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We introduce a framework for synergistic arc-weight estimation, where the user draws markers inside
each object (including background), arc weights are estimated from image attributes and object informa-
tion (pixels under the markers), and a visual feedback guides the user’s next action. We demonstrate the
method in several graph-based segmentation approaches as a basic step (which should be followed by
some proper approach-specific adaptive procedure) and show its advantage over methods that do not
exploit object information and over methods that recompute weights during delineation, which make
the user to lose control over the segmentation process. We also validate the method using medical data
from two imaging modalities (CT and MRI-T1).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In image processing and computer vision, there are several sit-
uations in which user interaction becomes essential in obtaining
effective image segmentation. The high-level, application-do-
main-specific knowledge of the user is often required in medical
image analysis [16,8,29,43] because of poorly defined structures,
and in the digital matting of natural scenes [2,55], because of their
heterogeneous nature.

Image segmentation involves two tightly coupled tasks: recog-
nition and delineation [16]. Recognition is the task of determining
the approximate whereabouts of a desired object in the image,
while delineation completes segmentation by precisely defining
its spatial extent. Humans usually outperform computers in recog-
nition, but the contrary can be observed in object delineation.
While the user can reduce recognition to a simple click of the
mouse inside the object, repeatable human delineation is challeng-
ing due to human subjectivity. On the other hand, computers can
be very precise, even when they are not accurate, but often the ab-
sence of high-level object information (location, shape, appear-
ance) makes object recognition a difficult task for computers. In
order to overcome some of these shortcomings from both sides,
some approaches have combined recognition by the user with
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delineation by the computer in a synergistic way [22,15,7,45]. This
topic forms the central focus of this paper.

In operator-assisted synergistic segmentation, the user usually
adds/removes markers (seed pixels, anchor boundary points) for
recognition, while subsequent delineation is performed by the
computer in interactive time. Accuracy becomes a compromise be-
tween the user’s patience for verification and correction, and the
quality of delineation. The methods usually make direct/indirect
use of some image-graph concept, such as arc weight between pix-
els. The weight may represent different attribute functionals such
as similarity, speed function, affinity, cost, distance, etc; depending
on different frameworks used, such as watershed, level sets, fuzzy
connectedness, graph cuts, etc. The accurate delineation by these
methods with minimum user intervention strongly depends on a
suitable arc-weight estimation, which usually takes into account
image attributes and/or object information often obtained from
markers selected by the user during segmentation [7,45]. Object
information is very crucial for improving the quality of arc-weight
estimation. However, the user’s actions need guidance from visual
feedback about the quality of the arc weights. Further, the markers
used for delineation should never be used to recompute weights.
Very often, these markers need to be selected in regions where ob-
ject and background have similar properties. Weight recomputa-
tion followed by delineation based on these markers may destroy
other parts of the image where the user was already satisfied with
the segmentation results, making the user to lose control over the
process.
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We propose a synergistic approach for arc-weight estimation,
which is separated from the process of interactive image segmen-
tation itself. As a training step, the user selects markers inside each
object, where image background is also considered as an object,
guided by a visual feedback about the quality of arc-weight estima-
tion. The training markers may be used to start object delineation,
but markers selected during segmentation are never allowed to
modify arc-weight assignment. We use this approach as a basic
step in several image segmentation methods, such as those based
on the min-cut/max-flow algorithm [7] and approaches which
can be easily implemented by the image foresting transform (IFT)
[21]. Note that our aim is not to compare segmentation methods,
but to show that several of them can benefit from a disciplined,
systematic, objective, and effective procedure for arc-weight
assignment, followed by some proper approach-specific adaptive
procedure, such as the complement of the weights, owing to the
nature of the meaning of weights in some methods; or by some
tuning procedure (e.g., non-maximal suppression [39], increasing
transformations [39], gradient orientation (Section 4.7)). The visu-
alization of the arc weights also allows the user to choose the most
appropriate method for a given image. For example, it is desirable
in live wire that the arc weights be lower along the object’s bound-
ary than in the neighborhood around it [16,22]; the local affinities
in relative-fuzzy connectedness [47] be higher inside and outside
the object than on its boundary; the gradient values in watershed
transforms be higher for pixels on the object’s boundary than in its
interior and exterior [32,4,15]; the gradient values in tree pruning
be higher on the object’s boundary than in its interior, and, at least,
in a neighborhood in its exterior [3]; and the arc weights in graph-
cut segmentation be lower across the object’s boundary than in its
interior and exterior [7,51,56]. Additionally, energy minimization
in [7] using the min-cut/max-flow algorithm from source to sink
nodes also requires higher arc weights between source and object
pixels, lower arc weights between source and background pixels,
lower arc weights between sink and object pixels, and higher arc
weights between sink and background pixels. Clearly, the effec-
tiveness of these approaches suffers when the above desirable con-
ditions are not satisfied, and this explains why the visual feedback
helps the user to choose the most appropriate method for a given
segmentation task.

To outline this paper: Section 2 presents the basic concepts on
image graphs and the terminology adopted in this paper. Arc-
weight estimation is presented in Section 3 by showing how to ex-
ploit image attributes and object information provided by user-se-
lected markers. Section 4 describes several interactive
segmentation methods based on the arc-weight assignment of Sec-
tion 3, and the main advantages of the synergistic approach are
demonstrated in Section 5, including evaluation experiments with
medical data from two imaging modalities (CT and MRI). Our con-
clusions are stated in Section 6.

2. Basic concepts on image graphs

An image I is a pair (D;,]) where D; c Z" is the image domain
and I(s) assigns a set of m scalars I;(s),i = 1,2, ...,m, to each pixel
s € D;. This definition applies to multi-dimensional and multi-para-
metric images. For example, {I,(s),[>(s),Is(s)} may be the red,
green and blue values of s in a color image I. The subindex i is
dropped for gray images since it becomes awkward when m = 1.

