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Tensor scale is a morphometric parameter that unifies the representation of local structure thickness,
orientation, and anisotropy, which can be used in several computer vision and image processing tasks. In
this article, we exploit this concept for binary images and propose a shape salience detector and a shape
descriptor—Tensor Scale Descriptor with Influence Zones. It also introduces a robust method to compute
tensor scale, using a graph-based approach—the Image Foresting Transform. Experimental results are
provided, showing the effectiveness of the proposed methods, when compared to other relevant methods,
such as Beam Angle Statistics and Contour Salience Descriptor, with regard to their use in content-based

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The shape of an object is an important and basic visual feature
for describing image content [1,2], and can be thought of as a silhou-
ette of the object [1], invariant to rotation, scale and translation [3].
Shapes are often the archtypes of objects belonging to the same pat-
tern class [4], and can be used in a wide range of practical problems,
such as document analysis (optical character recognition), visual arts
(video restoration), internet (content-based image retrieval), secu-
rity (fingerprint detection), etc. [4]. In content-based image retrieval
(CBIR) systems, for example, shape descriptors can be used to encode
image properties that are relevant to a query. For image registra-
tion tasks, shape saliences can be used to identify correspondences
between objects’ contours.

The work presented in this article aims at shape feature extrac-
tion and description and, in this scenario, it is important to have
a parameter for characterizing the structures presented in the im-
ages. In [5], Saha introduced a new concept, called tensor scale—a lo-
cal morphometric parameter that yields a unified representation of
structure thickness, orientation, and anisotropy. That is, at any image
point, its tensor scale is represented by the largest ellipse centered
at that point and within the same homogeneous region.

Scale may be thought of as a range of spatial resolutions needed
to ensure a sufficient yet compact object representation. It is
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important in determining the optimum trade-off between noise
smoothing and perception/detection of structures [5]. The notion of
local scale stemmed from the idea of identifying the optimal scale
at each image point and, before the proposal of tensor scale, the
approaches inferred only statistical information of local frequency
and orientation. Tensor scale can be used as a measure of local
morphometric scale because it actually yields a unified morpho-
metric representation of structures. The tensor scale approach has
been successfully applied in a variety of image processing tasks,
such as segmentation [6], registration [7], diffuse filtering [5], shape
description [8]; and also used as a regional parameter to analyze
local structure morphology at low resolution [9,10].

In this article, we extend the applications of tensor scale for
shape feature extraction and description. The proposed methods
are a shape salience detector and a shape descriptor—Tensor Scale
Descriptor with Influence Zones (TSDIZ). The salience detector is re-
sponsible for detecting the higher curvature points along the shape
contour [11] (vertex points along the contour with first derivative
discontinuity [12]). TSDIZ descriptor is characterized by two func-
tions: a feature vector extraction function and a similarity function.
The feature vector represents the shape properties extracted from
a binary image and the similarity function computes the similarity
between images based on their feature vectors [13].

The key idea in the proposed methods is to compute the tensor
scale ellipse for every object point and to map their orientations onto
the object’s contour. In binary images, the tensor scale ellipses closer
to the object’s border (often with higher anisotropy) usually better
describe the object’s shape. Therefore, we exploit these ellipses
with higher anisotropy, mapping their orientation onto the object’s
contour to also capture space information. In the first method, the
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Fig. 1. Computation steps for shape salience detection and TSDIZ shape description.

mapped orientations are used for salience point detection. In the
second method, the mapped orientations are used for shape descrip-
tion, forming the TSDIZ descriptor.

Although the tensor scale orientation mapping is different for
each proposed method, they both exploit the discrete Voronoi re-
gions (influence zones) of contour points inside the object. The influ-
ence zone of a contour point is defined by the object pixels that are
closer to that point than to any other on the contour. The discrete
Voronoi regions can be efficiently obtained by label propagation us-
ing the Euclidean Image Foresting Transform (Euclidean IFT) [14].

The salience detector computes the influence zone of the contour
points and assigns, to each contour point, the orientation of the el-
lipse with maximum anisotropy inside its influence zone. The TSDIZ
method first divides the contour into a predefined number of seg-
ments. Then, it computes the influence zone of these segments and
assigns, to each segment, the weighted mean orientation [15] of the
ellipses within its influence zone.

