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Abstract—The distributed hash table (DHT) scheme has be-
come the core component of many large-scale peer-to-peer net-
works. Degree, diameter, and congestion are important measures
of DHT schemes. Many propesed DHT schemes are based on
traditional interconnection topologies, one being the Kautz graph,
which is a static topology with many good properties such as
optimal diameter, optimal fault-tolerance, and low congestion.
In this paper, we propose FISSIONE: the first effective DHT
scheme based on Kautz graphs. FISSIONE is constant degree,
Oflog N) diameter, and (1 + o{1))-congestion-free. FISSIONE
shows that a DHT scheme with constant degree and constant
congestion can still achieve O(log N) diameter, which is better
than the lower bound ((N'/¢) conjectured before. The average
degree of FISSIONE is 4, the diameter is less than 2log NV,
and the maintenance message cost is less than 3log N. The
average routing path length is about log N and is shorter than
CAN or Koorde with the same degree when the peer-to-peer
network is large-scale. FISSIONE can achieve good load balance,
high performance, and low congestion and these properties are
carefully evaluated by formal preofs or simulations in the paper.

Index Terms— Peer-to-peer networks, distributed hash table
(DHT), Kautz graph, congestion-free.

1. INTRODUCTION AND RELATED WORK

In recent years, peer-to-peer (P2P) computing has attracted
significant attention from both industry and academic re-
search [1], [2]. Applications of peer-to-peer networks vary
ameng file sharing, persistent data storage, cooperative web-
caching, DNS, and application level multicast. Many peer-to-
peer systems have been deployed on the Internet, and some of
them have hecome popular Internet applications.

The core component of many P2P systems is a distributed
hash table (DHT) scheme [3], [4] that uses a hash-table-
like interface to publish and look up data objects. In PHT
schemes, the objects are hashed into a namespace, and each
peer is assigned a small segment of the namespace. When
peers join or depart, the responsibility is reassigned among
the peers to maintain the hash table structure. DHT schemes
have attracted significant attention in academic research for
their desirable characteristics, such as scalability, robustness,
adaptability, self-management, and penerality.
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Two important measures of DHT schemes are degree, the
size of routing table to be maintained on each peer, and
digameter, the number of hops a lookup needs to travel in the
worst case. Chord [5], Tapestry [6], Pastry [7]. and CAN [8]
are well-known DHT schemes. The degree of Chord [5] is
log N and its diameter is also log N, where N is the number
of peers in the P2P network. The average path length of Chord
is 1/2log N. Tapestry and Pastry are similar DHT schemes
designed with the concept of prefix routing [9]. The degree of
either is ({dlogy N) and the diameter is O(logy N) where d
is the base in which the peer identifiers are encoded. CAN uses
a d-dimensional Cartesian coordinate space (for some fixed d)
and its degree is 2d. The diameter of CAN is 1/2dN'/4, and
the average path length is 1/4dN'/¢, From these schemes, it
was observed in [4] that existing DHT schemes tend to achieve
either O(log N) degree and O{log N) diameter (e.g., Chord,
Tapestry, and Pastry) or O(d) degree and O(dN*/9) diameter
(e.g., CAN}. Thus it was asked in [4] whether there exists a
DHT scheme with O(d) degree and O(log N} diameter.

Recent work [10]-[13] showed that there are DHT schemes
that achieve O(log V) diameter with O(d) degree, but these
schemes cause congestion. Xu ef gl [13] systematically
studied the degree/diameter tradeoff of DHT schemes and
clarified the role that c-congesfion-free (which is defined as
the maximum traffic that nodes or edges deal with is no more
than ¢ times the average) plays in the degree/diameter tradeoff.
Their research showed that Q(%) and £}(log V) are the
asymptotic lower bounds for the diameter when the degree is
O(log N) and d respectively, and & conjecture posed in [13]
is that “when the network is required to be c-congestion-free
for some constant ¢, (N1/9) is the asymptotic lower bound
for the diameter when the degree is no more than 4’ In this
paper, we propose FISSIONE, a DHT scheme based on Kautz
graphs, that can achieve constant degree, Oflog V) diameter,
and be {1+ o{1))-congestion-free. The result from FISSIONE
shows that DHT schemes with constant degree and constant
congestion can still achieve O(log N} diameter, which is better
than the lower bound {N1/%) conjectured before.

Many preposed DHT schemes are based on some traditional
interconnection topologies: Chord, Tapestry, and Pastry are
based on the hypercube topology, CAN is based on the d-torus
topology, Koorde [10], D2B [11] and ODRI [14] are based
on the de Bruijn graph, and Viceroy [12] and Ulysses [13]
are based on the Butterfly topology. Gummadi ef al. [15]
studies how basic geometric approaches (i.e., interconnection
topologies) affect the resilience and proximity properties of
DHT schemes, Loguinov et al. [14] examined graph theoretic
properties of existing DHT schemes and proposed a new
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DHT scheme, ODRI, based on de Bruijn graphs; however the
details of ODRI are still under investigation. Compared with
the hypercube, the de Bruijn graph, or the torus, the Kautz
graph [16], [17] has some better properties, but there were no
DHT schemes based on Kautz graphs. In this paper, we show
the optimal diameter and optimal fault tolerance properties
of the Kautz graph and demonstrate that the Kautz graph is
(1 + o(1})-congestion-free when using the long path routing
algorithm. Then we propose FISSIONE, the first effective
DHT scheme based on Kautz graphs.

FISSIONE is based on well-known Kautz graphs; however,
there are some challenges in building dynamic P2P networks
with good properties based on static Kautz graphs:

i) First, the identifiers of peers or objects in P2P networks
should be Kautz strings, but there is no existing hash
algorithm that can determinately generate Kautz strings
uniformly distributed in the Kautz namespace (as SHA-
1 algorithm used in Tapestry to generate GUID for
objects). We design a Kawiz_hash algorithm to achieve
that and prove its correctness and efficiency.

2) Second, the shortest path routing algorithm [17] gener-
ally used causes severe congestion in the Kautz graph.
We adopt the long path routing algorithm and demon-
strate its low congestion characteristic. Then we modify
it to fit the routing algorithm used in dynamic P2P
networks.

3) Third, the Kautz graph is a static topology and some
mechanisms are required to adapt the static Kautz graph
gracefully to dynamic P2ZP networks. In FISSIONE,
peers are organized to form an approximate Kautz graph
according to their identifiers, and the neighborhood
and identifiers are adapted dynamically to the changing
population of peers. FISSIONE keeps a topology rule
called neighborhood invariant at all times to acquire
good load halance and low diameter. The split large and
merge small seli-stabilization mechanism is proposed
to deal with joining or departing of peers. The atomic
update mechanism is adopted to avoid temporary inac-
curate routing or other mistakes in P2P networks when
updating. Based on these mechanisms. FISSIONE can
be built as a scalable and high performance P2P network.

