
DocID15491 Rev 5 45/156

PM0056 The Cortex-M3 instruction set

3 The Cortex-M3 instruction set

3.1 Instruction set summary

The processor implements a version of the thumb instruction set. Table 20 lists the
supported instructions.

In Table 20:

• Angle brackets, <>, enclose alternative forms of the operand

• Braces, {}, enclose optional operands

• The operands column is not exhaustive

• Op2 is a flexible second operand that can be either a register or a constant

• Most instructions can use an optional condition code suffix

For more information on the instructions and operands, see the instruction descriptions.

Table 20. Cortex-M3 instructions

Mnemonic Operands Brief description Flags Section

ADC, ADCS {Rd,} Rn, Op2 Add with carry N,Z,C,V
3.5.1 on
page 73

ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V
3.5.1 on
page 73

ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C,V
3.5.1 on
page 73

ADR Rd, label Load PC-relative address �
3.4.1 on
page 60

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
3.5.2 on
page 75

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic shift right N,Z,C
3.5.3 on
page 76

B label Branch �
3.8.5 on
page 92

BFC Rd, #lsb, #width Bit field clear �
3.8.1 on
page 89

BFI Rd, Rn, #lsb, #width Bit field insert �
3.8.1 on
page 89

BIC, BICS {Rd,} Rn, Op2 Bit clear N,Z,C
3.5.2 on
page 75

BKPT #imm Breakpoint �
3.9.1 on
page 98

BL label Branch with link �
3.8.5 on
page 92

BLX Rm Branch indirect with link �
3.8.5 on
page 92

The Cortex-M3 instruction set PM0056

46/156 DocID15491 Rev 5

BX Rm Branch indirect �
3.8.5 on
page 92

CBNZ Rn, label Compare and branch if non zero �
3.8.6 on
page 93

CBZ Rn, label Compare and branch if zero �
3.8.6 on
page 93

CLREX � Clear exclusive �
3.4.9 on
page 71

CLZ Rd, Rm Count leading zeros �
3.5.4 on
page 77

CMN, CMNS Rn, Op2 Compare negative N,Z,C,V
3.5.5 on
page 78

CMP, CMPS Rn, Op2 Compare N,Z,C,V
3.5.5 on
page 78

CPSID iflags
Change processor state, disable
interrupts

�
3.9.2 on
page 98

CPSIE iflags
Change processor state, enable
interrupts

�
3.9.2 on
page 98

DMB � Data memory barrier �
3.9.4 on
page 100

DSB � Data synchronization barrier �
3.9.4 on
page 100

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
3.5.2 on
page 75

ISB � Instruction synchronization barrier �
3.9.5 on
page 100

IT � If-then condition block �
3.8.7 on
page 94

LDM Rn{!}, reglist
Load multiple registers, increment
after

�
3.4.6 on
page 67

LDMDB,
LDMEA

Rn{!}, reglist
Load multiple registers, decrement
before

�
3.4.6 on
page 67

LDMFD,
LDMIA

Rn{!}, reglist
Load multiple registers, increment
after

�
3.4.6 on
page 67

LDR Rt, [Rn, #offset] Load register with word �
3.4 on page
60

LDRB,
LDRBT

Rt, [Rn, #offset] Load register with byte �
3.4 on page
60

LDRD Rt, Rt2, [Rn, #offset] Load register with two bytes �
3.4.2 on
page 61

LDREX Rt, [Rn, #offset] Load register exclusive �
3.4.8 on
page 70

Table 20. Cortex-M3 instructions (continued)

Mnemonic Operands Brief description Flags Section

DocID15491 Rev 5 47/156

PM0056 The Cortex-M3 instruction set

LDREXB Rt, [Rn] Load register exclusive with byte �
3.4.8 on
page 70

LDREXH Rt, [Rn]
Load register exclusive with
halfword

�
3.4.8 on
page 70

LDRH,
LDRHT

Rt, [Rn, #offset] Load register with halfword �
3.4 on page
60

LDRSB,
LDRSBT

Rt, [Rn, #offset] Load register with signed byte �
3.4 on page
60

LDRSH,
LDRSHT

Rt, [Rn, #offset] Load register with signed halfword �
3.4 on page
60

LDRT Rt, [Rn, #offset] Load register with word �
3.4 on page
60

LSL, LSLS Rd, Rm, <Rs|#n> Logical shift left N,Z,C
3.5.3 on
page 76

LSR, LSRS Rd, Rm, <Rs|#n> Logical shift right N,Z,C
3.5.3 on
page 76

MLA Rd, Rn, Rm, Ra
Multiply with accumulate, 32-bit
result

�
3.6.1 on
page 83

MLS Rd, Rn, Rm, Ra Multiply and subtract, 32-bit result �
3.6.1 on
page 83

MOV, MOVS Rd, Op2 Move N,Z,C
3.5.6 on
page 79

MOVT Rd, #imm16 Move top �
3.5.7 on
page 80

MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C
3.5.6 on
page 79

MRS Rd, spec_reg
Move from special register to
general register

�
3.9.6 on
page 100

MSR spec_reg, Rm
Move from general register to
special register

N,Z,C,V
3.9.7 on
page 101

MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
3.6.1 on
page 83

MVN, MVNS Rd, Op2 Move NOT N,Z,C
3.5.6 on
page 79

NOP � No operation �
3.9.8 on
page 102

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C
3.5.2 on
page 75

ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
3.5.2 on
page 75

POP reglist Pop registers from stack �
3.4.7 on
page 68

Table 20. Cortex-M3 instructions (continued)

Mnemonic Operands Brief description Flags Section

The Cortex-M3 instruction set PM0056

48/156 DocID15491 Rev 5

PUSH reglist Push registers onto stack �
3.4.7 on
page 68

RBIT Rd, Rn Reverse bits �
3.5.8 on
page 81

REV Rd, Rn Reverse byte order in a word �
3.5.8 on
page 81

REV16 Rd, Rn
Reverse byte order in each
halfword

�
3.5.8 on
page 81

REVSH Rd, Rn
Reverse byte order in bottom
halfword and sign extend

�
3.5.8 on
page 81

ROR, RORS Rd, Rm, <Rs|#n> Rotate right N,Z,C
3.5.3 on
page 76

RRX, RRXS Rd, Rm Rotate right with extend N,Z,C
3.5.3 on
page 76

RSB, RSBS {Rd,} Rn, Op2 Reverse subtract N,Z,C,V
3.5.1 on
page 73

SBC, SBCS {Rd,} Rn, Op2 Subtract with carry N,Z,C,V
3.5.1 on
page 73

SBFX Rd, Rn, #lsb, #width Signed bit field extract �
3.8.2 on
page 89

SDIV {Rd,} Rn, Rm Signed divide �
3.6.3 on
page 86

SEV � Send event �
3.9.9 on
page 102

SMLAL RdLo, RdHi, Rn, Rm
Signed multiply with accumulate
(32 x 32 + 64), 64-bit result

�
3.6.2 on
page 85

SMULL RdLo, RdHi, Rn, Rm
Signed multiply (32 x 32), 64-bit
result

�
3.6.2 on
page 85

SSAT Rd, #n, Rm {,shift #s} Signed saturate Q
3.7.1 on
page 87

STM Rn{!}, reglist
Store multiple registers, increment
after

�
3.4.6 on
page 67

STMDB,
STMEA

Rn{!}, reglist
Store multiple registers, decrement
before

�
3.4.6 on
page 67

STMFD,
STMIA

Rn{!}, reglist
Store multiple registers, increment
after

�
3.4.6 on
page 67

STR Rt, [Rn, #offset] Store register word �
3.4 on page
60

STRB,
STRBT

Rt, [Rn, #offset] Store register byte �
3.4 on page
60

STRD Rt, Rt2, [Rn, #offset] Store register two words �
3.4.2 on
page 61

Table 20. Cortex-M3 instructions (continued)

Mnemonic Operands Brief description Flags Section

DocID15491 Rev 5 49/156

PM0056 The Cortex-M3 instruction set

STREX Rd, Rt, [Rn, #offset] Store register exclusive �
3.4.8 on
page 70

STREXB Rd, Rt, [Rn] Store register exclusive byte �
3.4.8 on
page 70

STREXH Rd, Rt, [Rn] Store register exclusive halfword �
3.4.8 on
page 70

STRH,
STRHT

Rt, [Rn, #offset] Store register halfword �
3.4 on page
60

STRT Rt, [Rn, #offset] Store register word �
3.4 on page
60

SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V
3.5.1 on
page 73

SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V
3.5.1 on
page 73

SVC #imm Supervisor call �
3.9.10 on
page 103

SXTB {Rd,} Rm {,ROR #n} Sign extend a byte �
3.8.3 on
page 90

SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword �
3.8.3 on
page 90

TBB [Rn, Rm] Table branch byte �
3.8.8 on
page 96

TBH [Rn, Rm, LSL #1] Table branch halfword �
3.8.8 on
page 96

TEQ Rn, Op2 Test equivalence N,Z,C
3.5.9 on
page 82

TST Rn, Op2 Test N,Z,C
3.5.9 on
page 82

UBFX Rd, Rn, #lsb, #width Unsigned bit field extract �
3.8.2 on
page 89

UDIV {Rd,} Rn, Rm Unsigned divide �
3.6.3 on
page 86

UMLAL RdLo, RdHi, Rn, Rm
Unsigned multiply with accumulate
(32 x 32 + 64), 64-bit result

�
3.6.2 on
page 85

UMULL RdLo, RdHi, Rn, Rm
Unsigned multiply (32 x 32), 64-bit
result

�
3.6.2 on
page 85

USAT Rd, #n, Rm {,shift #s} Unsigned saturate Q
3.7.1 on
page 87

UXTB {Rd,} Rm {,ROR #n} Zero extend a byte �
3.8.3 on
page 90

UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword �
3.8.3 on
page 90

Table 20. Cortex-M3 instructions (continued)

Mnemonic Operands Brief description Flags Section

The Cortex-M3 instruction set PM0056

50/156 DocID15491 Rev 5

3.2 Intrinsic functions

ANSI cannot directly access some Cortex-M3 instructions. This section describes intrinsic
functions that can generate these instructions, provided by the CMIS and that might be
provided by a C compiler. If a C compiler does not support an appropriate intrinsic function,
you might have to use an inline assembler to access some instructions.