For the salience detector experiments, we constructed the Ten-
sor Scale Contour Salience (TSCS) descriptor, which is the Contour
Salience (CS) descriptor [16] with the salience points detected by the
tensor-scale approach presented in this article. We have used the
TSCS to validate our salience detector, comparing its results with CS;
but its application for CBIR is not as competitive as TSDIZ.

Fig. 1 shows a diagram with the necessary steps for the methods.
In addition, this article also presents a much faster algorithm for
tensor scale computation, as compared to previous methods [5,8],
by exploiting the Euclidean IFT.

The experiments are divided into two parts. The first part evalu-
ates the quality of the estimated salience points by analyzing their
impact in the Contour Salience (CS) descriptor [16]. This experiment
shows that the proposed method is more effective and faster than CS
method for salience detection. The second part consists of compar-
ing TSDIZ to other shape descriptors, with respect to two effective-
ness measures used in CBIR: precision vs. recall [17] and multiscale
separability [16]. This experiment shows that TSDIZ effectiveness is
as good as or higher than recently proposed descriptors, including
Beam Angle Statistics [18], Tensor Scale Descriptor [8], and Segment
Saliences [16].

The outline of this article follows the flowchart in Fig. 1. The ar-
ticle starts by presenting the tensor scale concept and its computa-
tion in Section 2. Section 2 also presents the Euclidean IFT, that is
used in two steps: tensor scale computation and orientation map-
ping. The orientation mapping itself is described in Section 3. The
salience point detector is presented in Section 4 and the TSDIZ shape
descriptor is presented in Section 5. The experiments and results of
this work are provided in Section 6. Finally, Section 7 states the con-
clusions and the directions for future work.

2. Tensor scale

In [5], Saha introduced the tensor scale of a pixel p in a gray-
scale image as the largest ellipse within the same homogeneous

t1(p)

ta2(p)

Fig. 2. Tensor scale factors.

region, centered at p. The homogeneous region is defined based on
a predefined criterion and, for binary images, it is naturally defined
by the object pixels.

The ellipse of the tensor scale is defined by three factors (see
Fig. 2):

o Orientation(p) = angle between t;(p) and the horizontal axis;

o Anisotropy(p) = v/1 — |t2(p)I%/1t1(p)I?;

e Thickness(p) = |t2(p)I;

where |t1(p)| and |tz2(p)|, with |t;(p)| = |t2(p)|, denote the length of
the two semi-axes of the ellipse centered at p. Fig. 2 illustrates the
components to compute each one of these factors.

In the following subsection, we describe two previously proposed
tensor scale computation methods for gray-scale images: the algo-
rithms by Saha [5] and by Miranda et al. [8].

2.1. Tensor scale for gray-scale images: related works

In Saha’s approach [5], a tensor scale ellipse is calculated from
pairs of radially opposite sample lines, that are traced emerging from
the center pixel (Fig. 3(a)). The axes of the ellipse are determined by
first computing a pixel intensity profile on each sample line, then
extracting two intensity connections from each profile, and finally
applying a conventional edge detector to localize the edge points
(end of the homogeneous region) on the sample lines (Fig. 3(b)).
The next step consists of repositioning the edge points equidistant
to the center pixel, following the axial symmetry of the ellipse (Fig.
3(c)). The computation of the best-fit ellipse to the repositioned edge
points is done by Principal Component Analysis (PCA) (Fig. 3(d)).

These computations are performed for every pixel of the image.
A critical drawback of Saha’s approach is that the computational
cost of the algorithm makes his method quite prohibitive for more
complex tasks, such as image description in content-based image
retrieval (CBIR) systems. For this reason, Miranda et al. [8] proposed
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Fig. 3. Tensor scale computation.

an efficient implementation of the original method, which differs in
the following aspects.

The first change was in the edge location phase. Miranda et al.
propose to go along each pair of opposite sample lines, alternately
and at the same time, instead of going along one entire line by turn.
By doing this, when an edge point is found on a sample line, the
opposite edge point is already in the correct position, and therefore,
the reposition phase is no longer necessary.

