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SUMMARY

A scheduler must consider the heterogeneity and communication delays when scheduling
dependent tasks on a grid. The task scheduling problem is NP-Complete in general, what
led us to the development of a heuristic for the associated optimization problem. In this
work we present a dynamic adaptive approach to schedule dependent tasks onto a grid
based on the Xavantes grid middleware. The developed dynamic approach is applied to
the Path Clustering Heuristic (PCH), and introduces the concept of rounds, which take
turns sending tasks to execution and evaluating the performance of the resources. The
adaptive extension changes the size of rounds during the process’ execution, taking task
attributes and resources performance as parameters, and it can be adopted in other
task schedulers. The experiments show that the dynamic round-based and the adaptive
schedule can minimize the effects of performance losses while executing processes on the
grid.

KEY WORDS: workflow; task scheduling; grid computing

INTRODUCTION

Grid computing has emerged as a distributed environment with high processing power. Any
kind of computational resource can take part in a grid, thus, it is a heterogeneous computing
platform that has different link and processor capacities. Furthermore, a grid is in general not
dedicated, which leads to load variations in links and processors. This dynamic behavior is
responsible for many issues in a grid, including ones concerning the task scheduling problem.
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2 BITTENCOURT L F AND MADEIRA E R M @

An application (or process) may have many tasks to execute, each one with its role in the
process completion. During the process execution a task may need data computed by other
task(s) of the same process, what is called task dependency. Hence, a process is composed
of tasks and its dependencies, constituting a workflow, where tasks that have no dependency
between them can execute in parallel.

In this paper we propose an approach to schedule processes composed of dependent tasks
in the dynamic environment of a grid. The approach is applied to the Path Clustering
Heuristic algorithm (PCH) [2], the Xavantes grid middleware [4] scheduler. The approach is
experimentally evaluated and it shows improvement over a static scheduler. We also propose
an adaptive extension with the purpose of making adjustments to the size of the execution
queue on each resource as the tasks execute.

This paper is organized as follows. First, a brief introduction to the Xavantes middleware
is given, followed by a section with some related works. After that, a section explaining the
dynamic approach in conjunction with the PCH algorithm is presented. Next, an adaptive
extension is mathematically modeled and described as an algorithm. Finally, experimental
results are presented and the paper is closed with the conclusions.

XAVANTES MIDDLEWARE

The Xavantes enacts workflow-like processes, differently from most grid middlewares, which
only support a bag of independent tasks. It is composed of a programming model and a support
infrastructure, which enacts the specified process in a grid environment. For details please refer
to [4].

Xavantes’ programming model allows to specify applications as structured processes,
containing a hierarchy of control constructs to determine the control flow. In a process, an
activity represents an atomic task, and a controller represents a control structure that organizes
the execution order of inner process elements. The controllers can be nested, allowing the
hierarchical specification of the control, similarly to structured programming languages. The
programming model is based in BPEL, and the controllers are specified in the programming
model by the developer. The controllers specification shows to the middleware which tasks are
parallel, which tasks are sequential and how the controllers interact.

A Directed Acyclic Graph (DAG) is used to represent a process: nodes are tasks, labeled with
computational costs; edges are dependency constraints, labeled with communication costs. In
the DAG of the Figure 1, the rectangle 1 represents a parallel controller containing the tasks 7
and 8, and the rectangle 4 represents a sequential controller containing the activities 2, 5 and
10, and the controller 1.

The programming model has some characteristics that restrict on the set of DAGs that can
be developed with it. Actually, some DAGs cannot be “directly” developed. Nevertheless, it
is possible to use shared variables in the controllers to make DAGs generated by the model
to have the same function as any not directly supported DAGs. Also, considering a DAG that
cannot be directly developed using the programming model, it is possible to have a task that
executes the DAG’s subgraph that cannot be written using the programming model. Thus, any
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@ ADAPTIVE TASK SCHEDULING ON GRIDS 3

Figure 1: Task graph example.

DAG can be executed using the Xavantes middleware, but some of them need to be written
in a different way.

A controller knows the execution state of the tasks subordinated to it. Hence, controllers
can provide recovery, dependability, and can facilitate the fault tolerance mechanism, while
they scale well, distributing the process management. In addition, controllers have a shared
memory, which could be used to allocate shared variables, making possible the communication
between parallel tasks.

Xavantes organizes the grid in autonomous groups of distributed resources. For example, a
cluster or a LAN could be a group. In each group there are three kinds of entities: one Group
Manager (GM), one or more Process Managers (PM) and one or more Activity Managers
(AM). The GM is responsible for mantaining a repository of the resources that are in the
group, with informations about bandwidth, processing power, load, etc. These informations
are dynamic and can be updated by the infrastructure when necessary. The PMs are responsible
for executing the controllers and managing the execution of processes, and the AMs are the
workers that execute tasks managed by the PMs.