The CMSIS provides the intrinsic functions listed in Table 21 to generate instructions that
ANSI cannot directly access.

WFE � Wait for event �
3.9.11 on
page 103

WFI � Wait for interrupt �
3.9.12 on
page 104

Table 20. Cortex-M3 instructions (continued)

Mnemonic Operands Brief description Flags Section

Table 21. CMSIS intrinsic functions to generate some Cortex-M3 instructions

Instruction CMSIS intrinsic function

CPSIE I void __enable_irq(void)

CPSID I void __disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSID F void __disable_fault_irq(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __REV(uint32_t int value)

REV16 uint32_t __REV16(uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

RBIT uint32_t __RBIT(uint32_t int value)

SEV void __SEV(void)

WFE void __WFE(void)

WFI void __WFI(void)

DocID15491 Rev 5 51/156

PM0056 The Cortex-M3 instruction set

The CMSIS also provides a number of functions for accessing the special registers using
MRS and MSR instructions (see Table 22).

3.3 About the instruction descriptions

The following sections give more information about using the instructions:

• Operands on page 51

• Restrictions when using PC or SP on page 52

• Flexible second operand on page 52

• Shift operations on page 53

• Address alignment on page 56

• PC-relative expressions on page 56

• Conditional execution on page 57

• Instruction width selection on page 59.

3.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination
register. When there is a destination register in the instruction, it is usually specified before
the operands.

Operands in some instructions are flexible in that they can either be a register or a constant
(see Flexible second operand).

Table 22. CMSIS intrinsic functions to access the special registers

Special register Access CMSIS function

PRIMASK
Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

FAULTMASK
Read uint32_t __get_FAULTMASK (void)

Write void __set_FAULTMASK (uint32_t value)

BASEPRI
Read uint32_t __get_BASEPRI (void)

Write void __set_BASEPRI (uint32_t value)

CONTROL
Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP
Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP
Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)

The Cortex-M3 instruction set PM0056

52/156 DocID15491 Rev 5

3.3.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the program counter (PC) or
stack pointer (SP) for the operands or destination register. See instruction descriptions for
more information.

Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must
be 1 for correct execution, because this bit indicates the required instruction set, and the
Cortex-M3 processor only supports thumb instructions.

3.3.3 Flexible second operand

Many general data processing instructions have a flexible second operand. This is shown
as operand2 in the descriptions of the syntax of each instruction.

Operand2 can be a:

• Constant

• Register with optional shift

Constant

You specify an operand2 constant in the form #constant, where constant can be:

• Any constant that can be produced by shifting an 8-bit value left by any number of bits
within a 32-bit word.

• Any constant of the form 0x00XY00XY

• Any constant of the form 0xXY00XY00

• Any constant of the form 0xXYXYXYXY

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the
constant is greater than 255 and can be produced by shifting an 8-bit value. These
instructions do not affect the carry flag if operand2 is any other constant.

Instruction substitution

Your assembler might be able to produce an equivalent instruction in cases where you
specify a constant that is not permitted. For example, an assembler might assemble the
instruction CMP Rd, #0xFFFFFFFE as the equivalent instruction CMN Rd, #0x2.

DocID15491 Rev 5 53/156

PM0056 The Cortex-M3 instruction set

Register with optional shift

An operand2 register is specified in the form Rm {, shift}, where:

• Rm is the register holding the data for the second operand

• Shift is an optional shift to be applied to Rm. It can be one of:

ASR #n: Arithmetic shift right n bits, 1 ≤ n ≤ 32

LSL #n: Logical shift left n bits, 1 ≤ n ≤ 31

LSR #n: Logical shift right n bits, 1 ≤ n ≤ 32

ROR #n: Rotate right n bits, 1 ≤ n ≤ 31

RRX: Rotate right one bit, with extend

�: If omitted, no shift occurs, equivalent to LSL #0

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is
used by the instruction. However, the contents in the register Rm remains unchanged.
Specifying a register with shift also updates the carry flag when used with certain
instructions. For information on the shift operations and how they affect the carry flag, see
Shift operations.

3.3.4 Shift operations

Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed:

• Directly by the instructions ASR, LSR, LSL, ROR, and RRX. The result is written to a
destination register.

• During the calculation of operand2 by the instructions that specify the second operand
as a register with shift (see Flexible second operand on page 52). The result is used by
the instruction.

The permitted shift lengths depend on the shift type and the instruction (see the individual
instruction description or Flexible second operand). If the shift length is 0, no shift occurs.
Register shift operations update the carry flag except when the specified shift length is 0.
The following sub-sections describe the various shift operations and how they affect the
carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is
the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by
n places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the
register into the left-hand n bits of the result (see Figure 13: ASR#3 on page 54).

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result
being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit shifted out, bit[n-1], of the register Rm.

Note: 1 If n is 32 or more, all the bits in the result are set to the value of bit[31] of Rm.

2 If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

The Cortex-M3 instruction set PM0056

54/156 DocID15491 Rev 5

Figure 13. ASR#3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result
to 0 (see Figure 14).

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit shifted out, bit[n-1], of the register Rm.

Note: 1 If n is 32 or more, then all the bits in the result are cleared to 0.

2 If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 14. LSR#3

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result
to 0 (see Figure 15: LSL#3 on page 55).

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value
is regarded as an unsigned integer or a two�s complement signed integer. Overflow can
occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag
is updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not
affect the carry flag when used with LSL #0.

31 1 0

Carry
Flag

...

2345

31 1 0

Carry
Flag

...

000

2345

DocID15491 Rev 5 55/156

PM0056 The Cortex-M3 instruction set

Note: 1 If n is 32 or more, then all the bits in the result are cleared to 0.

2 If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 15. LSL#3

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. It also moves the right-hand n bits of the register
into the left-hand n bits of the result (see Figure 16).

When the instruction is RORS or when ROR #n is used in operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit rotation, bit[n-1], of the register Rm.

Note: 1 If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is

updated, it is updated to bit[31] of Rm.

2 ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 16. ROR #3

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it
copies the carry flag into bit[31] of the result (see Figure 17).

When the instruction is RRXS or when RRX is used in operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to bit[0] of the register Rm.

31 1 0

Carry
Flag ...

000

2345

31 1 0

Carry
Flag

...

2345

The Cortex-M3 instruction set PM0056

56/156 DocID15491 Rev 5

Figure 17. RRX #3

3.3.5 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, dual
word, or multiple word access, or where a halfword-aligned address is used for a halfword
access. Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:

• LDR, LDRT

• LDRH, LDRHT

• LDRSH, LDRSHT

• STR, STRT

• STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an
unaligned access, and therefore their accesses must be address aligned. For more
information about usage faults see Fault handling on page 40.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that
programmers ensure that accesses are aligned. To avoid accidental generation of unaligned
accesses, use the UNALIGN_TRP bit in the configuration and control register to trap all
unaligned accesses, see Configuration and control register (SCB_CCR) on page 137.

3.3.6 PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or
literal data. It is represented in the instruction as the PC value plus or minus a numeric
offset. The assembler calculates the required offset from the label and the address of the
current instruction. If the offset is too big, the assembler produces an error.

• For the B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the
current instruction plus four bytes.

• For all other instructions that use labels, the value of the PC is the address of the
current instruction plus four bytes, with bit[1] of the result cleared to 0 to make it word-
aligned.

• Your assembler might permit other syntaxes for PC-relative expressions, such as a
label plus or minus a number, or an expression of the form [PC, #number].

31 30 1 0

Carry
Flag

... ...

DocID15491 Rev 5 57/156

PM0056 The Cortex-M3 instruction set

3.3.7 Conditional execution

Most data processing instructions can optionally update the condition flags in the application
program status register (APSR) according to the result of the operation (see Application
program status register on page 17). Some instructions update all flags, and some only
update a subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another
instruction:

• Immediately after the instruction that updated the flags

• After any number of intervening instructions that have not updated the flags

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 23: Condition code suffixes on page 58 for a list of the
suffixes to add to instructions to make them conditional instructions. The condition code
suffix enables the processor to test a condition based on the flags. If the condition test of a
conditional instruction fails, the instruction:

• Does not execute

• Does not write any value to its destination register

• Does not affect any of the flags

• Does not generate any exception

Conditional instructions, except for conditional branches, must be inside an If-then
instruction block. See IT on page 94 for more information and restrictions when using the IT
instruction. Depending on the vendor, the assembler might automatically insert an IT
instruction if you have conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and
branch on the result.

