client and server
- Peer to Peer, decentralized model for file sharing
- Any type of file can be shared
- Nodes are called "Servents"

What do Servents do?

- Servents "know" about other Servents
- Act as interfaces through which users can issue queries and view search results
- Communicate with other Servents by sending "descriptors"

Descriptors

- Each descriptor consists of a header and a body.
- The header includes (among other things)
 - A descriptor ID number
 - A Time-To-Live number
- The body includes:
 - Port information
 - IP addresses
 - Query information
 - Etc... depending on the descriptor

Gnutella Descriptors

- **Ping**: Used to discover hosts on the network.
- **Pong**: Response to a Ping
- **Query**: Search the network for data
- **QueryHit**: Response to a Query. Provides information used to download the file
- **Push**: Special descriptor used for sharing with a firewalled servent

Routing

- Node forwards Ping and Query descriptors to all nodes connected to it
- Except:
 - If descriptor's TTL is decremented to 0
 - Descriptor has already been received before
- Loop detection is done by storing Descriptor ID's
- Pong and QueryHit descriptors retrace the exact path of their respective Ping and Query descriptors

Routing2

Joining a Gnutella Network

- Servent connects to the network using TCP/IP connection to another servent.
- Could connect to a friend or acquaintance, or from a "Host-Cache".
- Send a **Ping** descriptor to the network
- Hopefully, a number of **Pongs** are received

Querying

- Servent sends **Query** descriptor to nodes it is connected to.
- Queried Servents check to see if they have the file.
 - If query match is found, a QueryHit is sent back to querying node

Downloading a File

- File data is never transferred over the Gnutella network.
- Data transferred by direct connection
- Once a servent receives a QueryHit descriptor, it may initiate the direct download of one of the files described by the descriptor's Result Set.
- The file download protocol is HTTP. Example:

GET /get/<File Index>/<File Name>/ HTTP/1.0\r\n Connection: Keep-Alive\r\n Range: bytes=0-\r\n User-Agent: Gnutella\r\n3

Direct File Download

Overall:

- Simple Protocol
- Not a lot of overhead for routing
- Robustness?
 - No central point of failure
 - However: A file is only available as long as the fileprovider is online.
- Vulnerable to denial-of-service attacks

Overall 2:

- Scales poorly: Querying and Pinging generate a lot of unnecessary traffic
- Example:
 - If TTL = 10 and each site contacts six other sites
 - Up to 10^6 (approximately 1 million) messages could be generated.
 - On a slow day, a GnutellaNet would have to move 2.4 gigabytes per second in order to support numbers of users comparable to Napster. On a heavy day, 8 gigabytes per second (Ritter article)
- Heavy messaging can result in poor performance

Final thoughts about Gnutella

- Gnutella developers acknowledge the problems with Gnutella
- Gnutella2 (Mike's protocol) is now released, but it is substantially different from original Gnutella
- Gnutella2 is not compatible with original
- Some say Gnutella2 is attempt to hijack Gnutella

- What is Freenet ?
 - A Decentralized Distributed File Storage System
- How does it work ?
 - Files stored and replicated across a distributed network environment, with a peer-to-peer query and data access system. No centralized system management.

- Motivation What does it provide ?
 - Anonymity for both producers and consumers of information
 - Deniability for storers of information
 - Resistance to attempts by third parties to deny access to information
 - Efficient dynamic storage and routing of information
 - Decentralization of all network functions
 - From "Freenet: A Distributed anonymous Information Storage and Retrieval System", Ian Clarke et. al.

18

- Architecture
 - Key generation
 - Distributed information storage
 - Query procedure
 - Data retrieval
 - Data removal

- Architecture (2)
 - Location independence
 - Transparent lazy replication
 - File encryption
 - Dynamic network expansion/contraction

Routing

Figure 1.Typical request sequence. The request moves through the network from node to node, backing out of a dead-end (step 3) and a loop (step 7) before locating the desired file.

- Lookup / Insert
 - 1. Hash key for data (160-bit SHA-1)
 - 2. Find node with closest match
 - 3. Forward query to this node
 - 4. Return data, replicating along the way
 - 5. For insert, push data onto node

Figure 1.Typical request sequence. The request moves through the network from node to node, backing out of a dead-end (step 3) and a loop (step 7) before locating the desired file.

- Keys and Data distribution
 - 160-bit keyspace
 - Data clustered according to key values
 - Nodes attract requests for data with keys similar to theirs

- Data Store
 - Each node has an inventory of locally stored data, their hash keys and their most recent access/modification times
 - Each node has limited storage capacity
 - Potential overflow of data handled by removing least-recently used (LRU) files
 - NO file lifetime guarantees
 - Data passing through a node is stored locally, creating a dynamic cache

- Protocol
 - Request.Handshake
 - Reply.Handshake
 - Request.Data
 - Send.Data
 - Reply.NotFound
 - Reply.Restart
 - Request.Continue
 - Request.Insert
 - Reply.Insert
 - Send.Insert

Initial Contact

Querying for Data

Request Management

> Inserting Data

• Protocol (2)

– All messages contain

- Transaction ID 64-bit randomly generated
- Hops-to-live limit

- Request messages also contain
 - Search key or
 - Proposed key

- Performance
 - Network convergence
 - Evolution of path length stability
 - Scalability
 - Network adaptability to increasing number of nodes and increasing traffic
 - Fault-tolerance
 - System resistance to node / network failure
 - Small-world scenario
 - Preferential attachment in the network permits efficient short paths between arbitrary points

• Network convergence

Fig. 2. Time evolution of the request pathlength.

IT University of Copenhagen

• Scalability

Figure 3. Request path length versus network size. The median path length in the network scales as N^{0.28}.

• Fault-tolerance

Figure 4. Request path length under random failure.

• Fault-tolerance (2)

Figure 5. Connectivity under random failure and targeted attack. The network falls apart quickly when the well-connected nodes are targeted first.

• Small-world scenario

Figure Degree distribution among Freenet nodes. The network shows a close fit to a power-law distribution.

- Security
 - Nodes are unable to determine origin of messages
 - Messages between nodes encrypted against local eavesdropping
 - Data source information periodically removed from data transfer
 - Hops-to-live trick
 - Hashing used to check data integrity and safeguard against intentional data corruption

- Design weaknesses
 - No file lifetime guarantees
 - No efficient keyword search
 - Currently, no defense against DoS attacks
 - Bandwidth limitations not considered

- Design strengths
 - Decentralized no single point of failure
 - Scales well
 - Dynamic routing adapts well to changing network topology
 - High resilience to attacks

- Next Generation Routing protocol
 - Nodes become smarter about deciding where to route information
 - Bandwidth considered when routing
 - Statistical information gathered about response times, successful requests and connection times
 - This information used to estimate nodes most likely to retrieve data quickest

Gnutella vs. Freenet

- Common features
 - Decentralization
 - Out-of-network initial connection
 - Peer-based query system

Gnutella vs. Freenet

- Differences
 - Flood-based routing vs. Dynamic decisionbased routing
 - Out-of-band vs. In-band data transfer
 - No memory of past network traffic (stateless) vs. Routing tables
 - Read-only (File sharing) vs. Read/Write (File storage)
 - Static file locations vs. Dynamic file removal and replication
 - Openness vs. Anonymity
 - Low security vs. High security

End of Presentation

Nutella and Questions !!!!

