
AVR Assembler v. 2.0

Addendum to on-line help

Beta 3 – 2004-07-07

1 INTRODUCTION.. 4

1.1 Intended Audience... 4

1.2 Support..4

2 PACKAGE CONTENTS... 4

3 INSTALLATION.. 4

3.1 Uninstallation... 5

4 WHAT'S NEW... 5

4.1 Changes in Beta 3...5

4.2 Changes in Beta 2...5

5 KNOWN ISSUES.. 6

5.1 Broken include files and appnotes..6

5.2 Comments in macro calls...6

6 INVOCATION SYNTAX.. 6

7 AVR ASSEMBLER 2 SYNTAX... 8

7.1 Keywords.. 8
7.1.1 Instructions..8
7.1.2 Registers..9
7.1.3 Built-in functions and variables.. 9
7.1.4 Assembler directives... 9

8 PREPROCESSOR.. 9

8.1 Preprocessor directives.. 10

8.2 Preprocessor directive overview... 10
8.2.1 #define...10
8.2.2 #undef..10
8.2.3 #ifdef... 10
8.2.4 #ifndef... 10
8.2.5 #if/#elif..11
8.2.6 #else.. 11
8.2.7 #endif.. 11
8.2.8 #error/#warning/#message.. 11

AVR Assembler 2.0 Page 2 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

8.2.9 #include...11
8.2.10 #pragma...11
8.2.11 # (empty directive).. 11

8.3 Pragmas...11

8.4 Pre-defined preprocessor macros... 12

9 OTHER SYNTACTIC ELEMENTS... 12

9.1 Comments... 12
9.1.1 Preprocessor note.. 12

9.2 User symbols... 13

9.3 Instructions... 13

9.4 Labels.. 13

9.5 Expressions... 13

9.6 Strings and character constants..13

9.7 Numeric constants..14

10 PREPROCESSOR AND ASSEMBLER INTERACTION.................................... 14

10.1 Include...14

10.2 Conditionals..14

10.3 Macros...14

10.4 Comments... 15

11 OTHER NEW FEATURES.. 15

11.1 Assembler directives.. 16

11.2 New functions... 16

11.3 Built-in “known place” for included files.. 16

11.4 Motorola hex for large files... 16

11.5 Nested macro calls..16

AVR Assembler 2.0 Page 3 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

1 Introduction
This document explains the difference between the new AVR Assembler 2.0 (AVRASM2)
and the current assembler (AVRASM) described in the AVR Studio on-line help.

This information will be added to the on-line help when AVRASM2 is officially released.

AVRASM2 is a complete re-write of the AVR Assembler.

It is fully backwards compatible with version 1.x (AVRASM), with a few minor exceptions
that are detailed in chapter 2. It also offers a number of new powerful features, including:

· C-style preprocessing directives like #define, #ifdef, etc. This also includes the
capability to control definition/undefinition of preprocessor symbols and inclusion of files
from the command line.

· Improved error detection and diagnostic messages, including exceeding available SRAM
and EEPROM memory ranges.

· Support for floating point constant expressions and conversion to fractional numbers as
used with the FMUL/FMUS/FMULSU instructions.

· Resource use statistics, including instructions, registers, and memory.
· Externalizing of device support, meaning support for new devices may be added without

having to upgrade the assembler executable.

AVRASM2 is intended to replace v. 1.x completely, but will be offered as an alternative
during a test period, to allow a painless transition between the two versions.

1.1 Intended Audience
This document is written for existing users of AVR Studio 4/AVR Assembler, and assumes
some familiarity with the AVR architecture and AVR Assembler 1.x (AVRASM1) syntax.
The AVR instruction set and AVRASM1 syntax are documented in the AVR Studio Online
Help.

1.2 Support
This is a BETA release, and as such not supported via the normal ATMEL support channels.
However, users may send feedback and bug reports directly to the developers, using the e-mail
address avrbeta@atmel.com.

