
IEEE Communications Magazine • December 201184 0163-6804/11/$25.00 © 2011 IEEE

INTRODUCTION

It is becoming accepted that future networks should
be service- and management-aware [1], which
includes (among others) the following aspects:
• Delivery of content and service logic with

consumers’ involvement and control
• Fulfilment of business, quality of service

(QoS), and service level agreements (SLAs)
• Optimization of the network resources dur-

ing service delivery
• Composition and decomposition on demand

of control mechanisms and network
domains
Conversely, deployed services [2] in the future

networks should be network-aware. Network
awareness means that the consumer-facing and
resource-facing services are aware of the proper-
ties, requirements, and state of the network
environment. This enables services to self-adapt
according to changes in the network context.

In recent years, network virtualization tech-
niques have gained a lot of attention due to their
flexibility for creating computing clouds, and cre-
ating separate and independent virtual networks
on top of physical network infrastructures.

Virtual networks abstract away the complexity
of the underlying infrastructure. They are charac-
terized in the literature as either the main means
to test new network architectures or a crucial com-

ponent of future networks [3–5]. Multiple logical
networks can coexist above the same physical sub-
strate. They can take the form of virtual private
networks [6], active and programmable networks
[7], overlay networks [8], or virtual networks [9].
The virtual nodes and links form a virtual topolo-
gy over the underlying physical network.

Virtual networks are a collection of virtual
nodes connected together by a set of virtual links
to form a virtual topology, which is essentially a
subset or an aggregation of the underlying physical
topology. Virtual networks aim at better utiliza-
tion of the underlying infrastructure in terms of:
• Reusing a single physical or logical resource

for multiple other network instances
• Aggregating multiples of these resources in

order to obtain more functionality, such as
providing a pool of resources that can be
utilized on demand
As an example, virtual networks can be aggre-

gated (or federated) together. Such an approach
requires aggregation and dissolution of control,
data, and information planes, which is a chal-
lenging problem.

Virtualized network environments are highly
dynamic [4] as links and nodes may be reconfig-
ured quickly. Virtual routers may migrate on-
demand, as in [3], based on resource availability,
in order to save energy or follow the physical
location of users. Nodes may also move logically
(i.e., not physically). Virtual network aggregation
or dissolution triggers changes in the virtual
topology (i.e., virtual network embedding) [9].
Management of virtual networks is challenging,
since it is necessary to manage this complex
functionality. Manageability and service deploy-
ment are considered to be the biggest concerns
for network virtualization [4].

This article describes the architectural model
and validation results of the European Union
(EU) Autonomic Internet (AutoI) project [10],
which proposes open source software-defined
networks as part of future networks [26]. It is a
self-managing overlay of virtual resources that
can span across heterogeneous physical net-
works. All of the components developed in the

ABSTRACT

It is widely accepted that the network of the
future will require a greater degree of service
awareness and optimal use of network resources.
This article presents an architectural design for
an open software-defined network infrastructure
that enables the composition of fast and guaran-
teed services in an efficient manner and the exe-
cution of these services in an adaptive way,
taking into account better shared network
resources provided by network virtualization.
Validation results are provided with special
emphasis on service deployment scalability over
virtualized network infrastructures.

TOPICS IN NETWORK AND SERVICE MANAGEMENT

Javier Rubio-Loyola, CINVESTAV Tamaulipas
Alex Galis, University College London
Antonio Astorga and Joan Serrat, Universitat Politècnica de Catalunya
Laurent Lefevre, INRIA
Andreas Fischer, Alexandru Paler, and Hermann de Meer, University of Passau

Scalable Service Deployment on
Software-Defined Networks

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 84

IEEE Communications Magazine • December 2011 85

AutoI architecture are available as open source
components from [10]. Validation results were
performed by exercising the open source compo-
nents on three physical networks ranging from 4
to 5000 nodes. Two types of validation results
based on large-scale experiments are the focus
of this article as follows:
• Built-in network management, specifically

self-management functionality for service
and networking awareness

• Large-scale provisioning and deployment of
both application services and management
services over virtual infrastructures
This article is structured as follows. We present

the AutoI architectural framework and its relevant
systems. We present validation results. We provide
some technical discussion. We describe related
work. We then conclude the article.

AUTOI ARCHITECTURAL
FRAMEWORK AND SYSTEMS

The AutoI framework consists of a software-
defined network described with the help of five
abstractions, the OSKMV planes: orchestration
plane (OP), service enablers plane (SP), knowl-

edge plane (KP), management plane (MP), and
virtualization plane (VP). At the physical level,
they are embedded on network hosts, devices, and
servers within the network. The main purpose of
the OSKMV planes is to make future networks
capable of self-knowledge and, ultimately, fully
self-managing. The AutoI architectural model is
shown in Fig. 1, and a description of the major ele-
ments follows. Open source platform components
developed in support of the AutoI architecture are
indicated by asterisks in the following section.

ORCHESTRATION PLANE OVERVIEW
The purpose of the OP is to govern the behavior
of the system in response to changing context,
and in accordance with applicable business goals
and policies. It supervises and integrates all
other planes’ behavior, ensuring integrity of the
future Internet management operations.

The OP is a control framework into which any
number of components can be plugged in order
to achieve the required functionality. These com-
ponents could have direct interworking with con-
trol algorithms, situated in the control plane of
the Internet (i.e., to provide real-time reaction),
and interworking with other management func-
tions (i.e., to provide near-real-time reaction).