FISSIONE can achieve many good characteristics, such
as load balance, high performance, and low congestion.
FISSIONE is constant degree, O(log N) diameter and (1 +
o(1))-congestion-free. The degree of FISSIONE is between 3
and 6, and its average degree is 4. The diameter of FISSIONE
is less than 2log N, which matches the theoretical low bound
Qlog N) of constant degree DHT schemes. The average
routing path length is about log V and the maintenance cost
is O(log V). Similarly to CAN, D2B, Viceroy, and Ulysses,
each peer in FISSIONE owns a zone in virtual 2-dimensional
Cartesian space and repositions the space when peers join or
leave. However, the design of FISSIONE is very different from
them, and thus it can achieve different tradeoffs. The identifiers
of peers and data objects in FISSIONE are Kautz strings
with different lengths, and the uneighborhood is represented
as an approximate Kautz graph. The topology rule and main-

tenance mechanism in FISSIONE are significantly different
from existing approaches. Compared with FISSIONE, Ulysses
is Oflog N) degree and achieves a different tradeoff. D2B
and Viceroy are DHT schemes to achieve expected constant
degree and expected O(log V) diameter. The expected de-
gree of D2B is constant, but its high probability bound is
Oflog N), i.e., a few peers would be of degree Q(log N), The
expected diameter of Viceroy is about 3log N; however its
O{log N) diameter is achieved not with certainty but “with
high probability”. Among the known DHT schemes, only
CAN, Koorde, and FISSIONE are definitely constant degree.
CAN is of 2d degree, but its diameter is O(dN'/4), Koorde is
constant degree and O(log N') diameter, but it is not (1-+o(1))-
congestion-free and its congestion is more severe than that of
FISSIONE. The average routing path length of FISSIONE is
shorter than that of CAN or Koorde with the same degree
when the P2P network is large-scale,

The remainder of the paper is organized as follows, Section
H introduces the Kautz graph and shows its good properties.
Section Il describes the detailed design of FISSIONE. Section
1V evaluates the characteristics of FISSIONE. Conclusions and
future work are discussed in Section V.

I1. KauTZ GRAPH AND LOow CONGESTION

Many DHT schemes are based on traditional interconnec-
tion network topologies. Different from dynamic P2P net-
works, the traditional interconnection topology poses some
limits on the number of nodes it can support and does
not support the dynamic joining or departing of nodes. To
distinguish them, the traditional interconnection networks are
called static networks in the paper,

A. Static Kautz Graph

FISSIONE adopts the Kautz graph as its static network
topology. This section reviews the Kautz graph [16], [17] and
its properties.

Definition 1: The Kautz string £ of length k and base d is
defined as a string ujus . .. ux where u; belongs to an alphabet
of d + 1 symbols {0,1,2,...,d} and u; # wip (1 €4 <
E—1).

Definition 2: The Kauiz namespace KautzSpace(d, k) is
defined as the set containing all Kautz strings of length & and
base d, i.e., KautzSpace(d, k) = {uyus . . ug|uius .. uy is
a Kautz string}.

The main feature of the Kautz string is that two consecutive
symbols in it are always different. It is easy to see that there
are N = d* + d* ! strings in KautzSpace(d, k) since the
first symbol in the Kautz string has d + 1 possibilities and all
subsequent symbols have d possibilities.

Definition 3: The Kautz graph K(d. k) [16], [17] is a
directed graph whose node set is given by all strings in
KautzSpace(d, k). There is an edge from node U to node
V (denoted by U — V) iff V is a lefi-shifted version of U,
i.e., there is an outgoing edge from U7 = uyug ... ug to V iff
V = uqug ... urx for any = # wg and z € {0,1,2,...,d}.

Obviously, each node in the Kautz graph K{d, k) is of in-
degree d and out-degree d and there are N = d*+d*~! nodes
in K(d, k). Figure 1 shows Kautz graph K(2,3).
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Fig. b. Kautz graph K (2. 3). Fig. 2. Neighborhood of FISSIONE.

The Kautz grapb is similar to the de Bruijn graph except
that its nodes’ labels are not normal strings (as in the de
Bruijn graph) but Kautz strings. However, the Kautz graph
can achieve some better properties, such as optimal diameter,
optimal fault tolerance, and good load balance.

Given degree 4 and diameter k, the upper bound on the num-
ber of nodes N in a graph is given by the Moore bound [18]
1+d+d*+. . +d*. The Moore bound is not achievable except
in the wrivial case when d = 1 or & = 1. The number of nodes
in Kautz graph K(d, k) is d*=! +d*, very close to the Moore
bound. Furthermore, if & = 2, the largest number of nodes in
a graph is d+d? and then Kautz graphs are the densest graphs
when the diameter is 2 (since in K(d,2), N = d + d*). From
the Moore bound, it is easy to find that the low bound of the
diameter of graphs with N nodes is [log,(N{d - 1)+ 1)] —
1 and the diameter k& of Kautz graph K{d, k) rcaches
the lower bound as: [log,((d* +d* 1 )d-1)+1)] - 1 =
flogy(d* 1 —g* ' 4 1) — 1 =k +1- 1=k

Thus the Kautz graph K(d, k) has the optimal diameter.
Table I shows the degree/diameter tradeoff of relevant topolo-
gies.

Kautz graphs are also optimally fault-tolerant [19). The
Kautz graph K(d, k) of degree d has connectivity d (i.c., there
are d node-disjoint paths between any two nodes) and failure
of any d — 1 components is tolerated. The corresponding de
Brujin graph has connectivity ¢ — 1. In addition, the Kautz
graph can achieve better load balance and lower latency than
the de Bruijn graph [17]. Because the Kautz graph has these
good features, FISSIONE selects it as the underlying static
topology.

B. Low Congestion Routing

There are many routing algorithms for Kautz graphs, such
as the shortest path routing algorithm and the Jong path rout-
ing algorithm [17]. FISSIONE adopts the long path routing
algorithm in Kautz graphs.

Definition 4: Long path routing algorithm. With the long
path routing algorithm, the routing path (called long path)
from node U = wjug...ux to node V = vyvo...v; in the
Kautz graph K (d, k) is a path of length & shown as below:

U=1wiuy...up — uatig ..

L= URUIVS ..

SURV — U3Ug L URTIT
o = V(I uyg # vy)
or a path of length &£ — 1 shown as below:
U:ulug..‘uk — UUz ...
T UEVD L VR Ty = VU L U

U—1 U

UpUy — U3Ug - .. ULUV2Vg —>

=V (lf Uy = 1)1).

For example, the long path from node 201 10 node 212 is
201 — 012 — 121 — 212, and the long path from 201 to 102
is 201 — 010 — 102, :

The long path may contain duplicate nodes and the algo-
rithm keeps it for symmetry and simplicity. Obvicusly, the
length of the long path between any two differcnt nodes is k
or k—1, and the average path length is b = 4% 1*k+ il G

=4k~ m The average routing path length of long path
routing algorithm is a little longer than that of the shortest path
routing algorithm (Table II shows the comparison between
them}, while the long path routing algorithm can achieve better
load balance and other geod characteristics and its average
routing delay may even be less under heavy loads [17] {the
severe congestion on some nodes in the shortest path leads to
extra queuing delay).

Now we consider the congestion characteristic of long path
routing in Kautz graphs. We use the concept “congestion-free”
from Xu et af [13].

Definition 5: A P2P network is c-congestion-free [13] (c is
a constant and ¢ > 1) if its static network is both c-node-
congestion-free and c-edge-congestion-free under uniform ali-
to-all communication load. Being c-congestion-free is also
referred to as having ¢ congestion or constant congestion,
A network is said to be c-node-congestion-free if no node
is handling more than ¢ times the average traffic per node.
A network is said to be c-edge-congestion-free if no edge is
handling more than ¢ times the average raffic per edge.

