
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 1

Task and Core-based
Automated Fault Tolerance in

High-Performance Computing Systems
Blesson Varghese, Member, IEEE, Gerard McKee, Member, IEEE,

and Vassil Alexandrov, Member, IEEE

Abstract—High-performance computing systems require manual intervention if one or more computing cores fail. This places a
cost on the maintenance of computing tasks. Intelligent approaches which can proactively detect computing core failures and take
action to relocate the computing core’s task onto reliable cores can make a significant step towards automating fault tolerance in
high-performance computing systems. This paper describes an experimental investigation into multi-agent approaches to bring
in this intelligence to high-performance computing systems. Three approaches are studied to incorporate agent intelligence with
high-performance computing systems; the first at the task level, the second at the core level and the third both at the task and
core level. The approaches are investigated for single core failure scenarios that can occur in the execution of parallel reduction
algorithms on computer clusters. The key result is that a task can be relocated without manual intervention and with a time delay
in the order of milliseconds.

Index Terms—Automated Fault Tolerance, Intelligent Agents, Intelligent Cores, Multi-Agent System.

F

1 INTRODUCTION

THE scale of resources and computations in high-
performance computing systems is significantly

increasing. With this increase the resultant number of
failures will increase and the time towards a failure
will decrease [1][2][3][4]. A key challenge in main-
taining the operation of high-performance computing
systems in the event of failure is addressed under
research in fault tolerance.

The conventional fault tolerant mechanism that is
employed in many computing systems is checkpoint-
ing, which involves the periodic recording of interme-
diate states of execution of a process to which execu-
tion can be returned if a fault occurs. Such traditional
fault tolerant mechanisms, however, are challenged
by drawbacks such as single point failures, lack of
scalability and communication overheads, which pose
a constraint in achieving efficient fault tolerance when
applied to high-performance computing systems.

• B. Varghese is a Postdoctoral Fellow at the Faculty of Com-
puter Science, Dalhousie University, Halifax, Canada. E-mail: vargh-
ese@cs.dal.ca; Webpage: http://www.blessonv.com (Corresponding Au-
thor)

• G. McKee is the Dean of the Faculty of Computing and IT, Baze
University, Abuja, Nigeria. Formerly, he was Senior Lecturer in
Networked Robotics at the School of Systems Engineering, University
of Reading, UK. E-mail: gerard.mckee@bazeuniversity.edu.ng

• V. Alexandrov is ICREA Research Professor in Computational Science
at the Barcelona Supercomputing Centre, Barcelona, Spain. Formerly,
he was the Director of the Centre for Advanced Computing and Emerg-
ing Technologies (ACET) and Professor in Computational Science at
the School of Systems Engineering, University of Reading, UK. E-
mail:vassil.alexandrov@bsc.es

Moreover, many of the traditional fault tolerant
mechanisms are manual methods and require hu-
man administrator interventions to isolate recurring
faults. Self-managing fault tolerant mechanisms are
therefore required. However, such mechanisms are
not readily available. Therefore, the objective of the
research reported in this paper is the development of
approaches which incorporate automated methods for
fault tolerance.

Three approaches, firstly, an approach incorporat-
ing agent intelligence, secondly, an approach incorpo-
rating core intelligence, and thirdly, a hybrid approach
are proposed as means of achieving both the computa-
tion and incorporating self-managing fault tolerance.
In the first approach, automated fault tolerance is
achieved by a collection of agents which can freely
traverse on a network of computing cores. Each agent
carries a task to be executed on a computing core in
the form of a payload. Fault tolerance in this context
can be achieved since an agent can move on the
network of cores, which is effectively moving a task
from one computing core onto another.

In the second approach, automated fault tolerance
is achieved by considering the computing cores as
a landscape to be intelligent. The cores can move
processes executed on them across the landscape.
Fault tolerance in this context can be achieved since a
core can migrate a process executed on it onto another
core.

In the third approach, these two forms of intelli-
gence are combined in a hybrid approach. The task
to be executed on a computing core is mapped onto



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 2

a set of agents which are released onto the landscape,
which is in turn an abstraction of the network of
computing cores. The three approaches operate at
the middle levels, transforming the set of agents into
fault-tolerance-aware agents and the computational
platform into fault-tolerance-aware cores, and a com-
bination of these.

The remainder of this paper is organised as fol-
lows. Section 2 presents a review of work relevant to
fault tolerance. The following three sections propose
three fault tolerant approaches - Section 3 considers
the first approach which incorporates agent-based
intelligence, Section 4 considers the second approach
which incorporates core-based intelligence and Sec-
tion 5 considers a hybrid approach which combines
the first and second approach. Experimental studies
are presented in Section 6. The paper is concluded in
Section 7.

2 LITERATURE REVIEW

A review of literature related to fault tolerance led
to a classification of research in fault-tolerance. The
classifications are as follows:

(i) Based on when a response to mitigate a failure is
initiated relative to the occurrence of the failure.

(ii) Based on where the fault tolerant strategy is
implemented.

(iii) Based on the study of faults for implementing
fault tolerant strategies.

(iv) Based on the spatial locality of the faults.
(v) Based on when a fault tolerant strategy is selected

or when it comes to play.
(vi) Based on the location of control of the fault

tolerant strategies.
(vii) Based on the dependence on the algorithm being

executed.
(viii) Based on the underlying strategy.

Fault tolerance based on when a response to miti-
gate a failure is initiated relative to the occurrence of
the failure can be separated out as proactive, reactive
and adaptive. In proactive fault tolerance, an attempt
is made to predict a failure of a compute resource
before it occurs and then relocate a task executing
on it onto another resource. For example, proactive
fault tolerance can be achieved by failure prediction
followed by process migration presented in [5], [6],
[7], [8].

In reactive fault tolerance, an attempt is made to
minimise the impact of a failure after it has occurred.
Traditional mechanisms such as checkpointing [9],
[10], rollback recovery [11], [12], [13], [14] and mes-
sage logging [15], [16], [17] are useful for reactive fault
tolerance.

A hybrid of both reactive and proactive fault tol-
erance, referred to as adaptive fault tolerance, is im-
plemented so that failures that cannot be predicted

in proactive strategies are handled by the reactive
strategies [18], [19], [20], [21], [22], [23].

Based on which layer of a system the fault tolerant
strategies are implemented can be separated out as
hardware, middleware, application (even called as
software or algorithm) fault tolerance. Hardware fault
tolerance considers low-level failure mitigation of the
processor or its circuitry [24], [25], [26]. In this level,
transient faults commonly occur which changes the
state of a transistor [27]. Strategies to overcome fail-
ures are often derived through physical fault injection
[28], [29] through (a) the processor pins [30], (b) heavy
ion radiation [31], (c) electromagnetic interference [32]
and (d) lasers [33].

Middleware fault tolerant strategies are incorpo-
rated between an application and the underlying soft-
ware. A programmer is provided with the flexibility to
incorporate methods, procedures and functions whose
fault tolerance is dealt by the supporting libraries.
For example, FT-MPI (Fault Tolerant Message Passing
Interface) is an extension of the MPI library incor-
porating fault tolerant functions [34]. Checkpointing
is incorporated in a number of middleware libraries
such as [35] and [36].

Application based fault tolerant strategies are im-
plemented within algorithms that are not fault tol-
erant inherently. A programmer can (a) include a
strategy that is supported by the middleware and
embed it within the algorithm [37], or (b) incorporate
a strategy that may be invoked during execution or (c)
invoked at run-time [38]. Failsafe fault tolerance [39],
[40] and Algorithm-based fault tolerance (ABFT) [41],
[42], [43], [44] are two examples. Other application
fault tolerant strategies are reported in [45], [46], [47],
[48], [49], [50], [51].

Offline strategies and Production/Online strategies
are two distinctions based on the study of faults for
implementing fault tolerant strategies. Offline meth-
ods are typically used to remove design and imple-
mentation faults and to derive fault tolerant strate-
gies. Fault injection is an example of offline meth-
ods in which faults are generated using hardware-
based (or physical considered above), software-based,
simulation-based, emulation-based or a hybrid of one
or more models [52], [29]. A wide variety of tools
that incorporate these models are available. For exam-
ple, FERRARI [53], LFI [54] and Xception [55]. Data-
mining is another technique for offline strategies [56].

Production/online strategies are incorporated for
real-time use. Checkpointing, a conventional strategy
is a typical example [9], [10], [57].