The main goals of Xavantes are high-performance and reliable enactment of applications. The
hierarchical execution of structured processes in distributed groups of resources leverages the
scalability of the grid. The explicit support to process execution allows better fault tolerance
and scheduling, improving the grid reliability and performance. Also, the concept of controllers
provides distributed management of processes, giving an efficient recovery mechanism. The
development of a good task scheduler for the Xavantes is fundamental to deploy a middleware
that provides a recovey background with efficient process execution.
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RELATED WORK

Task scheduling is studied in homogeneous systems ([9, 14]) as well as in heterogeneous systems
([1, 11, 12]). List scheduling, clustering and task duplication are DAG scheduling techniques
for homogeneous and heterogeneous systems.

The Heterogeneous Earliest Finish Time (HEFT) [12] algorithm uses the list scheduling
technique. First, HEFT computes the rank, value for each task, traversing the graph
backwards. The unscheduled task with the highest rank, value is scheduled on the processor
that gives the smallest estimated finish time for the task. HEFT looks for idle time slots in the
current schedule when scheduling a task. The time complexity of HEFT is O(rn3) [8], where
r is the number of resources and n is the number of tasks of the process. The Critical Path on
a Processor (CPOP) [12] algorithm is similar to HEFT. The main difference is that all nodes
on the DAG’s critical path are scheduled on the same processor.

A DAG meta-scheduler for grids is proposed in DAGMan [6]. It just sends one task at a time
to the scheduler, which schedules the tasks like independent tasks, without knowledge about
dependencies. In [10], a case study on dynamic scheduling for scientific workflow applications
on the grid is presented. It proposes a static reschedule with iterations over the workflow
application, generating a static DAG with the tasks that would be rescheduled on each
iteration. After that, the generated DAG is scheduled, actually performing a reschedule of
its tasks. A dynamic two level scheduling for wide area networks is proposed in [3], where a
top level scheduler consults the second level schedulers to select in which LAN the process will
be executed. There is no way of splitting the process to execute in more than one LAN, what
can lead to higher completion times. Also, all schedulers in the second level must reply each
scheduling request. If there are many requests, this may overload the schedulers.

The PCH algorithm [2] uses a hybrid clustering-list-scheduling strategy to schedule task
graphs on a grid. HEFT, CPOP and other grid task schedulers ([5],[6],[7],[10]) do not consider
the existence of controllers, entities used by the Xavantes middleware to control the process
execution and provide recovery. This can lead to the dispersal of the application tasks, hence
expensive communication costs. PCH is a heuristic that schedules related tasks and controllers
on nearby resources, minimizing their completion times. With both dynamic and adaptive
proposals, the PCH can adjust the schedule according to the performance of the resources.

A DYNAMIC APPROACH

The objectives of a task scheduler include minimizing the execution time (makespan) of a
process, maximizing platform utilization and maximizing throughput. In this work we focus on
the former. In Xavantes, controllers have an important role in the process execution, since they
are responsible for managing the execution and communication of tasks, being able to provide
efficient recovery. So, a communication between two tasks must be via tasks’ controllers, giving
to the controllers the knowledge to make the recovery of tasks when necessary. Combining the
objective of a task scheduler with the exigence of communications to be via controllers, the
scheduler objective is straightforward: minimize the makespan without creating too much
communication overhead between tasks and controllers.
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@ ADAPTIVE TASK SCHEDULING ON GRIDS 5

In [2] we show that the static PCH gives good results in a static heterogeneous environment
with a mesh heterogeneous (no-group) topology. In a dynamic heterogeneous environment there
is a need for a dynamic approach, adapting the resource selection to the dynamic behavior of
the grid. We developed an approach to dynamically schedule workflows, trying to minimize
the effects of a possible performance loss.

A dynamic task scheduler can use, in general, two strategies: schedule all tasks statically
and then reschedule tasks when necessary; or gradually schedule and execute the tasks based
on a priority policy. We have chosen the first strategy because it follows a process FCFS (First
Come, First Served) policy. This means that the first process to arrive is the first process to
end, like in a batch execution of processes. If we choose the second strategy and there are
many process arriving, the first process can delay so much that it would be better to execute it
locally, not in the grid. The PCH makes the initial schedule and then a round-based approach
is applied to reschedule tasks when necessary. Algorithm 1 is an overview of this approach.

Algorithm 1 Dynamic Approach Overview

1: Schedule DAG G using the static PCH Algorithm
2: while not(all nodes of G have finished) do

3 Select tasks to execute according to a policy.

4:  Send tasks of this round to execution.