An irreflexive adjacency relation .«/ is a binary relation between
distinct pixels. We use t € «/(s) or (s,t) € .« to indicate that t is
adjacent to s. Once ./ is fixed, the image I can be interpreted as a
graph (D;, «/), whose nodes are the image pixels and whose arcs
are the pairs (s,t) in /. For example, one can take .o/ to consist

of all pairs of pixels (s, t) in the Cartesian product D; x D; such that

d(s,t) < p and s#t, where d(s,t) denotes the Euclidean distance
and p > 0 is a specified constant (Fig. 1).

A 2D image graph is illustrated in Fig. 2a for p = 1. This graph
topology can be the same for any segmentation method based on
optimum paths. The approach based on the min-cut/max-flow
algorithm can use this image graph extended by two virtual nodes,
source o and sink b, with arcs (o,s) and (s, b) connecting them to
each pixel s € D; (Fig. 2b). The arc weights w(s,t) of the image
graph are estimated via training, as described next, and the ex-
tended arc weights, w(o, s) and w(s, b), are estimated from interme-
diate results of the training step, as explained in Section 4.5.

3. Synergistic arc-weight estimation

Arc-weight estimation takes into account image attributes and
object information in order to enhance the discontinuities between
object and background. Let » be an algorithm which extracts attri-
butes (color, gradient, texture) from any pixel s € D; and returns a
vector 7(s). In the simplest case, we may take #(s) = I(s). However,
the best set of attributes depends on each given application.! In the
segmentation of natural scenes, for example, one may exploit the Lab
color space [59] and/or compute texture attributes around each pixel
from the results of the image convolved with a bank of filters
[31,35,41,33,42]. Other options are discussed in Section 3.2. For ¢ ob-
jects I =1,2,...,c, including the background as object numbered c
without loss of generality, the weight w(s,t) assigned to each arc
(s,t) € oz is a linear combination of an image-based weight
0 < w(s,t) < K and an object-based weight 0 < w,(s,t) < K,
which takes into account all ¢ objects.

W(S,t) = Aw,(s, t) + (1 — Hh)wy(s, t), (1)

where 0 < 4 < 1. The weights w;(s,t) exploit only image attri-
butes to capture discontinuities that may exist between homoge-
neous regions. The weights w,(s,t) take into account the image
attributes for pixels under selected markers, drawn by the user in-
side each object I =1, 2,...c. They aim to characterize the disconti-
nuities existing between each selected object and the rest of the
image. The user can adjust the parameter A and add/remove mark-
ers to recompute the arc weights. The quality of the arc weights is
evaluated by visualizing a weight image W = (D;, W), where

W(s) = max {w(s, )} (2)

for all s € D;. Our aim is to make w(s, t) higher on the desired object
boundaries than inside the objects, so W must show a suitable
boundary enhancement for a given image (see Fig. 3). The comple-
ment of w(s, t) may be used depending on the segmentation meth-
od. The process of arc-weight assignment stops when the user is
satisfied with the boundary enhancement. The image-based
weights w;(s, t) become more important (4 is lower), when nearby
objects have similar image properties (Figs. 7 and 14).

The following sections describe how to define object-based and
image-based weights and discuss some implementation and cus-
tomization issues.

3.1. Object-based weight assignment

Let d(s,t) > O be the distance between the corresponding
attribute vectors, 7(s) and 2(t), of two pixels s and t. One can use
any distance function suitable for the defined attributes. The most
common is the vector norm || 7(t) — 7(s)||, which is the one used in
this paper, but some image attributes may require special distance
algorithms [35,42]. The pair (7, &) then describes how the pixels of

! The images used for arc-weight assignment in Figs. 3, 4, 6, 10, and 14 are in the
RGB color space.
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Fig. 1. Euclidean adjacency relations for 2D images: (a) 4-neighborhood (p = 1), (b) 8-neighborhood (p = ﬁ) and (c) extended adjacency to the 12 closest neighbors

(p=2).

(a)

source

Fig. 2. (a) A 2D image graph with 4-adjacent pixels s and t. (b) An extended graph obtained by adding two terminal nodes (source o and sink b), which represent object and

background, respectively.

(a)

Fig. 3. (a) An image with markers selected inside and outside the object. (b) The weight image W considering only the image-based component (2 = 0), and (c) by combining

it with the object-based weight (2 =0.8), ¢ = 2.

a dataset are distributed in the attribute space and we call it a
descriptor.

Let %, C D; be the set of representative pixels (markers) se-
lected by the user inside each object [=1,2,...,c. A suitable
descriptor should group pixels of distinct objects in different re-
gions of the attribute space, but the same object may be repre-
sented by multiple clusters and pixels of distinct objects may fall
in the same cluster. This explains the importance of pixel connec-
tivity for the success of segmentation. We define .«7,; as a special
adjacency relation in the attribute space between any pair of pixels

(s,t), such that, s € D;, and t € S; is a k-nearest neighbor of s in the
attribute space.

t € o/yy(s) if t € 9 is a k-nearest neighbor of s € D;.

3)
We expect that the mean distance d(s, 7;(s)) between s and its k
neighbors in %, 1 = 1,2,...,c, be the smallest for pixels of the same
object of s.

ds. Suls) =3 Y dis.o) ()

Ve ()
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The fuzzy membership value p(I|7(s)) can then be conjectured to be
proportional to the total mean distance Y d(s,.«Z;(s)) for
i=1,2,...,c, and i#L

K ) D vic12...d] ad (s, 7ki(S))

- . 5
c—1 ZVi:].Z ..... cd(sa %ki(s)) ( )

These membership values can be viewed through a set of images
M; = (D;,M;), i=1,2,...,c such that M;(s) = u(l =i|#(s)) for all
s € D;. For multiple objects, the user should keep on drawing mark-
ers inside the dark regions of object i in each image
M;, i=1,2,...,c, until that object becomes brighter than the rest
in this membership image. For the sake of simplicity, all examples
in this paper use only “object and background” type of situation.
In this case, u(l=1|7(s)) =K — u(l=2|9(s)), and then we can,
and need to, show only M, with internal and external markers
(Fig. 4). As the user adds markers, the estimation improves and
the object becomes increasingly distinguished (brighter) from the
background (darker).