The uniform ali-to-all communication load is defined as:
for each pair of nodes U/ and V' ({7 # V), there is a unit of
traffic from U to V. A static P2P network is defined as the
case in which all nodes in the identification space exist and
are alive, le.. nodes in the P2P network form the complete
static topology.

Under uniform all-to-all communication load, there are N
(N —1) routings in the network. Assuming the average path
length of the network is h, then the average load on a node is
(N — 1) h and the average load of an edge is N # {N — 1)«
h/|E| (where |E! is the number of edges in the network).

Theorem I: With the long path routing algorithm, Kautz
graph K(d, k) is (1 + o(1))-congestion-free.

Progf: 'The detailed proof of Theorem 1 can be referred
to (201, here is just the sketch. Define

Sl = {ulug S URUIUY L .ukl’u1UQ L UERUIU LU
€ KautzSpace(d, 2k)},
Sg = {u1u2 o URTEY L .uk]u1u2 e UEUa L UE

€ KautzSpace(d, 2k — 1) and w1 = ug},
53 = KautzSpace(d, 2k) ~ S,
= KoutzSpoce(d, 2k — 1) —
&= Sg U 84
The uniform all-to-all communication load is represented
by the set Mf: M ={ long paths from U to V | U and V are
different nodes in K{d, k) }
Define mapping f: V6 € M, assuming & is a routing path
of length n: bybo.. by — babs.. . bryy — baby ...
= bnbag ey, then f(8) =biba. by .. by
1t is easy to prove that f is a bijection from M to S. Thus
under the uniform all-to-all communication load, for any node
R = riro...ry. its load is equal to the number of the Kauiz

S,

brya —
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TABLE 1
DEGREE/DIAMETER TRADEOFF OF DIFFERENT TOPOLOGIES.

[ Topology [[ Degree Diameter [ Average path length
Hypercube topology (Chord) log N log N 1/2log N
d-torus topology (CAN) 2d 1/2dN1/4 1/4dN1/d
Butterfly topology d 2logy N(1 — o(1)) [14] about 3/21logy N [14]
de Bruijn graph d logs N logy N —1/{d =1} [14}
Kautz graph (FISSIONE) d D=Tlog, N —log (1 +1/d) D—1/(d+T1)

TABLE I1
AVERAGE ROUTING PATH LENGTH (LONG PATH ROUTING ALGORITHM VS. SHORTEST PATH ROUTING ALGORITHM).

[ Kautz graph TR@Z10)] K210 k(&6 | K371 | A(4,5) | K(4,6) | K(55) | K(6.4) ] K(6,5) |
Number of nodes 1536 072 972 2916 1280 5120 3750 1512 9072
Shortest path routing algorithm [17] 87922 | 9.7865 | 54624 | 6.4567 | 46541 56505 | 47430 | 3.7983 | 4.7958
Long path routing algorithm 9.6667 10.6667 | 5.75 6.75 4.8 5.8 4,83313 3.8571 4.8571

string ryro ... 1y appeared as a substring (except for the prefix) I11. FISSIONE DESIGN
of Kautz strings in S. Tt can be found that the load L, of B A Overview

187

LH(R)_{ kadt +(k—1)d" " —k

Exdt +(k—1Dd" 1 —k+1

The average path length h in K(d, k) is h = k — a—jlr—l
Thus the average load of a node is :
Avg(Ln) = (N—-1)%h
1

_ ko k-1 _ _
— (& +d D* (k—577)
1

_ k . k=1 _ .
= krd (k=) rd T ko

As Maz(Ln) — Avg(Ln) = 747 < Avg(Ln), and

1

L P L T

Maz(Ln)/Avg(Lyn) <
= U aToeN

1
= OGN

= 1+0(1)

)

Thus K{d, k) is {1+ o(1)})-node-congestion-free. Similarly,
it can be proved that K(d, k) is {1 + o{1))-edge-congestion-
free. Therefore Kautz graph K{(d, k) is (1 -+ o(1))-congestion-
free.

]

From Theoremn 1, it can be derived that the Kautz graph
has constant congestion (e.g. it is 2-congestion-free). When
the number of nodes NV is large, the Kautz graph is almost
congestion-free. -

A Kautz graph has optimal diameter and optimal fault-
tolerance characteristics. In addition, it is (1 + o{1))-
congestion-free when using the long path routing. Thus the
Kautz graph is a good static topology to construct DHT
schemes. In this paper, we propose a novel constant-degree
and O(log N)-diameter DHT scheme, FISSIONE, which is
based on Kauiz graph K (2, %) with long path routing. From
Definition 5 and Theorem 1, FISSIONE has constant conges-
tion.

FISSIONE uses a Kautz graph K (2, k) as its stalic topology.
Each peer in FISSIONE owans a zone in a virtual 2-dimensional
Cartesian coordinate space. Peer and zone arc synonyms in
the paper and can be used interchangeably. The tdentifiers of
zones in FISSIONE are Kautz strings with base 2, and zones
are formed into an approximate Kautz graph according to their
identifiers.

Initially, zones have equal area and the lengths of their
identifiers are the same, Zones form a complete static Kautz
graph (e.g. K(2,1)) at the beginning. When peers join or
depart, the entire coordinate space is dynamically partitioned
among all peers and the lengths of their identifiers may become
different. For example, if a new peer p joins, it first finds a
large zone V that has no larger neighbors, and zone V is split
into two new zones (“splif large” policy): one is for the peer
that owns V" originally and another for peer p. The length of
new zone’s identifier is one more than that of V' and its area
is one half of zone V. Then the neighborhoods related to V'
is adapted to maintain the approximate Kautz graph. When
a peer p departs, two brother zones Y; and Y2 which have
no smaller neighbors are found and merged (“merge small”
policy) to a new zone Z. The identifier of Z is one shorter
than Y7 and its area is twice of that of ¥;. Afterward related
peers would update their routing tables.

To achieve good characteristics, FISSIONE keeps a topol-
ogy rule called neighborhood invariant which requires that the
difference of identifier lengths between neighbors is no more
than one at all times. Such a rule can ensure that neighbor
zones have similar area size and that the neighborhood is
simple.

Each data object in FISSIONE is assigned a unique Ob-
jectID which is a Kautz string of fixed length m. The object
is published on the peer whose identifier is the prefix of its
ObjectID.

B. FISSIONE Neighborhood

The identifiers of zones in FISSIONE are Kautz strings with
base 2. Initially the identfiers of zones are labels of nodes in
a static Kautz graph (e.g.. K{2,1)) and zones own the same
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area in the Cartesian coordinate space. However, the lengths
of identifiers may be different due to the dynamic arrival and
departure of nodes, as explained in a later subsection.

FISSIONE keeps a topology rule called neighborhood in-
variant at all times. Denoting the length of the identifier of
7 as U], he neighborhood invariant is shown as Theorem 2
(its proof is in Section IV).

Theorem 2 (Neighborhood Invariant): If zone U and V in
FISSIONE are neighbors, ||U| — |V|] < 1.