This section describes:

• The condition flags

• Condition code suffixes on page 58

The condition flags

The APSR contains the following condition flags:

• N: Set to 1 when the result of the operation is negative, otherwise cleared to 0

• Z: Set to 1 when the result of the operation is zero, otherwise cleared to 0

• C: Set to 1 when the operation results in a carry, otherwise cleared to 0.

• V: Set to 1 when the operation causes an overflow, otherwise cleared to 0.

For more information about the APSR see Program status register on page 16.

A carry occurs:

• If the result of an addition is greater than or equal to 232

• If the result of a subtraction is positive or zero

• As the result of an inline barrel shifter operation in a move or logical instruction

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 231,
or less than -231.

The Cortex-M3 instruction set PM0056

58/156 DocID15491 Rev 5

Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An
instruction with a condition code is only executed if the condition code flags in the APSR
meet the specified condition. Table 23 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch
instructions in code.

Table 23 also shows the relationship between condition code suffixes and the N, Z, C, and V
flags.

Specific example 1: Absolute value shows the use of a conditional instruction to find the
absolute value of a number. R0 = ABS(R1).

Specific example 1: Absolute value

MOVSR0, R1; R0 = R1, setting flags

IT MI; IT instruction for the negative condition

RSBMIR0, R1, #0; If negative, R0 = -R1

Table 23. Condition code suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned ≥

CC or LO C = 0 Lower, unsigned <

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned >

LS C = 0 or Z = 1 Lower or same, unsigned ≤

GE N = V Greater than or equal, signed ≥

LT N != V Less than, signed <

GT Z = 0 and N = V Greater than, signed >

LE Z = 1 and N != V Less than or equal, signed ≤

AL Can have any value Always. This is the default when no suffix is specified.

DocID15491 Rev 5 59/156

PM0056 The Cortex-M3 instruction set

Specific example 2: Compare and update value shows the use of conditional instructions to
update the value of R4 if the signed value R0 and R2 are greater than R1 and R3 respectively.

Specific example 2: Compare and update value

CMP R0, R1 ; compare R0 and R1, setting flags

ITT GT ; IT instruction for the two GT conditions

CMPGT R2, R3; if 'greater than', compare R2 and R3, setting flags

MOVGT R4, R5 ; if still 'greater than', do R4 = R5

3.3.8 Instruction width selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these
instructions, you can force a specific instruction size by using an instruction width suffix.
The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction
encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is
the label of an instruction or literal data, as in the case of branch instructions. This is
because the assembler might not automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and
condition code, if any. Specific example 3: Instruction width selection shows instructions
with the instruction width suffix.

Specific example 3: Instruction width selection

BCS.W label; creates a 32-bit instruction even for a short branch

ADDS.W R0, R0, R1; creates a 32-bit instruction even though the same

; operation can be done by a 16-bit instruction

The Cortex-M3 instruction set PM0056

60/156 DocID15491 Rev 5

3.4 Memory access instructions

Table 24 shows the memory access instructions:

3.4.1 ADR

Load PC-relative address.

Syntax

ADR{cond} Rd, label

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register

• �label� is a PC-relative expression (see PC-relative expressions on page 56)

Operation

ADR determines the address by adding an immediate value to the PC. It writes the result to
the destination register.

ADR produces position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure
that bit[0] of the address you generate is set to1 for correct execution.

Values of label must be within the range -4095 to 4095 from the address in the PC.

Table 24. Memory access instructions

Mnemonic Brief description Section

ADR Load PC-relative address ADR on page 60

CLREX Clear exclusive CLREX on page 71

LDM{mode} Load multiple registers LDM and STM on page 67

LDR{type} Load register using immediate offset LDR and STR, immediate offset on page 61

LDR{type} Load register using register offset LDR and STR, register offset on page 63

LDR{type}T Load register with unprivileged access LDR and STR, unprivileged on page 64

LDR Load register using PC-relative address LDR, PC-relative on page 65

LDREX{type} Load register exclusive LDREX and STREX on page 70

POP Pop registers from stack PUSH and POP on page 68

PUSH Push registers onto stack PUSH and POP on page 68

STM{mode} Store multiple registers LDM and STM on page 67

STR{type} Store register using immediate offset LDR and STR, immediate offset on page 61

STR{type} Store register using register offset LDR and STR, register offset on page 63

STR{type}T Store register with unprivileged access LDR and STR, unprivileged on page 64

STREX{type} Store register exclusive LDREX and STREX on page 70

DocID15491 Rev 5 61/156

PM0056 The Cortex-M3 instruction set

Note: You might have to use the .W suffix to get the maximum offset range or to generate
addresses that are not word-aligned (see Instruction width selection on page 59).

Restrictions

Rd must be neither SP nor PC.

Condition flags

This instruction does not change the flags.

Examples

ADR R1, TextMessage; write address value of a location labelled as

; TextMessage to R1

3.4.2 LDR and STR, immediate offset

Load and store with immediate offset, pre-indexed immediate offset, or post-indexed
immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}]; immediate offset

op{type}{cond} Rt, [Rn, #offset]!; pre-indexed

op{type}{cond} Rt, [Rn], #offset; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}]; immediate offset, two words

opD{cond} Rt, Rt2, [Rn, #offset]!; pre-indexed, two words

opD{cond} Rt, Rt2, [Rn], #offset; post-indexed, two words

where:

• �op� is either LDR (load register) or STR (store register)

• �type� is one of the following:

B: Unsigned byte, zero extends to 32 bits on loads

SB: Signed byte, sign extends to 32 bits (LDR only)

H: Unsigned halfword, zero extends to 32 bits on loads

SH: Signed halfword, sign extends to 32 bits (LDR only)

�: Omit, for word

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rt� is the register to load or store

• �Rn� is the register on which the memory address is based

• �offset� is an offset from Rn. If offset is omitted, the address is the contents of Rn

• �Rt2� is the additional register to load or store for two-word operations

The Cortex-M3 instruction set PM0056

62/156 DocID15491 Rev 5

Operation

LDR instructions load one or two registers with a value from memory. STR instructions store
one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

• Offset addressing

The offset value is added to or subtracted from the address obtained from the register
Rn. The result is used as the address for the memory access. The register Rn is
unaltered. The assembly language syntax for this mode is: [Rn, #offset].

• Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the register
Rn. The result is used as the address for the memory access and written back into the
register Rn. The assembly language syntax for this mode is: [Rn, #offset]!

• Post-indexed addressing

The address obtained from the register Rn is used as the address for the memory
access. The offset value is added to or subtracted from the address, and written back
into the register Rn. The assembly language syntax for this mode is: [Rn], #offset.

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords
can either be signed or unsigned (see Address alignment on page 56).

Table 25 shows the range of offsets for immediate, pre-indexed and post-indexed forms.

Restrictions

• For load instructions

� Rt can be SP or PC for word loads only

� Rt must be different from Rt2 for two-word loads

� Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms

• When Rt is PC in a word load instruction

� bit[0] of the loaded value must be 1 for correct execution

� A branch occurs to the address created by changing bit[0] of the loaded value to 0

� If the instruction is conditional, it must be the last instruction in the IT block

• For store instructions

� Rt can be SP for word stores only

� Rt must not be PC

� Rn must not be PC

� Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms

Table 25. Immediate, pre-indexed and post-indexed offset ranges

Instruction type Immediate offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed byte

-255 to 4095 -255 to 255 -255 to 255

Two words
Multiple of 4 in the
range -1020 to 1020

Multiple of 4 in the
range -1020 to 1020

Multiple of 4 in the
range -1020 to 1020

DocID15491 Rev 5 63/156

PM0056 The Cortex-M3 instruction set

Condition flags

These instructions do not change the flags.

Examples

LDRR8, [R10]; loads R8 from the address in R10.

LDRNER2, [R5, #960]!; loads (conditionally) R2 from a word

; 960 bytes above the address in R5, and

; increments R5 by 960.

STRR2, [R9,#const-struc]; const-struc is an expression evaluating

; to a constant in the range 0-4095.

STRHR3, [R4], #4; Store R3 as halfword data into address in

; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20]; Load R8 from a word 32 bytes above the

; address in R3, and load R9 from a word 36

; bytes above the address in R3

STRDR0, R1, [R8], #-16; Store R0 to address in R8, and store R1 to

; a word 4 bytes above the address in R8,

; and then decrement R8 by 16.

3.4.3 LDR and STR, register offset

Load and store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

where:

• �op� is either LDR (load register) or STR (store register)

• �type� is one of the following:

B: Unsigned byte, zero extends to 32 bits on loads

SB: Signed byte, sign extends to 32 bits (LDR only)

H: Unsigned halfword, zero extends to 32 bits on loads

SH: Signed halfword, sign extends to 32 bits (LDR only)

�: Omit, for word

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rt� is the register to load or store

• �Rn� is the register on which the memory address is based

• �Rm� is a register containing a value to be used as the offset

• �LSL #n� is an optional shift, with n in the range 0 to 3

Operation

LDR instructions load a register with a value from memory. STR instructions store a register
value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned (see Address alignment on page 56).