5:  Evaluate the resources performance.
6
7

Reschedule tasks if necessary.
end while

To make a dynamic schedule of tasks we developed the concept of rounds. On each round
some tasks are selected based on a criterion and sent to execution. Then, the scheduler verifies
the performance obtained on each resource used on that round. If the performance of a resource
is below a threshold, the algorithm reschedules the non executed tasks.

In Xavantes, the scheduler is responsible for detecting and rescheduling tasks that are on
resources with low performance. Fails in resources are detected by the middleware and the
tasks are sent to the scheduler, so it can reschedule them. The process of recovery is handled
by the middleware, using the information provided by the controllers.

Static PCH

The first step of the dynamic scheduling is to schedule the tasks using the static PCH. To
reduce the communication between tasks and controllers, PCH groups paths of the DAG,
creating clusters of tasks. The creation of groups based on paths of the DAG has a good
impact on minimizing the controllers’ communication overhead, since the created clusters
have non parallel tasks of a controller. With a controller executing on the same resource of
most of its tasks, the communication overhead is reduced. For example, in Figure 1 the tasks
4, 6, and 9 are under the controller 3. This way, if tasks 4, 6, and 9 execute in the same
resource of controller 3, the communication cost between these tasks would be 0. Note that
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6 BITTENCOURT L F AND MADEIRA E R M @

any communication between entities executing in the same resource is 0 because the data does
not cross any link.

Definitions

The PCH algorithm uses some graph attributes, calculated as follows.

e Weight (Computation Cost):

instructions;

w, = ———
power,

w; represents the computation cost of the node i in the resource r. Power,. is the processing

power of the resource r, in instructions per second.

o Communication Cost:
datai’j

Crg o )
J bandwidth,
¢;; represents the communication cost between nodes ¢ and j, using the link between the
resources r and ¢, where they are scheduled. If r =1, ¢; ; = 0.

e Priority:
w;, if ¢ is the exit node
Pi=9qw + max (ci,j + P;), otherwise
njEsucc(n;)

P; is the priority level of the node i.

o Earliest Start Time:
Time(ry), ifi=1

max{Time(ry), mazl(( )(ESTh +wp +cpi)}, otherwise
npEpred(n;

EST(ni,rg) =

EST(n;, 1) represents the earliest start time of the node ¢ in resource k. Time(ry) is the
time when the resource k is ready for task execution.

o Estimated Finish Time:
instructions;
EFT(ni,m) = BST(ni, ) + ———t
POwer},

EFT(n;, ) represents the estimated finish time of the node ¢ in the resource k.

The initial values of the attributes are calculated assigning each task to a different processor
in a virtual homogeneous system with an unbounded number of processors. These processors
have the power of the best processor available in the real system, and all links have the highest
bandwidth available in the real system. After the calculation, while there are unscheduled
nodes, the algorithm creates a cluster of tasks, and selects a processor to it. The necessary
information (e.g. available processing power and bandwidth) is given by the infrastructure.
Finally, the algorithm schedules the controllers, trying to minimize their communication costs.
An overview of these steps is in Algorithm 4 and each step is detailed in the next sections.

Copyright (© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezxper. 2000; 00:1-7
Prepared using cpeauth.cls



@ ADAPTIVE TASK SCHEDULING ON GRIDS 7

Task Selection and Clustering

In this step of the algorithm, the heuristic selects tasks to compose clusters. Tasks that are on
the same cluster will be initially scheduled on the same processor. The first node (or task) n;
selected to compose a cluster clsy is the unscheduled node with the highest Priority. It is added
to clsg, then the algorithm starts a depth-first search on the DAG starting on n;, selecting
ns € suc(n;) with the highest P; + ESTs and adding it to clsg, until ng has no unscheduled
successors. Algorithm 2 gives an outline of this strategy.

Algorithm 2 get_next_cluster

n < unscheduled node with highest Priority
cluster < cluster U n
while (n has unscheduled successors) do
Nsuce <= successor; of n with highest P; + EST;
cluster < cluster U Ngyee
N <= Nsuce
end while
return cluster

For our example, we use 4 resources in 2 groups. In one group, resources 0 and 1 with
processing power of 133 and 130, respectively. In the other, resources 2 and 3, respectively
with processing power of 118 and 90. The communication between two resources in the same
group is 10 and between two resources in distinct groups is 5. For the graph in Figure 1
and these resources, the first node added to the first cluster, clsg, is n; (P; = 206), then nqy
(P2 = 1597), ns (P5 == 1422), nr, N0 (PIO == 726) and ni1 (Pll = 15) Then ClSo, which
contains the critical path of the initial DAG, is scheduled according to the processor selection
strategy and the ESTs, EFTs and Weights are recomputed. After that, the unscheduled node
with highest priority is ng (P4 = 143.9), which is added to cls;. Then, ng (Ps = 103.1) and ng
(Py = 70.1) are added to cls;. Because of the structure of the task graphs generated by the
programming model, where fork and join are paired, each cluster has only one successor task.
The other clusters are clsy = {ng} and clss = {ns}.