The AVR Studio 4 forum at http://www.avrfreaks.com is also a suitable channel for providing
feedback or discussing this release.

2 Package contents
The following files are found at the download site:

· AvrAsm2-Addendum.pdf This file.
· README-AvrAsm2.txt README file
· AvrAssembler2.exe Installation program

3 Installation
Download the file AvrAssembler2.exe, run it, and follow instructions.

AVR Assembler 2.0 Page 4 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

The AVRASM2 beta assembler will be installed and enabled by default.

The assembler is configured by selecting Project – AVR Assembler Setup from the Studio
menubar.

The upper part of this window is the same as for AVR Assembler 1. The lower part enables
AVRASM2-Beta. The “Additional Parameters” field is used to add additional command-line
parameters for AVRASM2. (Hint: Try adding –vs , see section 5 for explanation.)

3.1 Uninstallation
This add-on package cannot be uninstalled, but unselecting Use AVR Assembler 2.0 beta
above will have the same effect, causing the standard 1.7x version to be used.

4 What's New

4.1 Changes in Beta 3
Bugs fixed:
• Macro argument expansion problem
• Preprocessor expression evaluation fails with multiple references to same macro.
• Preprocessor stack overflow caused by indirectly self-referencing macro.
• Comments in #define only work using C comments (Documentation issue)

4.2 Changes in Beta 2
Bugs fixed:
• byte directive not allowed in .eseg
• Missing/unclear error message when exceeding available SRAM/EEPROM
• Argument propagation in nested macro calls cause assembler to hang

AVR Assembler 2.0 Page 5 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

5 Known issues
This chapter lists known issues in AVR Assembler 2.0 release BETA 1.

5.1 Broken include files and appnotes

The issues mentioned in this section will be fixed in a later AVRASM2 release.

AVRASM2 may produce one or both of the following warnings, depending on the device
used:

tn2313def.inc(123): warning: Attempt to redefine keyword 'z', ignored
tn2313def.inc(383): warning: Attempt to redefine keyword 'or', ignored

These definitions - the Zero (Z) flag in the status register and a deprecated flag in the UCSRA
register (use DOR instead of OR) will be renamed/removed from the .inc files.

As the warnings state, these definitions are ignored by AVRASM2. Any program not actually
using these definitions will be fine.

Programs using these definitions cannot be assembled successfully, and will need to be
changed.

The reasons for these warnings are explained in section 6.1.

5.2 Comments in macro calls
There is a known bug causing syntax errors in some situations when C-style comments (/*
*/, //) are used in lines with macro calls.

6 Invocation syntax
The invocation syntax is shown below, new options are bold and described below.

usage: avrasm2.exe [options] file.asm
 Options:
 -f [O|M|I|G|E] output file format:
 -fO Debug info for simulation in AVR Studio (default)
 -fM Motorola hex
 -fI Intel hex
 -fG Generic hex format
 -o ofile Put output in 'ofile'.
 -d dfile Generate debug info for simulation in AVR Studio in 'dfile'.
 Can only be used with the -f [M|I|G] option.
 -l lfile Generate listing in 'lfile'
 -m mfile Generate map in 'mfile'
 -e efile Place EEPROM contents in 'efile'
 -w Relative jumps are allowed to wrap for program ROM
 up to 4k words in size [ignored]
 -C ver Specify AVR core version
 -c Case sensitive
 -1/-2 Turn on/off AVR Assembler version 1 compatibility.
 -I dir Preprocessor: Add 'dir' to include search path
 -i file Preprocessor: Explicitly pre-include file

AVR Assembler 2.0 Page 6 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

 -D name[=value] Preprocessor: Define symbol. If =value is
 omitted, it is set to 1.
 -U name Preprocessor: Undefine symbol.
 -v verbosity [0-9][s]:
 -vs Include target resource usage statistics
 -vl Output low-level assembly code to stdout
 -v0 Silent, only error messages printed
 -v1 Error and warning messages printed
 -v2 Error, warning, and info messages printed (default)
 -v3-v9 Unspecified, increasing amounts of assembler internal dumps.