The Cortex-M3 instruction set PM0056

64/156 DocID15491 Rev 5

Restrictions

In these instructions:

• Rn must not be PC

• Rm must be neither SP nor PC

• Rt can be SP only for word loads and word stores

• Rt can be PC only for word loads

When Rt is PC in a word load instruction:

• bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

Examples

STRR0, [R5, R1]; store value of R0 into an address equal to

; sum of R5 and R1

LDRSBR0, [R5, R1, LSL #1]; read byte value from an address equal to

; sum of R5 and two times R1, sign extended it

; to a word value and put it in R0

STRR0, [R1, R2, LSL #2]; stores R0 to an address equal to sum of R1

; and four times R2

3.4.4 LDR and STR, unprivileged

Load and store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}]; immediate offset

where:

• �op� is either LDR (load register) or STR (store register)

• �type� is one of the following:

B: Unsigned byte, zero extends to 32 bits on loads

SB: Signed byte, sign extends to 32 bits (LDR only)

H: Unsigned halfword, zero extends to 32 bits on loads

SH: Signed halfword, sign extends to 32 bits (LDR only)

�: Omit, for word

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rt� is the register to load or store

• �Rn� is the register on which the memory address is based

• �offset� is an offset from Rn and can be 0 to 255. If offset is omitted, the address is the
value in Rn.

DocID15491 Rev 5 65/156

PM0056 The Cortex-M3 instruction set

Operation

These load and store instructions perform the same function as the memory access
instructions with immediate offset (see LDR and STR, immediate offset on page 61). The
difference is that these instructions have only unprivileged access even when used in
privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as
normal memory access instructions with immediate offset.

Restrictions

In these instructions:

• Rn must not be PC

• Rt must be neither SP nor PC.

Condition flags

These instructions do not change the flags.

Examples

STRBTEQR4, [R7]; conditionally store least significant byte in

; R4 to an address in R7, with unprivileged access

LDRHTR2, [R2, #8]; load halfword value from an address equal to

; sum of R2 and 8 into R2, with unprivileged access

3.4.5 LDR, PC-relative

Load register from memory.

Syntax

LDR{type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label; load two words

where:

• �type� is one of the following:

B: Unsigned byte, zero extends to 32 bits

SB: Signed byte, sign extends to 32 bits

H: Unsigned halfword, sign extends to 32 bits

SH: Signed halfword, sign extends to 32 bits

�: Omit, for word

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rt� is the register to load or store

• �Rt2� is the second register to load or store

• �label� is a PC-relative expression (see PC-relative expressions on page 56)

The Cortex-M3 instruction set PM0056

66/156 DocID15491 Rev 5

Operation

LDR loads a register with a value from a PC-relative memory address. The memory address
is specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned (see Address alignment on page 56).

�label� must be within a limited range of the current instruction. Table 26 shows the possible
offsets between label and the PC.

You might have to use the .W suffix to get the maximum offset range (see Instruction width
selection on page 59).

Restrictions

In these instructions:

• Rt can be SP or PC only for word loads

• Rt2 must be neither SP nor PC

• Rt must be different from Rt2

When Rt is PC in a word load instruction:

• bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

Examples

LDRR0, LookUpTable; load R0 with a word of data from an address

; labelled as LookUpTable

LDRSBR7, localdata; load a byte value from an address labelled

; as localdata, sign extend it to a word

; value, and put it in R7

Table 26. label-PC offset ranges

Instruction type Offset range

Word, halfword, signed halfword, byte, signed byte −4095 to 4095

Two words −1020 to 1020

DocID15491 Rev 5 67/156

PM0056 The Cortex-M3 instruction set

3.4.6 LDM and STM

Load and store multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist

where:

• �op� is either LDM (load multiple register) or STM (store multiple register)

• �addr_mode� is any of the following:

IA: Increment address after each access (this is the default)

DB: Decrement address before each access

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rn� is the register on which the memory addresses are based

• �!� is an optional writeback suffix. If �!� is present, the final address that is loaded from or
stored to is written back into Rn.

• �reglist� is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma-separated if it contains more than one
register or register range (see Examples on page 68).

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from
full descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from empty
ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
empty ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto full descending
stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses
based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based
on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of
registers in reglist. The accesses happen in order of increasing register numbers, with the
lowest numbered register using the lowest memory address and the highest number
register using the highest memory address. If the writeback suffix is specified, the value of
Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses
are at 4-byte intervals ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in
reglist. The accesses happen in order of decreasing register numbers, with the highest
numbered register using the highest memory address and the lowest number register using
the lowest memory address. If the writeback suffix is specified, the value Rn - 4 * (n-1) is
written back to Rn.

The Cortex-M3 instruction set PM0056

68/156 DocID15491 Rev 5

The PUSH and POP instructions can be expressed in this form (see PUSH and POP for
details).

Restrictions

In these instructions:

• Rn must not be PC

• reglist must not contain SP

• In any STM instruction, reglist must not contain PC

• In any LDM instruction, reglist must not contain PC if it contains LR

• reglist must not contain Rn if you specify the writeback suffix

When PC is in reglist in an LDM instruction:

• bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch
occurs to this halfword-aligned address.

• If the instruction is conditional, it must be the last instruction in the IT block

Condition flags

These instructions do not change the flags.

Examples

LDMR8,{R0,R2,R9}; LDMIA is a synonym for LDM

STMDBR1!,{R3-R6,R11,R12}

Incorrect examples

STMR5!,{R5,R4,R9}; value stored for R5 is unpredictable

LDMR2, {}; there must be at least one register in the list

3.4.7 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH{cond} reglist

POP{cond} reglist

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �reglist� is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma-separated if it contains more than one register or register
range (see Examples on page 68).

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory
addresses for the access based on SP, and with the final address for the access written
back to the SP. PUSH and POP are the preferred mnemonics in these cases.

DocID15491 Rev 5 69/156

PM0056 The Cortex-M3 instruction set

Operation

PUSH stores registers on the stack in order of decreasing register numbers, with the highest
numbered register using the highest memory address and the lowest numbered register
using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest
numbered register using the lowest memory address and the highest numbered register
using the highest memory address.

See LDM and STM on page 67 for more information.

Restrictions

In these instructions:

• �reglist� must not contain SP

• For the PUSH instruction, reglist must not contain PC

• For the POP instruction, reglist must not contain PC if it contains LR

When PC is in reglist in a POP instruction:

• bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch
occurs to this halfword-aligned address.

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

Examples

PUSH{R0,R4-R7}

PUSH{R2,LR}

POP{R0,R10,PC}

The Cortex-M3 instruction set PM0056

70/156 DocID15491 Rev 5

3.4.8 LDREX and STREX

Load and store register exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register for the returned status

• �Rt� is the register to load or store

• �Rn� is the register on which the memory address is based

• �offset� is an optional offset applied to the value in Rn. If offset is omitted, the address is
the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a
memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to
a memory address. The address used in any store-exclusive instruction must be the same
as the address in the most recently executed load-exclusive instruction. The value stored by
the Store-exclusive instruction must also have the same data size as the value loaded by
the preceding load-exclusive instruction. This means software must always use a
load-exclusive instruction and a matching store-exclusive instruction to perform a
synchronization operation, see Synchronization primitives on page 31.

If a store-exclusive instruction performs the store, it writes 0 to its destination register. If it
does not perform the store, it writes 1 to its destination register. If the store-exclusive
instruction writes 0 to the destination register, it is guaranteed that no other process in the
system has accessed the memory location between the load-exclusive and store-exclusive
instructions.

For reasons of performance, keep the number of instructions between corresponding
load-exclusive and store-exclusive instruction to a minimum.

Note: The result of executing a store-exclusive instruction to an address that is different from that
used in the preceding load-exclusive instruction is unpredictable.

DocID15491 Rev 5 71/156

PM0056 The Cortex-M3 instruction set

Restrictions

In these instructions:

• Do not use PC

• Do not use SP for Rd and Rt

• For STREX, Rd must be different from both Rt and Rn

• The value of offset must be a multiple of four in the range 0-1020

Condition flags

These instructions do not change the flags.

Examples

MOVR1, #0x1; initialize the ‘lock taken’ value try

LDREXR0, [LockAddr]; load the lock value

CMPR0, #0; is the lock free?

ITTEQ; IT instruction for STREXEQ and CMPEQ

STREXEQR0, R1, [LockAddr]; try and claim the lock

CMPEQR0, #0; did this succeed?

BNEtry; no – try again

; yes – we have the lock

3.4.9 CLREX

Clear exclusive.

Syntax

CLREX{cond}

where:

�cond� is an optional condition code (see Conditional execution on page 57)

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination
register and fail to perform the store. It is useful in exception handler code to force the failure
of the store exclusive if the exception occurs between a load exclusive instruction and the
matching store exclusive instruction in a synchronization operation.

See Synchronization primitives on page 31 for more information.

Condition flags

These instructions do not change the flags.

Examples

CLREX

The Cortex-M3 instruction set PM0056

72/156 DocID15491 Rev 5

3.5 General data processing instructions

Table 27 shows the data processing instructions.