Processor Selection

The processor selection step is performed after each clustering step. The algorithm creates a
cluster, selects a processor to the created cluster, recalculates the nodes attributes and repeats
these steps until all nodes are scheduled.

We could select a processor to a cluster by minimizing the EF'T of the last task of the cluster.
Another way is to consider also the successor of the cluster’s last task, since if we consider
only the EFT of the last task of the cluster, the communication cost with its successor could
delay the execution. So, the criterion to choose the processor to a cluster is to minimize the
EST of the successor task of the cluster being scheduled. To accomplish this, the first step
is to calculate the EFT of each node of the cluster on each available resource. If the current
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8 BITTENCOURT L F AND MADEIRA E R M @

resource already has a cluster of the same DAG, the tasks are sorted in descending order of
priority to obey the precedence constraints, avoiding deadlocks.

The next step is to calculate the EST of the successor of the last node of the cluster being
scheduled. The first cluster has no predecessors and no successors, since it starts on the process’
first node and ends on the last one. So, having no successors, it is scheduled on the resource
that gives the smallest EFT for its last node. The other clusters have only one successor and
this successor is already scheduled, since, by construction, the last node of the cluster does
not have unscheduled successors. A cluster cls is scheduled on the resource that gives the
smallest EST for the successor of clsi. After the scheduling of each cluster, the Weights, ESTs
and EFTs are recomputed. For the example of Figure 1, clsg is scheduled on resource 0, cls; on
resource 1, and clsy on resource 0, with ng before node nyg, obeying the precedence constraints.
Finally, clss is scheduled on resource 2.

Algorithm 3 get_best_resource

: for all r in resources do
schedule <= Insert cluster in schedule,
calculate_EF T (schedule);
time, < calculate_EST (successor(cluster))
end for
return resource r with the smallest time,.

Controller Scheduling

With all nodes scheduled, each controller must be assigned to a processor that minimizes the
communication with its nodes and with its subcontrollers. Since all communication between
tasks must be via their controllers, the policy of creating clusters based on sequential tasks in
the DAG reduces the communication overhead generated by the controllers. A controller can
be selected to be scheduled if it has no unscheduled subcontrollers. A controller is scheduled
on the resource that minimizes its communication with tasks and other controllers. This step
is done by the schedule_controllers() routine in Algorithm 4, which shows the whole scheduling
algorithm. The final schedule for the example is shown in Figure 2.

Rounds and Dynamic Reschedule

After the initial schedule, the dynamic reschedule is started. First, the algorithm selects only
part of the DAG to be sent to execution. A node n is sent to execution in a round % (of a total
of T rounds) if n has not started its execution and if EFT,, < %ﬁf)’m towith1 <k <T,

TThe makespan is the size of the schedule in a given instant. Thus, before the end of the execution, makespan
is equal to the estimated finish time of the last task of the process. After the process is finished, the makespan
is the real execution time of the process.
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@ ADAPTIVE TASK SCHEDULING ON GRIDS 9

Algorithm 4 PCH Algorithm

1: Assign the DAG to the homogeneous virtual system
2: Compute all tasks attributes

3: while there are unscheduled nodes do

4:  cluster < get_next_cluster()

5. resource < get_best_resource(cluster)

6

7

8

9

Schedule cluster on resource
Recalculate Weights, ESTs and EFTs
. end while
: schedule_controllers()

Figure 2: Schedule obtained for the task graph of Figure 1.

or if the task is the first task on the resource schedule. As the tasks are being executed,
the controllers know the real execution times of each terminated task, so the scheduler can
compare the real execution time with that estimated by the tasks’ attributes calculated by the
algorithm. Trying to not leave a resource idle, the scheduler does not wait the last task of the
resource to finish. Instead, when a resource ends the execution of the penultimate node of a
process scheduled to it, the algorithm calculates the real execution time of the finished tasks
on that resource. Then the algorithm compares this real execution time with the expected
one to know if there must be a reschedule on that resource. If there is a performance loss
higher than a threshold (for example, 10%) in a resource, the tasks that have not started their
execution and are scheduled to that resource are rescheduled using the PCH algorithm. Also,
a new resource processing power is set in the repository (GM), accordingly to the measured
performance. The dynamic PCH is shown in Algorithm 5.