The neighborhoods of zones are based on zone identifiers.
Assuming the identifier of zone U is ujus .. . ui (denote it as
U = wjuy ... ug), to form a approximate Kautz graph, U7 has
two kinds of neighbors:

Out-neighbors:  neighbors  whose  identifiers  are
sz .. ugqr ... g With 0 < m < 2 (f m < 1, the
string in the style ¢1 ... ¢ represents the null string).

In-neighbors: neighbors whose identifiers are aujusy ...y
(a#u ) withkh—2< i<k

The routing table of U/ contains all the out-neighbors and
in-neighbors of 7. Notice that if {/ is the out-neighbor of V, V'
also 1s the in-neighbor of U7, Figure 2 shows the neighborhood
of FISSIONE (pay special attention to nodes 21, 0202, 0201
and their neighbors).

C. Universal Naming

In many DHT schemes, data objects are enceded by some
public hash algorithm {e.g., SHA-1, MD35), and the identifiers
of data objects are in a similar namespace related to the
nodes’ identifiers. For example, the data namespace in Chord
scheme is [0, 2'%° — 1], which is also the namespace of
nodes in Chord scheme. The identifiers of nedes in Fission
are Kautz strings with base 2 and the Kautz_hash algorithm is
proposed to generate a destination Kautz string ¢ for each data
object O. Similar to SHA-1 [21], the Kautz_hash algorithm
should be determinate and the Kautz string generated should
be uniformly distributed in the Kautz namespace.

The Kautz_hash algorithm uses four parameters: key, m, p
and n, For each data object O, the Kautz_hash algorithm can
generate a Kautz string of length m based on its keyword key.
The procedure of Kautz_hash is shown below:

First Kautz_hash appends 0,1, ..., p to key and gets keyy,
keys, ..., keyy. Then keyo, keyy, ..., key, are respectively
hashed to 160-bit binary numbers Dy, D, . ... D, by the pub-
lic hash algorithm SHA-1, i.e., Dy = SHA — 1(keys), D) =
SHA—-1(key1), ..., Dp = SHA—-1(key,). Do, Dy, ..., Dy
are concatenated 10 acquire a binary number D and D is then
converted Lo a ternary number R, The low n digits of R’ form
R. R is a ternary number: however R may not be a valid Kautz
string because there may exist certain sequences bb. .. b with
b e {0,1,2} in R. Thus R is further converted to a Kautz
string Q) by substituting a single b for any sequence bb.. . bin
R. If the length of Q) is less than m, then Kauiz_hash keeps
the value of Do, Di, ..., Dp_1, appends p + 1 to key, and
calculates Dy 1 by SHA-L, ..., and the procedure above is
repeated again until a Kautz string ¢ with length of no less
than m is obtained. The desired destination Kautz string £ is
then acquired from the low m digits of . Figure 3 shows the
Kautz_hash algorithm,

Procedure Kautz_hash (Keyword key, Len m. Merg p. Digit n)
I generate a Kautz string of length m based on keyword key
/ p and n are two adjustable parameters

1 D—¢ { ¢isanempty string

2 fori=0top—1

3 do D — D||(SHA — l{key||?))

/|| s the concatenation operation

4 4e—1p

5 repeat

6 D — D||(SHA - 1{key||1))

7 ze—241

8 R~ Convert_binary_ternary(l})

/f convert binary I} to ternary R
9 R— Get.law_digit(f{’ ,1)
/ get the low n digits of R’ to acquire string R
10 @ «— Merge. string{ R)
/f merge identical consecutive characters in R to
acquire Kautz string Q
11 until |Q| > m
12 ¢ — Getlow digit(Q,m)
13 return £

Fig. 3. Kautz.hash algorithm.

The Kautz_hash algorithm can adjust the parameiers p, n
and m to acquire destination Kautz strings with different
characteristics. When m = 100, FISSIONE could support a
P2P system with more than 105 peers (refer to section IV
for details) that is large enough for general applications. Thus
we set m — 100. To acquire the uniformly distributed Kaurz
strings, we set p = 2 and n = 280. The following Theorem 3
(its proof shown in Appendix A) shows that when p = 2 and
n = 280, the Kaufz hash algorithm can efficiently generate
a destination Kautz string of length 100 for each data object
and the Kautz string generated is uniformly diswuributed in the
Kautz namespace.

Theorem 3: With high probability, the Kaqutz hash algo-
tithm (with parameters p = 2 and n = 280) can generate
the destination Kautz string of length 100 in one iteration,
and Kautz strings generated are uniformly distributed in the
Kautz namespace KautzSpace(2, 100).

When the parameters are set p = 2 and n = 280, the
computing complexity of Kautz_hash algerithm is about three
times of SHA-1 algorithm; thus it is practical.

The procedure of publishing a data object is shown as
below: If peer p would like to publish a data object O, it
should first get the destination Kautz string 5 of O. Then
peer p invokes a routing to Kautz siring S and the routing
would arrive at a peer m whose identifier is the prefix of &
(the routing algorithm is discussed in the next subsection).
Thus the data object O is published on peer m. The lookup
of data objects is similar to the publication and omitted here.

D. Routing in FISSIONE

Routing in FISSIONE is similar to that in Kautz graphs.
Once a zone U = wjug... uy receives a routing message
Routing(V, L, S) 1o destination V' = vivg...vm (U # V)
with left path length L, &/ sends a new routing message
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Routing(V, L — 1, 5X) to Q if the following conditions hold:
(a) U has one out-neighbor zone ¢ = wug...urX where
X=ua;...2; (0<7<2) and (b) SX is a prefix of V.

The initial values of L and S are set as below: Assume there
is & routing from source zone W = wyiwg . . . wy to destination
Kautz string V' = vyvp ...ty If wy, = vy, then set L = k-1,
S = else set L =k, § = null. Figure 4 shows the routing
algorithm.

Procedure FISSIONE Routing (SourceZone W, DestString V)
/f routing from source zone W = wiwn ... wy to
destination Kauz string V' = vyv0 ... vm
1 ifwe =1
2 then return W.Routing(V. k— 1,11
3 else return W.Routing(V, k, null)

Procedure U.Routing (Dest V. PathiLen L, ComPrefix S)
/il zone U] = uywua ... up deals with the routing message
to destination Kautz string V' = 11v2. .. om
1 itL=20

2 then return [/ // reach destination V'
3 else if 3Q € outneighbors{U) and Q@ = ua ... ux X
and Ts_prefiz(SX,V)
4 then 5 — SX
5 Q. Routing{V,L - 1,5}
// the routing message is forwarded to @
Fig. 4. Routing algorithm.

The routing to destination Kautz String S will stop at a
unique peer p whose identifier is a prefix of 5 (the proof is
shown in section IV).

E. Maintenance and Self-stabilization

I} Peer Joins: When a new peer p joins in FISSIONE, its
join procedure can be divided into two phases: at the first
phase, peer p routes to the peer W that is responsible for the
destination Kautz String of p; at the second phase, the JOIN
message is propagated from peer W to a large zone V which
has no larger neighbors. Then V is split and the routing tables
should be updated. The delails are shown below.