We could have estimated p(l|7(s)) by Baye’s Theorem, by di-
rectly computing the posterior probability 2(I|7(s)) from the mark-
ers and the distances between s and its neighbors in .oz, (s) in the
attribute space [14]. A similar approach to compute probability
density functions is described in [46]. We compared with that ap-
proach and the results were equivalent to those obtained by Eq.
(5), which is simpler and more efficient. Note that, according to
Eq. (5), for any pixel s the sum of u(l|7(s)) for [=1,2,...,c is the
maximum value K, as desired for a discrete surrogate of the prob-
ability quantized into K levels.

The discontinuities between each object [ and the rest of the im-
age can be captured from a gradient vector G(s), defined for all
s € D; and computed as follows.

Gi(s) = > [z () — u(lla(s))lst, (6)
)

Vted/(s

u(l|3(s)) ~ (

where st is the unit vector connecting s to ¢t in the image domain.
For a 2D Euclidean adjacency . with p = v/2, the gradient vector

G(s) is estimated from the vectorial sum of the first derivatives of
u(l| ?(s)) along the 8 directions, rather than from the x and y direc-
tions only.

For each arc (s, t) € .«/, we compute the magnitude of the mean
gradient vector of its pixels and use it as the weight w, (s, t) with
respect to the object L. The final object-based weight w, (s, t) is con-
sidered to be the maximum of w,(s, t) among all objects.

Wols,t) = M ]
Wo(s,6) = max {wy(s,0)}. o

The orientation of G(s) + G,(t) can also be exploited to modify arc-
weight assignment (Section 4.7).

As the user adds markers, the size of the wunion set
more expensive to assign membership values to all pixels in D;.
On the other hand, we do not need quantity, but quality, in choos-
ing pixels for 2. In order to choose the best representative pixels
for each object from the drawn markers, and, at the same time,
to estimate the best parameter k, we use supervised learning as de-
scribed next.

3.1.1. Supervised learning from markers

The main idea is to reduce the size of 2 by selecting a subset
%1 C % of the most representative pixels. These pixels are defined
as those that maximize the classification accuracy of the remaining
set of pixels ¥, = \ 24, using the maximum y(l|7(s)) as the
decision rule for the pixels s € 2, with respect to its neighbors
1 (S) C Z1 by Eq. (5).

The set 7 is divided into two subsets, 2y and Z,, by randomly
selecting the same percentage of pixels from each object. Set 2
has a maximum size (e.g., 100 pixels). When the number of seeds
is less than that maximum size, we may divide 2 into 50% for 2,
and 50% for 2,. The maximum p(I | 7(s)) is used to classify the pix-
els in 5. This process is repeated for each k from 1 to kna (Eq. (9))

(d)

Fig. 4. Image M,, where the desired object is a family of bears. (a-b) An initial marker selection and the corresponding membership image M;. (c-d) The estimation improves
as the user adds internal markers on the dark regions of the object and external markers on the bright regions of the background in M;.
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in order to obtain the best value of k for the given 2. The misclas-
sified pixels with the best k are randomly replaced by pixels of the
same object in 2. The whole process is repeated over a few iter-
ations T (e.g., T = 5) and the pair (21, k) of maximum accuracy is
selected as output (see Algorithm 1).

kmax: min {ngi:zﬂ} (9)

VI=12,.c

Algorithm 1. Learning Algorithm

iNeuT: Initial sets 27y and Z», number T of iterations, and the
descriptor (v,d).
output: The pair (27, k") of maximum accuracy.

AuxiLIARY: Arrays FP and FN of sizes c for false positives and false
negatives, list M of misclassified pixels and its auxiliary
M*, and array A of size T for the best accuracies.

1: Compute kmqx by Eq. (9).

2: For each iterationi=1,2,...,T, do

3: Set Acc* — 0.

4: For each k =1,2,..., ke, do

5: M — 0.

6: For each class [ =1,2,...,c, do

7: L FP(l) — 0 and FN(I) < 0.

8: For each sample s € Z,, do

9: Classify s with label 1 < L(s) < c, as described
above.

10: If s € & and L(s)#l, then

11: FP(L(s)) — FP(L(s)) + 1.

12: FN(l) — FN(l) + 1.

13: M—Mut.

14: Compute Acc by Eq. (12).

15: If Acc > Acc”, then

16: L L Acc® —Ace,M* — M, 2% — 21 and k' — k.

17: Save (27,k") and set A(i) — Acc”.

18: While M*#0()

19: M" — M"\s

20: { Replace s by a randomly selected pixel of the same

21 b

class in 7.
22: Select the instance of (27}, k") with maximum accuracy
Al), i=1,2,...,T.

Accuracy is measured, as suggested in [44], by taking into ac-
count the fact that objects may have different sizes in 2. If there
are two objects, for example, with very different sizes and the clas-
sifier always assigns the label of the largest object, its accuracy will
fall drastically due to the high error rate on the smallest object.
This accuracy is defined as follows. Let N, () be the number of pix-
els of %, in Z,. We first define

o FP()
T2 - Nay(D)

EN(D)

and e,_zfm, I=1,...,c (10)
where FP(I) and FN(I) are the number of false positive and false neg-
ative pixels (Lines 11-12), respectively. That is, FP(l) is the number
of pixels from other objects that were classified as being from the
object | in %5, and FN(l) is the number of pixels from the object I
that were incorrectly classified as being from other objects in 2.
The errors e;; and e;, are used to define

E(l) =€1 + €, (11)

where E(]) is the partial sum error of object I. Finally, the accuracy
Acc of classification is expressed as

20-YED)  SE()
i=1 _1_k&1 .