The spatial locality of where failures occur de-
termines the strategies that need to be chosen for
fault tolerance. Local failures ranging due to a single
node to a small collection of nodes or related soft-
ware component(s), may only require conventional
centralised (single or multiple server) checkpointing
[58]. However, non-local failures that are dispersed



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 3

geographically for a large-scale system may require
a scalable [59], [60], [61], [62], distributed [9] and
diskless checkpointing strategy [63], [64], [65].

The control of a fault tolerant strategy can either be
centralised or distributed. In strategies incorporating
centralised fault tolerant control, there may be a single
server used for backup and a single daemon respon-
sible for monitoring processes that are executed on a
network of nodes. For example, a traditional and cen-
tralised message logging or checkpoint strategy is a
classic example. Such mechanisms (a) are susceptible
to single point of failures, (b) cannot scale over a large
network of nodes, (c) have large overheads, and (d)
require large disk storage.

Distributed fault tolerant control on the other hand
lends for greater scalability and reliability. Distributed
diagnosis [66], [67], distributed checkpointing [9], [68],
[69] and diskless checkpointing [70], [63], [64] are
strategies that address distributed fault tolerant con-
trol.

Fault tolerance based on the dependence of al-
gorithms can be separated out as algorithm depen-
dent and algorithm independent. Algorithm depen-
dent strategies, for example as presented in [71], are
strategies that may be computationally effective for
a specific system. Algorithm independent strategies
may be applied to any application. For example,
middleware strategies are algorithm independent.

Based on the underlying mechanism incorpo-
rated, fault tolerant strategies can be identified as
checkpoint-based, replication-based or redundancy-
based, migration-based and agent-based. Checkpoint-
based mechanisms can either be further separated out
on the basis of strategies [72] and coordination [78].
MPI checkpointing [10], [9], optimal checkpointing
[73], [74], cooperative checkpointing [75], [76] and
adaptive checkpointing [72], [77] are based on strate-
gies. Based on coordination, checkpointing can be
separated as uncoordinated checkpointing [79], [80],
coordinated checkpointing [81], [82] and communica-
tion induced checkpointing [83], [84].

Replication-based mechanisms can replicate either
one or a set of (a) the program, (b) the executing pro-
cess, (c) the data employed by the process, (d) the state
of the process and (d) the checkpoints. Replication-
based mechanisms are reported in [85], [1], [58], [86].

Migration-based mechanisms [87], [6], [88], [89] are
important to relocate a process from one computing
node onto another. Migration can be (a) based on
state information [90] - minimal state, full state or
distributed state, (b) based on level of migration [91] -
kernel-level, user-level or application-level, (c) based
on hierarchical level - high level [92] or low-level [93]
and (d) based on geographic nature - geographically
dispersed [94] or geographically closed [95].

Agent-based mechanisms support mobility and co-
ordination that are useful for distributed fault tol-
erance strategies. In [96], the fault tolerant strategy

incorporates three types of agents, namely the actual
agent, the witness agent and the probe agent for
exchanging data and resource sharing. Autonomous
Cooperation System (ACS) [97], FAult TOlerance of
the Mobile Agent System (FATOMAS) [98], Dynamic
Agent Replication eXtension (DARX) [99], the Fault
Tolerant Control System in [100] and DimaX [101] are
examples.

In the next sections, three fault tolerant approaches
for high-performance computing systems are pro-
posed and implemented. These approaches are: (i)
based on proactive fault tolerance, (ii) implemented
on an algorithm level, (iii) available for production,
(iv) capable to handle non-local faults, (v) controlled
in a distributed manner, (vi) algorithm independent,
and (vii) migration and agent based strategies. The
first approach proposed in Section 3 considers agent
intelligence which can be achieved through process
migration. The second approach presented in Sec-
tion 4 incorporates core intelligence using proces-
sor virtualisation. A hybrid combining both forms
of intelligence is incorporated in the third approach
considered in Section 5.

3 APPROACH 1: FAULT TOLERANCE INCOR-
PORATING AGENT INTELLIGENCE

A task, T , which needs to be executed on a large-
scale system is decomposed into a set of sub-tasks
T1, T2 · · ·Tn. Each sub-task T1, T2 · · ·Tn is mapped
onto agents A1, A2 · · ·An that carry the sub-tasks as
payloads onto the cores, C1, C2 · · ·Cn of the landscape
as shown in Figure 1. The agents and the sub-task are
independent of each other; in other words, an agent
acts as a wrapper around a sub-task to situate the
sub-task on a core.

There are three computational requirements of the
agent to achieve successful execution of the task: (a)
The agent needs to know the overall task, T , that
needs to be achieved, (b) The agent needs to access

Fig. 1: The task, sub-tasks, agents, virtual cores and
computing cores in the three approaches proposed for
automated fault tolerance



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 4

Fig. 2: Agents A1, A2 and A3 are situated on cores
C1, C2 and C3 respectively. A failure is predicted on
core C1. The agent A1 moves onto core Ca.

data required by the sub-task it is carrying and (c)
The agent needs to know the operation that the sub-
task needs to perform on the data. The agents then
displace across the landscape to compute the sub-
tasks.

Intelligence of an agent can be useful in at least four
important ways for achieving fault tolerance while
a sub-task is executed. Firstly, an agent knows the
landscape in which it is located. Knowledge of the
landscape is threefold which includes (a) the knowl-
edge of the computing core on which the agent is
located, (b) knowledge of other computing cores in
the vicinity of the agent and (c) knowledge of agents
located in the vicinity.

Secondly, an agent identifies a location to situate
within the landscape. This is possible by gathering
information from the vicinity using probing processes
and is required when the computing core on which
the agent is located is anticipated to fail.

Thirdly, an agent predicts failures that are likely to
impair its functioning. The prediction of failures (for
example, due to the failure of the computing core) is
along similar lines to proactive fault tolerance.

Fourthly, an agent is mobile within the landscape. If
the agent predicts a failure then the agent can relocate
onto another computing core thereby moving off the
task from the core anticipated to fail (refer Figure 2).

The intelligence of agents is incorporated within
the following sequence of steps that describes an
approach for fault tolerance:

Agent Intelligence Based Fault Tolerance

Step 1: Decompose a task, T , to be executed on the
landscape into sub-tasks, T1, T2 · · ·Tn

Step 2: Each sub-task provided as a payload to
agents, A1, A2 · · ·An

Step 3: Agents carry tasks onto computing cores,
C1, C2 · · ·Cn

Step 4: For each agent, Ai located on computing
core Ci, where i = 1 to n

Step 4.1: Periodically probe the computing
core Ci

Step 4.2: if Ci predicted to fail, then
Step 4.2.1: Agent, Ai moves onto

an adjacent computing
core, Ca

Step 4.2.2: Notify dependent
agents

Step 4.2.3: Agent Ai establishes
dependencies

Step 5: Collate execution results from sub-tasks

3.1 Failure Scenarios

Two core failure scenarios are considered for the agent
intelligence based fault tolerance concept. In the first
scenario, it is assumed that there are no failures of
cores adjacent to the core anticipated to fail in any
time step of the execution of a task. In the second
scenario, however, a failure of a core adjacent to the
core predicted to fail is possible.

The communication sequence in the first scenario
as shown in Figure 3 is as follows. The hardware
probing process on the core anticipating failure, CPF

notifies the failure prediction to the agent process,
PPF , situated on it. The agent then creates a new
process on an adjacent core and transfers data it was
using onto the newly created process. Then the in-
put dependent (PID1 · · ·PIDn) and output dependent
(POD1 · · ·PODn) processes are notified. The agent pro-
cess on CPF is terminated thereafter. The new agent
process on the adjacent core establishes dependencies
with the input and output dependent processes.

The communication sequence in the second sce-
nario as shown in Figure 4 is similar to the first
scenario. The hardware probing process on the core
anticipating failure, CPF notifies the failure prediction
to the agent process, PPF , situated on it. However,
in the second scenario since the failure of a core
adjacent to the core predicted to fail is possible it
is necessary that the predictions of the hardware
probing processes on the adjacent cores be requested.
Once the predictions are gathered, the agent process,
PPF , creates a new process on an adjacent core and
transfers data to it. The input and output dependent
processes are notified and the agent dependencies
with these processes are reinstated. The agent process,
PPF is terminated.