Table 27. Data processing instructions

Mnemonic Brief description See

ADC Add with carry ADD, ADC, SUB, SBC, and RSB on page 73

ADD Add ADD, ADC, SUB, SBC, and RSB on page 73

ADDW Add ADD, ADC, SUB, SBC, and RSB on page 73

AND Logical AND AND, ORR, EOR, BIC, and ORN on page 75

ASR Arithmetic shift right ASR, LSL, LSR, ROR, and RRX on page 76

BIC Bit clear AND, ORR, EOR, BIC, and ORN on page 75

CLZ Count leading zeros CLZ on page 77

CMN Compare negative CMP and CMN on page 78

CMP Compare CMP and CMN on page 78

EOR Exclusive OR AND, ORR, EOR, BIC, and ORN on page 75

LSL Logical shift left ASR, LSL, LSR, ROR, and RRX on page 76

LSR Logical shift right ASR, LSL, LSR, ROR, and RRX on page 76

MOV Move MOV and MVN on page 79

MOVT Move top MOVT on page 80

MOVW Move 16-bit constant MOV and MVN on page 79

MVN Move NOT MOV and MVN on page 79

ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN on page 75

ORR Logical OR AND, ORR, EOR, BIC, and ORN on page 75

RBIT Reverse bits REV, REV16, REVSH, and RBIT on page 81

REV Reverse byte order in a word REV, REV16, REVSH, and RBIT on page 81

REV16 Reverse byte order in each halfword REV, REV16, REVSH, and RBIT on page 81

REVSH
Reverse byte order in bottom halfword
and sign extend

REV, REV16, REVSH, and RBIT on page 81

ROR Rotate right ASR, LSL, LSR, ROR, and RRX on page 76

RRX Rotate right with extend ASR, LSL, LSR, ROR, and RRX on page 76

RSB Reverse subtract ADD, ADC, SUB, SBC, and RSB on page 73

SBC Subtract with carry ADD, ADC, SUB, SBC, and RSB on page 73

SUB Subtract ADD, ADC, SUB, SBC, and RSB on page 73

SUBW Subtract ADD, ADC, SUB, SBC, and RSB on page 73

TEQ Test equivalence TST and TEQ on page 82

TST Test TST and TEQ on page 82

DocID15491 Rev 5 73/156

PM0056 The Cortex-M3 instruction set

3.5.1 ADD, ADC, SUB, SBC, and RSB

Add, add with carry, subtract, subtract with carry, and reverse subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imm12; ADD and SUB only

where:

• �op� is one of:

ADD: Add

ADC: Add with carry

SUB: Subtract

SBC: Subtract with carry

RSB: Reverse subtract

• �S� is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation (see Conditional execution on page 57)

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register. If Rd is omitted, the destination register is Rn

• �Rn� is the register holding the first operand

• �Operand2� is a flexible second operand (see Flexible second operand on page 52 for
details of the options).

• �imm12� is any value in the range 0�4095

Operation

The ADD instruction adds the value of operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and operand2, together with the carry flag.

The SUB instruction subtracts the value of operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of operand2 from the value in Rn. If the carry flag is
clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of operand2. This is useful
because of the wide range of options for operand2.

Use ADC and SBC to synthesize multiword arithmetic (see Multiword arithmetic examples
on page 74 and ADR on page 60).

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent
to the SUB syntax that uses the imm12 operand.

The Cortex-M3 instruction set PM0056

74/156 DocID15491 Rev 5

Restrictions

In these instructions:

• Operand2 must be neither SP nor PC

• Rd can be SP only in ADD and SUB, and only with the following additional restrictions:

� Rn must also be SP

� Any shift in operand2 must be limited to a maximum of three bits using LSL

• Rn can be SP only in ADD and SUB

• Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

� You must not specify the S suffix

� Rm must be neither PC nor SP

� If the instruction is conditional, it must be the last instruction in the IT block

• With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in
ADD and SUB, and only with the following additional restrictions:

� You must not specify the S suffix

� The second operand must be a constant in the range 0 to 4095

Note: 1 When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to b00

before performing the calculation, making the base address for the calculation word-aligned.

2 If you want to generate the address of an instruction, you have to adjust the constant based

on the value of the PC. ARM recommends that you use the ADR instruction instead of ADD or

SUB with Rn equal to the PC, because your assembler automatically calculates the correct

constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

• bit[0] of the value written to the PC is ignored

• A branch occurs to the address created by forcing bit[0] of that value to 0

Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples

ADDR2, R1, R3

SUBSR8, R6, #240; sets the flags on the result

RSBR4, R4, #1280; subtracts contents of R4 from 1280

ADCHIR11, R0, R3; only executed if C flag set and Z

; flag clear

Multiword arithmetic examples

Specific example 4: 64-bit addition shows two instructions that add a 64-bit integer
contained in R2 and R3 to another 64-bit integer contained in R0 and R1, and place the
result in R4 and R5.

Specific example 4: 64-bit addition

ADDSR4, R0, R2; add the least significant words

ADCR5, R1, R3; add the most significant words with carry

DocID15491 Rev 5 75/156

PM0056 The Cortex-M3 instruction set

Multiword values do not have to use consecutive registers. Specific example 5: 96-bit
subtraction shows instructions that subtract a 96-bit integer contained in R9, R1, and R11
from another contained in R6, R2, and R8. The example stores the result in R6, R9, and R2.

Specific example 5: 96-bit subtraction

SUBSR6, R6, R9; subtract the least significant words

SBCSR9, R2, R1; subtract the middle words with carry

SBCR2, R8, R11; subtract the most significant words with carry

3.5.2 AND, ORR, EOR, BIC, and ORN

Logical AND, OR, exclusive OR, bit clear, and OR NOT.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

where:

• �op� is one of:

AND: Logical AND

ORR: Logical OR or bit set

EOR: Logical exclusive OR

BIC: Logical AND NOT or bit clear

ORN: Logical OR NOT

• �S� is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation (see Conditional execution on page 57).

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register

• �Rn� is the register holding the first operand

• �Operand2� is a flexible second operand (see Flexible second operand on page 52 for
details of the options).

Operation

The AND, EOR, and ORR instructions perform bitwise AND, exclusive OR, and OR
operations on the values in Rn and operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of
the corresponding bits in the value of operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of
the corresponding bits in the value of operand2.

Restrictions

Do not use either SP or PC.

The Cortex-M3 instruction set PM0056

76/156 DocID15491 Rev 5

Condition flags

If S is specified, these instructions:

• Update the N and Z flags according to the result

• Can update the C flag during the calculation of operand2 (see Flexible second operand
on page 52)

• Do not affect the V flag

Examples

ANDR9, R2,#0xFF00

ORREQR2, R0, R5

ANDSR9, R8, #0x19

EORSR7, R11, #0x18181818

BICR0, R1, #0xab

ORNR7, R11, R14, ROR #4

ORNSR7, R11, R14, ASR #32

3.5.3 ASR, LSL, LSR, ROR, and RRX

Arithmetic shift right, logical shift left, logical shift right, rotate right, and rotate right with
extend.

Syntax

op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n

RRX{S}{cond} Rd, Rm

where:

• �op� is one of:

ASR: Arithmetic shift right

LSL: Logical shift left

LSR: Logical shift right

ROR: Rotate right

• �S� is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation (see Conditional execution on page 57)

• �Rd� is the destination register

• �Rm� is the register holding the value to be shifted

• �Rs� is the register holding the shift length to apply to the value Rm. Only the least
significant byte is used and can be in the range 0 to 255.

• �n� is the shift length. The range of shift lengths depend on the instruction as follows:

ASR: Shift length from 1 to 32

LSL: Shift length from 0 to 31

LSR: Shift length from 1 to 32

ROR: Shift length from 1 to 31

Note: MOV{S}{cond} Rd, Rm is the preferred syntax for LSL{S}{cond} Rd, Rm, #0.

DocID15491 Rev 5 77/156

PM0056 The Cortex-M3 instruction set

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number
of places specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions (see Shift
operations on page 53).

Restrictions

Do not use either SP or PC.

Condition flags

If S is specified:

• These instructions update the N and Z flags according to the result

• The C flag is updated to the last bit shifted out, except when the shift length is 0 (see
Shift operations on page 53).

Examples

ASRR7, R8, #9; arithmetic shift right by 9 bits

LSLSR1, R2, #3; logical shift left by 3 bits with flag update

LSRR4, R5, #6; logical shift right by 6 bits

RORR4, R5, R6; rotate right by the value in the bottom byte of R6

RRXR4, R5; rotate right with extend

3.5.4 CLZ

Count leading zeros.

Syntax

CLZ{cond} Rd, Rm

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register

• �Rm� is the operand register

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the
result in Rd. The result value is 32 if no bits are set in the source register, and zero if bit[31]
is set.

Restrictions

Do not use either SP or PC.

Condition flags

This instruction does not change the flags.

The Cortex-M3 instruction set PM0056

78/156 DocID15491 Rev 5

Examples

CLZR4,R9

CLZNER2,R3

3.5.5 CMP and CMN

Compare and compare negative.

Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rn� is the register holding the first operand

• �Operand2� is a flexible second operand (see Flexible second operand on page 52) for
details of the options.

Operation

These instructions compare the value in a register with operand2. They update the condition
flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of operand2 from the value in Rn. This is the same
as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of operand2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

Restrictions

In these instructions:

• Do not use PC

• Operand2 must not be SP

Condition flags

These instructions update the N, Z, C and V flags according to the result.

Examples

CMPR2, R9

CMNR0, #6400

CMPGTSP, R7, LSL #2

DocID15491 Rev 5 79/156

PM0056 The Cortex-M3 instruction set

3.5.6 MOV and MVN

Move and move NOT.

Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16

MVN{S}{cond} Rd, Operand2

where:

• �S� is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation (see Conditional execution on page 57).

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register

• �Operand2� is a flexible second operand (see Flexible second operand on page 52) for
details of the options.

• �imm16� is any value in the range 0�65535

Operation

The MOV instruction copies the value of operand2 into Rd.

