
2. Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They

are listed here in alphabetical order.

abs(x)

Return the absolute value of a number. The argument may be a plain or long integer or a

floating point number. If the argument is a complex number, its magnitude is returned.

all(iterable)

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent

to:

def all(iterable):

 for element in iterable:

 if not element:

 return False

 return True

New in version 2.5.

any(iterable)

Return True if any element of the iterable is true. If the iterable is empty, return False.

Equivalent to:

def any(iterable):

 for element in iterable:

 if element:

 return True

 return False

New in version 2.5.

basestring()

This abstract type is the superclass for str and unicode. It cannot be called or instantiated,

but it can be used to test whether an object is an instance of str or unicode.

isinstance(obj, basestring) is equivalent to isinstance(obj, (str, unicode)).

New in version 2.3.

bin(x)

Convert an integer number to a binary string. The result is a valid Python expression. If x is

not a Python int object, it has to define an __index__() method that returns an integer.

New in version 2.6.

bool([x])

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

1 of 26 16/2/2010 17:30

Convert a value to a Boolean, using the standard truth testing procedure. If x is false or

omitted, this returns False; otherwise it returns True. bool is also a class, which is a

subclass of int. Class bool cannot be subclassed further. Its only instances are False and

True.

New in version 2.2.1.

Changed in version 2.3: If no argument is given, this function returns False.

callable(object)

Return True if the object argument appears callable, False if not. If this returns true, it is

still possible that a call fails, but if it is false, calling object will never succeed. Note that

classes are callable (calling a class returns a new instance); class instances are callable if

they have a __call__() method.

chr(i)

Return a string of one character whose ASCII code is the integer i. For example, chr(97)

returns the string 'a'. This is the inverse of ord(). The argument must be in the range

[0..255], inclusive; ValueError will be raised if i is outside that range. See also unichr().

classmethod(function)

Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method

receives the instance. To declare a class method, use this idiom:

class C:

 @classmethod

 def f(cls, arg1, arg2, ...): ...

The @classmethod form is a function decorator – see the description of function definitions in

Function definitions for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()).

The instance is ignored except for its class. If a class method is called for a derived class,

the derived class object is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see

staticmethod() in this section.

For more information on class methods, consult the documentation on the standard type

hierarchy in The standard type hierarchy.

New in version 2.2.

Changed in version 2.4: Function decorator syntax added.

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

2 of 26 16/2/2010 17:30

cmp(x, y)

Compare the two objects x and y and return an integer according to the outcome. The

return value is negative if x < y, zero if x == y and strictly positive if x > y.

compile(source, filename, mode[, flags[, dont_inherit]])
Compile the source into a code or AST object. Code objects can be executed by an exec

statement or evaluated by a call to eval(). source can either be a string or an AST object.

Refer to the ast module documentation for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some

recognizable value if it wasn’t read from a file ('<string>' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if

source consists of a sequence of statements, 'eval' if it consists of a single expression, or

'single' if it consists of a single interactive statement (in the latter case, expression

statements that evaluate to something other than None will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP

236) affect the compilation of source. If neither is present (or both are zero) the code is

compiled with those future statements that are in effect in the code that is calling compile.

If the flags argument is given and dont_inherit is not (or is zero) then the future statements

specified by the flags argument are used in addition to those that would be used anyway.

If dont_inherit is a non-zero integer then the flags argument is it – the future statements in

effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify

multiple statements. The bitfield required to specify a given feature can be found as the

compiler_flag attribute on the _Feature instance in the __future__ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the

source contains null bytes.

Note: When compiling a string with multi-line statements, line endings must be

represented by a single newline character ('\n'), and the input must be terminated by at

least one newline character. If line endings are represented by '\r\n', use str.replace()

to change them into '\n'.

Changed in version 2.3: The flags and dont_inherit arguments were added.

Changed in version 2.6: Support for compiling AST objects.

complex([real[, imag]])
Create a complex number with the value real + imag*j or convert a string or number to a

complex number. If the first parameter is a string, it will be interpreted as a complex

number and the function must be called without a second parameter. The second

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

3 of 26 16/2/2010 17:30

parameter can never be a string. Each argument may be any numeric type (including

complex). If imag is omitted, it defaults to zero and the function serves as a numeric

conversion function like int(), long() and float(). If both arguments are omitted, returns

0j.

The complex type is described in Numeric Types — int, float, long, complex.

delattr(object, name)

This is a relative of setattr(). The arguments are an object and a string. The string must

be the name of one of the object’s attributes. The function deletes the named attribute,

provided the object allows it. For example, delattr(x, 'foobar') is equivalent to del

x.foobar.

dict([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is

described in Mapping Types — dict.

For other containers see the built in list, set, and tuple classes, and the collections

module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument,

attempt to return a list of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and must return

the list of attributes. This allows objects that implement a custom __getattr__() or

__getattribute__() function to customize the way dir() reports their attributes.

If the object does not provide __dir__(), the function tries its best to gather information

from the object’s __dict__ attribute, if defined, and from its type object. The resulting list is

not necessarily complete, and may be inaccurate when the object has a custom

__getattr__().

The default dir() mechanism behaves differently with different types of objects, as it

attempts to produce the most relevant, rather than complete, information:

If the object is a module object, the list contains the names of the module’s

attributes.