4 APPROACH 2: FAULT TOLERANCE INCOR-
PORATING CORE INTELLIGENCE

A task, T , which needs to be executed on a large-
scale system is decomposed into a set of sub-tasks
T1, T2 · · ·Tn. Each sub-task T1, T2 · · ·Tn is mapped
onto the virtual cores, V C1, V C2 · · ·V Cn, an abstrac-
tion over C1, C2 · · ·Cn respectively as shown in Figure
1. The cores referred to in this approach are virtual
cores which are an abstraction over the hardware



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 5

Fig. 3: Communication sequence in the first scenario of agent intelligence based fault tolerance

Fig. 4: Communication sequence in the second scenario of agent intelligence based fault tolerance

computing cores. The virtual cores are a logical rep-
resentation and may incorporate rules to achieve in-
telligent behaviour.

Intelligence of a core is useful in a number of ways
for achieving fault tolerance. Firstly, a core updates
knowledge of its surrounding by monitoring adjacent
neighbours. Independent of what the cores are exe-
cuting, the cores can monitor each other. Each core
can ask the question ‘are you alive?’ to its neighbours
and gain information.

Secondly, a core periodically updates information
of its surrounding. This is useful for the core to know
which neighbouring cores can execute a task if it fails.

Thirdly, a core periodically monitors itself using a
hardware probing process and predicts if a failure is
likely to occur on it.

Fourthly, a core can move a task executing on it onto
an adjacent core if a failure is expected and adjust to
failure as shown in Figure 5. Once a task has relocated
all data dependencies will need to be re-established.

The following sequence of steps describe an ap-

Fig. 5: Tasks T1, T2 and T3 are situated on virtual cores
V C1, V C2 and V C3 respectively. A failure is predicted
on core C1 and V C1 moves the task T1 onto virtual
core V Ca.

proach for fault tolerance incorporating core intelli-
gence:

Core Intelligence Based Fault Tolerance
Step 1: Decompose a task, T , to be executed on the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 6

Fig. 6: Communication sequence in the first scenario
of core intelligence based fault tolerance

landscape into sub-tasks, T1, T2 · · ·Tn

Step 2: Each sub-task allocated to cores,
V C1, V C2 · · ·V Cn

Step 3: For each core, V Ci, where i = 1 to n until
sub-task Ti completes execution
Step 3.1: Periodically probe the computing

core Ci

Step 3.2: if Ci predicted to fail, then
Step 3.2.1: Migrate sub-task Ti on

V Ci onto an adjacent
computing core, V Ca

Step 4: Collate execution results from sub-tasks

4.1 Failure Scenarios

Two core failure scenarios are considered for the agent
intelligence based fault tolerance concept. The first
and the second scenarios are both similar to the failure
scenarios considered for the approach incorporating
agent intelligence.

In the first scenario as shown in Figure 6, the
communication sequence is as follows. The hardware
probing process on the core predicted to fail, CPF

notifies a predicted failure to the core. The task ex-
ecuted on V CPF is migrated onto an adjacent core
V C1 · · ·V Cn.

The second scenario as shown in Figure 7, is similar
to the first scenario. The predictions of the hardware
probing processes on the adjacent cores are requested
once the core predicted to fail is notified of the failure.
The task executed on V CPF is then migrated onto
an adjacent core once a decision based on failure
predictions are received from the hardware probing
processes of adjacent cores.

5 APPROACH 3: FAULT TOLERANCE INCOR-
PORATING HYBRID INTELLIGENCE

The hybrid approach acts as an umbrella bringing
together the concepts of agent intelligence and core
intelligence considered in Section 3 and Section 4. The
key concept of the hybrid approach lies is the mobility
of the agents on the cores and the cores collectively
executing a task. Decision-making is required in this

Fig. 7: Communication sequence in the second sce-
nario of core intelligence based fault tolerance

approach for choosing between the agent intelligence
and core intelligence approaches when a failure is
expected.

The hybrid intelligence is incorporated within the
following sequence of steps that describes an ap-
proach for fault tolerance:

Hybrid Intelligence Based Fault Tolerance
Step 1: Decompose a task, T , to be executed on the

landscape into sub-tasks, T1, T2 · · ·Tn

Step 2: Each sub-task provided as a payload to
agents, A1, A2 · · ·An

Step 3: Agents carry tasks onto virtual cores,
V C1, V C2 · · ·V Cn

Step 4: For each agent, Ai located on virtual core
V Ci, where i = 1 to n

Step 4.1: Periodically probe the computing
core Ci

Step 4.2: if Ci predicted to fail, then
Step 4.2.1: if ‘Agent Intelligence’ is a

suitable mechanism, then
Step 4.2.1.1: Agent, Ai, moves

onto an adjacent
computing core,
V Ca

Step 4.2.1.2: Notify dependent
agents

Step 4.2.1.3: Agent Ai establishes
dependencies

Step 4.2.2: else if ‘Core Intelligence’ is
a suitable mechanism, then

Step 4.2.2.1: Core V Ci migrates
agent, Ai onto an
adjacent computing
core, V Ca

Step 5: Collate execution results from sub-tasks

When a core failure is anticipated both an agent and
a core can make decisions which can lead to a conflict.
For example, an agent can attempt to move onto an
adjacent core while a core would like to migrate the
agent onto an adjacent core. Therefore, an agent and



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 7

Fig. 8: Avoiding a conflict in decision-making be-
tween an agent and a core. Agents A1, A2 and A3 are
situated on virtual cores V C1, V C2 and V C3 which
are mapped onto computing cores C1, C2 and C3

respectively. A failure is predicted on core C1. The
agent A1 and V C1 negotiate to decide who moves
the sub-task onto core V Ca.

the core on which it is located need to negotiate before
either of them initiate a response to move (see Figure
8). The negotiations need to be quick, and therefore,
the rules for negotiation need to be established. Rules
for decision making to avoid a conflict between an
agent’s and a core’s decision will be considered in
Section 6.2.3.

6 EXPERIMENTAL STUDIES

The implementation of the fault tolerant approaches is
reported in this section. The platform and the results
of the experiments on the agent and core approaches
in the first and second failure scenario are considered.

6.1 Experimental Platform
Four computer clusters were used for the experimen-
tal studies reported in this section. The first was a
cluster available at the Centre for Advanced Comput-
ing and Emerging Technologies (ACET), University of
Reading, UK. Thirty three compute nodes connected
through Gigabit Ethernet were available, each with
Pentium IV processors and 512MB-2GB RAM.

The remaining three clusters are compute resources,
namely Brasdor, Glooscap and Placentia, all provided
by The Atlantic Computational Excellence Network
(ACEnet) [102], Canada. Brasdor comprises 306 com-
pute nodes connected through Gigabit Ethernet, with
932 cores and 1-2GB RAM. Glosscap comprises 97
nodes connected through Infiniband, with 852 cores
and 1-8GB RAM. Placentia comprises 338 compute
nodes connected through Infiniband, with 3740 cores
and 2-16GB RAM

The cluster implementations in this paper are based
on the Message Passing Interface (MPI). The first
approach incorporating agent intelligence is imple-
mented using Open MPI [103], an open source im-
plementation of MPI 2.0. The dynamic process model

which supports dynamic process creation and man-
agement facilitates control over an executing process.
This feature is useful for implementing the first ap-
proach. The MPI functions useful in the implementa-
tion of the first approach are (i) MPI COMM SPAWN
which creates a new MPI process and establishes com-
munication with an existing MPI application and (ii)
MPI COMM ACCEPT and MPI COMM CONNECT
which establishes communication between two inde-
pendent processes.

The second approach incorporating core intelli-
gence is implemented using Adaptive MPI (AMPI)
[104], developed over Charm++ [105], a C++ based
parallel programming language. The aim of AMPI is
to achieve dynamic load balancing by migrating ob-
jects over virtual cores and thereby facilitates control
over cores. Core intelligence harnesses this potential
of AMPI to migrate a task from a core onto another
core. A strategy to migrate a task using the concepts of
processor virtualization and dynamic task migration
in AMPI and Charm++ is reported in [8].

Parallel reduction algorithms which implement the
bottom-up approach (i.e., data flows from the leaves
to the root) are employed for the experiments. These
algorithms are of interest for three reasons. Firstly, the
algorithm lends itself to be easily decomposed into a
set of sub-tasks. Each sub-task can then be mapped
onto a computing core either by providing the sub-
task as a payload to an agent in the first approach or
by providing the task onto a virtual core incorporating
intelligent rules.