When operand2 in a MOV instruction is a register with a shift other than LSL #0, the
preferred syntax is the corresponding shift instruction:

• ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n

• LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if n
!= 0

• LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n

• ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n

• RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX

Also, the MOV instruction permits additional forms of operand2 as synonyms for shift
instructions:

• MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs

• MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs

• MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs

• MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs

See ASR, LSL, LSR, ROR, and RRX on page 76.

The MVN instruction takes the value of operand2, performs a bitwise logical NOT operation on
the value, and places the result into Rd.

Note: The MOVW instruction provides the same function as MOV, but is restricted to using the
imm16 operand.

The Cortex-M3 instruction set PM0056

80/156 DocID15491 Rev 5

Restrictions

You can use SP and PC only in the MOV instruction, with the following restrictions:

• The second operand must be a register without shift

• You must not specify the S suffix

When Rd is PC in a MOV instruction:

• bit[0] of the value written to the PC is ignored

• A branch occurs to the address created by forcing bit[0] of that value to 0.

Note: Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use
of a BX or BLX instruction to branch for software portability to the ARM instruction set.

Condition flags

If S is specified, these instructions:

• Update the N and Z flags according to the result

• Can update the C flag during the calculation of operand2 (see Flexible second operand
on page 52).

• Do not affect the V flag

Example

MOVSR11, #0x000B; write value of 0x000B to R11, flags get updated

MOVR1, #0xFA05; write value of 0xFA05 to R1, flags are not updated

MOVSR10, R12; write value in R12 to R10, flags get updated

MOVR3, #23; write value of 23 to R3

MOVR8, SP; write value of stack pointer to R8

MVNSR2, #0xF; write value of 0xFFFFFFF0 (bitwise inverse of 0xF)

; to the R2 and update flags

3.5.7 MOVT

Move top.

Syntax

MOVT{cond} Rd, #imm16

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register

• �imm16� is a 16-bit immediate constant

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its
destination register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

DocID15491 Rev 5 81/156

PM0056 The Cortex-M3 instruction set

Restrictions

Rd must be neither SP nor PC.

Condition flags

This instruction does not change the flags.

Examples

MOVTR3, #0xF123; write 0xF123 to upper halfword of R3, lower halfword

; and APSR are unchanged

3.5.8 REV, REV16, REVSH, and RBIT

Reverse bytes and reverse bits.

Syntax

op{cond} Rd, Rn

where:

• �op� is one of:

REV: Reverse byte order in a word

REV16: Reverse byte order in each halfword independently

REVSH: Reverse byte order in the bottom halfword, and sign extends to 32 bits

RBIT: Reverse the bit order in a 32-bit word

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register

• �Rn� is the register holding the operand

Operation

Use these instructions to change endianness of data:

• REV: Converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

• REV16: Converts 16-bit big-endian data into little-endian data or 16-bit little-endian data
into big-endian data.

• REVSH: Converts either:

� 16-bit signed big-endian data into 32-bit signed little-endian data

� 16-bit signed little-endian data into 32-bit signed big-endian data

Restrictions

Do not use either SP or PC.

Condition flags

These instructions do not change the flags.

Examples

REVR3, R7; reverse byte order of value in R7 and write it to R3

REV16 R0, R0; reverse byte order of each 16-bit halfword in R0

The Cortex-M3 instruction set PM0056

82/156 DocID15491 Rev 5

REVSH R0, R5 ; reverse Signed Halfword

REVHS R3, R7 ; reverse with Higher or Same condition

RBIT R7, R8 ; reverse bit order of value in R8 and write the result to R7

3.5.9 TST and TEQ

Test bits and test equivalence.

Syntax

TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rn� is the register holding the first operand

• �Operand2� is a flexible second operand (see Flexible second operand on page 52) for
details of the options.

Operation

These instructions test the value in a register against operand2. They update the condition
flags based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
operand2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an operand2 constant that
has that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise exclusive OR operation on the value in Rn and the
value of operand2. This is the same as the EORS instruction, except that it discards the
result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the
logical exclusive OR of the sign bits of the two operands.

Restrictions

Do not use either SP or PC.

Condition flags

These instructions:

• Update the N and Z flags according to the result

• Can update the C flag during the calculation of operand2 (see Flexible second operand
on page 52).

• Do not affect the V flag

Examples

TSTR0, #0x3F8; perform bitwise AND of R0 value to 0x3F8,

; APSR is updated but result is discarded

TEQEQR10, R9; conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded

DocID15491 Rev 5 83/156

PM0056 The Cortex-M3 instruction set

3.6 Multiply and divide instructions

Table 28 shows the multiply and divide instructions.

3.6.1 MUL, MLA, and MLS

Multiply, multiply with accumulate, and multiply with subtract, using 32-bit operands, and
producing a 32-bit result.

Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply

MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate

MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �S� is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation (see Conditional execution on page 57).

• �Rd� is the destination register. If Rd is omitted, the destination register is Rn

• �Rn�, �Rm� are registers holding the values to be multiplied

• �Ra� is a register holding the value to be added to or subtracted from

Table 28. Multiply and divide instructions

Mnemonic Brief description See

MLA Multiply with accumulate, 32-bit result MUL, MLA, and MLS on page 83

MLS Multiply and subtract, 32-bit result MUL, MLA, and MLS on page 83

MUL Multiply, 32-bit result MUL, MLA, and MLS on page 83

SDIV Signed divide SDIV and UDIV on page 86

SMLAL
Signed multiply with accumulate
(32x32+64), 64-bit result

UMULL, UMLAL, SMULL, and SMLAL on
page 85

SMULL Signed multiply (32x32), 64-bit result
UMULL, UMLAL, SMULL, and SMLAL on
page 85

UDIV Unsigned divide SDIV and UDIV on page 86

UMLAL
Unsigned multiply with accumulate
(32x32+64), 64-bit result

UMULL, UMLAL, SMULL, and SMLAL on
page 85

UMULL
Unsigned multiply (32x32), 64-bit
result

UMULL, UMLAL, SMULL, and SMLAL on
page 85

The Cortex-M3 instruction set PM0056

84/156 DocID15491 Rev 5

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32
bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and
places the least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the
value from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.

Restrictions

In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:

• Rd, Rn, and Rm must all be in the range R0 to R7

• Rd must be the same as Rm

• You must not use the cond suffix

Condition flags

If S is specified, the MUL instruction:

• Updates the N and Z flags according to the result

• Does not affect the C and V flags

Examples

MULR10, R2, R5; multiply, R10 = R2 x R5

MLAR10, R2, R1, R5; multiply with accumulate, R10 = (R2 x R1) + R5

MULSR0, R2, R2; multiply with flag update, R0 = R2 x R2

MULLTR2, R3, R2; conditionally multiply, R2 = R3 x R2

MLSR4, R5, R6, R7; multiply with subtract, R4 = R7 - (R5 x R6)

DocID15491 Rev 5 85/156

PM0056 The Cortex-M3 instruction set

3.6.2 UMULL, UMLAL, SMULL, and SMLAL

Signed and unsigned long multiply, with optional accumulate, using 32-bit operands and
producing a 64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

where:

• �op� is one of:

UMULL: Unsigned long multiply

UMLAL: Unsigned long multiply, with accumulate

SMULL: Signed long multiply

SMLAL: Signed long multiply, with accumulate

• �cond� is an optional condition code (see Conditional execution on page 57)

• �RdHi, RdLo� are the destination registers. For UMLAL and SMLAL, they also hold the
accumulating value.

• �Rn, Rm� are registers holding the operands

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and the
most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It
multiplies these integers, adds the 64-bit result to the 64-bit unsigned integer contained in
RdHi and RdLo, and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two�s complement signed
integers. It multiplies these integers and places the least significant 32 bits of the result in
RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two�s complement signed
integers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer
contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

Restrictions

In these instructions:

• Do not use either SP or PC

• RdHi and RdLo must be different registers

Condition flags

These instructions do not affect the condition code flags.

Examples

UMULLR0, R4, R5, R6; unsigned (R4,R0) = R5 x R6

SMLALR4, R5, R3, R8; signed (R5,R4) = (R5,R4) + R3 x R8

The Cortex-M3 instruction set PM0056

86/156 DocID15491 Rev 5

3.6.3 SDIV and UDIV

Signed divide and unsigned divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm

UDIV{cond} {Rd,} Rn, Rm

where:

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register. If Rd is omitted, the destination register is Rn

• �Rn,� is the register holding the value to be divided

• �Rm� is a register holding the divisor

Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is
rounded towards zero.

Restrictions

Do not use either SP or PC.

Condition flags

These instructions do not change the flags.

Examples

SDIVR0, R2, R4; signed divide, R0 = R2/R4

UDIVR8, R8, R1; unsigned divide, R8 = R8/R1

DocID15491 Rev 5 87/156

PM0056 The Cortex-M3 instruction set

3.7 Saturating instructions

This section describes the saturating instructions, SSAT and USAT.

3.7.1 SSAT and USAT

Signed saturate and unsigned saturate to any bit position, with optional shift before
saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}

where:

• �op� is one of the following:

SSAT: Saturates a signed value to a signed range

USAT: Saturates a signed value to an unsigned range

• �cond� is an optional condition code (see Conditional execution on page 57)

• �Rd� is the destination register.

• �n� specifies the bit position to saturate to:

n ranges from 1 to 32 for SSAT

n ranges from 0 to 31 for USAT

• �Rm� is the register containing the value to saturate

• �shift #s� is an optional shift applied to Rm before saturating. It must be one of the
following:

ASR #s where s is in the range 1 to 31

LSL #s where s is in the range 0 to 31

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range:
-2n�1

≤ x ≤ 2n�1-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range:
0 ≤ x ≤ 2n-1.