Split large zomes. When peer p joins, it should know a
peer n which is already in the P2P network. Peer p first gets
a unique destination Kautz string U = wyus .. . u1n0 {2.2., bY
performing Kauiz_fash algorithm on its 1P address). Then peer
p invokes a routing from the gateway peer n 1o I/, The routing
will reach a unigue zone W whose identifier is the prefix of
U, and W invokes a JOIN message. Then starting from zone
W, if the current zone has a neighbor zone with larger area, it
forwards the JOIN message to the neighbor (if there is more
than one neighbors with larger area, select one randomly and
forward the JOIN message to it). This process will not stop
until the JOIN message reaches a zone ¥V which has no larger
necighbors and the JOIN message can not be forwarded any
more. Thus zone V is split into two zones V7 and Vs, The
owner of zone V] is set to peer m that was originally the owner
of zone V before the split, and the owner of zone V5 is set to
peer p. Suppose the identifier of zone V is vjvs .. vy, then

the identifier of V] is wyvg ... vpzo and the identifier of V; is
v1vg. g (0 <@g, B < 2,20 # v, £ 7 v, 2o # o). Vi
and V3 are brother zones, Figure 5 shows the case that peer p
joins into zone 01.

02 02

—_
—

01

(a) Zones before peer p joins (b) Zones after peer p joins

Fig. 5. Peer p joins in FISSIONE.

From the split procedure above, it is easy to know that the
area of a zone is in proportion to 2" when the length of
its identifier is h. The longer the identifier is, the less area
the zone occupies. Also, the number of data objects stored on
one peer is in proportion to 2" according to the publication
procedure. Thus the number of data objects stored on a peer
is in proportion to the area of its zone.

Update the routing tables. Once zone V is split, the routing
tables of related zones should be updated. For out-neighbors
R=ws...v5q1...9m (0 <m < 2) of V, the JOIN message
stops at zone V, thus |V < |Rland 1 < m < 2. If q; =z, R
becomes an out-neighbor of V; else ¢; = Z; and R becomes
an out-neighbor of V5, Also R should update its routing table
accordingly. For in-neighbors Q = aviva...v; (j < k) of V,
¢J becomes an in-neighbor of both V; and V5. Figure 6 shows
the maintenance algorithm for peer joining.

Procedure Peer Join (GatePeer n. NewPeer p)
/f new peer p join in the system through known peer n
| U « Kautz_hash(IP(p)}
/1 U is the destination Kautz string of p

2 W — FISSIONE _Routing(n,U)
/f routing from peer n to {7 and stops at zone W
3 V—W
4 while 3Q € neighbors(V) and {(}| < (V]
5 doV —Q
6 Split(V, V1, Va)

/ split zone V' to acquire zones V) and V,
7  Build_routingtables(Vi, V3)

/7 build the routing tables of zones V1 and V)
8 Updateroutingtables(neighbors{V))

/I update the routing tables of V’s neighbors

Fig. 6. Maintenance algorithm for peer joining.

2) Peer Departs: When a peer p departs from FISSTONE,
the zone V it owns should be occupied by other peers. That
force zones to merge. FISSIONE wies to merge the small
brother zones which have no neighbors with smaller area.

Merge small zones. If peer p volunteers to depart from the
system, it produces a DEPART message. Starting from zone V,
if the current zone has a neighbor zone with smaller area, the
DEPART message should be forwarded to the neighbor. The
DEPART message is propagated until a zone U = uqua .. . up
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is reached which has no neighbors with smalier area. Consider
{7’s neighbor R = aujuy...u; (k—2 < i < k), obviously
k-2 < i< k—1{for |B < U]} (from Corollary 1 in
Section IV) R has a neighbor W = wjus . wp— gy . gm
(0 <m < 1). Then, (N if m =0, W =wuz. .. ur rug. If
W has a neighbor T' with a smaller area, the DEPART message
is forwarded to T and continues o propagate; else the two
broiher zones {7 and W which will be merged are acquired;
(2) if m = 1, (from Corollary | in Section IV) R has also
a neighbor W' = wjuy ... ug_juixgy. If either W of W' has
a neighbor T with a smaller area, the DEPART message is
forwarded to T and continues to propagate; clse the brother
zones W and W' which will be merged are acquired and the
DEPART message is stopped.

During the departure procedure, once the DEPART message
is forwarded one time, the identifier length of the zone passed
decreases by at ieast one. From Theorem 5 in Section IV, the
DEPART message can be forwarded less than log N hops,
Thus we can acquire the brother zones Y1 = w92 .. . #n—1n
and Y2 = yyyo.. . yn—1%n, and Y: and Y, have no smaller
neighbor zones, Assume the owners of Y;, Yo are peer p; and
peer py respectively:

(1) if ¥ or Yz is V, without loss of generality we can
assume Y7 is V and in this case peer p; and peer p are the
same peer. Merge zones Y7 and Y7 into a mew zone vV =
Y1Y2 - .- Yn—1 and assign peer ng as the owner of zone V.

(2) if either Y7 or Y3 is not V', merge zone Y3 and Y5 into
anew zone V' = 3192 ...Yn_1, then change the owner of the
zone V to peer 1 and assign peer p» as the owner of zone
V.

Update the routing tables. After zone Y] and zone Y,
are merged into zone V', the routing table of V' maintains
all in-neighbors and out-neighbors of both ¥; and Y, For
each in-neighbor R of ¥ (or Y3). R substitutes V' for its
out-ucighbor Y7 {or Y3). For each out-neighbor W of ¥; (or
Y2). W substitutes ¥ for its in-neighbor Y {or Y3). Figure 7
shows the maintenance algorithm for peer departure.

Involuntary departure. To deal with involuntary failure,
each peer sends KeepAlive messages to all neighbors periodi-
cally. The deferred absence of a KeepAlive message from one
neighbor indicates its failure. Once the failure of a peer p is
detected by its neighbor n, peer r will generate one DEPART
message for peer p. And the remaining process is the same as
that in the case of voluntary departure.

3) Simultaneous Join or Departure: Many peers may join
in (or depart from) FISSIONE at the same time. That may
cause temporary inaccurate information in the routing tables
of peers, which in turn may cause errors in the routing, join,
or departure procedure. To avoid that, FISSIONE adopts an
atomic update mechanism:

When a peer joins in (or departs from) FISSIONE, the
routing tables of related peers should be updated. Only when
all the updates are completed, is the new routing tables allowed
to be used, During the update period, the relevani routing
requests are forwarded according to the original routing table,
but the JOIN or DEPART messages are withheld. The peers
that are the sources of the JOIN or DEPART messages are
informed to resend these messages after the update is finished.

Procedure PeerDepart (DepartPeer p, DepartZone V)

/ peer p that owns zone V departs from the system
1 UV
2 flag — 1
3 repeat
4 while 3 € neighbors{l/) and {Q| > |U|
5 do UV — @
6 get neighbor R = auy ... u; (k—2<4<k - 1)

of peer U= W] ... UE—1UE

7 get neighbor W = uy ... up_1ukqL . .gm (0 £ m < 1)

of peer R;
8 ifm=>0
9 then if 37 € neighbors(W) and |7 > [W|
10 then 7 — T
11 else ¥ — U
12 Yo — W
13 flog — 0
14 else get neighbor W = uy ... up—1urg1 of R
15 it 3T € neighbors(W, W'Y and |T| > |W|
16 then U/ — T
17 else ¥; — W
18 Yy — W
19 flag — 0

20 until flag =0

21V — Merger_zones(Y1,Ya)
/f merge zones Y1 and Yo to get Zone v

22 Update_ro'utingtables(l”)

23 Update.routingtables(neighbm's(lf" )]

/! update routing tables of V' and its neighbors

Fig. 7. Mainienance algorithm for peer departure.