Secondly, the execution of a parallel reduction al-
gorithm stalls and produces incorrect solutions if a
core fails. Therefore, parallel reduction algorithms
can benefit from fault-tolerant techniques that can be
incorporated within them.

Thirdly, parallel reduction algorithms are often em-
ployed in a number of domains. Incorporating self-
managing fault tolerant mechanisms can make these
algorithm more robust and reliable for applications
which do not have the luxury of time for reinstating
[106].

Figure 9 is an illustration of a generic parallel
summation algorithm with three sets of input. Firstly,
I(1,1), I(1,2) · · · I(1,x), secondly, I(2,1), I(2,2) · · · I(2,y),
and thirdly, I(3,1) · · · I(3,z). The first level nodes which
receive the three sets of input comprise three set of
nodes. Firstly, N1(1,1), N1(1,2) · · · N1(1,x), secondly,
N1(2,1), N1(2,2) · · · N1(2,y), and thirdly, N1(3,1), N1(3,2)

· · · N1(3,z). The next level of nodes, N2(1,1), N2(2,1)

and N3(3,1) receive inputs from the first level nodes.
The resultant from the second level nodes is fed in
to the third level node N3(1,1). Parallel summation is
an exemplar of parallel reduction algorithms in which
the nodes reduce the input through the output using
the ⊕ operator.

The parallel summation algorithm can benefit from
the inclusion of fault tolerant strategies. The task,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 8

Fig. 9: Generic parallel summation algorithm

T , in this case is summation, and the sub-tasks,
T1, T2 · · ·Tn is also summation. In the first fault tol-
erant approach incorporating agent intelligence, the
data to be summed along with the summation opera-
tor is provided to the agent. The agents locate on the
computing cores and continuously probe the core for
anticipating failures. If an agent is notified of a failure,
then it moves off onto another computing core in the
vicinity, thereby not stalling the execution towards
achieving the summation task.

In the second fault tolerant approach incorporating
core intelligence, the sub-task comprising the data to
be summed along with the summation operator is
located on the a virtual core. When the core anticipates
a failure, it migrates the sub-task onto another core.

6.2 Experimental Results
Figures 10 and 11 are collections of graphs plotted
using the parallel summation algorithm as a case
study for both the first and second fault tolerant
mechanisms. Each graph comprises four plots, the
first representing the ACET cluster and the other three
representing the three ACEnet clusters. Figure 10
shows graphs plotted for the first failure scenario, and
Figure 11 shows graphs plotted for the second failure
scenario. Both failure scenarios take into account the
following three factors that can affect performance of
the approaches:

(i) The number of dependencies of the subtask being
executed denoted as Z. If the total number of
input dependencies is di and the total number of
output dependencies is do, then Z = di + do. For
example, in a parallel summation algorithm in-
corporating binary trees, each node has two input
dependencies and one output dependency, and
therefore Z = 3. In the experiments, the number
of dependencies is varied between 3 and 63, by

changing the number of input dependencies of
an agent or a core.

(ii) The size of the data communicated across the
cores denoted as Sd. In the experiments, the input
data is a matrix for parallel summation and its
size is varied between 219 to 231 KB.

(iii) The process size of the distributed components
of the task denoted as Sp. In the experiments, the
process size is varied between 219 to 231 KB which
is proportional to the input data.

6.2.1 First Failure Scenario

Figure 10a is a graph of the time taken in seconds
for reinstating execution versus the number of depen-
dencies in the first failure scenario based on agent
intelligence. The mean time taken to reinstate exe-
cution for 30 trials, ∆TA1, is computed for varying
numbers of dependencies, Z ranging from 3 to 63.
The size of the data on the agent is Sd = 224 kilo
bytes. The approach is slowest on the ACET cluster
and fastest on the Placentia cluster. In all cases the
communication overheads result in a steep rise in the
time taken for execution until Z = 10. The time taken
on the ACET cluster rises once again after Z = 25.

Figure 10b is a graph of the time taken in sec-
onds for reinstating execution versus the number of
dependencies in the first failure scenario based on
core intelligence. The mean time taken to reinstate
execution, for 30 trials, ∆TC1, is computed for varying
number of dependencies, Z ranging from 3 to 63. The
size of the data on the core is Sd = 224 kilo bytes. The
approach requires almost the same time on the four
clusters for reinstating execution until Z = 10, after
which there is divergence in the plots. The approach
is most effective on the Placentia cluster.

Figure 10c is a graph showing the time taken in sec-
onds for reinstating execution versus the size of data
in kilobytes (KB), Sd = 2n, where n = 19, 19.5 · · · 31,
carried by an agent in the first failure scenario based
on agent intelligence. The mean time taken to reinstate
execution for 30 trials, ∆TA1, is computed for varying
sizes of data ranging from 219 to 231 KB. The number
of dependencies Z is 10 for the graph plotted. The
approach results in similar trends on the four clusters
in which there is a gradual increase in the time taken
as Sd increases. The approach exhibits the fastest
performance on the Glooscap and Placentia clusters.

Figure 10d is a graph showing the time taken in sec-
onds for reinstating execution versus the size of data
in kilobytes (KB), Sd = 2n), where n = 19, 19.5 · · · 31,
on a core in the first failure scenario based on core
intelligence. The mean time taken to reinstate execu-
tion for 30 trials, ∆TC1, is computed for varying sizes
of data ranging from 219 to 231 KB. The approach
has similar times on the four clusters until n = 24.
The approach performs well on the Glooscap and
Placentia clusters.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 9

(a) No. of dependencies vs time taken for reinstating execution after
failure in the agent intelligent approach

(b) No. of dependencies vs time taken for reinstating execution after
failure in the core intelligent approach

(c) Size of data vs time taken for reinstating execution after failure
in the agent intelligent approach

(d) Size of data vs time taken for reinstating execution after failure
in the core intelligent approach

(e) Process size vs time taken for reinstating execution after failure
in the agent intelligent approach

(f) Process size vs time taken for reinstating execution after failure
in the core intelligent approach

Fig. 10: Graphs plotted for the fault tolerant approaches in the first failure scenario

Figure 10e is a graph showing the time taken in sec-
onds for reinstating execution versus the process size
in kilobytes (KB), Sp = 2n), where n = 19, 19.5 · · · 31,
in the first failure scenario based on agent intelligence.
The mean time taken to reinstate execution for 30
trials, ∆TA1, is computed for process sizes ranging
from 219 to 231 KB. The approach shows interesting
behaviour on the Brasdor cluster with a steep rise in
the time taken between 225 to 227 KB. This approach
performs well on the Glooscap and Placentia com-

pared to ACET and Brasdor.

Figure 10f is a graph showing the time taken in sec-
onds for reinstating execution versus the process size
in kilobytes (KB), Sp = 2n), where n = 19, 19.5 · · · 31,
in the first failure scenario based on core intelligence.
The mean time taken to reinstate execution for 30
trials, ∆TC1, is computed for process sizes ranging
from 219 to 231 KB. In this graph all cluster show
almost similar performance until 226 KB. ACET and
Brasdor have slightly higher times for large process



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 10

sizes.

6.2.2 Second Failure Scenario
Figure 11a is a graph of the time taken in seconds
for reinstating execution versus the number of de-
pendencies in the second failure scenario based on
agent intelligence. The mean time taken to reinstate
execution for 30 trials, ∆TA2, is computed for varying
numbers of dependencies, Z ranging from 3 to 63. The
size of the data on the agent is Sd = 224 kilo bytes.
The results are similar to those obtained in the first
scenario.

Figure 11b is a graph of the time taken in seconds
for reinstating execution versus the number of de-
pendencies in the second failure scenario based on
core intelligence. The mean time taken to reinstate
execution for 30 trials, ∆TC2, is computed for varying
number of dependencies, Z ranging from 3 to 63.
The size of the data on the core is Sd = 224 kilo
bytes. The results are similar to the first scenario and
it is observed that the approach lends itself well on
Placentia and Glooscap.

