
Jin-Fu Li
Department of Electrical Engineering

National Central University
Jungli, Taiwan

Chapter 4Chapter 4
ARM Instruction Sets ARM Instruction Sets

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

Registers, Memory Access, and Data Transfer
Arithmetic and Logic Instructions
Branch Instructions
Assembly Language
I/O Operations
Subroutines
Program Examples

Outline

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3

Content Coverage

Main Memory System

Input/Output System

Arithmetic
and

Logic Unit

Operational
Registers

Program
Counter

Control Unit

Data/InstructionAddress

Central Processing Unit (CPU)

Cache
memory

Instruction
Sets

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

ARM Processor
ARM processor was designed by Advanced RISC
Machine (ARM) Limited Company
ARM processors are major used for low-power and low
cost applications

Mobile phones
Communication modems
Automotive engine management systems
Hand-held digital systems

This chapter introduces the ARM instruction sets based
on the ARM7 processor

Different versions of ARM processors share the same basic
machine instruction sets

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

Registers and Memory Access
In the ARM architecture

Memory is byte addressable
32-bit addresses
32-bit processor registers

Two operand lengths are used in moving data between
the memory and the processor registers

Bytes (8 bits) and words (32 bits)
Word addresses must be aligned, i.e., they must be
multiple of 4

Both little-endian and big-endian memory addressing are
supported

When a byte is loaded from memory into a processor
register or stored from a register into the memory

It always located in the low-order byte position of the register

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

Register Structure

31 30 29 28 7 6 4 0
…

N-Negative
Z-Zero
C-Carry
V-Overflow

Processor mode bits

Interrupt disable bits

15
General
Purpose
registers

R0

R1

R14

31 0

31 0

R15 (PC) Program counter

Status registerCPSR

Conditional code flags

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

Register Structure
The use of processor mode bits and interrupt disable bits
will be described in conjunction with input/output
operations and interrupts in Chapter 5
There are 15 additional general-purpose registers called
the banked registers

They are duplicates of some of the R0 to R14 registers
They are used when the processor switches into Supervisor or
Interrupt modes of operation

Saved copies of the Status register are also available in the
Supervisor and Interrupt modes
The banked registers and Status register copies will also
be discussed in Chapter 5

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

ARM Instruction Format
Each instruction is encoded into a 32-bit word
Access to memory is provided only by Load and Store
instructions
The basic encoding format for the instructions, such as
Load, Store, Move, Arithmetic, and Logic instructions, is
shown below

An instruction specifies a conditional execution code
(Condition), the OP code, two or three registers (Rn, Rd,
and Rm), and some other information

Condition OP code Rn Rd RmOther info

31 28 27 20 19 16 15 12 11 4 3 0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

Conditional Execution of Instructions
A distinctive and somewhat unusual feature of ARM
processors is that all instructions are conditionally
executed

Depending on a condition specified in the instruction
The instruction is executed only if the current state of the
processor condition code flag satisfies the condition
specified in bits b31-b28 of the instruction

Thus the instructions whose condition is not meet the processor
condition code flag are not executed

One of the conditions is used to indicate that the
instruction is always executed

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

Memory Addressing Modes
Pre-indexed mode

The effective address of the operand is the sum of the contents of
the base register Rn and an offset value

Pre-indexed with writeback mode
The effective address of the operand is generated in the same way
as in the Pre-indexed mode, and then the effective address is
written back into Rn

Post-indexed mode
The effective address of the operand is the contents of Rn. The
offset is then added to this address and the result is written back
into Rn

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

ARM Indexed Addressing Modes

With immediate offset:
Pre-indexed
Pre-indexed with writeback
Post-indexed

With offset in Rn
Pre-indexed
Pre-indexed with writeback

Post-indexed

Relative (Pre-indexed with
Immediate offset)

Name Assembler syntax Addressing function

[Rn, #offset]
[Rn, #offset]!
[Rn], #offest

[Rn, +Rm, shift]
[Rn, +Rm, shift]!