Figure 1. AutoI architectural model: software-defined network

Orchestration
planeMapping

 Semantic bus

Federation services

Inter-system view

System view

O
th

er
s

N
eg

ot
ia

tio
n

Fe
de

ra
tio

n

Di
st

rib
ut

io
n

System view

Service
life cycle

management

Developer interface
Operator interface O

th
er

s

N
eg

ot
ia

tio
n

Fe
de

ra
tio

n

Di
st

rib
ut

io
n

Intrasystem view

Distributed
orchestration
component

O
th

er
s

N
eg

ot
ia

tio
n

Fe
de

ra
tio

n

Di
st

rib
ut

io
n

Business goals
Customer needs

Service enablers plane

User interface services

Life cycle management services

Management
plane

Autonomic management
system

Knowledge
plane

End-user
virtualized

services

End-user composite
virtualized services

Virtualization
plane

Mapping

vSPI

Component

Physical resource

vCPI vCPI

Models and
ontologies

Management
plane

Autonomic management
system

Knowledge
plane

vCPI vCPIvCPI

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 85

IEEE Communications Magazine • December 201186

In practical terms, the OP controls one or more
autonomic management systems (AMSs, described
later). It acts as control workflow for AMSs ensur-
ing their bootstrapping, initialization, dynamic
reconfiguration, adaptation, contextualization, opti-
mization, organization, and closing down. It is
functionally integrated by one or more distributed
orchestration components (DOCs) and a dynamic
knowledge base consisting of a set of models and
ontologies, and appropriate mapping logic and
buses. DOCs can federate via buses. The internal
design details of the OP can be found in [11].

AUTONOMIC MANAGEMENT SYSTEM
A key advantage of the AutoI architecture is
that it can provide a programmable mix of isola-
tion and sharing of network resources. A key
advantage of separating the control and data
planes is to provide increased isolation for an
application or set of applications.

Each AMS is part of the MP (described later),
and includes interfaces to a dedicated set of mod-
els and ontologies and interfaces to one or more
DOC(s). Mapping logic enables the data stored in
models to be transformed into knowledge and
combined with knowledge stored in ontologies to
provide a context-sensitive assessment of the
operation of one or more virtual resources.
Another set of interfaces enables framework ser-
vices, such as directory services, naming, federa-
tion, and others, to be used by the AMS.

DISTRIBUTED ORCHESTRATION COMPONENT
The DOC* provides a set of framework network
services. Framework services provide a common
infrastructure that enables all AMSs controlled
by the OP to have (un) plug-and-play behavior.
Applications compliant with these framework
services share common security, metadata,
administration, and management services. The
DOC enables the following framework network
services to the AMSs under its control:

Federation: Each AMS is responsible for its
own set of virtual and non-virtual resources and
management services that it governs. Federation
enables a set of domains to be combined into a
larger domain, where selected functionality of
each constituent domain contributes to the over-
all functionality of the larger domain.

Negotiation: Each AMS advertises a set of
capabilities (i.e., services and/or resources) that
it offers for use by other components in the OP.

Distribution: This service enables tasks to be
split into parts that run concurrently on multiple
AMSs controlled by a DOC, or even across mul-
tiple DOCs. This function ensures that AMSs
with different implementations and functionality
can collaborate.

Governance: This service enables each AMS
to be able to operate in an individual, distribut-
ed, or collaborative mode. Business goals, ser-
vice requirements, context, capabilities, and
constraints are all considered as part of the deci-
sion making process.

Intrasystem view: This service provides an
overall composite view of the system as seen by
the components within a DOC.

Intersystem view: this service provides an
overall composite view of collaborating DOCs,
as in a multdomain system.

SERVICE ENABLERS PLANE OVERVIEW

The S consists of functions for the automatic
(re)deployment of new management services,
protocols, and resource-facing and end-user-fac-
ing services. It includes enablers to allow code to
be executed on the network entities. This func-
tionality is implemented by the autonomic net-
work programming interface (ANPI*) [10],
which supports large-scale network programma-
bility in deployed virtual networks. The safe and
controlled deployment of new code enables new
services to be activated on demand and made
available to both management and orchestration
planes for the benefit of service awareness. This
approach has the following advantages:
• Automatic service deployment, allowing a

significant number of new services to be
offered on demand

• Flexible network configuration capabilities
• Special management functions and services

easily enabled locally for testing purposes
before they are automatically deployed net-
work-wide

• Flexible support for service migration, for
both consumer-facing and resource-facing
services

KNOWLEDGE PLANE OVERVIEW
The KP was proposed in [13] as a new dimen-
sion to a network architecture, contrasting with
the data and control planes; its purpose is to
provide knowledge and expertise to enable the
network to be self-monitoring, self-analyzing,
self-diagnosing, and self-maintaining.

AutoI introduces a narrow functionality KP,
consisting of models and ontologies, to provide
increased analysis and inference capabilities.
AutoI’s KP brings together widely distributed
data collection, wide availability of that data,
and sophisticated and adaptive processing or KP
functions within a unifying structure. This brings
order, and meets the policy, scaling, and func-
tional requirements of a global network. The
main KP components are a context and service
information platform (CISP*) [10] and ontolo-
gies, which enable the analysis and inferencing
capabilities. The CISP provides:
• Information life cycle management (storage,

aggregation, transformations, updates, distri-
bution) of all information and context in the
network, addressing the Internet’s size/scope

• Responsiveness to requests made by the
AMS

• Triggers for the purpose of AMS contextu-
alization

• Support for robustness, enabling the KP to
continue to function as best possible, even
under incorrect or incomplete behavior of
the network itself

• Support of virtual networks and virtual sys-
tem resources, enabling them to cooperate
for mutual benefit in more effective net-
work management

MANAGEMENT PLANE OVERVIEW
The MP governs all virtual resources, perform-
ing decisions on their optimal placement, func-
tion and continuous migration. The functionality
of the MP is implemented by the AMS (*). The

A key advantage of
the AutoI architec-
ture is that it can

provide a pro-
grammable mix of

isolation and sharing
of network

resources. A key
advantage of sepa-
rating the control

and data planes is to
provide increased

isolation for an appli-
cation or set of

applications.