For signed n-bit saturation using SSAT, this means that:

• If the value to be saturated is less than -2n-1, the result returned is -2n-1

• If the value to be saturated is greater than 2n-1-1, the result returned is 2n-1-1

• otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

• If the value to be saturated is less than 0, the result returned is 0

• If the value to be saturated is greater than 2n-1, the result returned is 2n-1

• Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If
saturation occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q
flag unchanged. To clear the Q flag to 0, you must use the MSR instruction, see MSR on
page 101.

The Cortex-M3 instruction set PM0056

88/156 DocID15491 Rev 5

To read the state of the Q flag, use the MRS instruction (see MRS on page 100).

Restrictions

Do not use either SP or PC.

Condition flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSATR7, #16, R7, LSL #4; logical shift left value in R7 by 4, then

; saturate it as a signed 16-bit value and

; write it back to R7

USATNER0, #7, R5; conditionally saturate value in R5 as an

; unsigned 7 bit value and write it to R0

3.8 Bitfield instructions

Table 29 shows the instructions that operate on adjacent sets of bits in registers or bitfields.

Table 29. Packing and unpacking instructions

Mnemonic Brief description See

BFC Bit field clear BFC and BFI on page 89

BFI Bit field insert BFC and BFI on page 89

SBFX Signed bit field extract SBFX and UBFX on page 89

SXTB Sign extend a byte SXT and UXT on page 90

SXTH Sign extend a halfword SXT and UXT on page 90

UBFX Unsigned bit field extract SBFX and UBFX on page 89

UXTB Zero extend a byte SXT and UXT on page 90

UXTH Zero extend a halfword SXT and UXT on page 90

DocID15491 Rev 5 89/156

PM0056 The Cortex-M3 instruction set

3.8.1 BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

• �Rd� is the destination register.

• �Rn� is the source register.

• �lsb� is the position of the least significant bit of the bitfield. lsb must be in the range 0 to
31.

• �width� is the width of the bitfield and must be in the range 1 to 32-lsb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position lsb.
Other bits in Rd are unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd
starting at the low bit position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd
are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0

BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with

; bit 0 to bit 11 from R2

3.8.2 SBFX and UBFX

Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

The Cortex-M3 instruction set PM0056

90/156 DocID15491 Rev 5

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

• �Rd� is the destination register.

• �Rn� is the source register.

• �lsb� is the position of the least significant bit of the bitfield. lsb must be in the range 0 to
31.

• �width� is the width of the bitfield and must be in the range 1 to 32-lsb.

Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to
the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to
the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign

; extend to 32 bits and then write the result to R0.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero

; extend to 32 bits and then write the result to R8

3.8.3 SXT and UXT

Sign extend and Zero extend.

Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}

UXTextend{cond} {Rd}, Rm {, ROR #n}

where:

• �extend� is one of:

B: Extends an 8-bit value to a 32-bit value.

H: Extends a 16-bit value to a 32-bit value.

• �cond� is an optional condition code, see Conditional execution on page 57.

• �Rd� is the destination register.

• �Rm� is the register holding the value to extend.

• ROR #n is one of:

ROR #8: Value from Rm is rotated right 8 bits.

ROR #16: Value from Rm is rotated right 16 bits.

ROR #24: Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

DocID15491 Rev 5 91/156

PM0056 The Cortex-M3 instruction set

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

� SXTB extracts bits[7:0] and sign extends to 32 bits.

� UXTB extracts bits[7:0] and zero extends to 32 bits.

� SXTH extracts bits[15:0] and sign extends to 32 bits.

� UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower

; halfword of the result and then sign extend to

; 32 bits and write the result to R4.

UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero

; extend it, and write the result to R3

3.8.4 Branch and control instructions

Table 30 shows the branch and control instructions:

Table 30. Branch and control instructions

Mnemonic Brief description See

B Branch B, BL, BX, and BLX on page 92

BL Branch with Link B, BL, BX, and BLX on page 92

BLX Branch indirect with Link B, BL, BX, and BLX on page 92

BX Branch indirect B, BL, BX, and BLX on page 92

CBNZ
Compare and Branch if Non
Zero

CBZ and CBNZ on page 93

CBZ
Compare and Branch if Non
Zero

CBZ and CBNZ on page 93

IT If-Then IT on page 94

TBB Table Branch Byte TBB and TBH on page 96

TBH Table Branch Halfword TBB and TBH on page 96

The Cortex-M3 instruction set PM0056

92/156 DocID15491 Rev 5

3.8.5 B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label

BL{cond} label

BX{cond} Rm

BLX{cond} Rm

where:

• �B� is branch (immediate).

• �BL� is branch with link (immediate).

• �BX� is branch indirect (register).

• �BLX� is branch indirect with link (register).

• �cond� is an optional condition code, see Conditional execution on page 57.

• �label� is a PC-relative expression. See PC-relative expressions on page 56.

• �Rm� is a register that indicates an address to branch to. Bit[0] of the value in Rm must
be 1, but the address to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

• The BL and BLX instructions write the address of the next instruction to LR (the link
register, R14).

• The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.

B cond label is the only conditional instruction that can be either inside or outside an IT
block. All other branch instructions must be conditional inside an IT block, and must be
unconditional outside the IT block, see IT on page 94.

Table 31 shows the ranges for the various branch instructions.

You might have to use the .W suffix to get the maximum branch range. See Instruction width
selection on page 59.

Table 31. Branch ranges

Instruction Branch range

B label −16 MB to +16 MB

Bcond label (outside IT block) −1 MB to +1 MB

Bcond label (inside IT block) −16 MB to +16 MB

BL{cond} label −16 MB to +16 MB

BX{cond} Rm Any value in register

BLX{cond} Rm Any value in register

DocID15491 Rev 5 93/156

PM0056 The Cortex-M3 instruction set

Restrictions

The restrictions are:

• Do not use PC in the BLX instruction

• For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the
target address created by changing bit[0] to 0

• When any of these instructions is inside an IT block, it must be the last instruction of the
IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block.
However, it has a longer branch range when it is inside an IT block.

Condition flags

These instructions do not change the flags.

Examples

B loopA ; Branch to loopA

BLE ng ; Conditionally branch to label ng

B.W target ; Branch to target within 16MB range

BEQ target ; Conditionally branch to target

BEQ.W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address

; stored in LR

BX LR ; Return from function call

BXNE R0 ; Conditionally branch to address stored in R0

BLX R0 ; Branch with link and exchange (Call) to a address stored

; in R0

3.8.6 CBZ and CBNZ

Compare and branch on zero, compare and branch on non-zero.

Syntax

CBZ Rn, label

CBNZ Rn, label

where:

• �Rn� is the register holding the operand.

• �label� is the branch destination.

Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce
the number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0

BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

The Cortex-M3 instruction set PM0056

94/156 DocID15491 Rev 5

CMP Rn, #0

BNE label

Restrictions

The restrictions are:

• Rn must be in the range of R0 to R7

• The branch destination must be within 4 to 130 bytes after the instruction

• These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Examples

CBZ R5, target ; Forward branch if R5 is zero

CBNZ R0, target ; Forward branch if R0 is not zero

3.8.7 IT

If-Then condition instruction.

Syntax

IT{x{y{z}}} cond

where:

• �x� specifies the condition switch for the second instruction in the IT block.

• �y� specifies the condition switch for the third instruction in the IT block.

• �z� specifies the condition switch for the fourth instruction in the IT block.

• �cond� specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T: Then. Applies the condition cond to the instruction.

E: Else. Applies the inverse condition of cond to the instruction.

a) It is possible to use AL (the always condition) for cond in an IT instruction. If this is
done, all of the instructions in the IT block must be unconditional, and each of x, y,
and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be
all the same, or some of them can be the logical inverse of the others. The conditional
instructions following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the
{cond} part of their syntax.

DocID15491 Rev 5 95/156

PM0056 The Cortex-M3 instruction set

Your assembler might be able to generate the required IT instructions for conditional
instructions automatically, so that you do not need to write them yourself. See your
assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within
an IT block. Such an exception results in entry to the appropriate exception handler, with
suitable return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a PC-
modifying instruction is permitted to branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:

• IT

• CBZ and CBNZ

• CPSID and CPSIE.

Other restrictions when using an IT block are:

• a branch or any instruction that modifies the PC must either be outside an IT block or
must be the last instruction inside the IT block. These are:

� ADD PC, PC, Rm

� MOV PC, Rm

� B, BL, BX, BLX

� any LDM, LDR, or POP instruction that writes to the PC

� TBB and TBH

• Do not branch to any instruction inside an IT block, except when returning from an
exception handler

• All conditional instructions except Bcond must be inside an IT block. Bcond can be
either outside or inside an IT block but has a larger branch range if it is inside one

• Each instruction inside the IT block must specify a condition code suffix that is either
the same or logical inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

Condition flags

This instruction does not change the flags.