If the object is a type or class object, the list contains the names of its attributes, and

recursively of the attributes of its bases.

Otherwise, the list contains the object’s attributes’ names, the names of its class’s

attributes, and recursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

4 of 26 16/2/2010 17:30

>>> import struct

>>> dir() # doctest: +SKIP

['__builtins__', '__doc__', '__name__', 'struct']
>>> dir(struct) # doctest: +NORMALIZE_WHITESPACE

['Struct', '__builtins__', '__doc__', '__file__', '__name__',
 '__package__', '_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
 'unpack', 'unpack_from']
>>> class Foo(object):

... def __dir__(self):

... return ["kan", "ga", "roo"]

...

>>> f = Foo()

>>> dir(f)

['ga', 'kan', 'roo']

Note: Because dir() is supplied primarily as a convenience for use at an interactive

prompt, it tries to supply an interesting set of names more than it tries to supply a

rigorously or consistently defined set of names, and its detailed behavior may change

across releases. For example, metaclass attributes are not in the result list when the

argument is a class.

divmod(a, b)

Take two (non complex) numbers as arguments and return a pair of numbers consisting of

their quotient and remainder when using long division. With mixed operand types, the

rules for binary arithmetic operators apply. For plain and long integers, the result is the

same as (a // b, a % b). For floating point numbers the result is (q, a % b), where q is

usually math.floor(a / b) but may be 1 less than that. In any case q * b + a % b is very

close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b) < abs(b).

Changed in version 2.3: Using divmod() with complex numbers is deprecated.

enumerate(sequence[, start=0])
Return an enumerate object. sequence must be a sequence, an iterator, or some other

object which supports iteration. The next() method of the iterator returned by enumerate()

returns a tuple containing a count (from start which defaults to 0) and the corresponding

value obtained from iterating over iterable. enumerate() is useful for obtaining an indexed

series: (0, seq[0]), (1, seq[1]), (2, seq[2]), For example:

>>> for i, season in enumerate(['Spring', 'Summer', 'Fall', 'Winter']):

... print i, season

0 Spring
1 Summer
2 Fall
3 Winter

New in version 2.3.

New in version 2.6: The start parameter.

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

5 of 26 16/2/2010 17:30

eval(expression[, globals[, locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a

dictionary. If provided, locals can be any mapping object.

Changed in version 2.4: formerly locals was required to be a dictionary.

The expression argument is parsed and evaluated as a Python expression (technically

speaking, a condition list) using the globals and locals dictionaries as global and local

namespace. If the globals dictionary is present and lacks ‘__builtins__’, the current globals

are copied into globals before expression is parsed. This means that expression normally

has full access to the standard __builtin__ module and restricted environments are

propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both

dictionaries are omitted, the expression is executed in the environment where eval() is

called. The return value is the result of the evaluated expression. Syntax errors are

reported as exceptions. Example:

>>> x = 1

>>> print eval('x+1')

2

This function can also be used to execute arbitrary code objects (such as those created by

compile()). In this case pass a code object instead of a string. If the code object has been

compiled with 'exec' as the kind argument, eval()‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec statement. Execution of

statements from a file is supported by the execfile() function. The globals() and locals()

functions returns the current global and local dictionary, respectively, which may be useful

to pass around for use by eval() or execfile().

execfile(filename[, globals[, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is

different from the import statement in that it does not use the module administration — it

reads the file unconditionally and does not create a new module. [1]

The arguments are a file name and two optional dictionaries. The file is parsed and

evaluated as a sequence of Python statements (similarly to a module) using the globals

and locals dictionaries as global and local namespace. If provided, locals can be any

mapping object.

Changed in version 2.4: formerly locals was required to be a dictionary.

If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are

omitted, the expression is executed in the environment where execfile() is called. The

return value is None.

Note: The default locals act as described for function locals() below: modifications to

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

6 of 26 16/2/2010 17:30

the default locals dictionary should not be attempted. Pass an explicit locals dictionary if

you need to see effects of the code on locals after function execfile() returns.

execfile() cannot be used reliably to modify a function’s locals.

file(filename[, mode[, bufsize]])
Constructor function for the file type, described further in section File Objects. The

constructor’s arguments are the same as those of the open() built-in function described

below.

When opening a file, it’s preferable to use open() instead of invoking this constructor

directly. file is more suited to type testing (for example, writing isinstance(f, file)).

New in version 2.2.

filter(function, iterable)

Construct a list from those elements of iterable for which function returns true. iterable may

be either a sequence, a container which supports iteration, or an iterator. If iterable is a

string or a tuple, the result also has that type; otherwise it is always a list. If function is

None, the identity function is assumed, that is, all elements of iterable that are false are

removed.

Note that filter(function, iterable) is equivalent to [item for item in iterable if

function(item)] if function is not None and [item for item in iterable if item] if function

is None.

See itertools.filterfalse() for the complementary function that returns elements of

iterable for which function returns false.

float([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a

possibly signed decimal or floating point number, possibly embedded in whitespace. The

argument may also be [+|-]nan or [+|-]inf. Otherwise, the argument may be a plain or long

integer or a floating point number, and a floating point number with the same value (within

Python’s floating point precision) is returned. If no argument is given, returns 0.0.

