
Copyright 2001-2005 Scott W. Ambler 1

The Agile Unified Process
(AUP)

Scott W. Ambler
Senior Consultant, Ambysoft Inc.

www.ambysoft.com/scottAmbler.html

Copyright 2001-2005 Scott W. Ambler 2

Scott W. Ambler

� Methodologist, Author, Consultant

� Services:
� Agile Model Driven Development (AMDD)

� RUP/EUP/AgileUP mentoring

� Agile Software Development Coaching/Mentoring

� Training Workshops

� Management SPI Workshops

� Internal Conference Keynotes

Copyright 2001-2005 Scott W. Ambler 3

Overview

� Warning!

� The Unified Process

� Agile Software Development

� The AUP Disciplines

� Secrets of Success

Copyright 2001-2005 Scott W. Ambler 4

Warning!

� I’m spectacularly blunt at times

� Many new ideas will be presented

� Some may not fit well into your existing
environment

� Some will challenge your existing notions
about software development

� Some will confirm your unvoiced suspicions

� Don’t make any “career-ending moves”

� Be skeptical but open minded

Copyright 2001-2005 Scott W. Ambler 5

Observation: It’s the Same Cost
Curve (JIT)

Copyright 2001-2005 Scott W. Ambler 6

Rational Unified Process (RUP)

Copyright 2001-2005 Scott W. Ambler 7

Agile UP
www.ambysoft.com/unifiedprocess/agileUP.html

Copyright 2001-2005 Scott W. Ambler 8

Agile UP Phases and Milestones

Copyright 2001-2005 Scott W. Ambler 9

The Disciplines of the AUP

� Modeling

� Implementation

� Test

� Deployment

� Configuration Management

� Project Management

� Environment

Copyright 2001-2005 Scott W. Ambler 10

The
Modeling
Discipline

Copyright 2001-2005 Scott W. Ambler 11

Active Stakeholder Participation

� Project stakeholders should:

� Provide information in a timely manner

� Make decisions in a timely manner

� Actively participate in business-oriented
modeling

� www.agilemodeling.com/essays/activeStakeholderParticipation.htm

� www.agilemodeling.com/essays/inclusiveModels.htm

Copyright 2001-2005 Scott W. Ambler 12

Agile Model Driven Development (AMDD)
Project Level (www.agilemodeling.com/essays/amdd.htm)

Cycle n: Development

Cycle 2: Development

Cycle 1: Development

Cycle 0: Initial Modeling

Initial Requirements

Modeling

(days)

Initial Architectural

Modeling

(days)

Model

Storming

(minutes)

Implementation

(Ideally Test Driven)

(hours)

Reviews

(optional)

All Cycles

(hours)

Goals: Gain an initial

understanding of the

scope, the business

domain, and your overall

approach.

Goal: Quickly explore in

detail a specific issue

before you implement it.

Goal: Develop working

software in an evolutionary

manner.

Copyright 2001-2005 Scott W. Ambler 13

Agile Software Requirements Management
Changing Requirements Are a Competitive Advantage if You Can Act
on Them: www.agilemodeling.com/essays/agileRequirements.htm

Copyright 2001-2005 Scott W. Ambler 14

There is More to Modeling than UML

Copyright 2001-2005 Scott W. Ambler 15

Agile Data
www.agiledata.org

� The Agile Data (AD) method is a collection of philosophies that will enable
IT professionals within your organization to work together effectively when
it comes to the data aspects of software-based systems.

� Six philosophies:
� Data. Data is one of several important aspects of software-based systems.
� Enterprise issues. Development teams must consider and act appropriately

regarding enterprise issues.
� Enterprise Groups. Enterprise groups exist to nurture enterprise assets and to

support other groups, such as development teams, within your organization.
� Unique situation. Each development project is unique, requiring a flexible

approach tailored to its needs. One software process does not fit all.
� Work together. IT professionals must work together effectively, actively

striving to overcome the challenges that make it difficult to do so.
� Sweet spot. Avoid the black and white extremes to find the gray that works best

for your overall situation.

Copyright 2001-2005 Scott W. Ambler 16

The Implementation Discipline

Copyright 2001-2005 Scott W. Ambler 17

Pair Programming
� Two programmers working side-by-side, collaborating on the same

design, algorithm, code or test.
� The driver has control of the keyboard/mouse and actively implements

the program.
� The observer continuously observes the work of the driver to identify

tactical (syntactic, spelling, etc.) defects and also thinks strategically
about the direction of the work.

� They periodically switch roles, working together as equals.
� On demand, the two programmers can brainstorm any challenging

problem.

� Significant evidence exists which shows that pair programming is more
effective, overall, than solo programming for the vast majority of
developers.