-w
Wrap relative jumps. This option is obsoleted. It is still recognized by the assembler, but
ignored. The assembler will determine if wrapping is required based on flash memory size. If
the flash size is unknown, wrap will be disabled.

-C core-version
Specify AVR Core version. The core version is normally specified in part definition files
(partdef..inc), this option is intended for testing of the assembler, and generally not useful for
end-users.

-c
Causes the assembler to become entirely case sensitive. Preprocessor directives and macros
are always case sensitive. Warning: Setting this option will break many existing projects.

-1
-2
Enable and disable AVRASM1 compatibility mode. As of BETA 1, this option is enabled by
default (warning about this is printed). The default setting will be changed at a later time, and
this option may be removed altogether. The compatibility mode will permit certain constructs
otherwise considered errors, reducing the risk of breaking existing projects.

-i file
Include a file. #include “file” directive is processed before the first source code line is
processed. Multiple –i directives may be used and are processed in order.

-D name[=value]
-U name
Define and undefine a preprocessor macro, respectively.
Note that function-type preprocessor macros may not be defined from the command line.

-vs
Print use statistics for register, instruction and memory on standard output. By default, only
the memory statistic is printed. Note: The full statistics will always be printed to the list file, if
one is specified.

-vl
This will print the raw instructions emitted to stdout, after all symbolic info is replaced.
Mainly for assembler debugging purposes.

-v0
Print error messages only, warning and info messages are suppressed.

AVR Assembler 2.0 Page 7 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

-v1
Print error and warning messages only, info messages are suppressed.

-v2
Print error, warning, and info messages. This is the default behaviour.

-v3 ... -v9
Add increasing amounts of assembler internal status dump. Mostly used for assembler
debugging.

7 AVR Assembler 2 Syntax

7.1 Keywords
Unlike AVRASM1, keywords are reserved and cannot be redefined. The example below
shows a program using keyword redefinitions that are illegal in AVRASM2.

EXAMPLE
The following nonsensical and rather obfuscated program assembles without errors
with AVRASM1, but is incorrect with AVRASM2:

.equ add = 2 ; 'add' is a keyword (instruction)

.def r1 = r16 ; 'r1' is a keyword (register)

.def r0 = r31 ; 'r0' is a keyword (register)

.def r16 = r24 ; 'r16' is a keyword (register)

.def add = r2 ; 'add' is a keyword - again (instruction)

.def mov = r29 ; 'mov' is a keyword (instruction)

mov: cpi r16,100 ; 'mov' is a keyword - again (instruction)
 mov mov,mov ; This gets interesting... :)
 ldi mov,mov ; ... not to mention this!
 mov r1,add ; Which definition of 'add' is used here?
 mov r0,r1 ; Things are not what they seem!
 rjmp mov ; Now what...?

Assembler keywords are recognized regardless of case, unless the case-sensitive option is
used (see section 5). If the case-sensitive option is used, assembler keywords will have the
case shown here (generally lower case).

7.1.1 Instructions

adc add adiw and andi asr
bclr bld brbc brbs brcc brcs
break breq brge brhc brhs brid
brie brlo brlt brmi brne brpl
brsh brtc brts brvc brvs bset
bst call cbi cbr clc clh
cli cln clr cls clt clv
clz com cp cpc cpi cpse
dec eicall eijmp elpm eor fmul
fmuls fmulsu icall ijmp in inc
jmp ld ldd ldi lds lpm

AVR Assembler 2.0 Page 8 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

lsl lsr mov movw mul muls
mulsu neg nop or ori out
pop push rcall ret reti rjmp
rol ror sbc sbci sbi sbic
sbis sbiw sbr sbrc sbrs sec
seh sei sen ser ses set
sev sez sleep spm st std
sts sub subi swap tst wdr

7.1.2 Registers

r0 r1 r2 r3 r4 r5 r6 r7
r8 r9 r10 r11 r12 r13 r14 r15
r16 r17 r18 r19 r20 r21 r22 r23
r24 r25 r26 r27 r28 r29 r30 r31
x y z

7.1.3 Built-in functions and variables

abs byte1 byte2 byte3 byte4
exp2 frac high hwrd int
log2 low lwrd page pc
q15 q7

7.1.4 Assembler directives

Assembler directives are recognized by the fact that they start with a period (‘.’). Any word
preceded with a period will be attempted parsed as a directive.