The case where there is only one task of a DAG on a resource in a round deserves special
attention. In this case the scheduler knows that there is performance loss if this unique task
does not finish in the expected time. If it finishes in the expected time and there are more
tasks from the same graph on the resource schedule, there will be an idle time on the processor
until it receives the tasks to the next round. This problem could be solved if the algorithm
sends two tasks to a resource, even if the second one should not be sent on that round. Then,
if there is loss of performance, the second task (and others on the resource’s schedule, if any)
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Algorithm 5 Dynamic PCH Algorithm

1: Schedule DAG G using the PCH Algorithm

2: T < number of rounds

3: for all r that has a node of GG on its schedule do
4:  round, < 1 //First round on all resources

5 N, < not executed nodes of G in r’s schedule with EFT < %
6 Send tasks of N, to execute in 7.

7: end for
8
9

: while not(all nodes of G have finished) do
t < wait_next_task_to_finish() //blocking wait
10: 7 < resource of ¢
11:  total_exec_time, < total_exec_time, + execution_time;
12:  if ¢ is the penultimate task of G in r’s execution queue then

13: if total_exec_time, > expected_exec_time, + threshold then

14: Reschedule not started tasks of » with PCH

15: r < new resource to execute tasks of IV,

16: end if

17: round, < round, + 1 //next round

18: N, <= not started nodes of G in r’s schedule with EFT < %
19: Send tasks of IV, to execute in r.

20: end if

21: end while

could be rescheduled before the end of the first task. If there is no loss of performance, there
is no idle period, since the second task could start just after the first one finishes.

Links can suffer of performance loss too. In this algorithm there is no dynamic mechanism to
address this issue. The static PCH algorithm uses the bandwidth given by the GM repository,
assuming that it is a good forecast. One way of doing this forecast is with the Network Weather
Service (NWS) [13].

ADAPTIVE EXTENSION

After providing a dynamic algorithm to deal with performance losses in resources, now we
propose an adaptive algorithm that adjusts the number of rounds to DAGs of different sizes
and resources with variable performance. The objective of this adaptive extension is to vary
the round size according to the weight of the tasks, the size of the process and the resources
performance. Some characteristics are desirable in the adaptive algorithm:

1. Adapt the size of the rounds according to the weight of the tasks.
2. Adapt the size of each round according to the performance of each resource.
3. Consider the performance history of each resource when deciding the size of the round.
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@ ADAPTIVE TASK SCHEDULING ON GRIDS 11

With this, we developed a mathematical model that shows how these characteristics can be
adopted in the scheduling algorithm. Let:

G be the DAG of the process;

R be the set of resources selected when scheduling G;

M. . be the set of tasks sent to execution on resource r in round k;

S, be the schedule of resource r;

exptimeyy, , = ZteMr,k (EFT:, — EST;,) be the expected execution time of tasks in
M k.

e Performance of resource r in round k = p,j, =

ezp_iEirneMTJC

real-ezec-timeMT 5
.

We now define the execution time of the resource r in the round k + 1, ET} 11, as below:

ZtEG weight(t) . _
ETpy1 = ¢ ’ k=0 (1)
ET,k X prg + |Prk] X rwrd_factor x exp_timeyy, ,, ifk>1

In other words, ET, j represents the size of the round k in the resource r. The algorithm
selects the tasks to send to execution on each round based on this definition, obeying
ZteMM. weight(t) < ETy . Thus, M, will be the tasks of G scheduled in r such that the
sum of their weights is less than or equal to E7}. ;. In the case where the weight of the first
task to be sent to execution is bigger than ET, j, the first task will be the only one sent to
execution on the resource r in the round &k (|M, x| = 1).

The multiplication |p,x] x rwrd_factor x exp_timey,, , works like a “reward”, increasing
the size of the next round each time the resource meets the expected performance. This reward
is given in function of the expected execution time for the last round executed on the resource.
When 0 < p,r < 1, the multiplication is 0, so there is no reward and the multiplication
ET, . X p 1 decreases the round size. On the other hand, when p,.; > 1, the multiplication
ET, ;. X pr increases the round size and there is also a reward. In the particular case where
Dri = 1, the round size is increased only by the reward factor.