� pairprogramming.com

Copyright 2001-2005 Scott W. Ambler 18

Refactoring

� A refactoring is a small change to your code
to improve your design that retains the
behavioral semantics of your code.

� Two types:

� Code refactoring

� Database refactoring

� www.refactoring.com

� www.databaserefactoring.com

Copyright 2001-2005 Scott W. Ambler 19

Continuous Integration

� Daily builds are a good start

� We update and test our code constantly

� Therefore we need to build the system
constantly

Copyright 2001-2005 Scott W. Ambler 20

Database Refactoring
www.agiledata.org/essays/databaseRefactoring.html

� A database refactoring is a simple change to a database
schema that improves its design while retaining both its
behavioral and informational semantics.

� A database schema includes both structural aspects such as
table and view definitions as well as functional aspects
such as stored procedures and triggers.

� Database refactorings are a subset of schema
transformations, but they do not add functionality.

Copyright 2001-2005 Scott W. Ambler 21

Test Driven Design
(TDD)
www.agiledata.org/essays/tdd.html

Copyright 2001-2005 Scott W. Ambler 22

The Test
Discipline

Copyright 2001-2005 Scott W. Ambler 23

Full Lifecycle Object-Oriented
Testing (FLOOT)
http://www.ronin-intl.com/publications/floot.html

Requirements

Testing

- Model

 reviews

- Prototype

 walkthroughs

- Prove it with

 code

- Usage

 scenario

 testing

Analysis

Testing

- Model reviews

- Prototype

 walkthroughs

- Prove it with

 code

- Usage

 scenario

 testing

Architecture/

Design

Testing

- Model reviews

- Model

 walkthroughs

- Prototype

 walkthroughs

- Prove it with

 code

Code

Testing

- Black-box

 testing

- Boundary

 value testing

- Class-

 integration

 testing

- Class testing

- Code reviews

- Coverage

 testing

- Inheritance-

 regression

 testing

- Method testing

- Path testing

- White-box

 testing

System

Testing

- Function

 testing

- Installation

 testing

- Operations

 testing

- Stress testing

- Support testing

User

Testing

- Alpha testing

- Beta testing

- Pilot testing

- User

 acceptance

 testing (UAT)

Regression Testing, Quality Assurance

Copyright 2001-2005 Scott W. Ambler 24

The
Deployment
Discipline

Copyright 2001-2005 Scott W. Ambler 25

Regular Deployment of Working
Software

� How many projects have you seen that:
� Were “90% complete” for months?
� Delivered wonderful plans but no software?
� Delivered wonderful models, but no software?

� The only accurate measure of software
development is the delivery of software
� Deliver something at the end of each

cycle/iteration
� Iterations should be short
� At all points in time stakeholders can see what

they’ve gotten for their investment to date

Copyright 2001-2005 Scott W. Ambler 26

Deployment Strategy

Development

Sandbox

Project

Integration

Sandbox

Test/QA

Sandbox

Production

Highly Iterative

Development
Project-Level

Testing

System and

Acceptance

Testing

Operations and

Support

Frequent

Deployment

Controlled

Deployment

Highly-

Controlled

Deployment

Demo

Sandbox

Copyright 2001-2005 Scott W. Ambler 27

The Configuration Management
Discipline

Copyright 2001-2005 Scott W. Ambler 28

The Project Management Discipline

Copyright 2001-2005 Scott W. Ambler 29

The Environment Discipline

Copyright 2001-2005 Scott W. Ambler 30

Follow Guidance

� Guidance = Standards and guidelines

� Agile developers prefer to develop high-
quality artifacts, and that includes
ensuring that they are developed in a
consistent manner

� XP practice Coding Standards

� AM practice Modeling Standards

� www.agilemodeling.com/style/

Copyright 2001-2005 Scott W. Ambler 31

Why Agile UP?

Test Driven Design

(TDD)

Traditional

Testing

Model and

Document Reviews

Code

Inspections

Pair Programming

Model With Others

Active Stakeholder

Participation

Full Lifecycle

Testing

Big Design Up

Front (BDUF)

Big Requirements

Up Front (BRUF)

Agile Model Driven

Development (AMDD)

Copyright 2001-2005 Scott W. Ambler 32

Secrets of Success

� Focus on collaborative approaches, not
processes and tools

� Recognize that people:

� Won’t read detailed process descriptions

� Want templates and examples

� Keep it simple
� www.ambysoft.com/unifiedprocess/agileUP.html

Copyright 2001-2005 Scott W. Ambler 33

Keep in Touch

Scott W. Ambler

www.ambysoft.com/scottAmbler.html

V
iew

 publication stats
V

iew
 publication stats

https://www.researchgate.net/publication/267259668