There are no restrictions on the directive words without the leading period, nothing prevents
the user from defining symbols like 'if' or 'byte'.

The list of directives is given here for the sake of completeness, not because the directives
cause any problems:

.byte .cseg .csegsize .db

.dd .def .device .dq

.dseg .dw .elif .else

.endif .endm .endmacro .equ

.error .eseg .exit .if

.ifdef .ifndef .include .list

.listmac .macro .message .nolist

.org .set .undef

8 Preprocessor

AVR Assembler 2.0 Page 9 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

The AVRASM2 preprocessor is an integrated part of the assembler, handling C-style
preprocessor directives and the corresponding macro expansion. A complete description of
preprocessors is not given here, a good user guide for the GNU C preprocessor is found here:

http://www.delorie.com/gnu/docs/gcc/cpp_toc.html

The AVRASM2 preprocessor may largely be expected to work as described in this reference,
unless otherwise explicitly stated.

Note: Preprocessor directives and macros are always case sensitive!

8.1 Preprocessor directives
The following preprocessor directives are implemented:

#define #undef #ifdef #ifndef
#if #else #elif #endif
#error #include #pragma #
#warning #message defined

‘#’ above is the empty directive (does nothing). The defined keyword is only used in
conjunction with #if statements, ie. #if defined

Not yet implemented:
(concatenation) # (stringification)

Will not be implemented:
#line

Note
Only C-style comments (/* ... */ or // ...) are recognized by the preprocessor. Attempting to
use assembler comment syntax (; ...) in preprocessor directives may give surprises.

8.2 Preprocessor directive overview
Only deviations from the C preprocessor are described here.

8.2.1 #define
1.#define name [value]
2.#define name(arg, ...) [value]

Note: Variadic macros (i.e., macros with variable number of arguments) are not implemented.

8.2.2 #undef
#undef name

8.2.3 #ifdef
#ifdef name

8.2.4 #ifndef
#ifndef name

AVR Assembler 2.0 Page 10 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

8.2.5 #if/#elif
#if condition
#elif condition

The defined(name)operator is recognized in condition.

8.2.6 #else
#else

8.2.7 #endif
#endif

8.2.8 #error/#warning/#message
#error tokens
#warning tokens
#message tokens

Unlike the GNU C preprocessor, the #error, #warning, and #message directives will
expand unquoted preprocessor macros. Example:

#message "Part name:" __PART_NAME__
may produce the output

Part name: Atmega48

8.2.9 #include
1.#include "file"
2.#include <file>

Note: Computed #include is not implemented (i.e., using a macro to specify an include file
name)

8.2.10 #pragma
#pragma tokens

See description below.

8.2.11 # (empty directive)
#

8.3 Pragmas
Pragmas are used to specify part-specific properties, normally set up in include files.
Normally there is no reason to use pragmas in user programs.

The supported pragmas are:

#pragma AVRPART ADMIN PART_NAME string
#pragma AVRPART CORE CORE_VERSION version-string
#pragma AVRPART CORE INSTRUCTIONS_NOT_SUPPORTED mnemonic[operand[,operand]][:...]
#pragma AVRPART CORE NEW_INSTRUCTIONS mnemonic[operand[,operand]][:...]