Note: When passing in a string, values for NaN and Infinity may be returned,

depending on the underlying C library. Float accepts the strings nan, inf and -inf for NaN

and positive or negative infinity. The case and a leading + are ignored as well as a

leading - is ignored for NaN. Float always represents NaN and infinity as nan, inf or -inf.

The float type is described in Numeric Types — int, float, long, complex.

format(value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The

interpretation of format_spec will depend on the type of the value argument, however there

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

7 of 26 16/2/2010 17:30

is a standard formatting syntax that is used by most built-in types: Format Specification

Mini-Language.

Note: format(value, format_spec) merely calls value.__format__(format_spec).

New in version 2.6.

frozenset([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type

is described in Set Types — set, frozenset.

For other containers see the built in dict, list, and tuple classes, and the collections

module.

New in version 2.4.

getattr(object, name[, default])
Return the value of the named attributed of object. name must be a string. If the string is

the name of one of the object’s attributes, the result is the value of that attribute. For

example, getattr(x, 'foobar') is equivalent to x.foobar. If the named attribute does not

exist, default is returned if provided, otherwise AttributeError is raised.

globals()

Return a dictionary representing the current global symbol table. This is always the

dictionary of the current module (inside a function or method, this is the module where it is

defined, not the module from which it is called).

hasattr(object, name)

The arguments are an object and a string. The result is True if the string is the name of

one of the object’s attributes, False if not. (This is implemented by calling getattr(object,

name) and seeing whether it raises an exception or not.)

hash(object)

Return the hash value of the object (if it has one). Hash values are integers. They are used

to quickly compare dictionary keys during a dictionary lookup. Numeric values that

compare equal have the same hash value (even if they are of different types, as is the case

for 1 and 1.0).

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no

argument is given, the interactive help system starts on the interpreter console. If the

argument is a string, then the string is looked up as the name of a module, function, class,

method, keyword, or documentation topic, and a help page is printed on the console. If the

argument is any other kind of object, a help page on the object is generated.

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

8 of 26 16/2/2010 17:30

This function is added to the built-in namespace by the site module.

New in version 2.2.

hex(x)

Convert an integer number (of any size) to a hexadecimal string. The result is a valid

Python expression.

Note: To obtain a hexadecimal string representation for a float, use the float.hex()

method.

Changed in version 2.4: Formerly only returned an unsigned literal.

id(object)

Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to

be unique and constant for this object during its lifetime. Two objects with non-overlapping

lifetimes may have the same id() value.

CPython implementation detail: This is the address of the object.

input([prompt])
Equivalent to eval(raw_input(prompt)).

Warning: This function is not safe from user errors! It expects a valid Python

expression as input; if the input is not syntactically valid, a SyntaxError will be raised.

Other exceptions may be raised if there is an error during evaluation. (On the other

hand, sometimes this is exactly what you need when writing a quick script for expert

use.)

If the readline module was loaded, then input() will use it to provide elaborate line editing

and history features.

Consider using the raw_input() function for general input from users.

int([x[, base]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a

possibly signed decimal number representable as a Python integer, possibly embedded in

whitespace. The base parameter gives the base for the conversion (which is 10 by default)

and may be any integer in the range [2, 36], or zero. If base is zero, the proper radix is

determined based on the contents of string; the interpretation is the same as for integer

literals. (See Numeric literals.) If base is specified and x is not a string, TypeError is raised.

Otherwise, the argument may be a plain or long integer or a floating point number.

Conversion of floating point numbers to integers truncates (towards zero). If the argument

is outside the integer range a long object will be returned instead. If no arguments are

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

9 of 26 16/2/2010 17:30

given, returns 0.

The integer type is described in Numeric Types — int, float, long, complex.

isinstance(object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct

or indirect) subclass thereof. Also return true if classinfo is a type object (new-style class)

and object is an object of that type or of a (direct or indirect) subclass thereof. If object is

not a class instance or an object of the given type, the function always returns false. If

classinfo is neither a class object nor a type object, it may be a tuple of class or type

objects, or may recursively contain other such tuples (other sequence types are not

accepted). If classinfo is not a class, type, or tuple of classes, types, and such tuples, a

TypeError exception is raised.

Changed in version 2.2: Support for a tuple of type information was added.

issubclass(class, classinfo)

Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a

subclass of itself. classinfo may be a tuple of class objects, in which case every entry in

classinfo will be checked. In any other case, a TypeError exception is raised.

Changed in version 2.3: Support for a tuple of type information was added.

iter(o[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on

the presence of the second argument. Without a second argument, o must be a collection

object which supports the iteration protocol (the __iter__() method), or it must support the

sequence protocol (the __getitem__() method with integer arguments starting at 0). If it

does not support either of those protocols, TypeError is raised. If the second argument,

sentinel, is given, then o must be a callable object. The iterator created in this case will call

o with no arguments for each call to its next() method; if the value returned is equal to

sentinel, StopIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter() is to read lines of a file until a certain

line is reached. The following example reads a file until "STOP" is reached:

with open("mydata.txt") as fp:

 for line in iter(fp.readline, "STOP"):

 process_line(line)

New in version 2.2.

len(s)

Return the length (the number of items) of an object. The argument may be a sequence

(string, tuple or list) or a mapping (dictionary).