[Rn], +Rm, shift

Location

EA=[Rn]+offset
EA=[Rn]+offset; Rn [Rn]+offset
EA=[Rn]; Rn [Rn]+offset

EA=[Rn]+[Rm] shifted
EA=[Rn]+[Rm] shifted;
Rn [Rn]+[Rm] shifted
EA=[Rn];
Rn [Rn]+[Rm] shifted
EA=Location=[PC]+offset

shift=direction #integer, where direction is LSL for left shift or LSR for right shift, and integer
is a 5-bit unsigned number specifying the shift format
+ Rm=the offset magnitude in register Rm can be added to or subtracted from the contents
of based register Rn

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

Relative Addressing Mode

LDR R1, ITEM

Operand

-

-

1000

1004
1008

ITEM=1060

Updated [PC]=1008

52=offset

Memory
address word (4 bytes)

The operand must be within the range of 4095 bytes forward or backward from the
updated PC.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

Pre-Indexed Addressing Mode

STR R3, [R5,R6]

Operand

1000

1200

1000

200=offset

R5

Based register

200 R6

Offset register

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

Post-Indexed Addressing with Writeback

6

321

1000

1200

1000

100=25x4

R2

Based register

25 R10

Offset register

-171100

100=25x4

Load instruction:
LDR R1, [R2], R10, LSL, #2

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

Pre-Indexed Addressing with Writeback

-

2008

2012

2012 R5

Based register (stack pointer)

27 R0

Push instruction:
STR R0, [R5,# -4]!

27

After execution of
Push instruction

TOS (top-of-stack)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

Load/Store Multiple Operands
In ARM processors, there are two instructions for loading
and storing multiple operands

They are called Block transfer instructions
Any subset of the general purpose registers can be loaded
or stored

Only word operands are allowed, and the OP codes used are
LDM (Load Multiple) and STM (Store Multiple)

The memory operands must be in successive word
locations
All of the forms of pre- and post-indexing with and
without writeback are available
They operate on a Base register Rn specified in the
instruction and offset is always 4

LDMIA R10!, {R0,R1,R6,R7}
IA: “Increment After” corresponding to post-indexing

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 17

Arithmetic Instructions
The basic expression for arithmetic instructions is

OPcode Rd, Rn, Rm
For example, ADD R0, R2, R4

Performs the operation R0 [R2]+[R4]
SUB R0, R6, R5

Performs the operation R0 [R6]-[R5]
Immediate mode: ADD R0, R3, #17

Performs the operation R0 [R3]+17
The second operand can be shifted or rotated before being
used in the operation

For example, ADD R0, R1, R5, LSL #4 operates as follows: the
second operand stored in R5 is shifted left 4-bit positions
(equivalent to [R5]x16), and its is then added to the contents of
R1; the sum is placed in R0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

Logic Instructions
The logic operations AND, OR, XOR, and Bit-Clear are
implemented by instructions with the OP codes AND,
ORR, EOR, and BIC.
For example

AND R0, R0, R1: performs R0 [R0]+[R1]
The Bit-Clear instruction (BIC) is closely related to the
AND instruction.

It complements each bit in operand Rm before ANDing them
with the bits in register Rn.
For example, BIC R0, R0, R1. Let R0=02FA62CA, R1=0000FFFF.
Then the instruction results in the pattern 02FA0000 being placed
in R0

The Move Negative instruction complements the bits of
the source operand and places the result in Rd.

For example, MVN R0, R3

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 19

Branch Instructions
Conditional branch instructions contain a signed 24-bit
offset that is added to the updated contents of the
Program Counter to generate the branch target address
The format for the branch instructions is shown as below

Offset is a signed 24-bit number. It is shifted left two-bit positions
(all branch targets are aligned word addresses), signed extended
to 32 bits, and added to the updated PC to generate the branch
target address
The updated points to the instruction that is two words (8 bytes)
forward from the branch instruction

Condition OP code offset

31 2728 24 23 0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 20

ARM Branch Instructions
The BEQ instruction (Branch if Equal to 0) causes a
branch if the Z flag is set to 1

1000

1004
BEQ LOCATION

Branch target instruction

Updated [PC]=1008

LOCATION=1100

Offset=92

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 21

Setting Condition Codes
Some instructions, such as Compare, given by

CMP Rn, Rm which performs the operation [Rn]-[Rm] have the
sole purpose of setting the condition code flags based on the
result of the subtraction operation

The arithmetic and logic instructions affect the condition
code flags only if explicitly specified to do so by a bit in
the OP-code field. This is indicated by appending the
suffix S to the OP-code

For example, the instruction ADDS R0, R1, R2 set the condition
code flags
But ADD R0, R1, R2 does not

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 22

An Example of Adding Numbers

LDR R1, N Load count into R1
LDR R2, POINTER Load address NUM1 into R2
MOV R0, #0 Clear accumulator R0