Acc = 2c 2c

(12)

3.2. Image-based weight assignment

In general, one may use 0 < El(s, t) < K as the image-based
weight w;(s,t) in Eq. (1). It is also possible to learn the posterior
probability of a pixel (or arc) to be on a boundary from local image
attributes [36]. We present another interesting option based on
image smoothing at several scales.

Multiscale image smoothing can be accomplished by linear con-
volutions with Gaussians [31] and/or levelings [37,54,49,48]. Ex-
cept for Fig. 15, the other examples in this paper use sequences
of opening by reconstruction and closing by reconstruction, com-
puted over each image band I,,b=1,2,...,m, for disks of radii
r=1,2,...,5(e.g., S = 4 pixels). Gaussian filters provide smoother
contours than morphological reconstructions, but the latter may be
preferable to better conserve the natural shape indentations and
profusions. In Fig. 15, we illustrate the contour smoothness ob-
tained by Gaussian filters with means equal to 0 and standard devi-
ations o = for scalesr = 1,2,...,S = 6 pixels.

Let 7p(S) = (Vb1 (S), Up2(S),..., Ups(s)) be the resulting pixel
intensities v;(s),j =1,2,...,S, of the multiscale smoothing on
the image band I,,b=1,2,...,m. We compute a gradient vector
GCo (s) for each s € D; and band b =1,2,...,m. The idea is the same
as in Eq. (6), where .# may be Euclidean with p = v/2.

S

Go(S) = > [vni(t) — wns(s)lst (13)
Jj=1 Vte/(s)

w;i(s,t) = b:rlnzax { M } (14)

Note that, the gradients G,(s) are filtered vectors, the gradient ori-
entation of the mean vector of maximum magnitude may be used
to modify arc-weight assignment (Section 4.7), and the best choice
of attributes for a given image should be learned from the selected
markers and a database of descriptors. One can select, for example,
the descriptor which maximizes the accuracy in Algorithm 1.

4. Interactive segmentation methods

A segmentation result is represented by a label image L = (Dy, L),
in which each label 1 < L(s) < c assigns a pixel s € D; to one ob-
ject out of c objects, including background. For the sake of simplic-
ity, we have considered the case of ¢ =2 in all examples of this
paper. All methods presented in this section have been well pub-
lished, so we will present only a short description with their graph
parameters customized as a function of w(s,t) and u(l|7(s)),
although for other methods, different adaptive procedures may
be required. The methods based on optimum paths are described
by using the image foresting transform (IFT) [21]. We also describe
the graph-cut approach based on the min-cut/max-flow algorithm
of [7]. What is novel in this section is the way these methods are
used in combination as tools in an interactive segmentation
paradigm.

4.1. Image foresting transform

The image foresting transform (IFT) is a tool for the design,
implementation, and evaluation of image processing operators
based on connectivity values among pixels [21].

In a given image graph (D;, «/), a path 7t = (t1, t2,...,t) is a se-
quence of two or more adjacent pixels with the terminus at a pixel
t € D;, m; = (t) being considered a trivial path. A path 7; is optimum
under a path-value function f(m.), when f(n;) < f(t,) for any other
path 7. The IFT computes an optimum-path forest P by minimizing
(or maximizing) Eq. (15) for every t € D;.
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V(t)= min
Vrin(Dy,/)

{f(me)}, (15)

where V(t) is the value of the optimum path with terminus t. The
initial pixels of the optimum paths are called roots of the forest.
By starting with trivial paths 7w, = (t) for all pixels t € D;, the IFT
algorithm (a generalized Dijkstra’s algorithm [11], which in prac-
tice, executes in linear time in most cases) first identifies the forest
roots (minima/maxima of V) and then propagates optimum paths to
their adjacent pixels, continuing from these nodes to their neigh-
bors, and following a non-decreasing (non-increasing) order of path
values, according to the path-propagation rule below.

if f(ms - (s,t)) < f(m:) then m; — 75 - (s,t), (16)
where 7 - (s,t) indicates the extension of a path 7, by an arc
(s,t) € o/ (Fig. 5a). These paths are represented in backwards, where
P(t) indicates the predecessor node of t in the path 7t; and R(¢) is its
root pixel for which P(R(t)) = nil (Fig. 5b). An optimum-path forest P
is a function which takes every pixel to nil in a finite number of iter-
ations, such that all paths are optimum (Fig. 5c).

The path-value functions define different IFT-based image oper-
ators, which are reduced to a local processing operation on one or
more of the output maps V,P, and R [19,18,46,44,3,52]. The IFT
algorithm is an optimum region (path) growing process from the
roots of the forest (Fig. 6). Variants can also gather on-the-fly other
information, such as a root label for each pixel [32,15], the propa-
gation order of the pixels [40], the area of the wavefronts of same
path value [40], and a graph-cut measure for the border of the
growing regions [20].

Particularly, the image segmentation methods described in the
following sections adopt a minimization of path-value functions f;
and f,, and some of their variants, such that the roots of the forest
markers. We note that, these IFT algorithms run in linear time
independently of |Z|.

_[H(t) iftez

L) = {+oc otherwise.

fl(ns : <S7 t)) = max{f] (TES)’W(S’ t)} (17)
_[H(t) iftez

L) = {+oc otherwise.

f(7s - (s, 8)) = fo(75) + w(s, ), (18)

where 0 < H(t) < co is a handicap value and 0 < w(s,t) < K is
the fixed arc weight, as described in Section 3. Function f; (7;) com-
putes the maximum arc weight along 7, and f,(m;) computes the
sum of the arc weights along 7,.