AVR Assembler 2.0 Page 11 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

#pragma AVRPART MEMORY PROG_FLASH size
#pragma AVRPART MEMORY EEPROM size
#pragma AVRPART MEMORY INT_SRAM SIZE size
#pragma AVRPART MEMORY INT_SRAM START_ADDR address

Notes
• The string values here are not quoted, and that the numeric values must be pure numbers (expressions or

preprocessor macros not allowed here).
• Everything in the #pragma directive is case sensitive.
• Distinguishing between variants of the same instruction based on operands only works for instructions that are

implemented with different operands in different variants on different AVR Core versions., presently these
are the ld, st, and lpm instructions.

8.4 Pre-defined preprocessor macros
__AVRASM_VERSION__
__CORE_VERSION__
__DATE__
__FILE__
__LINE__
__PART_NAME__
__TIME__

Part-dependent:
__partname__ partname corresponds to the value of __PART_NAME__ above.

__CORE_coreversion__ coreversion corresponds to the value of __CORE_VERSION__
above.

9 Other syntactic elements

9.1 Comments
The following comment styles are recognized:

; The rest of the line is a comment (classic assembler comments)
// Like ';', the rest of the line is a comment
/* Block comment; the enclosed text is a comment, may span multiple lines.
 This style of comments cannot be nested. */

9.1.1 Preprocessor note

The preprocessor only recognizes C-style comments. The semicolon (;) is not treated in any special way in
preprocessor directives and this may have unexpected effects.

To avoid surprises, C-style comments should be used exclusively in lines with prepocessor directives.

Examle:

#define FOO 42 ; The foobaristic constant
#define BAR 43 // This is a bar, plain and simple

These definitions will result in FOO having the value "42 ; The foobaristic constant", while BAR simply has the
value "43". This may or may not be a problem depending on how FOO is used.

AVR Assembler 2.0 Page 12 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

9.2 User symbols
User symbols may consist of letters (a-z,A-Z), digits (0-9), and underscore (_). The first
character cannot be a digit, and keywords are reserved.

9.3 Instructions
Instructions take the following forms:

mnemonic
mnemonic operand
mnemonic operand, operand2

Allowed operands are registers r0-r31, x, y, z, x+, y+, z+, -x, -y, -z, and integer expressions
including preprocessor macros, constants defined with assembler directives, labels, and
functions.

Multiple instructions in a single line is allowed, but not recommended. It is supported to
faciliate preprocessor macros (see below).

9.4 Labels
A label is a user symbol followed by a colon (:). It may prepend an instruction or directive on
the same line or be placed on a separate line.

9.5 Expressions
Constant expressions can be integer or floating point, and follow the C rules for operator
precedence and type propagation. Symbols and instruction operands are always integer, a
suitable conversion function should be used to convert before assignment (eg, int(), q7()).

Implicit float→int conversion cause a warning and the fractional part is discarded.

All C operators except '?:', ‘++’, ‘--‘ are supported.

9.6 Strings and character constants
A string enclosed in double quotes (") can only be used in conjunction with the .db directive.
The string is taken literally, no escape sequences are recognized, and it is not NUL-
terminated.

Character constants can be used anywhere an integer expression is allowed, and the following
C-style escape sequences are recognized, with the same meaning as in C:

\n Newline (ASCII LF 0x0a)
\r Carriage return (ASCII CR 0x0d)
\a Alert bell (ASCII BEL 0x07)
\b Backspace (ASCII BS 0x08)
\f Form feed (ASCII FF 0x0c)
\t Horizontal tab (ASCII HT 0x09)
\v Vertical tab (ASCII VT 0x0b)
\\ Backslash
\0 Null character (ASCII NUL)

AVR Assembler 2.0 Page 13 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

\ooo (ooo = octal number) and \xhh (hh = hex number) are also recognized.

Examples:

.db "Hello\n" // is equivalent to:

.db 'H', 'e', 'l', 'l', 'o', '\\', 'n'

To create the equivalent to the C-string "Hello, world\n", do as follows:

.db "Hello, world", '\n', 0

9.7 Numeric constants
C-style integer constants: dddd, 0oooo, 0xhhhh are recognized as decimal, octal, and
hexadecimal, respectively

Floating point constant formats are likewise according to C.