Doing avrg-w(G) = W’ and expanding the recurrence (1), we have:
k k k
ET, 41 = avrgw(G) x Hpm- + Z < |pri| X rwrd_factor x exp_timeys, , X H pm-)
i=1 i=1 j=i+1

Analyzing (2), we can identify the desired properties enumerated above. The first property
(adapt the size of the rounds according to the weight of the tasks) is provided by avrg_-w(G).
The product of performance values is like a history of performance of a resource, giving a view
of the achieved performance in the past executions and, in conjunction with the reward factor,
it automatically adapts the round size to each resource executing tasks of G. Note that an
increase in the round size tends to decrease the number of rounds, and a decrease in the round
size tends to increase the number of rounds. An algorithmic view of this strategy is shown in
Algorithms 6 and 7.

In line 1 of the Algorithm 6, the DAG is scheduled using the static PCH algorithm. After
that, in lines 2 to 7 the algorithm generates the M, ; for all resources that have nodes of
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Algorithm 6 Adaptive Dynamic PCH Algorithm

1: Schedule DAG G using the PCH Algorithm

2: for all r € R do

3:  round, <1 //First round on all resources

4:  next_total_exec_time, < avrg-w(G)

5 M, round, < next_tasks_to_execute(M, r, round,, schedule,, exec_time,, erp_time,,

next_total _exec_time,.)

6:  Send tasks of M, round, to execution in r.

7: end for

8: while not(all nodes of G have finished) do

9: ¢ < waitnext_task_to_finish() //blocking wait
10:  r < resource of ¢
11:  exec_time, < exec_time, + real_execution_time,
12:  if ¢ is the last task of G in r’s execution queue then

13: round, < round, + 1 //next round

14: new_r < r

15: if exec_time, > exp_time, + threshold then

16: Reschedule not started tasks of » with PCH

17: new_r < new resource selected to execute tasks of schedule,

18: end if

19: Mew_rroundnes.. < hext_tasks_to_execute(M, new.r, round,, schedulepey._r,
exec_time,, exp_time,, next_total_exec_time,)

20: Send tasks of My,cw_r.round, .., t0 €xecute in new_r.

21:  end if

22: end while

G on its schedule. The first round on all resources will have the size of the average weight
of nodes in G (line 4). Line 5 generates the set M, for each resource and then this set is
sent to execution in line 6. The loop in line 8 iterates until the process execution finishes.
Line 11 accumulates the real execution time of tasks that are finished. Line 12 verifies if the
finished task is the last task of the round on the resource. If yes, the algorithm goes to the
next round on that resource. Line 15 verifies the necessity of reschedule by comparing the real
execution times accumulated in line 11 with the expected execution time, calculated from the
DAG attributes. The algorithm generates the new Mew_r roundne._. (line 19) and sends it to
execution on resource new_r (line 20). Note that new_r can be the same resource as r in two
cases: first if r performed as expected, second if the reschedule results in the same schedule
(i-e. there is no better resource to execute the remaining tasks).

The Algorithm 7 is the adaptive extension that generates the set M, ; according to the
performance of the resources on each round. In lines 2 to 4 the algorithm calculates the
performance of the resource on the last round (line 2) and assigns the size of the next round
to the variable next_total exec_time, (line 3). Line 4 excludes the already executed tasks from
the queue. If it is the first round, lines 2 to 4 should not be executed (line 1), since there
is no performance to evaluate and there is no already executed tasks on the resource. Then,
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Algorithm 7 next_tasks_ to_execute(M, r, round,, schedule,, exectime,, exp_time,,
next_total_exec_time,)

1: if round, > 1 then
exp_time,

2 ppE—
real_exec_time,

3 next_total_exec_time, < next_total _exec_time, X p, + |p,| X rwrd_factor x exp_time,
4. tasks_to_execute < schedule, — started_tasks, //set operation

5. end if

6: My round, < first_task_of(task_to_execute,) / /My round, has only the first task of the queue
7: tasks_to_evecute < tasks_to_execute — My round, //set operation

8 = EFTt — ESTt

9: while exec_timeyy, .., < nexttotal_exrectime, do

10:  t < first_task_of(tasks_to_execute,)

11:  if exec_timeps + (EFTy — EST;) < next_total_exec-time, then

rroundy

1 exec_timeny

r,roundpr

12: My round, <= M, Ut
13: tasks_to_execute < tasks_to_execute — t
14: exectimens, ,,.nq,. = exvectimeny, ... + (EFT; — EST;)

15:  end if
16: end while
17: return M, round,

the algorithm assigns the first not executed task to the variable M, ounq,. While the sum
of the weights of the tasks in My round, is less than the size of the current round (line 9),
the algorithm keeps taking the first task of the queue (line 10) and, if there is room to the
task (line 11), it is added to My rouna, (line 12), always accumulating the total weight in the
variable exec_time (line 14) and taking the tasks out of the queue (line 13).