(a) (b)

4.2. Segmentation by differential IFT (DIFT)

Multiple objects can be obtained by competition among markers
in #,1=1,2,...,c. By assigning higher arc weights across the de-
sired boundaries, the IFT with f; (e.g., H(t) = 0) tends to propagate
optimum paths inside the objects before they meet paths from seeds
of other objects at the image boundaries (Fig. 6). Additional seeds are
required when this condition is not fully satisfied. Each seed r € &
defines an influence zone (optimum-path tree rooted at r) composed
of the pixels that are more strongly connected to r than to any other
seed. Each object [ is then defined by the union of the influence zones
with that label in L. This essentially incorporates approaches, such as
the watershed transform from markers [4,32] and iterative relative-
fuzzy connectedness [9]. The formal relation that exists between
these approaches is studied in [39,1]. The same strategy with f,
(e.g.,H(t) = 0) would be a segmentation by weighted distance trans-
form [2,45].

In any case, the user may want to add/remove markers to cor-
rect the segmentation results (Fig. 7). Instead of computing one
IFT from the beginning for each new instance of seeds, the DIFT
algorithm allows us to recompute the optimum-path forest in time
proportional to the number of pixels in the modified regions [15]
(sublinear time in practice).

4.3. Segmentation by K-connected components

User involvement can be reduced when we exploit other prop-
erties of the optimum paths during the IFT algorithm [40]. The IFT
with f; (with H(t) = 0) propagates wavefronts % ,(s) of iso-opti-
mum-path value u around each seed s, following an increasing or-
der of values u = 0, 1, ..., K. The maximal extent of a seed inside an
object is defined by a «; value as {J,_;__ 7 u(s) (Fig. 8a). When
the competition with external seeds fails (or there is no external
seeds) and an optimum path from s invades the background, it usu-
ally crosses the boundary through its weakest link (arc with the
lowest weight or leaking arc), ramifies and conquers a large region
of surrounding pixels with the same path value x; + 1 (Fig. 8b).
This background invasion is characterized by a considerable in-
crease of |#7,(s)|, which can be observed by displaying a curve of
the total area 7., [# u(s)| for u=0,1,...,K during propagation
(Fig. 8c). A single area threshold 0% < T < 100% on the size
|# u(s)| can be used to detect K for all seeds s € ., and forbid
the leaking by stopping the region growing from s. The object is de-
fined as the subset of pixels which are more strongly K-connected
to its internal seeds than to any other (Fig. 8d). As discussed in Ref.
[39], a non-maximal suppression to make the weights in the ob-
ject’s boundary thinner is an adequate preprocessing that should
be adopted in these k-connected methods.

Note that, since the internal seeds also compete among them-
selves, with distinct K, values, the method can work even when

)

()

Fig. 5. (a) Path m; = 7 - (s, t) indicates the extension of path 7, by an arc (s, t) € /. (b) A 4-neighborhood graph showing a path 7; (dashed line) represented in backwards,
where P(t) is the predecessor node of t and R(t) is the root pixel. (c) A forest P with two root nodes ry and r».
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(d)

Fig. 7. (a) A weight image W obtained from Fig. 4 using 4 = 0.4. (b) An initial marker selection and segmentation. (c) An additional seed is inserted in order to include the

other bears. (d) The final segmentation after some small corrections.

leaking occurs before the object is fully segmented (Fig. 8b). The
method usually reduces the number of external seeds required to
complete segmentation [40], and it is equivalent to the segmenta-
tion by differential IFT when we increase the number of external
seeds. That is, it is more general than the previous approach.

4.4. Segmentation by tree pruning

Another idea to reduce/eliminate external seeds using the IFT
with f; (with H(t) = 0) has been proposed in [17,3]. In both ap-
proaches, the idea is to let the object and the background get con-

nected through the leaking arcs by computing the IFT from internal
seeds. The leaking arcs can be then detected interactively [17] or
automatically [3]. By removing their subtrees from the forest P,
the remaining forest defines the object. The first approach can han-
dle multiple objects, but we will discuss here only the second
approach.

In [3], there is no competition with external markers. They are
called an external set %, which is used to detect all leaking arcs
automatically. In most cases the set # is the image’s border, but
the user can also add external pixels to # or internal seeds, if
needed. The optimum paths that leak to the background are called
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leaking paths. They can be enhanced by displaying the number of
descendants that each forest node has in # (Fig. 9a). Since the leak-
ing paths are ramified after leaking, there is a considerable de-
crease in the descendant number after the leaking arcs. The
method can detect this variation, remove the leaking arcs and out-
put the object (Fig. 9b). It has been shown that segmentation by
tree pruning is less sensitive to the heterogeneity of the back-
ground than the watershed transform from markers [3].

4.5. Segmentation by graph cut

Approaches for graph-cut segmentation are based on objective
functions that measure some global property of the object’s bound-
ary using the arc weights. The idea is to assign weights to the arcs
such that the minimum of this objective function corresponds to
the desired segmentation (i.e., a cut boundary whose arcs connect
the nodes between object and background).

Wu and Leahy [58] were the first to introduce a solution for
graph cut using as measure the sum of the arc weights in the cut

40 +

30

20 r

Wavefront area (%)

0 200 400 600 800 1000 1200 1400
Optimum-path values

()

boundary. Their cut measure had a bias toward small boundaries,
and subsequently, other objective functions, such as average cut
[12], mean cut [56], average association [50], normalized cut
[51], ratio cut [57], and energy functions [7] have been proposed
to circumvent this problem.

Interactive segmentation using the min-cut/max-flow algo-
rithm [7,29] uses extended image graphs (Fig. 2), where two termi-
nal nodes o and b (source and sink) represent object (I=1) and
background (I = 2), respectively, directly connected to all pixels
s € D; by arcs (o,s) and (s,b). A variant of the min-cut/max-flow
algorithm from source to sink [24,5] is then used to speed up com-
putation of the minimum-cut boundary according to the following
equation:

E(L) = > K-w(s,t)+ > w(s,b)
V(s,t)e| L(s)=1,L(t)=2 vseDj| Lis)=1
+ > w9, (19)
vseD;| L(s)=2

Fig. 8. (a and b) The IFT region growing from internal seeds. There is a burst in the size of the wavefront when an optimum path reaches the background. (c) The total
wavefront area for each optimum-path value u = 1,2, ..., K during propagation. (d) The resulting segmentation with k-connected components.