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

10 of 26 16/2/2010 17:30

list([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable

may be either a sequence, a container that supports iteration, or an iterator object. If

iterable is already a list, a copy is made and returned, similar to iterable[:]. For instance,

list('abc') returns ['a', 'b', 'c'] and list((1, 2, 3)) returns [1, 2, 3]. If no

argument is given, returns a new empty list, [].

list is a mutable sequence type, as documented in Sequence Types — str, unicode, list,

tuple, buffer, xrange. For other containers see the built in dict, set, and tuple classes, and

the collections module.

locals()

Update and return a dictionary representing the current local symbol table. Free variables

are returned by locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect

the values of local and free variables used by the interpreter.

long([x[, base]])
Convert a string or number to a long integer. If the argument is a string, it must contain a

possibly signed number of arbitrary size, possibly embedded in whitespace. The base

argument is interpreted in the same way as for int(), and may only be given when x is a

string. Otherwise, the argument may be a plain or long integer or a floating point number,

and a long integer with the same value is returned. Conversion of floating point numbers to

integers truncates (towards zero). If no arguments are given, returns 0L.

The long type is described in Numeric Types — int, float, long, complex.

map(function, iterable, ...)

Apply function to every item of iterable and return a list of the results. If additional iterable

arguments are passed, function must take that many arguments and is applied to the

items from all iterables in parallel. If one iterable is shorter than another it is assumed to be

extended with None items. If function is None, the identity function is assumed; if there are

multiple arguments, map() returns a list consisting of tuples containing the corresponding

items from all iterables (a kind of transpose operation). The iterable arguments may be a

sequence or any iterable object; the result is always a list.

max(iterable[, args...][, key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a

string, tuple or list). With more than one argument, return the largest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for

list.sort(). The key argument, if supplied, must be in keyword form (for example,

max(a,b,c,key=func)).

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

11 of 26 16/2/2010 17:30

Changed in version 2.5: Added support for the optional key argument.

min(iterable[, args...][, key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as

a string, tuple or list). With more than one argument, return the smallest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for

list.sort(). The key argument, if supplied, must be in keyword form (for example,

min(a,b,c,key=func)).

Changed in version 2.5: Added support for the optional key argument.

next(iterator[, default])
Retrieve the next item from the iterator by calling its next() method. If default is given, it is

returned if the iterator is exhausted, otherwise StopIteration is raised.

New in version 2.6.

object()

Return a new featureless object. object is a base for all new style classes. It has the

methods that are common to all instances of new style classes.

New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it

accepted arguments but ignored them.

oct(x)

Convert an integer number (of any size) to an octal string. The result is a valid Python

expression.

Changed in version 2.4: Formerly only returned an unsigned literal.

open(filename[, mode[, bufsize]])
Open a file, returning an object of the file type described in section File Objects. If the file

cannot be opened, IOError is raised. When opening a file, it’s preferable to use open()

instead of invoking the file constructor directly.

The first two arguments are the same as for stdio‘s fopen(): filename is the file name to be

opened, and mode is a string indicating how the file is to be opened.

The most commonly-used values of mode are 'r' for reading, 'w' for writing (truncating

the file if it already exists), and 'a' for appending (which on some Unix systems means

that all writes append to the end of the file regardless of the current seek position). If mode

is omitted, it defaults to 'r'. The default is to use text mode, which may convert '\n'

characters to a platform-specific representation on writing and back on reading. Thus,

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

12 of 26 16/2/2010 17:30

when opening a binary file, you should append 'b' to the mode value to open the file in

binary mode, which will improve portability. (Appending 'b' is useful even on systems that

don’t treat binary and text files differently, where it serves as documentation.) See below

for more possible values of mode.

The optional bufsize argument specifies the file’s desired buffer size: 0 means unbuffered,

1 means line buffered, any other positive value means use a buffer of (approximately) that

size. A negative bufsize means to use the system default, which is usually line buffered for

tty devices and fully buffered for other files. If omitted, the system default is used. [2]

Modes 'r+', 'w+' and 'a+' open the file for updating (note that 'w+' truncates the file).

Append 'b' to the mode to open the file in binary mode, on systems that differentiate

between binary and text files; on systems that don’t have this distinction, adding the 'b'

has no effect.

In addition to the standard fopen() values mode may be 'U' or 'rU'. Python is usually built

with universal newline support; supplying 'U' opens the file as a text file, but lines may be

terminated by any of the following: the Unix end-of-line convention '\n', the Macintosh

convention '\r', or the Windows convention '\r\n'. All of these external representations

are seen as '\n' by the Python program. If Python is built without universal newline

support a mode with 'U' is the same as normal text mode. Note that file objects so opened

also have an attribute called newlines which has a value of None (if no newlines have yet

been seen), '\n', '\r', '\r\n', or a tuple containing all the newline types seen.