Figure 11c is a graph showing the time taken in sec-
onds for reinstating execution versus the size of data
in kilobytes (KB), Sd = 2n, where n = 19, 19.5 · · · 31,
carried by an agent in the second failure scenario
based on agent intelligence. The mean time taken to
reinstate execution for 30 trials, ∆TA2, is computed
for varying sizes of data ranging from 219 to 231 KB.
The number of dependencies Z is 10 for the graph
plotted. Placentia and Glooscap outperforms ACET
and Brasdor in the agent approach for varying size
of data.

Figure 11d is a graph showing the time taken in sec-
onds for reinstating execution versus the size of data
in kilobytes (KB), Sd = 2n, where n = 19, 19.5 · · · 31,
on a core in the second failure scenario based on
core intelligence. The mean time taken to reinstate
execution for 30 trials, ∆TC2, is computed for varying
sizes of data ranging from 219 to 231 KB. The number
of dependencies Z is 10 for the graph plotted. In this
graph, nearly similar time is taken by the approach
on the four clusters with the ACET cluster requiring
more time than the other clusters for n > 24.

Figure 11e is a graph showing the time taken in
seconds for reinstating execution versus process size
in kilobytes (KB), Sp = 2n, where n = 19, 19.5 · · · 31,
in the second failure scenario based on agent intelli-
gence. The mean time taken to reinstate execution for
30 trials, ∆TA2, is computed for varying process sizes
ranging from 219 to 231 KB. The number of dependen-
cies Z is 10 for the graph plotted. The second scenario
performs similar to the first scenario. The approach
takes almost similar times to reinstate execution after
a failure on the four clusters, but there is a diverging
behaviour after n > 26.

Figure 11f is a graph showing the time taken in
seconds for reinstating execution versus process size

in kilobytes (KB), Sp = 2n, where n = 19, 19.5 · · · 31, in
the second failure scenario based on core intelligence.
The mean time taken to reinstate execution for 30
trials, ∆TC2, is computed for varying process sizes
ranging from 219 to 231 KB. The number of depen-
dencies Z is 10 for the graph plotted. The approach
has similar performance on the four clusters, though
Placentia performs better than the other three clusters
for more than 226 KB.

6.2.3 Summary
In the second failure scenario, a sub-task is moved
off onto a core after the agent or the virtual core
on the core anticipated to fail gathers information
on whether its neighbouring cores are likely to fail.
The agent or the virtual core make a decision based
on this information which places a communication
overhead when compared to the first scenario. The
additional communication overhead in the second
scenario is denoted as ∆T o = ∆TC2 − ∆TC1 and
∆T o = ∆TA2 − ∆TA1, which is the difference in
the time taken for reinstating between the second
and first failure scenario. The average communication
overhead is computed as 0.028 seconds.

The number of dependencies, size of data, process
size and communication overheads are the four fac-
tors taken into account in the experimental results.
The results indicate that the approach incorporating
core intelligence in both scenarios take lesser time
than the approach incorporating agent intelligence.
This is due to a two fold reason. Firstly, in the agent
approach, the agent needs to establish the dependency
with each agent individually, where as in the core
approach as a task is migrated from a core onto an-
other its dependencies are automatically established.
Secondly, agent intelligence is a software abstraction
of the sub-task, thereby adding a virtualised layer in
the communication stack. This increases the time for
communication. The virtual core is also an abstraction
of the computing core but is closer to the computing
core in the communication stack.

The key observation from the experimental results
is that the cost of incorporating intelligence at the task
and core levels for automating fault tolerance is in
the order of milliseconds. To achieve the full benefits
of the approaches, they need to be first incorporated
within the task level and then within the core level.

7 DISCUSSION & CONCLUSIONS

In summary, this paper has presented three ap-
proaches towards achieving fault tolerance. In all the
approaches, a task to be computed is decomposed into
sub-tasks which is then mapped onto the computing
cores. The three approaches operate at the middle lev-
els (between the sub-tasks and the computing cores)
incorporating agent intelligence. In the first approach,
the sub-tasks are mapped onto agents which are



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 11

(a) No. of dependencies vs time taken for reinstating execution after
failure in the agent intelligent approach

(b) No. of dependencies vs time taken for reinstating execution after
failure in the core intelligent approach

(c) Size of data vs time taken for reinstating execution after failure
in the agent intelligent approach

(d) Size of data vs time taken for reinstating execution after failure
in the core intelligent approach

(e) Process size vs time taken for reinstating execution after failure
in the agent intelligent approach

(f) Process size vs time taken for reinstating execution after failure
in the core intelligent approach

Fig. 11: Graphs plotted for the fault tolerant approaches in the second failure scenario

released on the cores. If an agent is notified of a
potential core failure during execution of the sub-task
mapped onto it, then the agent moves off onto another
core thereby automating fault tolerance.

In the second approach the sub-tasks are scheduled
on virtual cores, which are an abstraction of the com-
puting cores. If a virtual core anticipates a core failure
then it moves off the sub-task on it onto another vir-
tual core, in effect on to another computing core. Both
the approaches achieve automation in fault tolerance

using intelligence in agents and cores respectively.

However, in the third, a combinative approach,
which acts as an umbrella and brings together the
concepts of agent and core intelligence. The sub-tasks
are mapped onto a set of agents which are released
onto virtual cores. When a core failure is anticipated,
both the agent and the virtual core are notified. The
decision to automate fault tolerance on whether an
agent moves off onto another core or whether the
virtual core migrates the agent on it onto another core



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 12

is determined through an arbitration mechanism.
The agent intelligence and core intelligence ap-

proaches achieve the same goal of moving away the
executing task from a core anticipated to fail but are
different in two ways. Firstly, in agent intelligence,
the agent is responsible for moving an agent onto
another core. In core intelligence, the virtual core is
responsible for moving a sub-task onto another core.
Secondly, an agent carries information of its depen-
dencies required when it moves off onto another core.
The core dependencies do not require to be manually
updated.

The three approaches offer minimal human inter-
vening fault tolerant approaches. The foundational
concepts of the three approaches are validated on
four computer clusters using parallel summation al-
gorithms as a test case. Two failure scenarios are con-
sidered in the experimental studies for the first two
approaches. The effect of the number of dependencies
of a sub-task being executed, the volume of data
communicated across cores, the process size and the
communication overhead are four factors considered
in the experimental studies for determining the per-
formance of the approaches.

ACKNOWLEDGMENTS

The authors would like to thank the administrators
of the compute resources at the Centre for Advanced
Computing and Emerging Technologies (ACET), Uni-
versity of Reading, UK and the Atlantic Computa-
tional Excellence Network (ACEnet).

REFERENCES
[1] F. Cappello, “Fault Tolerance in Petascale/Exascale Systems:

Current Knowledge, Challenges and Research Opportunities,”
International Journal of High Performance Computing Suppli-
cations, Vol. 23, Issue 3, pp. 212-226, 2009.

[2] M. R. Varela, K. B. Ferreira and R. Riesen, “Fault-Tolerance
for Exascale Systems,” Proceedings of the IEEE International
Conference on Cluster Computing Workshops and Posters,
2010.

[3] J. Dongarra, P. Beckman et al., “The International Exascale
Software Roadmap,” International Journal of High Perfor-
mance Computer Applications, Vol. 25, No. 1, 2011.

[4] B. Schroeder and G. A. Gibson, “Understanding Failures in
Petascale Computers,” Journal of Physics: Conference Series,
Vol. 78, 2007.

[5] G. Valle, K. Charoenpornwattana, C. Engelmann, A. Tikotekar,
C. Leangsuksun, T. Naughton and S. L. Scott, “A Framework
for Proactive Fault Tolerance,” in Proceedings of the 3rd
IEEE International Conference on Availability, Reliability and
Security, pp. 659-664, 2008.

[6] C. Engelmann, G. R. Vallee, T. Naughton and S. L. Scott,
“Proactive Fault Tolerance Using Preemptive Migration,” Pro-
ceedings of the 2009 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, pp.
252-257, 2009.

[7] Y. Li and Z. Lan, “Current Research and Practice in Proactive
Fault Management,” International Journal of Computers and
Applications, Vol. 29, Issue 4, pp. 408-413, 2007.

[8] S. Chakravorty, C. L. Mendes and L. V. Kale, “Proactive Fault
Tolerance in MPI Applications via Task Migration,” Proceed-
ings of IEEE International Conference on High Performance
Computing, Springer Lecture Notes in Computer Science, Vol.
4297, pp. 485-496, 2006.