(a)

(b)

Fig. 9. Example of license plate segmentation. (a) The original image overlaid by the number of descendants in the background set #. (b) The resulting segmentation with tree

pruning.
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where w(s,b) and w(o,s) can be computed based on the member-
ship values given in Eq. (5):

w(o,s) = o - u(l = 1|9(s))
w(s,b) = o - u(l = 2|9(s)).

Here, & > O specifies the relative importance of the arcs with the
virtual nodes versus the arcs between pixels (Fig. 10). As discussed
in Ref. [39], an interesting adaptive procedure to improve this
method is to penalize arcs between pixels with high complemented
weights by applying some increasing transformation (e.g., power
functions, the exponential function [30]). This is especially impor-
tant for low o values since in this case Eq. (19) becomes almost
the same as in Wu and Leahy [58] and it helps to circumvent the
undesirable bias.

If the algorithm fails in delineating the desired boundary, the
user forces arc weights with source and sink by adding markers in-
side and outside the object [7]. The problems related to the simul-
taneous segmentation of multiple objects are discussed in [6].

4.6. Segmentation by IFT with graph cut

If the arc weights are higher on the desired boundary than in-
side the objects, then the borders of the growing regions from
internal seeds must merge and fit to the desired boundary during
the IFT propagation with f; (with H(t) = 0). Such borders work as
cut boundaries and different cut measures may be computed on-
the-fly for every instant (propagation order of each pixel) during
region growing (Fig. 11a). Within this considerably reduced search
space, the minimum cut is expected to occur on the object’s
boundary (Fig. 11b). The method has been evaluated for normal-
ized cut, mean cut and energy functions [20]. When the weight
condition is not fully satisfied, the desired cut is not a global min-
imum even within this reduced search space, but the user can add
more internal seeds. The reduction of the search space represents a

(a)

(b)
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considerable efficiency gain with respect to some graph-cut ap-
proaches [51,57].

We note that, a non-maximal suppression to tune the weights
can help this method by allowing a better fit to the boundaries dur-
ing the internal region growing [39].

4.7. Segmentation by live wire

In order to segment the object with live wire [22], the user se-
lects a starting point on the object’s boundary (point s; in Fig. 12a),
and, for any subsequent position of the mouse cursor, the method
computes an optimum path from s; to that position in real time. As
the user moves the cursor close to the boundary, the optimum seg-
ment snaps on to it. The user can quickly verify the longest seg-
ment, as the one with terminus at point s, in Fig. 12b, and
deposit the mouse cursor at that position. The process is then re-
peated from s, until the user decides to close the contour
(Fig. 12c and d).

The closed contour is an optimum curve that is constrained to
pass through a sequence (1, 7@ ... ™) of N anchor points
(seeds) on the object’s boundary, in that order, starting from &
and ending in ™, where each set ¥ i=1,2,... N, has a single
pixel s; and s; = sy. The optimum curve that satisfies those con-
straints consists of N—1 segments T,,T,,..., s, where each
T, is an optimum path connecting s;_; to s;. Therefore, we can solve
this problem by N — 1 executions of the IFT and the optimum con-
tour can be obtained from the predecessor map P after the last exe-
cution. Fori=2,3,...,N, the IFT is computed using the initial point
sii1 € 90V as seed, 8-adjacency relation and path-value function
f3 (a variant of f,).

1% if o U... o
O = {1 Spere 22)
f(ms - (5,0) = f () + (K — max{G(s, t) - 7j(s, 1), 0})", (23)

Fig. 10. Graph-cut segmentation with o = 20 and 4 = 0.5. (a) Marker selection for training and the result of segmentation. (b) The membership image M; used in w(o,s) and

w(s, b). (c) The weight image W that reflects w(s, t).
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(a)

(b)

Fig. 11. Segmentation example of a MR-brain image. (a) The normalized cut versus the pixel propagation order. (b) The respective segmentation.
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where V(t) is the optimum path value of the previous executions,
a>0(eg,a=15),0 < [G(s,0)] < K is the gradient vector esti-
mated at the midpoint of arc (s, t), and 7(s, t) is the unit vector st ro-
tated 90 degrees counter-clockwise. This formulation favors
segmentation on a single orientation, but allows longer boundary
segments. We use G(s, t) = 4440 obtained from the membership
map, but the image gradient G(s, t) = %% of maximum magni-
tude for b =1,2,...,mis also an option, when there are no training
markers. The initial path value V(s;) =f5((s1)) = 0 and we make
V(s1 = si) = +oo to compute the last segment.

We note that, other variants of live wire can also take advantage
of the proposed arc-weight assignment [21,27,23,26,34,25].

5. Experiments and results

The examples in the previous sections have shown that the pro-
posed process for arc-weight assignment is useful in several image
segmentation methods. The synergism between the user and the
computer offers some important advantages as well. Object infor-

mation is incorporated into arc-weight estimation under user
supervision and control. In traditional segmentation methods
[28,4,51,56], arc-weight estimation is usually treated as a simple
embedded process, disregarding, in many cases, the user interven-
tions. For example, the watershed from markers over the weight
image (Fig. 13a) can be drastically improved by incorporating ob-
ject information as presented in Section 3.1 (Fig. 13b).

The arc-weight assignment process and computation without
visual inspection by the user makes it difficult to understand what
part is contributing more to the final segmentation result: arc-
weight estimation or the segmentation algorithm. Hence, only a
common base strategy for arc-weight assignment, with the proper
adaptive procedures, allows fair comparisons among methods. For
instance, it is easy to see that any approach based on the weights of
Fig. 3b will be at a clear disadvantage when compared with those
based on the weights of Fig. 3c.