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 86

IEEE Communications Magazine • December 2011 87

MP functionality is subject to constraints deter-
mined by the OP. The MP is designed to meet
the following objectives:

Embedded network functions: The majority of
management functionality is embedded in the net-
work and is abstracted from human activities. The
AMSs run on execution environments on top of
virtual networks and systems, which run on top of
all current network (i.e., fixed, wireless and mobile
networks) and service physical infrastructures.

Aware and self-aware functions: It monitors
the network and operational context as well as
internal operational network state in order to
assess if the network current behavior serves its
purposes.

Adaptive and self-adaptive functions: It trig-
gers changes in network operation (state, config-
urations, etc.) as a result of changes in network
and service context.

Automatic self-functions: It enables self-con-
trol of its internal network operations, functions,
and state. Manual/external input is provided in
the setting up of business goals and other
unavoidable functions.

Extensibility functions: It adds new functions
without disturbing the rest of the system (plug-
and-play dynamic programmability of manage-
ment functions and services). The AMSs are
designed to follow the autonomic control loops
(collect, analyze, decide, enforce, change [14])
depicted in Fig. 2.

VIRTUALIZATION PLANE OVERVIEW
One of the key requirements that differentiate
AutoI from other systems is its emphasis on vir-
tualization of resources and services. AutoI uses
platform virtualization to provide virtual services
and resources. Platform virtualization separates
an operating system from its underlying platform
resources; resource virtualization abstracts physi-
cal resources into manageable units of function-

ality. For example, a single physical resource can
appear as multiple virtual resources (e.g., the
concept of a virtual router, where a single physi-
cal router can support multiple independent
routing processes by assigning different internal
resources to each routing process); alternatively,
multiple physical resources can appear as a sin-
gle physical resource (e.g., when multiple switch-
es are “stacked” so that the number of switch
ports increases, but the set of stacked switches
appears as a single virtual switch).

AutoI extends contemporary virtualization
approaches and aims at building an infra-
structure in which virtual machines can be
dynamically relocated to any physical node or
server regardless of location, network, storage
configurations, and administrative domain.

The VP consists of software mechanisms to
treat selected physical resources as a pro-
grammable pool of virtual resources that can be
organized by the OP and MP into appropriate
sets of virtual resources to form components
(e.g., increased storage or memory), devices
(e.g., a switch with more ports), or even net-
works. Two special interfaces, called the virtual-
ization system programming interface (vSPI,
described below) and virtualization component
programming interface (vCPI), assess the basic
functionality of the VP.

VIRTUALIZATION SYSTEM
PROGRAMMABILITY INTERFACE

The vSPI contains the “macro-view” of the virtu-
al resources a particular OP governs. The low-
level configuration (i.e., the “micro-view”) of a
virtual resource is provided by the vCPI, as
explained in the next section.

The vSPI* is responsible for determining
what portion of a component (i.e., set of virtual
resources) is allocated to a given task. This

Figure 2. Autonomic control loops.

Self-knowledge

Local context

Goals

Control 1

Input 1

Sensor 1

Control P

Autonomic subsystem

Output 1

Input N Output N

Sensor M

Life-cycle

Logic

Environment Global context

Self-knowledge

Local context

Goals

Control 1

Input 1

Sensor 1

Control P

Autonomic subsystem

Output 1

Input N Output N

Sensor M

Life-cycle

Logic

Environment Global context

Self-knowledge

Local context

Goals

Control 1

Input 1

Sensor 1

Control P

Autonomic subsystem

Output 1

Input N Output N

Sensor M

Life cycle

Logic

Environment Global context

AnalyzeCollect

Enforce

Decide

Change

AutoI uses platform
virtualization to

provide virtual ser-
vices and resources.
Platform virtualiza-
tion separates an
operating system

from its underlying
platform resources;
resource virtualiza-
tion abstracts physi-
cal resources into

manageable units of
functionality.

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 87

IEEE Communications Magazine • December 201188

means that all or part of a virtual resource can
be used for each task, providing an optimized
partitioning of virtual resources according to
business need, priority, and other requirements.
Composite virtual services can thus be construct-
ed using all or part of the virtual resources pro-
vided by each physical resource.

The vSPI monitors the “macro-level” status
of the virtual resources it governs. This is differ-
ent from the vCPI, which monitors “micro-level”
status of the virtual resources it configures. For
example, the vSPI collects global information
about available physical resources. When an
AMS receives requests to instantiate a new vir-
tual resource, it contacts the vSPI to determine
which physical resources can be used. The vSPI
then instructs the vCPI to instantiate the virtual
resources on the correct physical resource for
such purpose. The vSPI informs the AMS when
the virtual resource is ready for use, and the
vCPI informs the AMS when each virtual
resource has been successfully reconfigured.

VIRTUALIZATION COMPONENT
PROGRAMMING INTERFACE

The vCPI* is a modular, scalable, and communi-
cation-protocol-agnostic system for monitoring
and managing virtual resources. It operates
locally; for each component of a physical net-
work, there is an embedded vCPI that operates
with third-party software by using a request/
response mechanism. It is used for constructing,
modifying, and managing virtual networks (VNs)
consisting of virtual links (VLs), virtual routers
(VRs), and routing services (RSs). This enables
the AMS to manage the physical resource, and
to request virtual resources to be constructed
from that physical resource via the vCPI. The
AMS sends device-independent commands to
the vCPI, which are translated into device- and

vendor-specific commands that reconfigure the
physical resource and manage the virtual
resources provided by that physical resource.
The vCPI also provides monitoring information
from the virtual resources back to the AMS
which controls that physical resource. Note that
the AMS is responsible for obtaining manage-
ment data describing the physical resource.