[9] J.Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The
Design and Implementation of Checkpoint/Restart Process
Fault Tolerance for Open MPI,” Proceedings of the 12th IEEE
Workshop on Dependable Parallel, Distributed and Network-
Centric Systems, 2007.

[10] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lums-
daine, J. Duell, P. Hargrove and E. Roman, “The LAM/MPI
Checkpoint/Restart Framework: System-Initiated Checkpoint-
ing,” International Journal of High Performance Computing
Applications, Vol. 19 No. 4, pp. 479-493, 2005.

[11] S. Jafar, A. Krings and T. Gautier, “Flexible Rollback Recovery
in Dynamic Heterogeneous Grid Computing,” IEEE Transac-
tions on Dependable and Secure Computing, Vol. 6, No. 1, pp.
32-44, 2009.

[12] T. Saridakis, “Design Patterns for Log-Based Rollback Recov-
ery,” Proceedings of the 2nd Nordic Conference on Pattern
Languages of Programming, 2003.

[13] E. N. Elnozahy, L. Alvisi, Y. -M. Wang and D. B. Johnson,
“A Survey of Rollback-Recovery Protocols in Message Passing
Systems,” ACM Computing Surveys, Vol. 34, Issue 3, pp. 375-
408, 2002.

[14] D. Sunada, D. Glasco and M. Flynn, “Fault Tolerance: Methods
of Rollback Recovery,” Stanford University, Technical Report:
CSL-TR-97-718, 1997.

[15] A. Litvinova, C. Engelmann and S.L. Scott, “A Proactive
Fault Tolerance Framework for High-Performance Comput-
ing,” Proceedings of the International Conference on Parallel
and Distributed Computing and Networks, 2010.

[16] A. Bouteiller, G. Bosilca and J. Dongarra, “Redesigning the
Message Logging Model for High Performance,” Concurrency
and Computation: Practice and Experience, Vol. 22, Issue 16,
pp. 2196-2211, 2010.

[17] F. Baude, D. Caromel, C. Delbe and L. Henrio, “A Hybrid Mes-
sage Logging-CIC Protocol for Constrained Checkpointabil-
ity,” Proceedings of the 11th International Euro-Par Conference
on Parallel Processing, pp. 644-653, 2005.

[18] S. Gorender, R. J. de A. Macedo and M. Raynal, “An Adaptive
Programming Model for Fault-Tolerant Distributed Comput-
ing,” IEEE Transactions on Dependable and Secure Comput-
ing, Vol. 4, Issue 1, pp. 18-31, 2007.

[19] W. Yurcik and D. Doss, “Achieving Fault-Tolerant Software
with Rejuvenation and Reconfiguration,” IEEE Software, Vol.
18, issue 4, pp. 48-52, 2001.

[20] Z. Lan and Y. Li, “Adaptive Fault Management of Parallel
Applications for High-Performance Computing,” IEEE Trans-
actions on Computers, Vol. 57, Issue 12, pp. 1647-1660, 2008.

[21] Y. Ren, M. Cukier and W. H. Sanders, “An Adaptive Algorithm
for Tolerating Value Faults and Crash Failures,” IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 12, Issue, 2,
pp. 173-192, 2001.

[22] K. Charoenpornwattana, B. Leangsuksun, A. Tikotekar, G.
Vallee and S. Scott, “A Scalable Unified Fault Tolerance for
HPC Environments,” in Proceedings of the 9th LCI Interna-
tional Conference on High-Performance Clustered Computing,
2008.

[23] Y. Li and Z. Lan, “Exploit Failure Prediction for Adaptive
Fault-Tolerance in Cluster Computing,” Proceedings of the 6th
IEEE International Symposium on Cluster Computing and the
Grid, pp. 531-538, 2006.

[24] A. Steininger, “Dealing With Dormant Faults in an Embed-
ded Fault-Tolerant Computer System,” IEEE Transactions on
Reliability, Vol. 52, Issue 4, pp. 512-522, 2003.

[25] M. A. Breuer, S. K. Gupta and T. M. Mak, “Defect and Error
Tolerance in the Presence of Massive Numbers of Defects,”
IEEE Design & Test of Computers, Vol. 21, No. 3, pp. 216-227,
2004.

[26] G. K. Saha, “Transient Fault-Tolerance Through Algorithms,”
IEEE Potential, Vol. 25, No. 5, pp. 25-30, 2006.

[27] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi and D. A.
Connors, “PLR: A Software Approach to Transient Fault Tol-
erance for Multi-Core Architectures,” IEEE Transactions on
Dependable and Secure Computing, Vol. 6, No. 2, pp. 135-148,
2009.

[28] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs and G.
H. Leber, “Comparison of Physical and Software-Implemented
Fault Injection Techniques,” IEEE Transactions on Computers,
Vol. 52, Issue 9, pp. 1115-1133, 2003.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 13

[29] C. Constantinescu, “Teraflops Supercomputer: Architecture
and Validation of the Fault Tolerance Mechanisms,” IEEE
Transactions on Computers, Vol. 49, Issue: 9, pp. 886-894, 2000.

[30] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. -C. Fabre, J. -C.
Laprie, E. Martins and D. Powell, “Fault Injection for Depend-
ability Validation: A Methodology and Some Applications,”
IEEE Transactions on Software Engineering, Vol. 16, Issue 2,
pp. 166-182, 1990.

[31] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson and U. Gun-
neflo, “Using Heavy-Ion Radiation to Validate Fault-Handling
Mechanisms,” IEEE Micro, Vol. 14, Issue 1, pp. 8-23, 1994.

[32] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet and G. Leber,
“Integration and Comparison of Three Physical Fault Injection
Techniques,” Predictably Dependable Computing Systems,
Chapter V: Fault Injection, pp. 309-329, 1995.

[33] J. R. Samson, Jr., W. Moreno and F. Falquez, “A Technique for
Automated Validation of Fault Tolerant Designs Using Laser
Fault Injection (LFI),” Digest of Papers of the 28th Annual
International Symposium on Fault-Tolerant Computing, pp.
162-167, 1998.

[34] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun G. Bosilca, J. P.
-Grbovic, J. J. Dongarra, “Process Fault-Tolerance: Semantics,
Design and Applications for High Performance Computing,”
International Journal for High Performance Applications and
Supercomputing, Vol. 19, No. 4, pp. 465-477, 2005.

[35] C. -H. Yeh, “The Robust Middleware Approach for Transpar-
ent and Systematic Fault Tolerance in Parallel and Distributed
Systems,” Proceedings of the International Conference on
Parallel Processing, pp. 61-68, 2003.

[36] J. C. Mourino, M. J. Martin, P. Gonzalez and R. Doallo, “Fault-
Tolerant Solutions for a MPI Compute Intensive Application,”
Proceedings of the 15th EUROMICRO International Confer-
ence on Parallel, Distributed and Network-Based Processing,
pp. 246-253, 2007.

[37] X. Yang, Y. Du, P. Wang, H. Fu and J. Jia, “FTPA: Supporting
Fault-Tolerant Parallel Computing through Parallel Recomput-
ing,” IEEE Transactions on Parallel and Distributed Systems,
Vol. 20, No. 10, pp. 1471-1486, 2009.

[38] Y. Li, Z. Lan, P. Gujrati, and X. Sun, “Fault-Aware Runtime
Strategies for High Performance Computing,” IEEE Transac-
tions on Parallel and Distributed Systems , Vol. 20, No. 4, pp.
460-473, 2009.

[39] S. S. Kulkarni and A. Ebnenasir, “Complexity Issues in Au-
tomated Synthesis of Failsafe Fault-Tolerance,” IEEE Transac-
tions on Dependable and Secure Computing, Vol. 2, No. 3, pp.
201-215, 2005.

[40] A. Ebnenasir, S. S. Kulkarni and A. Arora, “FTSyn: A Frame-
work for Automatic Synthesis of Fault-Tolerance,” Interna-
tional Journal on Software Tools for Technology Transfer, Vol.
10, No. 5, pp. 455-471, 2008.

[41] A. Roy-Chowdhury and P. Banerjee, “Algorithm-Based Fault
Location and Recovery for Matrix Computations on Multipro-
cessor Systems,” IEEE Transactions on Computers, Vol. 45, No.
11, pp. 1239-1247, 1996.

[42] S. Yajnik and N. K. Jha, “Graceful Degradation in Algorithm-
Based Fault Tolerant Multiprocessor Systems,” IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 8, No. 2, pp.
137-153 1997.