LOOP LDR R3, [R2], #4 Load next number into R3
ADD R0, R0, R3 Add number into R0
SUBS R1, R1, #1 Decrement loop counter R1
BGT LOOP Branch back if not done
STR R0, SUM Store sum

Assume that the memory location N, POINTER, and SUM are within the range
Reachable by the offset relative to the PC
GT: signed greater than
BGT: Branch if Z=0 and N=0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 23

Assembly Language
The ARM assembly language has assembler directives to
reserve storage space, assign numerical values to address
labels and constant symbols, define where program and data
blocks are to be placed in memory, and specify the end of the
source program text
The AREA directive, which uses the argument CODE or
DATA, indicates the beginning of a block of memory that
contains either program instructions or data
The ENTRY directive specifies that program execution is to
begin at the following LDR instruction
In the data area, which follows the code area, the DCD
directives are used to label and initialize the data operands

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 24

An Example of Assembly Language
Assembler directives AREA CODE

ENTRY

Statements that LDR R1, N
generate LDR R2, POINTER
machine MOV R0, #0
instructions LOOP LDR R3, [R2], #4

ADD R0, R0, R3
SUBS R1, R1, #1
BGT LOOP
STR R0, SUM

Assembler directives AREA DATA
SUM DCD 0
N DCD 5
POINTER DCD NUM1
NUM1 DCD 3, -17, 27, -12, 322

END

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 25

Assembly Language
An EQU directive can be used to define symbolic names
for constants
For example, the statement

TEN EQU 10
When a number of registers are used in a program, it is
convenient to use symbolic names for them that relate to
their usage

The RN directive is used for this purpose
For example, COUNTER RN 3 establishes the name COUNTER
for register R3

The register names R0 to R15, PC (for R15), and LR(for
R14) are predefined by the assembler

R14 is used for a link register (LR)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 26

Pseudo-Instructions
An alternative way of loading the address into register R2
is also provided in the assembly language
The pseudo-instruction ADR Rd, ADDRESS holds the 32-
bit value ADDRESS into Rd

This instruction is not an actual machine instruction
The assembler chooses appropriate real machine instructions to
implement pseudo-instructions

For example,
The combination of the machine instruction LDR R2, POINTER
and the data declaration directive POINTER DCD NUM1 is one
way to implement the pseudo-instruction ADR R2, NUM1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 27

Subroutines
A Branch and Link (BL) instruction is used to call a
subroutine
The return address is loaded into register R14, which acts
as a link register
When subroutines are nested, the contents of the link
register must be saved on a stack by the subroutine.

Register R13 is normally used as the pointer for this stack

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 28

Calling program
LDR R1, N
LDR R2, POINTER
BL LISTADD
STR R0, SUM

.

.

.
Subroutine
LISTADD STMFD R13!, {R3, R14} Save R3 and return address in R14 on

stack, using R13 as the stack pointer
MOV R0, #0

LOOP LDR R3, [R2], #4
ADD R0, R0, R3
SUBS R1, R1, #1
BGT LOOP
LDMFD R13!, {R3, R15} Restore R3 and load return address into

PC (r15)

Example

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 29

Byte-Sorting Program

for (j=n-1; j>0; j=j-1)
{ for (k=j-1; k>=0; k=k-1)

{ if (LIST[k]>LIST[j])
{ TEMP=LIST[k];
LIST[k]=LIST[j];
LIST[j]=TEMP;
}

}
}

…
0 n-1n-21

jk

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 30

Byte-Sorting Program

ADR R4,LIST Load list pointer register R4
LDR R10,N Initialize outer loop base
ADD R2,R4,R10 Register R2 to LIST+n
ADD R5,R4, #1 Load LIST+1 into R5

OUTER LDRB R0,[R2,# -1]! Load LIST(j) into R0
MOV R3,R2 Initialize inner loop base register R3 to LIST+n-1

INNER LDRB R1,[R3, # -1]! Load LIST(k) into R1
CMP R1,R0 Compare LIST(k) to LIST(j)

If LIST(k)>LIST(j),
STRGTB R1,[R2] interchange LIST(k) and LIST(j)
STRGTB R0,[R3]
MOVGT R0,R1 Move (new) LIST(j) into R0
CMP R3,R4 If k>0, repeat
BNE INNER inner loop
CMP R2,R5 If j>1, repeat
BNE OUTER outer loop