r,round,

EXPERIMENTAL RESULTS

In the chosen strategy, where reschedule is made after an initial static schedule, the results
of the dynamic approach are extremely dependent on the initial static schedule. So, it is
important to have consistent results for the PCH to give to the dynamic approach a good
initial makespan. Thus, first we compared the static PCH algorithm with HEFT and CPOP
algorithms, then, we compared the static and dynamic PCH. After that, we compared the
dynamic PCH with and without the adaptive extension. Fifteen graphs supported by the
programming model were randomly taken for the experiments, with number of nodes between 7
and 82. The algorithms were executed with controllers (communication between tasks were via
controllers) and without controllers (direct communication between tasks) and with random
values in communication and computation costs. Medium communication means that the
communication and computation costs were randomly generated in the same interval (from
500 to 1100 time units). High communication means all communication costs (from 1100 to
1600 time units) were higher than all computation costs (from 500 to 1100 time units). The

Copyright (© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezxper. 2000; 00:1-7
Prepared using cpeauth.cls



14 BITTENCOURT L F AND MADEIRA E R M @

Medium Communication Medium Communication
2.4

22

. . . . . . . .
5 10 15 20 25 5 10 15 20 25

Number of groups Number of groups
HEFT/Controllers —+— HEFT —&— HEFT/Controllers —+— HEFT —&—
PCH/Controllers —=— PCH —=— PCH/Controllers —<— PCH —=—
CPOP/Controllers —x— CPOP —o— CPOP/Controllers —x— CPOP —o—
Figure 3: Average SLR. Figure 4: Average Speedup.

experiments were made simulating a group topology, as described in the Xavantes Middleware
section. For each number of groups, varying from 2 to 25, each graph was scheduled 1000
times. Each group had a random number of heterogeneous resources, varying from 1 to 5.

The main comparison metrics used in the literature are the Schedule Length Ratio (SLR)
and the speedup. The SLR shows how many times the schedule length is bigger than the
execution of the critical path of the DAG on the best resource available. The speedup shows
how many times faster is the execution with the current schedule than the sequential execution
of all tasks on the best resource. The number of times an algorithm gives a better schedule
than another is also a comparison metric.

Static PCH evaluation

Figures 3 and 4 show the average SLR and speedup for medium communication. With
controllers PCH gives better results than HEFT and CPOP with any number of groups.
Without controllers PCH gives results similar to HEFT, with PCH getting better when
increasing the number of groups.

In a high communication scenario, the graphics’ shapes are similar to that with medium
communication, but with increasing advantage for the PCH, since the clusters created by PCH
groups coupled tasks, suppressing the communication between them. In a low communication
scenario, with controllers PCH is better than HEFT and CPOP, while without controllers it
is only better than CPOP. In general, the results with controllers are worse than that without
them. This is because controllers generate overhead to provide recovery. However, an important
aspect of the SLR and speedup results is that, with more than 5 groups, results of PCH with
controllers are better than results of CPOP without controllers. Thus, the clustering strategy
adopted by PCH can make the overhead of controllers be low, giving to the infrastructure
as a whole recovery, dependability and fault tolerance, provided by the controllers, with high
performance.
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The results show that as higher is the communication between tasks, better is the
PCH performance. It is explained by the clustering of dependent tasks that suppresses the
communication costs.

Dynamic PCH evaluation

The previous experiments indicate that PCH gives good results in a system without variations
on resources performance with a group topology. In a grid the resources may not be dedicated,
what implies in performance variations. We compared PCH with and without dynamic
reschedule. No reschedule means that all tasks are executed in the resources given by the initial
schedule, no matter their performance, and reschedule means that the tasks are rescheduled
according to the resources performance. Note that there is no reallocation of tasks, so there
is no overhead of moving tasks, since the reschedule is made before the tasks are sent to
execution. To determine the resources performance, we first generated a pattern of resources
performance based on some measurements made on computers in our laboratories. Using this
pattern, in the beginning of the simulation, we generate processing powers for each task to
be executed. These processing powers are the same for the execution of each algorithm. The
results for executions with a total of 2, 3, and 4 rounds with medium communication and
resource performance variation are shown in Figures 5 and 7.

The difference between the results with and without reschedule increases with the number
of rounds. For example, with 10 groups and medium communication the absolute differences
between the average SLR with and without reschedule are 0.33, 0.69 and 0.93 for 2, 3 and 4
rounds, respectively. For the speedup, these differences are 0.06, 0.13 and 0.18, and for the
number of best schedules 2,381; 4,158 and 4,993. In a high communication, for the number
of best schedules the differences are 2317, 4624 and 5493. The SLR and Speedup for high
communication are shown in Figures 6 and 8. Note that the little difference in the curves
without reschedule for 2, 3 and 4 rounds are due to the random parameters used in the
simulations. However, what is important to note are the differences between the results for
the same number of rounds. These differences are not affected by differences in resources
performance, since the same performance values are used on each simulation with the same
number of rounds.