Other approaches also incorporate object information into arc-
weight estimation [7,2,45]. However, the absence of weight visuali-
zation and the use of segmentation markers for both arc-weight esti-

Fig. 12. Contour tracking with live wire. (a) Initial point s; is selected on the boundary and the user moves the mouse. (b) A second point s, is selected on the boundary. (c and

d) Final contour with 7 segments.

Fig. 13. (a) Segmentation result of the watershed transform from markers considering only the traditional image-based component (Fig. 3b). (b) A better result is obtained

with less seeds, by the use of object-based weights (Fig. 3c).



P.A.V. de Miranda et al./ Computer Vision and Image Understanding 114 (2010) 85-99 95

Fig. 14. (a) DIFT segmentation using the same markers for training and delineation. (b and c) The respective membership image M; and weight image W of the training
(4 =0.5). (d) The correct segmentation is obtained with additional markers, which should never be used to recompute weights. (e) The membership image M is destroyed if
we recompute weights from the additional markers, affecting (f) the result of segmentation.

mation and delineation make the user lose control over the segmen-
tation process, when there exist ambiguities between object and
background properties. Fig. 14, in which the bigger horse is the ob-
ject of interest, provides an illustration of this phenomenon.
Fig. 14a shows the DIFT segmentation from the same markers used
for training and delineation. The corresponding membership image
M; and weight image W used for arc-weight assignment are shown
in Fig. 14b and c (4 = 0.5). Note that the segmentation fails owing to
the weak boundary between the bigger and the smaller horses,
which have similarimage properties. Additional markers can correct
segmentation in a differential way (Fig. 14d). However, arc weights
should never be recomputed from the new markers. If we do that,
the membership image M, gets destroyed (Fig. 14e) and the segmen-
tation results would not be correct (Fig. 14f). This explains the
importance of having arc-weight estimation as a separated training
step from image segmentation. During training, the user should se-
lect the most representative and distinguishable parts of the objects,
and leave corrections to the interactive segmentation session, in or-
der to avoid arc-weight estimation based on exceptions.

The visual feedback during training also assists the user in
choosing the image segmentation method which is likely to re-
quire less markers. Fig. 15a illustrates the DIFT segmentation of
the left caudate nucleus in an MR-image, using the same markers
for training and delineation. The corresponding membership image
M; (Fig. 15b) and weight image W (Fig. 15c¢) for A = 0.5 indicate
that the arc weights on the object’s boundary are not strictly higher
than inside and outside the boundary. However, when they indeed

are greater, only one internal seed and one external seed are en-
ough to complete segmentation by DIFT. Since this is not the case,
segmentation would fail if we remove the external marker on the
lateral ventricle (dark part) and additional markers are actually
needed to refine the results shown in Fig. 15a. However, arc
weights seem to be higher on the object’s boundary than inside.
This favors other methods such as segmentation by k-connected
components (Fig. 15d), which provides the desired segmentation
with only one internal seed. The nearby boundaries with similar
properties would make more than two seeds required to complete
segmentation with live wire (Fig. 15e). Graph-cut segmentation
fails because object and background have similar properties
(Fig. 15f). Correction in this case is impractical.

In order to validate the synergistic arc-weight estimation meth-
od, we need to show that it can really improve accuracy and effi-
ciency (in terms of the amount of user help required) of a given
segmentation method as compared to the direct approach based
only on w;, which does not require user assistance. We demon-
strate this for one of the methods, namely DIFT, described in Sec-
tion 4.2, instead of evaluating all methods in this manner since
the latter is not likely to generate new insight. We used DIFT with
(4 =0.5) and without w, (1 = 0) to segment different objects in 100
MRI and CT slice images. Among these, 40 slice images came from
MRI-T1 acquisition simulations of phantoms (available at the
BrainWeb site? [10]), 40 slice images were selected from CT cervical

2 URL: http://www.bic.mni.mcgill.ca/brainweb/
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Fig. 15. (a) The same training markers are used to delineate th@ left caudate nucleus by the DIFT algorithm. Additional markers are needed to refine segmentation. (b and c)
The corresponding membership image M; and weight image W for 4 = 0.5. (d-f) Segmentations by k-connected component, live wire and graph cut.

spine studies of 10 subjects, and 20 slice images came from CT tho-
racic studies of 10 subjects. This gave us a total of 100 2D-segmen-
tations for each method as shown in Table 1. Sample objects are
shown in Fig. 16.

The ground-truth segmentations were available for each object
and they were used to compute the following accuracy measures:
the normalized number of false positive pixels m1 = FP/(FP + TN),
where FP + TN is the sum of the number of false positive and true
negative pixels, the normalized number of false negative pixels
m2 = FN/(FN + TP), where FN + TP is the sum of the number of
false negative and true positive pixels [53], and Dice similarity
[13]. Efficiency can be measured by the number of markers (mark-
ing actions) required by the user to complete segmentation. The
method with less markers requires less user involvement. Note
that, in interactive segmentation, accuracy depends on the user’s
patience for verification and correction. In practice, the user tends
to stop the corrective actions when the efforts needed to improve
the results increase too much relative to the returned improve-
ment in accuracy. Therefore, high accuracy with less number of
markers is highly desirable. The mean and standard deviation of
the accuracy and efficiency measures estimated in our experiments
are presented for the DIFT with and without w, in Tables 2 and 3,
respectively.