The vCPI is responsible for providing dynam-
ic management data to its governing AMS, which
states how many virtual resources are currently
instantiated and how many additional virtual
resources of what type can be supported. The
vCPI needs to be aware of the structural infor-
mation of the relations among virtual resources;
therefore, a discovery mechanism is included to
inspect the contents of a physical component
and map it to a data structure.

More details of the AutoI open source soft-
ware defined network components that integrate
the five-plane AUTOI approach introduced ear-
lier are provided in [10, 12].

PRACTICAL APPROACH AND
VALIDATION RESULTS

This section tests the AutoI framework and the
open source components, which were installed
and run on three physical testbed networks rang-
ing from 4 to 5000 nodes. It provides relevant
results emphasizing the creation of virtual net-
works, service deployment, and scalability
aspects. This section concentrates on wired phys-
ical networks. The interested reader will find a
description of the AutoI support for wireless
networks in [10].

CREATION OF VIRTUAL NETWORKS
In AutoI, virtual networks can be set up by
means of administrative decisions, programmed
at a given time, triggered by events like thresh-
old crossings, or they can be created on demand.

This section demonstrates the AutoI context-
aware, on-demand, scalable creation of function-
al virtual networks. The term functional implies
that virtual networks are ready to support appli-
cation services deployment, having all network-
ing services (e.g., routing services) deployed and
configured properly. For this purpose we have
used a physical infrastructure consisting of four
physical components (2 Quad Core AMD
Opteron 2347H CPUs and 32 Gbytes RAM,
running Linux, XEN, or Qemu and Open SSH).

In this test setting the autonomic loop’s collect
part (see Fig. 2 for details of this loop) is exer-
cised by the Context Information Services Plat-
form (CISP) that manages context information
and triggers notifications about changes corre-
sponding to demand requests for virtual net-
works. Demand request correspond to end-points
of connectivity with specific QoS constraints (e.g.,
throughput). CISP nodes are deployed in each
physical node and also in each virtual router as
soon as it is created. The collected data is made
available to all AutoI components along the life
cycle of the virtual infrastructure.

The autonomic loop’s analyze and decide parts
are implemented by the AMSs and DOCs, which
analyse context changes (e.g., endpoint network

Figure 3. 60-virtual-router and 80-virtual-link virtual network created in a four-
component physical testbed.

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 88

IEEE Communications Magazine • December 2011 89

requests) and evaluate the conditions under which
context changes occur, and eventually decide on
appropriate actions that would fulfill their business
goals. Business goals in this test case correspond
to specific characteristics of the to-be-created vir-
tual network topology. In this test scene a network
topology that emulates the current (2010) topolo-
gy of the German X-WiN network [15] was used.
Such a network consists of 60 nodes interconnect-
ed by 80 links, representing sites all over Germany
as graphically depicted in Fig. 3. The virtual
routers are spread among the four physical com-
ponents, 15 VRs are created on each component.
Decisions are taken and result in concrete config-
urations that will need to be enforced via the
vSPIs, vCPIs, and ANPI platforms.

The autonomic loop’s enforce parts are
assessed by the vSPIs, vCPIs, and ANPIs. They
are aimed at executing the appropriate com-
mands to configure the VN. In practical terms,
creating a VN is a two-step process:
• Creation/startup of VRs and creation of

VLs attached to the former (enforced by the
vSPIs and vCPIs)

• Deployment of the networking-facing ser-
vices (e.g., RSs) that would support the VN
(enforced by the ANPIs)
A VL exists between two VRs and consists of

three segments: one is connecting the physical
hosts, and the other two are connecting each VR
with its host. All three segments are aggregated
to a VL by two software bridges (driven by two
vCPIs). Therefore, for each VL (e.g., between
VR1 and VR2) the following operations are
conducted:
• Create the central segment (tunnel)

between the physical components (optional
if the linked routers are hosted on the same
physical component)

• Add a virtual network interface to both
VR1 and VR2

• Bridge each virtual interface to the corre-
sponding physical component to create the
first link segments

• Deploy the networking facing services in
VR1 and VR2
To start up a VR, the vCPI uses hypervisor

commands to create a VR from a template
image. This template is instantiated with individ-
ual configuration options, like the initial network
address or the amount of virtual hardware to be
assigned. The tunnels to instantiate VLs are cre-
ated using OpenSSH. Tunnels that are using the
same physical network interface card (NIC)
share the available bandwidth among them-
selves. Statically assigning a guaranteed amount
of bandwidth for a VL is possible by using traffic
control mechanisms as demonstrated in [16].

The AMSs and DOCs in this test scenario
issue commands to the vCPIs sequentially, which
in turn have processed them (in parallel when
possible). The startup times for the VRs are
depicted in Fig. 4, where the most relevant
behavior is that the startup times are stable for
an increasing number of VRs in each physical
component. In this execution run each VR needs
on average 25 s to be started. After the routers
are started, the AutoI solution reacts to this con-
text change (new virtual resources available) and
issue appropriate commands to the vCPIs to

instantiate the VLs. The vCPIs enforce the com-
mands in the four components of our testbed in
parallel when possible, using the three-segment
approach described earlier. Again, the most rele-
vant behaviour is that the startup times of each
VL are stable for an increasing number of VLs
in the four physical components. The average
time to construct a VL is about 5 s with a little
variation between the minimum and maximum
values as graphically depicted in Fig. 5.

As mentioned earlier, the autonomic loop’s
enforce parts assessed by the ANPIs are devoted
to discover and deploy the networking-facing ser-
vices (i.e., routing) that will make such network
operational. The round-trip times between each
VR were measured to test that the network is
operational. The minimum, maximum, and mean
values of five measurements are presented in Fig.
6. The most important behavior here is that the
average round-trip time appears to be linear with
the number of virtual hops, with a moderate
slope and values below 40 ms in our testbed.