Python enforces that the mode, after stripping 'U', begins with 'r', 'w' or 'a'.

Python provides many file handling modules including fileinput, os, os.path, tempfile,

and shutil.

Changed in version 2.5: Restriction on first letter of mode string introduced.

ord(c)

Given a string of length one, return an integer representing the Unicode code point of the

character when the argument is a unicode object, or the value of the byte when the

argument is an 8-bit string. For example, ord('a') returns the integer 97, ord(u'\u2020')

returns 8224. This is the inverse of chr() for 8-bit strings and of unichr() for unicode

objects. If a unicode argument is given and Python was built with UCS2 Unicode, then the

character’s code point must be in the range [0..65535] inclusive; otherwise the string

length is two, and a TypeError will be raised.

pow(x, y[, z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more

efficiently than pow(x, y) % z). The two-argument form pow(x, y) is equivalent to using the

power operator: x**y.

The arguments must have numeric types. With mixed operand types, the coercion rules for

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

13 of 26 16/2/2010 17:30

binary arithmetic operators apply. For int and long int operands, the result has the same

type as the operands (after coercion) unless the second argument is negative; in that case,

all arguments are converted to float and a float result is delivered. For example, 10**2

returns 100, but 10**-2 returns 0.01. (This last feature was added in Python 2.2. In Python

2.1 and before, if both arguments were of integer types and the second argument was

negative, an exception was raised.) If the second argument is negative, the third argument

must be omitted. If z is present, x and y must be of integer types, and y must be

non-negative. (This restriction was added in Python 2.2. In Python 2.1 and before, floating

3-argument pow() returned platform-dependent results depending on floating-point

rounding accidents.)

print([object, ...][, sep=' '][, end='\n'][, file=sys.stdout])
Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if

present, must be given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the

stream, separated by sep and followed by end. Both sep and end must be strings; they

can also be None, which means to use the default values. If no object is given, print() will

just write end.

The file argument must be an object with a write(string) method; if it is not present or

None, sys.stdout will be used.

Note: This function is not normally available as a built-in since the name print is

recognized as the print statement. To disable the statement and use the print()

function, use this future statement at the top of your module:

from __future__ import print_function

New in version 2.6.

property([fget[, fset[, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that derive from object).

fget is a function for getting an attribute value, likewise fset is a function for setting, and

fdel a function for del’ing, an attribute. Typical use is to define a managed attribute x:

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

14 of 26 16/2/2010 17:30

class C(object):

 def __init__(self):

 self._x = None

 def getx(self):

 return self._x

 def setx(self, value):

 self._x = value
 def delx(self):

 del self._x

 x = property(getx, setx, delx, "I'm the 'x' property.")

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy

fget‘s docstring (if it exists). This makes it possible to create read-only properties easily

using property() as a decorator:

class Parrot(object):

 def __init__(self):

 self._voltage = 100000

 @property

 def voltage(self):

 """Get the current voltage."""

 return self._voltage

turns the voltage() method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that

create a copy of the property with the corresponding accessor function set to the

decorated function. This is best explained with an example:

class C(object):

 def __init__(self):

 self._x = None

 @property

 def x(self):

 """I'm the 'x' property."""

 return self._x

 @x.setter

 def x(self, value):

 self._x = value

 @x.deleter

 def x(self):

 del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions

the same name as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the

constructor arguments.

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

15 of 26 16/2/2010 17:30

New in version 2.2.

Changed in version 2.5: Use fget‘s docstring if no doc given.

Changed in version 2.6: The getter, setter, and deleter attributes were added.

range([start], stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often

used in for loops. The arguments must be plain integers. If the step argument is omitted,

it defaults to 1. If the start argument is omitted, it defaults to 0. The full form returns a list

of plain integers [start, start + step, start + 2 * step, ...]. If step is positive, the last

element is the largest start + i * step less than stop; if step is negative, the last element

is the smallest start + i * step greater than stop. step must not be zero (or else

ValueError is raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)

[0, 3, 6, 9]
>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

[]
>>> range(1, 0)

[]

raw_input([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline.

The function then reads a line from input, converts it to a string (stripping a trailing

newline), and returns that. When EOF is read, EOFError is raised. Example:

>>> s = raw_input('--> ')

--> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then raw_input() will use it to provide elaborate line

editing and history features.

reduce(function, iterable[, initializer])
Apply function of two arguments cumulatively to the items of iterable, from left to right, so

as to reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2,

3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and

the right argument, y, is the update value from the iterable. If the optional initializer is

present, it is placed before the items of the iterable in the calculation, and serves as a

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

16 of 26 16/2/2010 17:30

default when the iterable is empty. If initializer is not given and iterable contains only one

item, the first item is returned.

reload(module)

Reload a previously imported module. The argument must be a module object, so it must

have been successfully imported before. This is useful if you have edited the module

source file using an external editor and want to try out the new version without leaving the

Python interpreter. The return value is the module object (the same as the module

argument).

When reload(module) is executed:

Python modules’ code is recompiled and the module-level code reexecuted, defining

a new set of objects which are bound to names in the module’s dictionary. The init

function of extension modules is not called a second time.

As with all other objects in Python the old objects are only reclaimed after their

reference counts drop to zero.