In order to simulate a real environment, the similarity measure
should be maximized as much as possible until the corrections be-
come almost manual and impractical (i.e., until only small differ-
ences distributed along the boundary remain). In the case of O1
with w,, about 5-10 markers are needed to achieve more than
90% of Dice similarity. This result is already equivalent to the best
obtained without w, (line 1 of Table 3), and can be further im-
proved by adding more markers for small corrections (line 1 of Ta-
ble 2). For objects 02 and 03, in general, only 4-5 markers are
sufficient to obtain more than 95% of Dice when using w,, while
three times more interactions are required without w, to reach
90% similarity with the true segmentation. As we keep adding
more markers, the results converge to the values listed in Tables
2 and 3. In the case of 04, the results with and without w, are very
similar. We already have more than 91% of Dice similarity with 3
markers and about 96% with 6 markers.

The results indicate that the use of w, usually provides higher
accuracy and higher efficiency. By considering the standard devia-
tion, the DIFT with w, presented better performance than the DIFT

Table 1

Description, imaging modality and number of slice images for each object used in the
experiments. Objects 02 and 03 use sample slices from phantoms with different
degrees of noise (N) and inhomogeneity (INU).

Object Description Modality # Images
01 Spinal-vertebra CT 40
02 White matter (N = 3% and INU = 20%) MRI-T1 20
03 White matter (N = 5% and INU = 40%) MRI-T1 20
04 Liver CT 20

without w, in all cases, except in the case of object 04, where both
were equivalent. In all cases, it was enough to consider only two
markers to compute w,, and these markers were also used to start
delineation (i.e., they are counted in Table 2). The use of w, enhances
the desired boundaries and suppresses unwanted borders (see
Fig. 17). This explains the reduction of markers required to complete
segmentation, as verified in all cases (Tables 2 and 3). Since the
remaining errors are distributed along the boundary, the similarity
measure for each object will vary according with the perimeter/area
ratio. Note that objects with complex shapes (O1) produce lower
similarity values as compared to simple shapes (04).

Although we used the DIFT for the experiments, there may be
more adequate methods depending on the application. For example,
the visual feedback during the training of object O1 (Fig. 18a-b) indi-
cates that the graph-cut approach is likely to require less markers.
Note that object O1 contains several background parts (holes) inside
it, and at least one background seed at each hole will be required by
the DIFT. Indeed, results similar to those of line 1 in Table 2 can be
obtained with the graph-cut approach by using only two markers
for training (Fig. 18a) and four markers to remove the background
bones during delineation (Fig. 18c). Note, however, that the use of
w, is imperative in the graph-cut approach. By choosing o = 40,
the method becomes practically a threshold on the membership
map (Fig. 18b) followed by corrections. This gives another strong
indication of the importance of w,.

6. Conclusion

We have presented an interactive method for arc-weight esti-
mation, which can be employed effectively by several graph-based
segmentation approaches as we demonstrated. Our method ex-
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(a) (b)
Fig. 16. Sample slice images showing objects 01, O3 and O4. Object 02 is the same as object O3, but on images with less noise and inhomogeneity.
Table 2 Table 3
Segmentation results using DIFT with w, (% = 0.5). Segmentation results using DIFT without w, (4 = 0).
Dice m1 m2 # Markers Dice m1 m2 # Markers
Mean Std Mean Std dev  Mean Std Mean Std Mean Std Mean Std dev.  Mean Std Mean Std
dev dev dev dev dev dev
O1 0.9329 0.0115 0.00277 0.00073 0.0830 0.0256 17.8 5.5 01 0.9058 0.0109 0.00347 0.00054 0.1219 0.0196 31.6 7.4
02 0.9767 0.0020 0.00732 0.00096 0.0205 0.0038 13.6 4.6 02 0.9621 0.0039 0.01836 0.00316 0.0128 0.0030 26.0 9.5
03 0.9663 0.0028 0.01059 0.00186 0.0297 0.0039 18.7 4.9 03 0.9562 0.0041 0.02064 0.00295 0.0168 0.0034 28.9 9.8
04 0.9841 0.0027 0.00293 0.00118 0.0180 0.0045 11.1 3.0 04 0.9862 0.0024 0.00261 0.00081 0.0152 0.0034 134 3.5

ploits in a synergistic way the human abilities for recognition and
the computer abilities for delineation. While the user draws mark-
ers inside each object (including background), arc weights are esti-
mated from image attributes and object information (pixels under
the markers), and a visual feedback guides the user’s next action
toward improving accuracy. Markers should be drawn on the most

(a)

(b)

representative and distinguishable parts of the objects in order to
make arc-weight estimation effective. The training markers can
be used to start delineation and additional markers selected on
similar parts of the objects can correct segmentation, but they
should never be used to recompute weights that are estimated in
the training step.

Fig. 17. (a) Sample slice of object 02 with training markers. (b and c) The corresponding weight images W for 2 = 0 and 1 = 0.5, respectively. By using w, a suitable boundary

enhancement is obtained for the white matter.

(1)

(b)

Fig. 18. (a) Sample slice of object 01 with training markers. (b) The corresponding membership image M;. (c) Graph-cut segmentation with o =40 and 4 = 0.5. The

background bones are easily removed using 4 markers with a larger brush.
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We validated the method by showing that the combination of
object-based weights with image-based weights usually improves
accuracy and efficiency in interactive segmentation, as compared
to the same method with only image-based weights. More re-
cently, this approach for arc-weight estimation together with ob-
ject delineation by DIFT was also successfully used to improve
object tracking in video, handling partial occlusion, camera motion,
and deformable objects [38]. In this approach, after interactive im-
age segmentation in a first frame, the method combines motion
estimation with automatic segmentation of the remaining frames
using the proposed framework. In interactive segmentation, the
importance of weight visualization to choose the most suitable
segmentation approach was also evident from the examples pre-
sented in the paper. The selection of the best image attributes,
however, requires further investigation. These attributes can be
learned from the drawn markers. Another area that requires fur-
ther work, which is a current limitation of the method, is the user
action of how to draw the markers in an effective manner. This is at
present somewhat of an art. Our future work will focus on these
directions.
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