Because the average degree of FISSIONE is only 4 and
the average number of hops for a JOIN or DEPART message
is propagated is small (referred to Section IV), the overhcad
caused by the atomic update mechanism is very small.

F. Fault-Tolerant Rouwting

When involuntary failures of peers occur and the related
routing tables have not been updated. the routing messages
may be forwarded to failed peers. To increase robustness,
FISSIONE can adopt three fault-tolerant mechanisms:

(1) DFTR {19] mechanism. FISSIONE can modify the
DFTR mechanism and its extension to choose other routing
paths when a failed peer occurs in the routing path.

{2) Fault-tolerant neighbor mechanism. For each peer U =
YUY ... Uy, PEEIS Uousg...urq1...gm (0 < m < 2) are
regarded as U's fauli-tolerant neighbors. When U deals
with a routing message Rouwting(V,L,S), if the neighbor
wy. . oupxy...x; (0 < 4 < 2) that the routing message
should be forwarded to has faited, U can forward the routing
message to its fault-tolerant neighbor waus ... urqr...gm
where Sq; ... qm is a prefix of V.

(3) Multiple out-edges mechanism. For each peer U =
WUy ... U, PEEIS ug...upry...%; (0 € 7 £ 4) are also
regarded as {/’s neighbors. When U deals with routing mes-
sage Routing(V, L, 5), it first forwards the routing message 1o
neighbor V = wg ... upzy .. ¢; where Sz .. x; is a prefix
of V. If V has failed, I/ can forward the routing message (o

1683



another peer ug ... ugq; ... gy Where Sq; ... gm is a prefix of
V.

The DFTR mechanism is rather complex, but it does not
affect the degree characteristics of FISSIONE. The fault-
tolerant neighbor mechanism is simple, but it would cause
an increase in the degree of FISSIONE (the fault-tolerant
degree is 2), Multiple out-edge mechanisms can decrease the
routing path length of FISSIONE while increasing its degree.
The detailed comparison of three fault-tolerant mechanisms is
omitted here, and this paper focuses on the basic FISSIONE
scheme.

IV. ANALYSIS AND EVALUATION

In this section, We will show and prove three theorems about
the properties of the basic FISSIONE scheme. Due 1o space
limitations, we only present the proof sketches.

Theorem 3 {Neighborhood Irvariant); If zone U and zone
V are neighbors, ||I/] — |V < 1.

Theorem 4 (Correctness of FISSIONE): In FISSIONE, the
routing to Kautz string V' = wvy ... vy, (m is a big enough
integer) will arrive at a unique zone V' whose identifier is a
prefix of V.

Theorem 5 (Performance Characteristics): In an  N-peer
FISSIONE systemn,

(1) The in-degree of each peer is 2 and the out-degree is
between 1 and 4. The average out-degree is 2.

(2) The diameter of FISSIONE systems is less than 2log NV,

(3) The messages caused by peer joining are propagated less
than 3log N hops (and the JOIN message is propagated less
than log V), and the DEPART message is propagated less than
log N hops. Only constant peers need to update their routing
tables when a peer joins or departs,

A, Neighborhood Invariant

To prove these theorems, we first give some lemmas.

Lemma 1: For each zone UV = wujuy ... uyp in FISSIONE,
if zone V = wvywy ... vy, is an out-neighbor of zone U, then
U] = V]| < Lie, b —m| < 1.

Proof: Lemma 1 holds initially. We will show that if
Lemma | holds at a ceriain time, Lemma 1 will also hold
after a split or merge.

In the case of a split, the large zone is divided into two
zones. Assume after a split there are two zones U and V with
[iU| = |V|| = 2 and V is one out-neighbor of U, Recall that
before the split for any zone P and zone W in FISSIONE,
|Pj—|W|} < 1; thus ||U|—}V|| < 2. Therefore ||U]|— V|| =2
and either zone UV or zone V is newly produced by the split.

(1) If U is derived from &/ in the split, then ||/ |—|V]| < 1
and |U] = |U'| + 1. Obviously, to achieve [{U7] — V|| = 2,
|7} - |V| must be 1 before the split. Recall that V' is the out-
neighbor of U after the split, thus V' must be the out-neighbor
of U’ before the split. But if |U'| — V| = 1 (which means the
area of zone V is larger than that of zone U “Yand U,V are
neighbors, then the JOIN message would be forwarded from
U’ 1o V and the zone U would not have been split. Thus a
contradiction occurs,

(2) If V is derived from V' in the split, |V'| — || must be
1 before the split. Then zone U is larger than zone V', and
the zone V' wouldn’t be split. Thus a contradiction occurs.
Therefore, after a split Lemma 1 remains true.

For a merge, the proof is similar and omitted here. |

Theorem 1 can be easily derived from Lemma 1.

B.  Correctness of FISSIONE
Lemma 2; For each zone U7 = wyua...uyr in FISSIONE,

. there are no zenes V== wyug .. ugwr ... x; with § > 1 and

U#V.

The proof of Lemma 2 is shown in Appendix B.

Lemma 3: For each zone U = uyuqg ... uy and any Kautz
string S = 51 ... 8m(s1 # up and m > 2) with base 2, U has
an out-neighbor wo ... ugey ... 2y (0 < 5 < 2) with 2, ... 25
as a prefix of S,

Progf: From lemma 1, if zone ¢} is an out-neighbor of
U, then |U] -1 < |Q| £ |U} + 1. Thus Q is ugp...uy or
Uy ... URT1 OF Uo...uxT1T2. Lemma 3 holds for the initial
static Kautz graph. After a split or merge, it is casy to
demonstrate that lemma 3 still holds. Thus lemma 3 is always
true. |

The following two corollaries are direct conclusions from
Lemma 3,

Corollary I: For any zone U = wjug...ug, if U has a
neighbor ws .. ugzy ...z (1 € 7 < 2}, U has another
neighbor wz .. updiqr...gm (0 <m < 1)

Corollary 2: The out-degree of FISSIONE is between 1 and
4.

Lemma 3 and Corollary 1 show that the routing algorithm in
Section I could go on until the destination zone V' is reached.

Lemma 4: Consider the rouing from source zone W =
wywy . .. Wy to any destination Kautz siring V' = vy . .. vy
{(W # V and m is an integer big enough), s is an imteger; if
vy = wy, let s = 1, else let s = 0. Let the routing path from
Wio Ve U(=W), Uy Us,... Uyi=V), then U; is of the
form w; ... wg—5S and the routing message that U; deals with
is in the form of Routing(V,k—s— i+ 1,5) where S is a
prefix of V.

Proof: M v1 = wy, let string Sp = wy, clse let 5y be
null. Then U1 =W = W W .. .wk,sSo, V= v, . Uy =
SqUsyy ... Um. The routing message that W deals with is
Routing(V, k — s, 50). Thus initially Lemma 4 holds for U;.