The names in the module namespace are updated to point to any new or changed

objects.

Other references to the old objects (such as names external to the module) are not

rebound to refer to the new objects and must be updated in each namespace where

they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it

does not bind its name locally, but does store a (partially initialized) module object in

sys.modules. To reload the module you must first import it again (this will bind the name to

the partially initialized module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is

retained. Redefinitions of names will override the old definitions, so this is generally not a

problem. If the new version of a module does not define a name that was defined by the

old version, the old definition remains. This feature can be used to the module’s advantage

if it maintains a global table or cache of objects — with a try statement it can test for the

table’s presence and skip its initialization if desired:

try:

 cache
except NameError:

 cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded

modules, except for sys, __main__ and __builtin__. In many cases, however, extension

modules are not designed to be initialized more than once, and may fail in arbitrary ways

when reloaded.

If a module imports objects from another module using from ... import ..., calling reload()

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

17 of 26 16/2/2010 17:30

for the other module does not redefine the objects imported from it — one way around this

is to re-execute the from statement, another is to use import and qualified names

(module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class

does not affect the method definitions of the instances — they continue to use the old

class definition. The same is true for derived classes.

repr(object)

Return a string containing a printable representation of an object. This is the same value

yielded by conversions (reverse quotes). It is sometimes useful to be able to access this

operation as an ordinary function. For many types, this function makes an attempt to

return a string that would yield an object with the same value when passed to eval(),

otherwise the representation is a string enclosed in angle brackets that contains the name

of the type of the object together with additional information often including the name and

address of the object. A class can control what this function returns for its instances by

defining a __repr__() method.

reversed(seq)

Return a reverse iterator. seq must be an object which has a __reversed__() method or

supports the sequence protocol (the __len__() method and the __getitem__() method with

integer arguments starting at 0).

New in version 2.4.

Changed in version 2.6: Added the possibility to write a custom __reversed__() method.

round(x[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted,

it defaults to zero. The result is a floating point number. Values are rounded to the closest

multiple of 10 to the power minus n; if two multiples are equally close, rounding is done

away from 0 (so. for example, round(0.5) is 1.0 and round(-0.5) is -1.0).

set([iterable])
Return a new set, optionally with elements are taken from iterable. The set type is

described in Set Types — set, frozenset.

For other containers see the built in dict, list, and tuple classes, and the collections

module.

New in version 2.4.

setattr(object, name, value)

This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary

value. The string may name an existing attribute or a new attribute. The function assigns

the value to the attribute, provided the object allows it. For example, setattr(x, 'foobar',

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

18 of 26 16/2/2010 17:30

123) is equivalent to x.foobar = 123.

slice([start], stop[, step])
Return a slice object representing the set of indices specified by range(start, stop, step).

The start and step arguments default to None. Slice objects have read-only data attributes

start, stop and step which merely return the argument values (or their default). They have

no other explicit functionality; however they are used by Numerical Python and other third

party extensions. Slice objects are also generated when extended indexing syntax is used.

For example: a[start:stop:step] or a[start:stop, i]. See itertools.islice() for an

alternate version that returns an iterator.

sorted(iterable[, cmp[, key[, reverse]]])
Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the

list.sort() method (described in section Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable elements) which

should return a negative, zero or positive number depending on whether the first argument

is considered smaller than, equal to, or larger than the second argument: cmp=lambda x,y:

cmp(x.lower(), y.lower()). The default value is None.

key specifies a function of one argument that is used to extract a comparison key from

each list element: key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each

comparison were reversed.

In general, the key and reverse conversion processes are much faster than specifying an

equivalent cmp function. This is because cmp is called multiple times for each list element

while key and reverse touch each element only once. To convert an old-style cmp function

to a key function, see the CmpToKey recipe in the ASPN cookbook.

New in version 2.4.

staticmethod(function)

Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use

this idiom:

class C:

 @staticmethod

 def f(arg1, arg2, ...): ...

The @staticmethod form is a function decorator – see the description of function definitions

in Function definitions for details.

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

19 of 26 16/2/2010 17:30

It can be called either on the class (such as C.f()) or on an instance (such as C().f()).

The instance is ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced

concept, see classmethod() in this section.

For more information on static methods, consult the documentation on the standard type

hierarchy in The standard type hierarchy.

New in version 2.2.

Changed in version 2.4: Function decorator syntax added.

str([object])
Return a string containing a nicely printable representation of an object. For strings, this

returns the string itself. The difference with repr(object) is that str(object) does not

always attempt to return a string that is acceptable to eval(); its goal is to return a

printable string. If no argument is given, returns the empty string, ''.

For more information on strings see Sequence Types — str, unicode, list, tuple, buffer,

xrange which describes sequence functionality (strings are sequences), and also the

string-specific methods described in the String Methods section. To output formatted

strings use template strings or the % operator described in the String Formatting

Operations section. In addition see the String Services section. See also unicode().

sum(iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults

to 0. The iterable‘s items are normally numbers, and are not allowed to be strings. The

fast, correct way to concatenate a sequence of strings is by calling ''.join(sequence). Note

that sum(range(n), m) is equivalent to reduce(operator.add, range(n), m) To add floating

point values with extended precision, see math.fsum().