In an environment with performance variation, the dynamic approach improves the results
over the static PCH. The results are better as higher is the number of rounds, since in each
round the performance achieved in the execution of tasks is measured, giving a new view of
the resources power and providing a reschedule opportunity.

Adaptive extension evaluation

After providing evaluations of the static and dynamic PCH, we now evaluate how the proposed
adaptive extension behaves. Figures 9 and 10 show the results for the comparison between
the dynamic PCH with and without reschedule, and the dynamic PCH with the adaptive
extension, in simulations with medium communication. As in the previous experiment, we
executed simulations with the dynamic PCH considering performance variations in resources,
with and without reschedule, but in these graphics the results for executions with the adaptive
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Medium Communication
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Figure 6: Average SLR with reschedule
and high communication.

Figure 5: Average SLR with reschedule
and medium communication.
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Figure 8: Average speedup with reschedule
and high communication.

Figure 7: Average speedup with reschedule
and medium communication.

extension are shown. The number of rounds varies from 2 to 4 in executions of the dynamic
PCH without the adaptive extension, and these executions are compared against executions
with the adaptive extension. The adaptive algorithm does not have a defined number of rounds.
In the figures, the keys T rounds/Adaptive have the number of rounds to show that the curve
with T" rounds of the adaptive extension should be compared with executions of the dynamic
PCH with T rounds. The adaptive algorithm was executed with rwrd_factor = 0.05. Other
simulations performed with different rwrd_factor have shown that if this factor is too high
(> 0.30), it can make the performace worse, since it will make the rounds bigger, reducing the
number of rounds in a non desirable way. Considering this, the reward factor could be adjusted
according to the expectations about the performance of each resource.

The number of best schedules with the adaptive algorithm ranges from 4, 000, for simulations
with 2 groups, to 8,000, for simulations with 25 groups. With the dynamic PCH with
reschedule, this range is from 2,000 to 1,000. The range without reschedule is from 2,500
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to 3,400. The number of best schedules shows that the PCH with the adaptive extension gives
more best schedules than the dynamic PCH with reschedule and without reschedule, which
suggests that the adaptive algorithm improves the results of the dynamic PCH. We can also
conclude that the algorithm with the adaptive extension improves more the results of the
dynamic PCH with reschedule than the results without reschedule, because the range of best
schedules with reschedule is below the range without reschedule, inverting what is shown in
the previous experiment. In spite of this, the dynamic PCH continues to give better average
SLR and speedup than the static one, as shown in Figures 9 and 10. A reason for this is
because ties are not shown in the number of best schedules, and there are more ties where
both the dynamic PCH with reschedule and the adaptive PCH are better than the dynamic
PCH without reschedule. Also, as higher is the number of groups, better is the performance
of the adaptive algorithm, since there are more options of resources when rescheduling tasks.

The speedup and SLR results (Figures 9 and 10) show that the adaptive extension can
provide faster executions in average when compared to the dynamic PCH without the
extension. As expected, as higher is the number of rounds, the dynamic PCH with reschedule
tends to approximate its results to that with the adaptive extension, since increasing the
number of rounds gives better results to the dynamic PCH with reschedule.

The dynamic adaptive PCH can handle the performance loss in resources and the round-
based strategy with the adaptive extension can be applied to other heuristic-based task
scheduling algorithms. Within the Xavantes middleware, the clustering strategy of PCH
results in low controllers’ communication overhead, providing a recovery mechanism, through
controllers, allied to a good performance, as shown by the experiments.

CONCLUSION

This paper presents a dynamic adaptive approach for task scheduling in heterogeneous dynamic
systems. The algorithm was developed to work with PCH and the Xavantes grid middleware,
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providing support to controllers. The strategy of constructing clusters based on sequential
tasks gives good performance when controllers are considered and also when communication is
medium or high and controllers are not considered, with time complexity O(rn?). The dynamic
approach deals with performance loss in resources, sending parts of the process to execution
at each round. As the number of rounds increases, better are the results, since there are more
resources measurements during the execution of a process. The presented adaptive extension
regulates the size of the rounds on each resource, using the resources performance as the
main parameter, and the introduced concept of adaptive rounds can be applied to other DAG
scheduling systems, adapting them to resources with variable performance.

As future work the algorithm could be modified to handle parallel scheduling and concurrent
process execution, and to deeply address the link performance loss issue. Also, a reallocation
policy could be developed to move big tasks that are on resources with poor performance.
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