Example

ITTE NE ; Next 3 instructions are conditional

ANDNE R0, R0, R1 ; ANDNE does not update condition flags

ADDSNE R2, R2, #1 ; ADDSNE updates condition flags

MOVEQ R2, R3 ; Conditional move

The Cortex-M3 instruction set PM0056

96/156 DocID15491 Rev 5

CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII

; ('0'-'9', 'A'-'F')

ITE GT ; Next 2 instructions are conditional

ADDGT R1, R0, #55 ; Convert 0xA -> 'A'

ADDLE R1, R0, #48 ; Convert 0x0 -> '0'

IT GT ; IT block with only one conditional instruction

ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional

MOVEQ R0, R1 ; Conditional move

ADDEQ R2, R2, #10 ; Conditional add

ANDNE R3, R3, #1 ; Conditional AND

BNE.W dloop ; Branch instruction can only be used in the last

; instruction of an IT block

IT NE ; Next instruction is conditional

ADD R0, R0, R1 ; Syntax error: no condition code used in IT block

3.8.8 TBB and TBH

Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

• �Rn� is the register containing the address of the table of branch lengths.

If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.

• �Rm� is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an
index into the table. For TBB the branch offset is twice the unsigned value of the byte
returned from the table. and for TBH the branch offset is twice the unsigned value of the
halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

Restrictions

The restrictions are:

• Rn must not be SP

• Rm must not be SP and must not be PC

• When any of these instructions is used inside an IT block, it must be the last instruction
of the IT block.

DocID15491 Rev 5 97/156

PM0056 The Cortex-M3 instruction set

Condition flags

These instructions do not change the flags.

Examples

ADR.W R0, BranchTable_Byte

TBB [R0, R1] ; R1 is the index, R0 is the base address of the

; branch table

Case1

; an instruction sequence follows

Case2

; an instruction sequence follows

Case3

; an instruction sequence follows

BranchTable_Byte

DCB 0 ; Case1 offset calculation

DCB ((Case2-Case1)/2) ; Case2 offset calculation

DCB ((Case3-Case1)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the

; branch table

BranchTable_H

DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation

DCI ((CaseB - BranchTable_H)/2) ; CaseB offset calculation

DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA

; an instruction sequence follows

CaseB

; an instruction sequence follows

CaseC

; an instruction sequence follows

3.9 Miscellaneous instructions

Table 32 shows the remaining Cortex-M3 instructions:

Table 32. Miscellaneous instructions

Mnemonic Brief description See

BKPT Breakpoint BKPT on page 98

CPSID Change Processor State, Disable Interrupts CPS on page 98

CPSIE Change Processor State, Enable Interrupts CPS on page 98

DMB Data Memory Barrier DMB on page 99

DSB Data Synchronization Barrier DSB on page 100

ISB Instruction Synchronization Barrier ISB on page 100

MRS Move from special register to register MRS on page 100

MSR Move from register to special register MSR on page 101

The Cortex-M3 instruction set PM0056

98/156 DocID15491 Rev 5

3.9.1 BKPT

Breakpoint.

Syntax

BKPT #imm

where:

• �imm� is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this
to investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional
information about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally,
unaffected by the condition specified by the IT instruction.

Condition flags

This instruction does not change the flags.

Examples

BKPT 0xAB ; Breakpoint with immediate value set to 0xAB (debugger can

; extract the immediate value by locating it using the PC)

3.9.2 CPS

Change Processor State.

Syntax

CPSeffect iflags

NOP No Operation NOP on page 102

SEV Send Event SEV on page 102

SVC Supervisor Call SVC on page 103

WFE Wait For Event WFE on page 103

WFI Wait For Interrupt WFI on page 104

Table 32. Miscellaneous instructions (continued)

Mnemonic Brief description See

DocID15491 Rev 5 99/156

PM0056 The Cortex-M3 instruction set

where:

• �effect� is one of:

IE: Clears the special purpose register.

ID: Sets the special purpose register.

• �iflags� is a sequence of one or more flags:

i: Set or clear PRIMASK.

f: Set or clear FAULTMASK.

Operation

CPS changes the PRIMASK and FAULTMASK special register values. See Exception mask
registers on page 19 for more information about these registers.

Restrictions

The restrictions are:

• Use CPS only from privileged software, it has no effect if used in unprivileged software

• CPS cannot be conditional and so must not be used inside an IT block.

Condition flags

This instruction does not change the condition flags.

Examples

CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)

CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)

CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

3.9.3 DMB

Data Memory Barrier.

Syntax

DMB{cond}

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that
appear, in program order, before the DMB instruction are completed before any explicit
memory accesses that appear, in program order, after the DMB instruction. DMB does not
affect the ordering or execution of instructions that do not access memory.

Condition flags

This instruction does not change the flags.

Examples

DMB ; Data Memory Barrier

The Cortex-M3 instruction set PM0056

100/156 DocID15491 Rev 5

3.9.4 DSB

Data Synchronization Barrier.

Syntax

DSB{cond}

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB
instruction completes when all explicit memory accesses before it complete.

Condition flags

This instruction does not change the flags.

Examples

DSB ; Data Synchronisation Barrier

3.9.5 ISB

Instruction Synchronization Barrier.

Syntax

ISB{cond}

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so
that all instructions following the ISB are fetched from cache or memory again, after the ISB
instruction has been completed.

Condition flags

This instruction does not change the flags.

Examples

ISB ; Instruction Synchronisation Barrier

3.9.6 MRS

Move the contents of a special register to a general-purpose register.

Syntax

MRS{cond} Rd, spec_reg

DocID15491 Rev 5 101/156

PM0056 The Cortex-M3 instruction set

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

• �Rd� is the destination register.

• �spec_reg� can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP,
PSP, PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a
PSR, for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out
must be saved, including relevant PSR contents. Similarly, the state of the process being
swapped in must also be restored. These operations use MRS in the state-saving
instruction sequence and MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

See MSR on page 101.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Examples

MRS R0, PRIMASK ; Read PRIMASK value and write it to R0

3.9.7 MSR

Move the contents of a general-purpose register into the specified special register.

Syntax

MSR{cond} spec_reg, Rn

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

• �Rn� is the source register.

• �spec_reg� can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP,
PSP, PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software
can only access the APSR, see Table 4: APSR bit definitions on page 17. Privileged
software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

The Cortex-M3 instruction set PM0056

102/156 DocID15491 Rev 5

When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

• Rn is non-zero and the current BASEPRI value is 0

• Rn is non-zero and less than the current BASEPRI value.

See MRS on page 100.

Restrictions

Rn must not be SP and must not be PC.

Condition flags

This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

3.9.8 NOP

No Operation.

Syntax

NOP{cond}

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

Condition flags

This instruction does not change the flags.

Examples

NOP ; No operation

3.9.9 SEV

Send Event.

Syntax

SEV{cond}

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

DocID15491 Rev 5 103/156

PM0056 The Cortex-M3 instruction set

Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a
multiprocessor system. It also sets the local event register to 1, see Power management on
page 42.

Condition flags

This instruction does not change the flags.

Examples

SEV ; Send Event

3.9.10 SVC

Supervisor Call.

Syntax

SVC{cond} #imm

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

• �imm� is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

Condition flags

This instruction does not change the flags.

Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the immediate value

; by locating it via the stacked PC)

3.9.11 WFE

Wait For Event.

Syntax

WFE{cond}

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

Operation

WFE is a hint instruction.

The Cortex-M3 instruction set PM0056

104/156 DocID15491 Rev 5

If the event register is 0, WFE suspends execution until one of the following events occurs:

• An exception, unless masked by the exception mask registers or the current priority
level

• An exception enters the Pending state, if SEVONPEND in the System Control Register
is set

• A Debug Entry request, if Debug is enabled

• An event signaled by a peripheral or another processor in a multiprocessor system
using the SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see Power management on page 42.

Condition flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

3.9.12 WFI

Wait for Interrupt.

Syntax

WFI{cond}

where:

• �cond� is an optional condition code, see Conditional execution on page 57.

Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:

• An exception

• A Debug Entry request, regardless of whether Debug is enabled.

Condition flags

This instruction does not change the flags.

Examples

WFI ; Wait for interrupt

DocID15491 Rev 5 105/156

PM0056 Core peripherals

4 Core peripherals

4.1 About the STM32 core peripherals

The address map of the Private peripheral bus (PPB) is:

In register descriptions:

• The required privilege gives the privilege level required to access the register, as
follows:

4.2 Memory protection unit (MPU)

This section describes the Memory protection unit (MPU) which is implemented in some
STM32 microcontrollers. Refer to the corresponding device datasheet to see if the MPU is
present in the STM32 type you are using.

The MPU divides the memory map into a number of regions, and defines the location, size,
access permissions, and memory attributes of each region. It supports:

• Independent attribute settings for each region

• Overlapping regions

• Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex-
M3 MPU defines:

• Eight separate memory regions, 0-7

• A background region.

When memory regions overlap, a memory access is affected by the attributes of the region
with the highest number. For example, the attributes for region 7 take precedence over the
attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory
map, but is accessible from privileged software only.

Table 33. STM32 core peripheral register regions

Address Core peripheral Description

0xE000E010-0xE000E01F System timer Table 49 on page 154

0xE000E100-0xE000E4EF
Nested vectored interrupt
controller

Table 44 on page 128

0xE000ED00-0xE000ED3F System control block Table 48 on page 149

0xE000ED90-0xE000ED93 Memory protection unit Table 40 on page 117 (1)

1. Software can read the MPU Type Register at 0xE000ED90 to test for the presence of a memory protection
unit (MPU).

0xE000EF00-0xE000EF03
Nested vectored interrupt
controller

Table 44 on page 128

Privileged Only privileged software can access the register.

Unprivileged Both unprivileged and privileged software can access the register.