[43] Z. Chen and J. Dongarra, “Algorithm-Based Fault Tolerance
for Fail-Stop Failures,” IEEE Transactions on Parallel Dis-
tributed Systems, Vol. 19, No. 12, pp. 1628-1641, 2008.

[44] Z. Chen and J. Dongarra, “Algorithm Based Checkpoint Free
Fault Tolerance for Parallel Matrix Computations on Volatile
Resources,” Proceedings of the 20th international conference
on Parallel and Distributed Processing, 2006.

[45] L. Yuan, “Generic Fault Tolerant Software Architecture Rea-
soning and Customization,” IEEE Transactions on Reliability,
Vol. 55, Issue 3, pp. 421-435, 2006.

[46] Z. Xie, H. Sun and K. Saluja, “A Survey of Software Fault
Tolerance Techniques,”

[47] J. M. Smith, “A Survey of Software Fault Tolerance Tech-
niques,” Columbia University Computer Science Technical
Reports, CUCS-325-88, 1988.

[48] J. C. Ruiz, M. -O. Killijian, J. -C. Fabre and P. Thevenod-
Fosse, “Reflective Fault-Tolerant Systems: From Experience to
Challenges,” IEEE Transactions on Computers, Vol. 52, No. 2,
pp. 237-254, 2003.

[49] G. A. Reiss, J. Chang, N. Vachharajani, R. Rangan, D. I. August
and S. S. Mukherjee, “Software-Controlled Fault Tolerance,”
ACM Transactions on Architecture and Code Optimization,
Vol. 2, Issue 4, pp. 366-396, 2005.

[50] I. Koren and C. M. Krishna, “Fault Tolerant Systems,” Morgan
Kaufmann Publisher, 1st Edition, 2007.

[51] A. Aviziensis, “The N-Version Approach to Fault-Tolerant
Software,” IEEE Transactions on Software Engineering, Vol.
11, Issue 12, pp. 1491-1501, 1985.

[52] D. Avresky, J. Arlat, J. -C. Laprie and Y. Crouzet, “Fault Injec-
tion for Formal Testing of Fault Tolerance,” IEEE Transactions
on Reliability, Vol. 45, Issue 3, pp. 443-455, 1996.

[53] G. A. Kanawati, N. A. Kanawati and J. A. Abraham, “FER-
RARI: A Flexible Software-Based Fault and Error Injection
System,” IEEE Transactions on Computers, Vol. 44, No. 2, pp.
248-260, 1995.

[54] P. Marinescu and G. Candea, “LFI: A Practical and General
Library-Level Fault Injector,” Proceedings of the International
Conference on Dependable Systems and Networks, Portugal,
2009.

[55] J. Carreira, H. Madeira, and J.G. Silva, “Xception: A Technique
for the Experimental Evaluation of Dependability in Modern
Computers,” IEEE Transactions on Software Engineering, Vol.
24, No. 2, pp. 125-136, 1998.

[56] N. Nakka, A. Agarwal and A. Choudhary, “Predicting Node
Failure in High Performance Computing Systems from Failure
and Usage Logs,” in the Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing Workshops
and PhD Forum, pp. 1557-1566, 2011.

[57] G. Stellner, “CoCheck: Checkpointing and Process Migration
for MPI,” Proceedings of the 10th international Parallel Pro-
cessing Symposium, pp. 526-531, 1996.

[58] J. P. Walters and V. Chaudhary, “Replication-Based Fault Toler-
ance for MPI Applications,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 20, No. 7, July 2009, pp. 997-1010.

[59] J. P. Walters and V. Chaudhary, ”Replication-Based Fault Tol-
erance for MPI Applications,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 20, Issue 7, pp. 997-1010, 2009.

[60] A. Moody, G. Bronevetsky, K. Mohor and B. R. de Supinksi,
“Design, Modelling, and Evaluation of a Scalable Multi-level
Checkpointing System,” Proceedings of the ACM/IEEE Inter-
national Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 1-11, 2010.

[61] R. Agarwal,. P. Garg and J. Torrellas, “Rebound: Scalable
Checkpointing for Coherent Shared Memory,” Proceedings
of the 38th Annual International Symposium on Computer
Architecture, pp. 153-164, 2011.

[62] J. Ho, C. -L. Wang and F. Lau, “Scalable Group-based Check-
point/Restart for Large-Scale Message-Passing Systems,” Pro-
ceedings of the 22nd IEEE International Parallel Distributed
Processing Symposium, pp. 1-12, 2008.

[63] J. S. Plank, “Diskless Checkpointing,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 9, Issue 10, pp. 972-986,
1998.

[64] L. A. B. Gomez, N. Maruyama, F. Cappello and S. Matsuoka,
“Distributed Diskless Checkpoint for Large Scale Systems,”
Proceedings of the IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, pp. 63-72, 2010.

[65] L. B. Gomez, A. Nukada, N. Maruyama, F. Cappello and S.
Matsuoka, “ Low-Overhead Diskless Checkpoint for Hybrid
Computing Systems,” Proceedings of the International Con-
ference on High Performance Computing, 2010.

[66] A. Subbiah and D. M. Blough, “Distributed Diagnosis in
Dynamic Fault Environments,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 15, No. 5, pp. 453-467, 2004.

[67] S. Lee and K. G. Shin, “Optimal and Efficient Probabilistic
Distributed Diagnosis Schemes,” IEEE Transactions on Com-
puters, Vol. 42, Issue 7, pp. 882-886, 1993.

[68] G. Janakiraman, J. R. Santos and D. Subhraveti, “Cruz:
Application-Transparent Distributed Checkpoint-Restart on
Standard Operating Systems,” Proceedings of the International
Conference on Dependable Systems and Networkds, pp. 260-
269, 2005.

[69] J. Ansel, K. Arya and G. Cooperman, “DMTCP: Transparent
Checkpointing for Cluster Computations and the Desktop,”
Proceedings of the 23rd IEEE International Parallel and Dis-
tributed Processing Symposium, 2009.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 14

[70] D. Hakkarinen and Z. Chen, “N-Level Diskless Checkpoint-
ing,” Proceedings of the 11th IEEE International conference
on High Performance Computing and Communications, 2009.

[71] P. D. Hough, M. E. Goldsby, and E. J. Walsh, “Algorithm-
dependent Fault Tolerance for Distributed Computing,” San-
dia Report, SAND2000-8219, February 2000.

[72] M. Chtepen, F. H. A. Claeys, B. Dhoedt, F. De Turuck, P. De-
meester and P. A. Vanrolleghem, “Adaptive Task Checkpoint-
ing and Replication: Toward Efficient Fault-Tolerant Grids,”
IEEE Transactions on Parallel and Distributed Systems, Vol.
20, Issue 2, February 2009, pp. 180-190.

[73] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M.
Paun and S. Scott, “A Reliability-Aware Approach for an
Optimal Checkpoint/Restart Model in HPC Environments,”
Proceedings of International Conference on Cluster Comput-
ing, pp. 452-457, 2007.

[74] T. Dohi, T. Ozaki and N. Kalo, “Optimal Checkpoint Placement
with Equality Constraints,” Proceedings of the 2nd IEEE Inter-
national Symposium on Dependable, Autonomic and Secure
Computing, pp. 77-84, 2006.

[75] A. J. Oliner, L. Rudolph and R. K. Sahoo, “Cooperative Check-
pointing: A Robust Approach to Large-Scale Systems Reliabil-
ity,” Proceedings of the 20th Annual International Conference
on Supercomputing, pp. 14-23, 2006.

[76] A. J. Oliner, L. Rudolph and R. K. Sahoo, “Cooperative Check-
pointing Theory,” Proceedings of the International Parallel and
Distributed Processing Symposium, 2006.

[77] Y. Xiang, Z. Li and H. Chen, “Optimizing Adaptive Check-
pointing Schemes for Grid Workflow Systems,” Proceedings
of the 5th International Conference on Gird and Cooperative
Computing Workshops, pp. 181-188, 2006.

[78] S. Chakravorty and L. V. Kale, “A Fault Tolerant Protocol for
Massively Parallel Systems,” Proceedings of the 18th Inter-
national Symposium on Parallel and Distributed Processing,
2004.