New in version 2.3.

super(type[, object-or-type])
Return a proxy object that delegates method calls to a parent or sibling class of type. This

is useful for accessing inherited methods that have been overridden in a class. The search

order is same as that used by getattr() except that the type itself is skipped.

The __mro__ attribute of the type lists the method resolution search order used by both

getattr() and super(). The attribute is dynamic and can change whenever the inheritance

hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second

argument is an object, isinstance(obj, type) must be true. If the second argument is a

type, issubclass(type2, type) must be true (this is useful for classmethods).

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

20 of 26 16/2/2010 17:30

Note: super() only works for new-style classes.

There are two typical use cases for super. In a class hierarchy with single inheritance,

super can be used to refer to parent classes without naming them explicitly, thus making

the code more maintainable. This use closely parallels the use of super in other

programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution

environment. This use case is unique to Python and is not found in statically compiled

languages or languages that only support single inheritance. This makes it possible to

implement “diamond diagrams” where multiple base classes implement the same method.

Good design dictates that this method have the same calling signature in every case

(because the order of calls is determined at runtime, because that order adapts to changes

in the class hierarchy, and because that order can include sibling classes that are

unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):

 def method(self, arg):

 super(C, self).method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute

lookups such as super().__getitem__(name). It does so by implementing its own

__getattribute__() method for searching classes in a predictable order that supports

cooperative multiple inheritance. Accordingly, super() is undefined for implicit lookups

using statements or operators such as super()[name].

Also note that super() is not limited to use inside methods. The two argument form

specifies the arguments exactly and makes the appropriate references.

New in version 2.2.

tuple([iterable])
Return a tuple whose items are the same and in the same order as iterable‘s items.

iterable may be a sequence, a container that supports iteration, or an iterator object. If

iterable is already a tuple, it is returned unchanged. For instance, tuple('abc') returns

('a', 'b', 'c') and tuple([1, 2, 3]) returns (1, 2, 3). If no argument is given, returns a

new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, unicode,

list, tuple, buffer, xrange. For other containers see the built in dict, list, and set classes,

and the collections module.

type(object)

Return the type of an object. The return value is a type object. The isinstance() built-in

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

21 of 26 16/2/2010 17:30

function is recommended for testing the type of an object.

With three arguments, type() functions as a constructor as detailed below.

type(name, bases, dict)

Return a new type object. This is essentially a dynamic form of the class statement. The

name string is the class name and becomes the __name__ attribute; the bases tuple

itemizes the base classes and becomes the __bases__ attribute; and the dict dictionary is

the namespace containing definitions for class body and becomes the __dict__ attribute.

For example, the following two statements create identical type objects:

>>> class X(object):

... a = 1

...

>>> X = type('X', (object,), dict(a=1))

New in version 2.2.

unichr(i)

Return the Unicode string of one character whose Unicode code is the integer i. For

example, unichr(97) returns the string u'a'. This is the inverse of ord() for Unicode

strings. The valid range for the argument depends how Python was configured – it may be

either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF]. ValueError is raised otherwise. For ASCII

and 8-bit strings see chr().

New in version 2.0.

unicode([object[, encoding[, errors]]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode() will decode the object which can either be an

8-bit string or a character buffer using the codec for encoding. The encoding parameter is a

string giving the name of an encoding; if the encoding is not known, LookupError is raised.

Error handling is done according to errors; this specifies the treatment of characters which

are invalid in the input encoding. If errors is 'strict' (the default), a ValueError is raised

on errors, while a value of 'ignore' causes errors to be silently ignored, and a value of

'replace' causes the official Unicode replacement character, U+FFFD, to be used to replace

input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode() will mimic the behaviour of str() except that

it returns Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode

string or subclass it will return that Unicode string without any additional decoding applied.

For objects which provide a __unicode__() method, it will call this method without

arguments to create a Unicode string. For all other objects, the 8-bit string version or

representation is requested and then converted to a Unicode string using the codec for the

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

22 of 26 16/2/2010 17:30

default encoding in 'strict' mode.

For more information on Unicode strings see Sequence Types — str, unicode, list, tuple,

buffer, xrange which describes sequence functionality (Unicode strings are sequences),

and also the string-specific methods described in the String Methods section. To output

formatted strings use template strings or the % operator described in the String Formatting

Operations section. In addition see the String Services section. See also str().

New in version 2.0.

Changed in version 2.2: Support for __unicode__() added.

vars([object])
Without an argument, act like locals().

With a module, class or class instance object as argument (or anything else that has a

__dict__ attribute), return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding

symbol table are undefined. [3]

xrange([start], stop[, step])
This function is very similar to range(), but returns an “xrange object” instead of a list. This

is an opaque sequence type which yields the same values as the corresponding list,

without actually storing them all simultaneously. The advantage of xrange() over range() is

minimal (since xrange() still has to create the values when asked for them) except when a

very large range is used on a memory-starved machine or when all of the range’s elements

are never used (such as when the loop is usually terminated with break).

CPython implementation detail: xrange() is intended to be simple and fast.