SERVICE DEPLOYMENT RESULTS
This section demonstrates the AutoI context-
aware on-demand service deployment capabili-
ties over VNs. As in our last test scene, the
autonomic loop’s collect part is exercised by the
CISP that manages context information and trig-
gers notifications about changes corresponding
to service requests for VNs, availability of ser-
vices, resource usage information, and so on.

The autonomic loop’s analyze and decide
parts are implemented by the AMSs and DOCs,
which analyze context changes (e.g., service
requests) and evaluate the conditions under
which context changes occur, and eventually
decide on appropriate actions that would fulfill
their business goals. Business goals in this test
case would have an impact on the level of service
deployment that would be eventually enforced.
For example, local service support implies that a

Figure 4. Startup times of 60 virtual routers created in a four-component physi-
cal testbed.

Virtual router number
1

5

0

St
ar

tu
p

tim
e

(s
)

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Average
Component 1 (15 routers)
Component 2 (15 routers)
Component 3 (15 routers)
Component 4 (15 routers)

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 89

IEEE Communications Magazine • December 201190

service would be deployed in a single virtual ele-
ment, whereas domain or global support would
imply that a set of services be deployed by net-
work operators to a specific area of the VN.

The autonomic loop’s enforce part is assessed
by the ANPI, which executes a number of atom-
ized autonomic processes in each node of the
network when necessary. The main AutoI com-
ponents enforcing this service deployment test
are graphically depicted in Fig. 7.

The ANPI maintains service repositories with
available tested service code. Services are discov-
ered by the ANPIs and are available for down-
load from repositories located in the VN.

ANPI daemons deploy and manage the life
cycle of services. There is one ANPI running in
each virtual component of the deployed net-
work. When the ANPI receives a command from

an AMS and/or DOC component to deploy or
migrate a specific consumer-facing and/or
resource-facing service, it analyzes such informa-
tion, and this triggers a new decision making
process in the ANPI nodes. The type of service,
characteristics, availability of services in the net-
work, and so on is information that is taken into
account to decide the best deployment steps.

The ANPI communicates through the CISP
to expose and notify service deployment opera-
tions and services states.

Following on the described test case, the
action of a client requesting a streaming service
in the network of Fig. 7 is emulated. AutoI cre-
ates a new VR on demand and attaches it to the
new client. The ANPI discovers the location of
the appropriate streaming services to drive the
configuration of the required networking ser-
vices (e.g., routing services in this case) and sup-
porting services (e.g., context, monitoring)
required. In each router of the network (now
with eight VRs), the ANPI deploys a basic rout-
ing service. Figure 8 shows the time taken (bot-
tom part) for the deployment of 8 ANPIs
(continuous line), and the time taken (dotted
line) to deploy 12 services (network-facing and
application-facing) required to provision an end-
to-end streaming service over the deployed virtu-
al infrastructure. It is worth mentioning that
once all ANPIs are deployed, there is a small
gap of time taken by the AutoI systems to find
and download the required services and corre-
late appropriate context changes. After this, the
services are deployed, configured, and started in
about 3 min, as depicted on the right of Fig. 8.

Physical resources have limited capacities in
terms of bandwidth, CPU, memory, and so on,
which in turn are shared among virtual resources.
Lack of physical resources is eventually mani-
fested as service degradation. AutoI reacts effec-
tively to service degradation with coordinated
service migration actions, in which all virtual
networking services and application services are
actually reconfigured in appropriate physical
resources. The interested reader will find exten-
sive results of the AutoI migration support in
[10]. The remainder of the article focuses on
scalability support.

SCALABILITY RESULTS ON NETWORK
VIRTUALIZATION AND SERVICE DEPLOYMENT

Large-scale validations were performed in an
experimental testbed (Grid5000 testbed [17])
composed by a cluster of 10 separate sites locat-
ed in France, where all AutoI components were
installed. The testbed supports 5000 cores locat-
ed on various clusters connected with 10G links.

This section analyzes the scalability of the
AutoI solution for network virtualization and ser-
vice deployments on a large scale, in similar setups
as presented for mid-scale validations earlier.

Table 1 shows the result of the deployment of
10–150 VRs on 10–50 physical machines (PMs) on
two sites of the testbed. It is worth mentioning that
the deployment of virtual machines depends on the
number of VRs to deploy more than on the num-
ber of PMs. Observed results are closely similar
between Grid5000 sites. Table 1 shows the results
obtained from two sites (Bordeaux and Lyon).

Figure 5. Virtual link creation times in a four-component physical testbed.

Virtual link number

2

0

St
ar

tu
p

tim
e

(s
)

4

6

8

10

272625242322212019181716151413121110987654321

Average
Component 1 (27 links)
Component 2 (19 links)
Component 3 (17 links)
Component 4 (17 links)

Figure 6. Round-trip times in 60-router/80-link virtual network

Number of virtual hops
0

10

0

Ti
m

e
(m

s)

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 90

IEEE Communications Magazine • December 2011 91

For service deployment tests, target topolo-
gies like chains or trees were generated with the
means to allow analysis of observed results. Fig-
ure 9 presents the service deployment results of
a virtual network with 110 VRs in a chain topol-
ogy in the Grid5000 testbed. The deployment of
110 ANPI daemons with its activation occurred
in 30 s (continuous line in Fig. 9), while the
deployment of 110 small sized services (4.4
kbytes) required only 8 s (dotted line in Fig. 9).