Suppose current zone U; (1 <p <k —s)is w;... wp_pS
and the routing message that U; deals with is Routing(V, k —
s — i+ 1,5) where S is a prefix of V. From Lemma
U; has an out-neighbor wiy; ... wg—sSm ... x; (0 < §
2) with 5§ = Swmy...z; as a prefix of V, then Uy,
Wigg .. Whe—s 8B ... T; = Wig .. .wg_sS and the routing
message that U, deals with is Rousing(V, k — s — i, 8.
Thus Lemma 4 holds for U; . Therefore Lemma 4 holds. B

From Lemma 4, when i = £k — s+ 1 (L = 0), the routing
message reaches a zone U; and the routing stops and there is
a certain S that is a prefix of V' and U; = S. Thus the routing
from any source zone to destination V' will arrive and stop at
a zone V' whose identifier is the prefix of U. From Lemma
2, zone Vs unique. Therefore, Theorem 4 is true.

A &
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The path length of routing from W to V' is £— s hops. Thus
we get the following corollary.

Corollary 3: The path length of routing initiated by any
source zone U = wqug ... ug is no more than & hops.

C. Performance Characteristics

Lemma 5: The in-degree of any zone is always 2.

Proof: Initially there are three zones (, 1, 2 and each
zone has two in-edges. So initially Lemma 4 holds. After a
split or merge, lemma 4 still holds, Thus Lemma 4 is always
Lrue. |

Lenma 6: In an N -peer FISSIONE sysiem, the largest zone
U satisfies that |I7] < log V.

Proof: Let |U] = &, then & is the smallest among
the lengths of identifiers of zones in FISSIONE. Peers in
FISSIONE form an approximate Kautz topology, thus 2% +
2k=1 < N. Then k < log N —log3+ 1 < log N. ]

Lemma 7: In an N-peer FISSIONE system, the smallest
zone V satisfies that |V| < 2log V.

Proof: Suppose {/ is the largest zone in FISSIONE
system, and consider the routing path from U to V. From
Corollary 3, we know that the path length is no more than
|€7]. Thus from Lemma 1, we can infer that {[V|—|U|l < |U].
Because [V} > U], thus [V] — |U] < [U} and V| < 2]U| <
2log N, n

The following corollaries can be derived from Lemma 7 and
Coroliary 3 directly.

Corollary 4: In an N-peer FISSIONE system, let U and V
be the smallest and largest zones in the system respectively.
Then [U| — V] < V| < log N.

Corollary 5: In an N-peer FISSIONE system, the path
fength of routing is less than 2log N hops,

Lemma 8: Wheu a peer joins in or departs from an N-peer
FISSIONE system, the messages caused are totally propagated
at most 3log N and log N hops respectively {and the JOIN or
DEPART message is propagated at most log N hops); and onty
constant peers need to update their routing tables,

Proof: Take the split procedure as an example: the
message is first routed to the destination Kautz string. From
Corollary 5, in this phase the message is propagated less
than 2log N hops. Then the JOIN message is forwarded to
neighbors whose identifiers are at least one shorter than that of
the current zone. From Corollary 4, in that phase the message
is propagated at most log N hops. Therefore, the message
caused by peer joining is propagated at most 3log N hops.
From Coroliary 2 and Lemma 5, the number of neighbors that
should update their routing tables due to the split is constant.

|

Theorem 5 can be directly got from Corollary 2, Corollary
5, Lemma 5, and Lemma 8.

D. Peiformance Evaluation

We implement FISSIONE in the simulator and evaluate
the following characteristics of FISSIONE: degree distribu-
tfon, load balance, diameter, average path Iength, and fault-
tolerance.

First we evaluate the degree distribution of FISSIONE. We
calculate the degree of peers in FISSIONE when the number of
peers is 6,000 and 50,000, and the simulation result is shown
in Figure 8. Figure 8 shows that the degree distribution of
peers in FISSIONE with different scales is slightly different,
but most peers are of degree 4.
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Fig. 8. Degree distribution. Fig. 9. Area distribution of zones.

We observe the load balance characteristic of FISSIONE
and simulate FISSIONE with 6,000 and 50,000 peers. In each
experiment, we caiculate the areq of each zone and let 5 be the
smallest area among all zones. Figure 9 shows the percentage
of peers that own a particular area, From Figure 9, it can be
inferred that more than 80% of peers own the same area 25
and the percentage of peers whose area is more than 45 is
zero. The number of objects stored on each peer is in direct
proportion to its zone’s area; thus the distribution of objects
over peers is almost uniform. Therefore, FISSIONE has a good
load balance.
~ Then we evaluate the average path length of FISSIONE in
different scales (from 256 peers up to 64K peers) and compare
it with CAN (with degree 4 (d = 2) or degree 6 (d = 3)) and
Koorde (with degree 4), In each experiment, we select two
random zones and invoke a routing from one to the other,
and then get the average path length over 10,000 routings.
Figure 10 shows the simulation resulis. Figure 10 also shows
the diameter of FISSIONE (denoted as FISSIONE(max)).
From Figure 10, we can infer that the average path length of
FISSIONE is less than log N and the diameter of FISSIONE
is only a little more than log N. When the number of peers is
large, the average routing path length of FISSIONE is shorter
than that of CAN or Koorde.

We also evaluate the distribution of routing path length in
FISSIONE. Figure 11 shows the distribution of routing path
length of 10,000 random routings in FISSIONE when the
number of peers is 50,000. From Figure 11, we can infer that
more than 50% of routing paths are of the same length.

We evaluate the self-stabilization cost when a peer joins or
departs. In the experiment, the number of peers in FISSIONE
is 50,000. The experiment is repeated 100 times and each time
a peer joins through a random peer (or a random peer departs).
Figure 13 shows the average hops the update messages are
propagaled and Figure 14 shows the distribution of hops that
the JOIN message and DEPART message are propagated.
From Figure 13 and Figure 14, it can be inferred that the
average hops that the JOIN message or DEPART message is
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propagated is very small, and they are propagated at most two
hops. The message cost of peer joining is larger than that of
peer departing because a routing to the destination Kautz string
is invoked first.
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Fig. 13. Average update cost. Fig. 14. Hop distribution of messages.

We evaluate the fault-tolerance of FISSIONE and test
the fault-tolerant neighbor mechanism. We simulaied the
failure ratioc for 10,000 random rcutings in FISSIONE
with 50,000 peers when the number of failed peers is
500, 1,000, ..., 7, 500 respectively. Figure 12 shows the simu-
lation result. From Figure 12, it can be inferred that FISSIONE
has some fauli-tolerant characteristics.

V. CONCLUSIONS

FISSIONE is the first effective DHT scheme based on Kautz
graphs and it is O(log N) diameter with only O(1) degree

and (1 + o(1))-congestion-free. FISSIONE can achieve good
load balance, high performarce and low congestion. Qur future
work will focus on two directions. First, the current design of
FISSIONE is based on the Kautz graph K(2,%) and needs
to be extended to gemeral K{d, %) for flexibility. Second,
the physical topological information should be exploited in
FISSIONE to reduce latency.
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APPENDIX A: PROOF OF THEOREM 3

Theorem 3: With high probability, the Kautz_hash algorithm
(with parameters p = 2 and » = 280) can generate the
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destination Kawmz string of length 100 in one iteration, and
Kautz strings generated are uniformly distributed in the Kautz
namespace A autzSpace(2, 100).