Implementations may impose restrictions to achieve this. The C implementation of

Python restricts all arguments to native C longs (“short” Python integers), and also

requires that the number of elements fit in a native C long. If a larger range is needed,

an alternate version can be crafted using the itertools module: islice(count(start,

step), (stop-start+step-1)//step).

zip([iterable, ...])
This function returns a list of tuples, where the i-th tuple contains the i-th element from

each of the argument sequences or iterables. The returned list is truncated in length to the

length of the shortest argument sequence. When there are multiple arguments which are

all of the same length, zip() is similar to map() with an initial argument of None. With a

single sequence argument, it returns a list of 1-tuples. With no arguments, it returns an

empty list.

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

23 of 26 16/2/2010 17:30

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an

idiom for clustering a data series into n-length groups using zip(*[iter(s)]*n).

zip() in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> y = [4, 5, 6]

>>> zipped = zip(x, y)

>>> zipped

[(1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zipped)

>>> x == list(x2) and y == list(y2)

True

New in version 2.0.

Changed in version 2.4: Formerly, zip() required at least one argument and zip() raised a

TypeError instead of returning an empty list.

__import__(name[, globals[, locals[, fromlist[, level]]]])

Note: This is an advanced function that is not needed in everyday Python

programming.

This function is invoked by the import statement. It can be replaced (by importing the

builtins module and assigning to builtins.__import__) in order to change semantics of

the import statement, but nowadays it is usually simpler to use import hooks (see PEP

302). Direct use of __import__() is rare, except in cases where you want to import a module

whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to

determine how to interpret the name in a package context. The fromlist gives the names of

objects or submodules that should be imported from the module given by name. The

standard implementation does not use its locals argument at all, and uses its globals only

to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. The default is -1 which indicates

both absolute and relative imports will be attempted. 0 means only perform absolute

imports. Positive values for level indicate the number of parent directories to search relative

to the directory of the module calling __import__().

When the name variable is of the form package.module, normally, the top-level package (the

name up till the first dot) is returned, not the module named by name. However, when a

non-empty fromlist argument is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__('spam', globals(), locals(), [], -1)

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

24 of 26 16/2/2010 17:30

The statement import spam.ham results in this call:

spam = __import__('spam.ham', globals(), locals(), [], -1)

Note how __import__() returns the toplevel module here because this is the object that is

bound to a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], -1)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __import__(). From this object, the names to

import are retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can call

__import__() and then look it up in sys.modules:

>>> import sys

>>> name = 'foo.bar.baz'

>>> __import__(name)

<module 'foo' from ...>
>>> baz = sys.modules[name]

>>> baz

<module 'foo.bar.baz' from ...>

Changed in version 2.5: The level parameter was added.

Changed in version 2.5: Keyword support for parameters was added.

3. Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern

Python programming. They have been kept here to maintain backwards compatibility with

programs written for older versions of Python.

Python programmers, trainers, students and book writers should feel free to bypass these

functions without concerns about missing something important.

apply(function, args[, keywords])
The function argument must be a callable object (a user-defined or built-in function or

method, or a class object) and the args argument must be a sequence. The function is

called with args as the argument list; the number of arguments is the length of the tuple. If

the optional keywords argument is present, it must be a dictionary whose keys are strings.

It specifies keyword arguments to be added to the end of the argument list. Calling apply()

is different from just calling function(args), since in that case there is always exactly one

argument. The use of apply() is equivalent to function(*args, **keywords).

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

25 of 26 16/2/2010 17:30

Deprecated since version 2.3: Use the extended call syntax with *args and **keywords

instead.

buffer(object[, offset[, size]])
The object argument must be an object that supports the buffer call interface (such as

strings, arrays, and buffers). A new buffer object will be created which references the

object argument. The buffer object will be a slice from the beginning of object (or from the

specified offset). The slice will extend to the end of object (or will have a length given by

the size argument).

coerce(x, y)

Return a tuple consisting of the two numeric arguments converted to a common type,

using the same rules as used by arithmetic operations. If coercion is not possible, raise

TypeError.

intern(string)

Enter string in the table of “interned” strings and return the interned string – which is string

itself or a copy. Interning strings is useful to gain a little performance on dictionary lookup

– if the keys in a dictionary are interned, and the lookup key is interned, the key

comparisons (after hashing) can be done by a pointer compare instead of a string

compare. Normally, the names used in Python programs are automatically interned, and

the dictionaries used to hold module, class or instance attributes have interned keys.

Changed in version 2.3: Interned strings are not immortal (like they used to be in Python

2.2 and before); you must keep a reference to the return value of intern() around to

benefit from it.

Footnotes

[1] It is used relatively rarely so does not warrant being made into a statement.

[2] Specifying a buffer size currently has no effect on systems that don’t have setvbuf(). The
interface to specify the buffer size is not done using a method that calls setvbuf(),
because that may dump core when called after any I/O has been performed, and there’s
no reliable way to determine whether this is the case.

[3] In the current implementation, local variable bindings cannot normally be affected this
way, but variables retrieved from other scopes (such as modules) can be. This may
change.

2. Built-in Functions — Python v2.6.4 documentation http://docs.python.org/library/functions.html

26 of 26 16/2/2010 17:30