Figure 10 presents the results of 220 services
deployment on 110 VRs located in one VN with
tree topology. This scenario shows that service
deployment can occur at any time during the life
of components provided that the ANPIs are
already deployed in each VR. The deployment
of the first 110 services occurred in 8 s (first part
of the dotted line in Fig. 10). After a small gap,
the remaining 110 services were progressively
deployed in about 9 min.

TECHNICAL DISCUSSION AND
LESSONS LEARNED

One of the primary arguments for setting up mul-
tiple virtual infrastructures is the possibility to
support networks with different network protocols
on the same hardware. However, it is necessary to
develop and provide the means to also manage
the virtual network elements, in particular the
configuration of the virtual network layer. In
order for network virtualization techniques to be
a key component for the next-generation Internet,
network virtualization interfaces (like the vCPI
and vSPI in our architectural model) need to be
able to configure virtual network interfaces, while
at the same time remaining protocol-agnostic and
open to future Internet protocol stacks.

Stability of virtual networks is an important
issue that deserves special attention. Several
instability problems were encountered during our
experimental research. For example, when trying
to create a number of coexisting virtual networks,
each with six virtual routers distributed over four
physical components, instability problems
occurred when going beyond 15 virtual networks.
Beyond this point, the creation of both virtual
links and virtual routers became unpredictable.
From our numerous experiments the conclusion
drawn is that current virtualization technologies
are not built to cope with the dynamicity and
load expected in future virtualized network envi-
ronments. Additional implementation effort is
needed to bring both hypervisor and virtual link
technologies to a level where arbitrary creation
of virtual networks becomes possible.

Programmability in network and services
encompasses the study of decentralized enablers
for dynamic (de)activation and reconfiguration of
new/existing services, including management ser-
vices and network components. AutoI has taken
the challenge to enable trusted parties (users,
operators, and service providers) to activate man-
agement-specific service and network components
into a specific platform. Dynamic programming
enablers will be created as executable service
code, which can be injected/activated into the sys-
tem’s elements to create the new functionality at
runtime. Network and service enablers for pro-

grammability can therefore realize the capabilities
for flexible management support.

Large-scale validation experiments were per-
formed to validate the efficient support of AutoI
service deployment support. Due to the high
quality (in terms of latency and throughput) of
the testbed, the time required to deploy services
was extremely short. However, deploying ser-
vices in less reliable infrastructures requires
more fault-tolerant approaches.

RELATED WORK
The last decade has seen tremendous interest in
all aspects of the future Internet (FI). As a com-
prehensive survey would require more than a
single article, this section describes key initia-
tives in the United States and Europe contribut-
ing to the development of the FI.

From the U.S. perspective, the National Sci-
ence Foundation (NSF) supports four big projects.
Named Data Networking [18] is aiming at an

Figure 7. Basic virtual network with AutoI service deployment support.

ANPI and
services

ANPI and
services

ANPI and
services ANPI and

services
ANPI and
services

ANPI and
services

ANPI and
services

CISP

CISP

CISP
CISP

CISP

CISP

Service repository

CISPClient
Client

CISP

Figure 8. Deployment of ANPIs (solid) and deployment of services (dotted).

Time

14:57:38

15:01:58

15:06:18

15:10:38

15:14:58

15:19:19

15:23:39

4

9

13

0

N
um

be
r

of
 A

N
PI

s
st

ar
te

d

N
um

be
r

of
 s

er
vi

ce
s

st
ar

te
d

4

9

13

0

Table 1. Virtual infrastructure deployment from 10 to 150 VRs.

Deployment
of VR

10PM * 1VR
= 10 VR

10PM * 3VR
= 30 VR

50PM * 1VR
= 50 VR

50PM * 3VR
= 150 VR

Lyon 55 s 3 min 18 s 1 min 38 s 3 min 42 s

Bordeaux 57 s 3 min 7 s 1 min 14 s 4 min 41 s

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 91

IEEE Communications Magazine • December 201192

approach to identify the content to be supported
by the future networks by itself instead of the loca-
tions where it resides. Mobility First [19] is looking
at the inherent challenges of mobility and, in par-
ticular, the use of opportunistic networking to sup-
port communications between end points.
NEBULA [20] is aiming at a cloud computing
architecture as a means to guarantee always avail-
able services. Finally, eXpresive Internet Architec-
ture [21] addresses the growing diversity of network
use models, the need for trustworthy communica-
tion, and the growing set of stakeholders who coor-
dinate their activities. The scope of all these
projects is much broader and concentrated on
issues different than the ones presented in this arti-
cle. None of them use an orchestration plane to
coordinate autonomic systems and do not explicitly
mention the autonomic networking paradigm in
support of service deployment and maintenance.

Closely related to our objectives, we can
mention the TRILOGY, SOCRATES, 4WARD,
and UniverSelf EU projects.

The focus of TRILOGY [22] is on the devel-
opment of the generic control functions of the
network. These control functions deal with rout-
ing mechanisms, resource control, and social and
commercial control. Instead, our approach con-
centrates on a management plane in support of
service deployment.

The scope of the SOCRATES project [23] is
the bottleneck problems created by the mobile
access network and proposes self-* mechanisms
to create a solution. In that sense our approach
adopts the same conceptual solution because the
autonomic Internet as we have conceived it has
to make extensive use of self-* mechanisms.
Nevertheless, the AutoI autonomic approach
goes beyond the access network and makes it an
integral part of the fixed network as well.

4WARD [24] makes use of paravirtualization
systems like the AutoI approach to virtualize
routers and network links. The most important
similarity is the management approach: both
approaches adopt the autonomic paradigm. Nev-
ertheless, the main difference is in the architec-
tural approach. 4WARD highlights the
“in-network management” solution, that is,
embedding the management functionality in the
same managed network devices. Instead, AutoI
creates a multilevel hierarchy involving the service
plane, the distributed orchestration elements, and
the autonomic management systems, which take
care of one or many devices as necessary. Sepa-

rating the management activities in planes and
not associating management functions with man-
aged devices makes our solution scalable and easy
to deploy in current network infrastructures.