When parameters p = 2 and n = 280, the work that
Kautz_hash algorithm finished in the first iteration is shown as
below: First, concatenate three binary strings Do, [ and Dy
into [ (according to the characteristics of SHA-1 algorithm,
Dy, Dy, Dy are all 160-bit binary strings, and as a result, D
is a 480-bit binary string), Following that, D is converted into
ternary string R (R isa ternary string that is no longer than
303 bits, for 2480 « 3393 Taking the low n (n = 280) bits
of B, we get a 280-bit ternary siring K. Then we merge
identical consecutive characters in R and get a new Kautz
string @ with base 2. We will first prove that there is a less
than 10~23 probability that the length of string @ less than
100, and then we will prove that the destination Kautz strings
acquired from the lower 100 bits of @ is uniformly distributed
in KautzSpace{2, 100).

To prove Theorem 3, we first intreduce some lemmas.

Lemma A.1: After merging identical consecutive characters,
we can obtain a Kautz string () with base 2 from an n-bit
ternary string K. The probability of length of ¢ being m (1 <
m < n) is as follows: P(m) = 1.542™ % (:1:11)/3” .

Progf:  For each m-bit Kautz string Q = biby ... by
obtained after merging, let b; be the result originated from the
mergence of x; consecutive b; (i.e. the mergence of M) in

Ti

ternary string R, then we may get:

ixi =n ey
i=1

Based on theories of combinatorics, Equation (1} (with
variable z;) has ("~} ) positive roots, i.e., after merging iden-
tical consecutive characters; (::;:11) different ternary strings
will be converted into the same Kautz string ¢). There are
1.5 % 2™ Kautz strings in KautzSpace{2, m), and any of
two different Kautz swings ¢ and @2 (@1 # (o) are
converted from different ternary strings R, and R, Thus
1.5#2™ (;;‘_11) ternary strings would be converted to Kauvtz
strings in KautzSpace(2,m) after merging, and the total
number of n-bit ternary strings is 3. From this we can
know that the probability of acquiring Kautz strings with
length . after merging identical consecutive characters is
1.5+ 2™ (2 1)/3™ [

According to Lemma A.l, let n» = 280 and m = 100, we
get:

P(100) =

Il
—_
o
*

N

2,
fem
<

279\ a0
21 (99)/3

Il
—
n
*
(%]

2
L=1
*

Thus
Ig P(100) = Igl.5+100*lg2+ 1g279! — 1g 99!
—1g 1801 — 280 + lg 3
= —25.81043
For any 0 < m < 100, (27°) < (,&*,). therefore

P(m) < P{100) = 1072581043

Thus in one iteration of Kautz_hash algorithm, after merging
identical consecutive characters of the 280-bit ternary string
R, the probability of gencrating a Kautz string @ with length
less than 100 is less than 100 = 10~ 2581042 = 10723 Thus we
get Lemma A2,

Lemma A.2: With high probability, one iteration of
Kaqutz_hash algorithm (with parameters p = 2 and n = 280)
can generate a destination Kautz string £ of length 100.

Lemma A.3: With high probability, the 280-bit ternary string
It generated in Kautz_hash algorithm (with parameters p = 2
and n = 280) is uniformly distributed in interval [0, 3780 —1].

Proof: Based on the characteristics of SHA-1 algorithm,
with high probability Do, I31, Ds generated by SHA-1 algo-
rithm is distributed evenly in interval [0, 21%°—1], therefore, D
that is generated from Do, Dy and I)s is uniformly distributed
in the interval [0,2%80 — 1] (ie, Vi € [0,2%° — 1], P(D =
i) = 27189 £ P). Thus the ternary string R’ converted from
D is also uniformly distributed in the interval [0, 249 — 1.
Divide interval [0,2%8° — 1] into segments with length 30,
and let 2%8° = 7% 320 1 4 (0 € d < 3%9), thereafter
r = |2480/328C| = 70514548487 (around 7.95 » 10'%). Thus
the interval [0,2%° — 1] has r complete segments, together
with an interval left with length d, as shown in Figure 15,
As a result, for any point R within interval [0, 2450 — 1], let
R =+ +3%0 1 d (0<d < 3%, then R (the lowest 280
bits of R') is d .

3280 7280 3280
AN —A
H 1 i e & o H n H
| ! i ’ - >
|
& 2480_

Fig. 15. Interval division.

Therefore, ¥ € [0, 3257 — 1], the probability P(R = i) can
be calculated as follows:

(0 <i<d)
(d < i < 3%60)

(r+ 1} *pg
T * Po
250“

It can be validated that 5. P(R=4¢) = 1. Here, » >
=0

7.95%10' » 1, so r4 1 = r; thereafter with high probability

the ternary string R is uniformly distributed in [0, 3280 — 1],

|

Lemma A.4: With high probability, the destination Kautz

string £ obtained from Kautz hash algorithm (with param-

eters p = 2, n = 280) is uniformly diswributed in
KautzSpace(2,100).

P(R:i)z{
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Proof: In Kautz_hash algorithm, it is obvious that
any Kauiz string § can be generated via merging identical
consecutive characters of a certain 280-bit ternary suwing R
in [0,3%% — 1] and then wuncating the lowest 100 bits.
Idemical Rs can only be mapped to the same Kautz string
in KautzSpace(2,100),

For any destination Kautz string £ = byb, . . . byao acquired
from Kauiz_hash algorithm, let b; in & stand for =; (1 <
x; < 280) consecutive b; (i.e., b;...h;) in R before merging,

———

z;
thereafter

Z @ < 280 (2)

Let the number of positive roots of Equation (2) (with z;
as the variables) be {. then ¢ is a number that is independent
of & Each Kautz string £ is converted from ¢ different
ternary strings in [0, 3?%C — 1]. From Lemma A.3, with high
probability the ternary string £ is uniformly distributed in
10,3%° _ 1], and as a consequence, ¢ is uniformly distributed
in KautzSpace(2,100). ]

Theorem 3 can be directly got from Lemma A.2 and Lemma
A4

APPENDIX
APPENDIX B; PROOF OF LEMMA 2

Lemma 2: For each zone U = wujus ... uy in FISSIONE,
there are no zones V = wqug ... upxy...2; with j > 1 and
U V.

Proof: Lemma 2 holds initially for static Kautz graphs.
We would show that if Lemma 2 holds at some time, Lemma
2 will also hold after a split or merge.

{1) In the case of a split, assume the large zone V =
vy, v 18 divided into two zones Vi = wwg wrpmg and
Vo = oo vgzy (0 € 2 < @y € 2,30 # v, Ty # V)
Obviously, either vyva ... vz Or vive vpx; is not a prefix
of the other. Because v v4 ... vy is not a prefix of any zones’
identifiers bhefore the split, v1vs ... w5y and vyvy ... viT
would not be a prefix of any zones” identifiers. If there was
a zone Y whose identifier is a prefix of vyve...vgze oOr
vy ... upz; (without loss of generality we assume Y is a
prefix of vywg ... up2o), as Y is not a prefix of vyvg. .. v
before the split, therefore ¥ equals vivs...vgzg. Then a
contradiction occurs for vyve ... vy is a prefix of Y before
the split. Therefore, Lemma 2 holds after the split.

{2) In the case of a merge, the proof is similar to that in (1)
and omitied here.

Therefore, Lemma 2 holds. ]
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