Additonally, the forms $hhhh and 0bdddd are recognized as hexadecimal and binary integers,
respectively. These forms are also recognized and evaluated by the preprocessor.

10 Preprocessor and assembler interaction
Some of the assembler and preprocessor features have very similar functions (e.g. include,
conditionals), and may interact in unexpected ways.

10.1 Include.
#include and .include are identical, except that #include also supports the
'#include <file>' form.

10.2 Conditionals.
Preprocessor conditionals (#if, etc) relate to preprocessor symbols only (defined with #define
or the -D command-line option).

Assembler conditional relate to both preprocessor and assembler symbols, but beware of
unexpected effects:

#define FOO 2
...
.ifdef FOO

is a syntax error, because the assembler will try to evaluate '.ifdef 2'.

Avoid mixing the two forms! Preprocessor macros may be defined from the command line, and
this gives considerable flexibility.

10.3 Macros
Both the preprocessor and the assembler offer macros, but they work very differently and
should not be intermixed.

AVR Assembler 2.0 Page 14 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

The traditional assembler macro

.macro pushw
 push @0L
 push @0H
.endmacro

Each line of the macro body remains a separate line after expansion. Labels in the macro body
have scope limited to the macro body.

Call of this macro looks like an instruction, e.g.:

 pushw z

Preprocessor function-style macros

A corresponding preprocessor macro would be

#define pushw(wreg) \
 push wreg##L \
 push wreg##H

(Note: the preprocessor concatenation operator ## is not yet implemented in BETA 1.)

Labels defined in a preprocessor macro have global scope, and the entire macro body becomes
one single line after expansion.

It is called like a function, e.g.

 pushw(z)

It is generally not recommended to use preprocessor macros in this fashion. Preprocessor
macros are best suited for implementing constant expressions, e.g.

#define square(x) (x)*(x)

10.4 Comments
The preprocessor only recognizes C-style comments (/*....*/, //....).
Assembler comments should not be used in conjunction with preprocessor directives. If
assembler comments are used in conjunction with #define directives, the comment will
become part of the macro, which may cause surprises when the macro is expanded.

11 Other new features

The following minor new features are also introduced.

AVR Assembler 2.0 Page 15 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

11.1 Assembler directives
.undef symbol

Undefines a register definition created with the .def directive. Use this to avoid “already
defined by the .DEF directive” warnings.

.dd expression[, expression ...]

.dq expression[, expression ...]

These directives are similar to the .dw directive, except they are used to define doublewords
(32-bit) and quadwords (64-bit), respectively. The byte and word ordering is strictly little-
endian.

11.2 New functions
int()
Truncates a floating point expression to integer (ie discards fractional part)

frac()
Extracts fractional part of a floating point expression (ie discards integer part).

q7()
Converts a fractional floating point expression to a form suitable for the
FMUL/FMULS/FMULSU instructions. (sign + 7-bit fraction)

q15()
Converts a fractional floating point to the form returned by the FMUL/FMULS/FMULSY
instructions (sign + 15-bit fraction).

abs()
Returns the absolute value of a constant expression.

11.3 Built-in “known place” for included files
Unlike AVRASM1, when AVRASM2 is installed as part of an AVR Studio installation, it
will know where the Appnotes (include) directory is, and doesn’t need to be told this via a
command line option like

-I “C:\Program Files\Atmel\AVR Tools\AvrAssembler\Appnotes”

11.4 Motorola hex for large files
Motorola hex (S-record) output is now implemented for addresses above the 64kB limit.

11.5 Nested macro calls
Unlike AVRASM1, nested macro calls are supported. Use of this feature is not recommended,
as it is very easy to lose track of what's going on.

Nested macro definitions are not allowed.

AVR Assembler 2.0 Page 16 of 16 Revision: BETA 3
© 2004 ATMEL Corp.