UniverSelf [25] is meant to create a frame-
work federating different self-management
approaches to make the FI a global autonomic
management system.

CONCLUDING REMARKS
This work has presented the design and valida-
tion results of an open software-defined network
infrastructure (i.e., a network cloud) that enables
fast and scalable composition of services in an
efficient manner, and the execution of these ser-
vices in an adaptive way, taking into account bet-
ter shared network resources provided by a
virtualized network substrate.

Current communication networks are com-
posed of a set of heterogeneous resources. Virtu-
alizing resources have served two purposes:
managing the heterogeneity through introduction
of homogeneous virtual resources and enabling
programmability of central network elements.
The flexibility gained through this approach helps
to adapt the network dynamically to both unfore-
seen and predictable changes in the network.

The Autonomic Internet service deployment
approach has demonstrated that dynamic pro-
gramming can be used to enable creating new
functionality at runtime over virtual infrastruc-
tures. Executable service code can be injected
and activated into the virtual systems elements
at runtime to give a higher degree of flexibility
in the deployment of services in future networks.

In addition, the adopted approach has revealed
its scalability when large-scale testbeds like Grid
5000 are used. Nevertheless, scalability in such a
complex and multitier system as AutoI requires
much more extensive testing than the experiments
reflected in this article. We mean, for instance,
experiments within scenarios stressing specific
planes or components of planes. Considering the
AutoI architecture, this would likely yield tens of
scenarios. This article reflects the results of scala-
bility tests in one particular scenario. Then we
have to emphasize that our system scales well
under the conditions of this particular scenario,
and that by no means can these results be gener-
alized to different scopes or situations. Additional
testing is in fact part of challenging future work.

ACKNOWLEDGMENT
This work was undertaken in the context of the FP7-
EU AUTOI project and MCYT TEC2009-14598-
C02-02. Large-scale testing was performed in the
Grid 5000 platform, supported by the French Min-
istry of Research. Special thanks to A. Cheniour, O.
Mornard, and S. Clayman for their support.

REFERENCES
[1] ITU-T Rec. Y.3001, “Future Network Vision —Objectives

and Design Goals,” http://www.itu.int/en/ITU-T/focus-
groups/fn/Pages/Default.aspx

[2] B. Rochwerger et al., “An Architecture for Federated
Cloud Computing,” Cloud Computing: Principles and
Paradigms, R. Buyya et al., Eds., Wiley, 2011.

[3] Y. Wang et al., “Virtual Routers on the Move: Live
Router Migration as a Network-Management Primitive,”
ACM Conf. Data Commun. SIGCOMM 2008.

Figure 9. Deployment of 110 ANPIs (solid) and 110 services (dotted).

Time

14:30:12

14:30:23

14:30:35

14:30:47

14:30:59

14:31:10

14:31:22

14:31:34

14:31:57

14:32:09

14:31:46

15:32:21

40

121

0

N
um

be
r

of
 A

N
PI

s
st

ar
te

d

N
um

be
r

of
 s

er
vi

ce
s

st
ar

te
d

40

121

81 81

0

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 92

IEEE Communications Magazine • December 2011 93

[4] N. M. K. Chowdhury, R. Boutaba “A Survey of Network
Virtualization,” Computer Networks, vol. 54, Apr. 2010,
pp. 862–76.

[5] T. Anderson et al., “Overcoming the Internet Impasse
Through Virtualization,” Computer, vol. 38, Apr. 2005,
pp. 34–41.

[6] L. Andersson and T. Madsen, “Provider Provisioned Vir-
tual Private Network (VPN) Terminology,” IETF RFC
4026, Mar. 2005.

[7] A. Galis et al., Programmable Networks for IP Service
Deployment, Artech House, 2004.

[8] N. M. K. Chowdhury and R. Boutaba “Network Virtual-
ization: State of the Art and Research Challenges,” IEEE
Commun. Mag., vol. 47, no. 7, 2009

[9] M. Yu et al., “Rethinking Virtual Network Embedding:
Substrate Support for Path Splitting and Migration,”
ACM SIGCOMM Comp. Commun. Rev., vol. 38, no. 2,
2008, pp. 17–29.

[10] EU IST Autonomic Internet Project web site: http://ist-
autoi.eu.

[11] D. F. Macedo et al., “The Autonomic Internet Approach
for the Orchestration of Next-Generation Autonomic
Networks,” J. Annals of Telecommun., Apr. 2011.

[12] J. Rubio-Loyola et al., “Platforms and Software Sys-
tems for an Autonomic Internet,” IEEE GLOBECOM
2010, Miami, FL, 2010.

[13] D. D. Clark et al., “A Knowledge Plane for the Inter-
net,” IEEE SIGCOMM 2003.

[14] AG Ganek, TA Corbi “The Dawning of the Autonomic
Computing Era,” IBM Sys. J., 2003, vol. 42, no. 1, pp.
5–18.

[15] J. Pattloch et al., “X-WiN: The New German National
Research and Education Network” Praxis der Informa-
tionsverarbeitung und Kommunikation, vol. 29, issue 1,
pp. 50-53.

[16] A. Berl et al., “Using System Virtualization to Create
Virtualized Networks,” J. Electronic Commun. EASST,
vol. 17, 2009, pp. 1–12.