[79] A. Guermouche, T. Ropars, E. Brunet, M. Snir and F. Cap-
pello, “Uncordinated Checkpointing Without Domino Effect
for Send-Deterministic MPI Applications,” Proceedings of the
IEEE International Parallel & Distributed Processing Sympo-
sium, pp. 989-1000, 2011.

[80] Y. -M. Wang and W. K. Fuchs, “Optimal Message Log Reclama-
tion for Uncoordinated Checkpointing,” Proceedings of IEEE
Workshop on Fault-Tolerant Parallel and Distributed Systems,
pp. 24-29, 1994.

[81] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E.
Rodriguez and F. Cappello, “Blocking vs Non-Blocking Co-
ordinated Checkpointing for Large-Scale Fault Tolerant MPI,”
Proceedings of the ACM/IEEE Conferernce on Supercomput-
ing, Article No. 127, 2006.

[82] Q. Gao, W. Huang, M. J. Koop and D. K. Panda, “Group-
Based Coordinated Checkpointing for MPI: A Case Study on
InfiniBand,” Proceedings of the International Conference on
Parallel Processing, 2007.

[83] R. Baldoni, “A Communication-Induced Checkpointing Proto-
col that Ensures Rollback-Dependency Trackability,” Proceed-
ings of the 27th International Symposium on Fault-Tolerant
Computing, 1997.

[84] J. Tsai, S. -Y. Kuo and Y. -M. Wang, “Theoretical Analysis
for Communication-Induced Checkpointing Protocols with
Rollback-Dependency Trackability,” IEEE Transactions on Par-
allel and Distributed Systems, Vol. 9, Issue 10, pp. 963-971,
1998.

[85] M. Li, D. Goldberg, W. Tao and Y. Tamir, “Fault-Tolerant Clus-
ter Management for Reliable High-Performance Computing,”
in Proceedings of the 13th International Conference on Parallel
and Distributed Computing and Systems, pp. 480-485, 2001.

[86] R. Guerraoui and A. Schiper, “Software-Based Replication for
Fault Tolerance,” Computer, Vol. 30, Issue 4, pp. 68-74, 1997.

[87] H. Jung, H. Han, H. Y. Yeom and S. Kang, “Athanasia: A User-
Transparent and Fault-Tolerant System for Parallel Applica-
tions,” IEEE Transactions on Parallel and Distributed Systems
, Vol. 22, No. 10, pp. 1653-1668, 2011.

[88] J. Cao, Y. Li and M. Guo, “Process Migration for MPI Ap-
plications based on Coordinated Checkpoint,” Proceedings of
the 11th International Conference on Parallel and Distributed
Systems, pp. 306-312, 2005.

[89] G. Vallee, C. Morin, J. -Y. Berthou, I. D. Malen and R. Lottiaux,
“Process Migration based on Gobelins Distributed Shared
Memory,” Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2002.

[90] T. Boyd, and P. Dasgupta, “Process Migration: A Generalized
Approach using a Virtualizing Operating System,” Proceed-
ings of the 22nd International Conference on Distributed
Computing Systems, pp. 385-392, 2002.

[91] H. Jiang, and V. Chaudhary, “Process/Thread Migration and
Checkpointing in Heterogeneous Distributed Systems,” Pro-
ceedings of the 37th Hawaii International Conference on Sys-
tem Sciences, 2004.

[92] T. Maoz, A. Barak and L. Amar, “Combining Virtual Machine
Migration with Process Migration for HPC on Multi-Clusters
and Grids,” Proceedings of the IEEE International Conference
on Cluster Computing, pp. 89-98, 2008.

[93] A. D. Blumer, H. Mortveit and C. D. Patterson, “Formal Mod-
elling of Process Migration,” Proceedings of the International
Conference on Field Programmable Logic and Applications,
pp. 104-110, 2007.

[94] R. F. De Mello and L. J. Senger, “A New Migration Model
Based on the Evaluation of Processes Load and Lifetime
on Heterogeneous Computing Environments,” Proceedings of
the 16th Symposium on Computer Architecture and High
Performance Computing, pp. 222-227, 2004.

[95] S. Bertozzi, A. Acquaviva, D. Bertozzi and A. Poggiali, “Sup-
porting Task Migration in Multi-Processor Systems-on-Chip:
A Feasibility Study,” Proceedings of Design, Automation and
Test in Europe, pp. 15-20, 2006.

[96] M. R. Lyu, X. Chen, and T. Y. Wong, “Design and Evaluation
of a Fault-Tolerant Mobile-Agent System,” IEEE Intelligent
Systems, Vol. 19, Issue 5, pp. 32-38, 2004.

[97] P. Slechta, R. J. Staron, F. P. Matura and K. H. Hall, “Multi-
agent Technology for Fault Tolerance and Flexible Control,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, Vol. 36, Issue 5, pp. 700-704, 2006.

[98] S. Pleisch and A. Schiper, “Fault-Tolerant Mobile Agent Exe-
cution,” IEEE Transactions on Computers, Vol. 52, No. 2, pp.
209-222, 2003.

[99] Ad. L. Almeida, S. Aknine, J. -P. Briot and J. Malenfant,
“100,” Proceedings of the 20th IEEE International Parallel and
Distributed Processing Symposium, 2006.

[100] M. J. G. C. Mendes, B. M. S. Santos and J. Sa da Costa,
“Multi-agent Platform for Fault Tolerant Control Systems,”
Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, pp. 1321-1326, 2007.

[101] N. Faci, Z. Guessoum and O. Marin, “DimaX: A Fault-
Tolerant Multi-Agent Platform,” Proceedings of the Interna-
tional Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, pp. 13-20, 2006.

[102] The Atlantic Computational Excellence Network (ACEnet)
website: http://www.ace-net.ca/

[103] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J.
M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, T. S. Woodall, ‘Open
MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation,’ Proceedings of the 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, 2004, pp. 97-104.

[104] C. Huang, O. Lawlor, and L. V. Kale, “Adaptive MPI,”
Proceedings of the 16th International Workshop on Languages
and Compilers for Parallel Computing, LNCS 2958, 2003, pp.
306-322.

[105] L. V. Kale and S. Krishnan, “CHARM++: Parallel Program-
ming with Message-Driven Objects,” Parallel Programming
using C++ (Eds. G. V. Wilson and P. Lu), MIT Press, 1996,
pp. 175-213.

[106] M. L. James, A. A. Shapiro, P. L. Springer and H. P. Zima,
“Adaptive Fault Tolerance for Scalable Cluster Computing in
Space,” International Journal of High Performance Computing
Applications, Vol. 23, No. 3, pp. 227-241, 2009.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. 6, NO. 1, JANUARY 2007 15

Blesson Varghese was awarded a PhD in
Computer Science from the University of
Reading, UK in 2011 on multiple international
scholarships. In 2008 he obtained a MSc in
Network Centred Computing with distinction
again from Reading on the prestigious Felix
scholarship. In 2006, he graduated with a first
rank from the University of Kerala, India for a
four year undergraduate degree in Informa-
tion Technology. His research interests span
across high-performance computing, multi-

agent systems, swarm robotic systems and cognitive neuroscience.

Gerard McKee was awarded a BSc in Elec-
tronics (Hons) First Class from University of
Manchester Institute of Science and Tech-
nology (UMIST), UK in 1980. In 1989 he
was awarded a PhD also from UMIST. Dr
McKee has led the JISC NTI funded project
NETROLAB (Networked Robotics Labora-
tory), and has developed concepts of Visual
Acts, Networked Robotics, MARS (modelling
and reasoning about modular robotics sys-
tems) model, DEIMOS software model im-

plementing MARS model. He has also chaired several international
conferences, workshops and symposiums. His research interests
include Networked Robotics, Space Robotic Systems, Cooperative
Robotics, Artificial Intelligence and Cognitive Intelligence.

Vassil Alexandrov was awarded an MSc
in Applied Mathematics from Moscow State
University, Russia in 1984 and a PhD in
Parallel Computing from Bulgarian Academy
of Sciences in 1995. He has held previous
positions at the University of Liverpool, UK
from 1994-1999 and the University of Read-
ing, UK from 1999-2010. At Reading, he was
Professor of Computational Science leading
the Computational Science Research Group
until September 2010, and the Director of the

Centre for Advanced Computing and Emerging Technologies until
July 2010. His research interests include Computational Science and
High Performance Computing encompassing Parallel, Scalable Algo-
rithms for Advanced Computer Architectures, Monte Carlo methods
and algorithms.