[17] Grid5000 TestBed www.grid5000.fr/
[18] Named Data Networking, http://www.named-

data.net/index.html
[19] Mobility First, http://mobilityfirst.winlab.rutgers.edu/
[20] Nebula, http://nebula.cis.upenn.edu/
[21] eXpressive Internet Architecture,

http://www.cs.cmu.edu/~xia/
[22] EU IST FP7 TRILOGY Project “Re-Architecting the Inter-

net: An Hourglass Control Architecture for the Internet,
Supporting Extremes of Commercial, and Social and
Technical Control” http://www.trilogy-project.org/

[23] EU IST SOCRATES project “Self-Optimisation and self-
ConfiguRATion in wirelEss networkS” http://www.fp7-
socrates.org

[24] EU IST FP7 4WARD Project, http://www.4ward-pro-
ject.eu/

[25] EU IST FP7 UNIVERSELF Project “Realizing Autonomics
for Future Networks” http://www.univerself-project.eu

[26] ITU-T Rec. Y.3001 “Future Networks: Requirements
and Design Goals,” http://www.itu.int/rec/T-REC-Y/e

BIOGRAPHIES
JAVIER RUBIO-LOYOLA (jrubio@tamps.cinvestav.mx) is a
research scientist at CINVESTAV Tamaulipas, México. He
holds an Engineering degree in communications and elec-
tronics, and an M.Sc. degree in digital systems, both from
Instituto Politécnico Nacional of México, and a Ph.D. in
telecommunications from Universitat Politècnica de
Catalunya (UPC) in Barcelona, Spain. He has participated in
a number of Spanish and IST-European research projects,
mainly in the network management area. His research
interests focus on network and service management, auto-
nomic networking, and service engineering.

ALEX GALIS (a.galis@ee.ucl.ac.uk) is a visiting professor at
University College London. He has co-authored seven
research books and more than 150 publications in journals
and conferences in the Future Internet areas: networks,
services, and management. He has acted as PTC chair of 14
IEEE conferences and a reviewer for more than 100 IEEE
conferences (www.ee.ucl.ac.uk/~agalis). He was the techni-
cal coordinator of the AutoI project.

ANTONIO ASTORGA (aastorga@nmg.upc.edu) is pursuing his
Ph.D. in telecommunications at UPC. He holds an Engineer-
ing degree in communications and electronics from Institu-
to Politecnico Nacional of Mexico. Since 2008 he has been
a research assistant of the Management, Pricing and Ser-

vices in Next Generation Networks group (MAPS) chaired
by Prof. Joan Serrat at UPC. He worked on the EU FP7 pro-
ject AutoI. His research interests focus on autonomic net-
working and network management.

JOAN SERRAT-FERNANDEZ (serrat@tsc.upc.edu) received his
degree of Telecommunication Engineer in 1977 and his
doctoral degree in telecommunication engineering in 1983,
both from UPC. Currently he is a full professor at UPC
where he has been involved in several collaborative pro-
jects with different European research groups, through
both bilateral agreements and participation in European
funded projects. His topics of interest are in the field of
autonomic network and service management.

LAURENT LEFEVRE (laurent.lefevre@ens-lyon.fr) obtained his
Ph.D. in computer science in January 1997 at LIP Laborato-
ry (Laboratoire Informatique du Parallelisme) in ENS-Lyon
(Ecole Normale Superieure), France. He is a permanent
researcher in computer science at INRIA (the French Insti-
tute for Research in Computer Science and Control). He is a
member of the RESO team (High Performance Networks,
Protocols and Services) if the LIP laboratory in ENS. He has
co-authored more than 80 papers published in refereed
journals and conference proceedings. His interests include
grid and distributed computing and networking, green and
energy-efficient computing and networking, autonomic
networking, and high-performance networks protocols and
services.

ANDREAS FISCHER (andreas.fischer@uni-passau.de) received
his computer science diploma from the University of Pas-
sau, Germany, in 2008. Since then he has been a scientific
assistant of the Computer Networks and Computer Com-
munications research group chaired by Prof. Hermann de
Meer. His main research interests include autonomic net-
working, network virtualization, and resilience of virtual-
ized environments. He worked on the EU FP7 project AutoI
and is currently involved in the EU FP7 project ResumeNet.
He is a member of the EuroNF Network of Excellence.

ALEXANDRU PALER (alexandru.paler@uni-passau.de) is pursu-
ing his Ph.D. as a research assistant at the University of
Passau. He graduated in computer science from Transilva-
nia University of Brasov, Romania, and obtained his M.Sc.
degree at the University of Applied Sciences Wiesbaden,
Germany. His research focused on distributed systems and
network virtualization. Currently he is investigating fault
detection and diagnosis methods for quantum circuits.

HERMANN DE MEER (demeer@fmi.uni-passau.de) is a full
professor of computer science (Chair of Computer Net-
works and Communications) at the University of Passau,
Germwhere he is director of the Institute of IT Security and
Security Law (ISL). He has been an assistant professor at
Hamburg University, Germany, a visiting professor at
Columbia University, New York, a visiting professor at Karl-
stad University, Sweden, a reader at University College Lon-
don, United Kingdom, and a research fellow of Deutsche
Forschungsgemeinschaft (DFG). He chaired one of the
prime events in the area of quality of service in the Inter-
net, IWQoS 2005, Passau. He has also chaired the first
international workshop on self-organizing systems (IWSOS
2006, Passau) and the first international conference on
energy-efficient computing and networking (e-Energy
2010, Passau).

Figure 10. Deployment of 110 ANPIs (line) with 220 services (dotted).

Time

15:47:59

15:48:52

15:49:46

15:50:39

15:51:33

15:52:27

15:53:20

15:54:14

15:56:01

15:56:54

15:55:07

15:57:48

81

242

0N
um

be
r

of
 A

N
PI

s
st

ar
te

d

N
um

be
r

of
 s

er
vi

ce
s

st
ar

te
d

81

242

161 161

0

RUBIO-LOYOLA LAYOUT 11/17/11 1:12 PM Page 93