The second change was the use of two connected thresholds, th;
and thy, to improve and simplify the original method of detecting
edge points. The first one detects abrupt discontinuities by setting
the maximum accepted absolute intensity difference along sample
lines, defining homogeneous regions in the image. The second is
the maximum cumulative absolute intensity difference allowed
inside a homogeneous region, which detects smooth intensity tran-
sitions outward the homogeneous region. Fig. 4 illustrates the use
of thy and thy. The object O is a homogeneous region in an image,
and P is a pixel in O. The pixels A and B, over the sample line, are
the edge points that we want to find using th; and th,.

The third and final change was the improvement in the ellipse
computation phase. Miranda et al. proposed a function g (Eq. (1))
that gives the angle of the ellipse directly, instead of using PCA. The
ellipse orientation is obtained from the value of y that minimizes the
function g below:

> -yl (1)

i=12,...m

gy)=

where m is the number of sample lines, Xi, = Xi cos(y) — y;sin(y),
Vi, = Xi sin(y) + y;cos(y), (x;,y;) are the relative coordinates of the
edge points with respect to the center pixel p=(xp,yp) of the ellipse,
and (x,;,,, y,;‘,) are the new coordinates after applying a rotation by the
angle .

Considering these optimizations, Miranda et al. [8] proposed the
Tensor Scale Descriptor (TSD) for gray-scale images. The idea of their
shape descriptor stemmed from the observation that distinct objects
often present different tensor scale local orientation distributions of
their shapes (this is also valid for texture, i.e., their descriptor could
be easily extended for colored images by changing the criterion to
define homogeneous regions). The TSD computes the tensor scale
parameters for the original image and then computes the local ori-
entation histogram, used as feature vector. The matching between
two given images by TSD is made by taking the absolute difference

of the area between their orientation histograms, after correcting
their displacement by correlation (i.e., object rotations cause shifts
in the histogram). For more information and for figures illustrating
the method, refer to [8].

The TSD is used as baseline in the experiments with the TSDIZ. The
idea of the TSDIZ descriptor was inspired on a deficiency of TSD (that
is the same deficiency of every simply histogram-based method):
the spatial information of the contour points is not considered in
the histogram elements. But it is quite intuitive to perceive that the
spatial information is relevant for describing shapes.

In the next subsection, we provide a faster tensor scale computa-
tion method, as compared to the described approaches [5,8] (when
applied to binary images), by exploiting the Euclidean IFT.

2.2. Tensor scale for binary images

We have proposed some changes in the algorithm by Miranda et
al., which are applied to binary images only.

The first change consists of eliminating the thresholds used for
edge detection, given that homogeneous regions are defined by ob-
ject pixels. Furthermore, the method can incorporate techniques to
easily find the edges in the directions of the sample lines. Such tech-
niques comprehend the use of the Euclidean Distance Transform,
computed by the Image Foresting Transform, that is described in the
next subsection.

2.2.1. Euclidean Distance Transform via Image Foresting Transform

The Image Foresting Transform (IFT) is a graph-based approach
to the design of image processing operators based on connectivity
[14], in which the images are represented by graphs—the pixels are
considered as nodes and the arcs are defined by an adjacency relation
between pixels. A path in the image graph is a sequence of distinct
pixels @ = (p1,p2,...,Pn). The minimization of a path-cost function
computes an optimum path forest in the graph, rooted at the minima
of the path-cost function. In the forest, each root pixel defines an
influence zone (optimum path tree) composed of the pixels that are
“more closely connected” to that root than to any other.

The contour points may be used as seeds of a set S, which are
forced to be roots (minima) of the forest. If we label each contour
point s;, i =1,...,n., where n. is the number of contour points, by
subsequent integers A1 (s;) =i, the IFT can propagate the labels form-
ing the discrete Voronoi regions (influence zones) of the contour
points in a label map L. The optimum-path forest is represented by a
predecessor map, which encodes the optimum paths from the root
pixels on the contour. We are not using this information here, so the
IFT algorithm can be simplified to output only three other attributes
for each pixel p: the squared Euclidean distance C(p) between p and
its closest point s in the contour (forming an optimum cost map), its
closest seed R(p) = s (forming a root map), and the label L(p) = L(s)
(forming the label map).

The IFT can provide the simultaneous computation of the Eu-
clidean Distance Transform in the cost map C and of the discrete
Voronoi regions in the root and label maps R and L. This operator
asks for an Euclidean adjacency relation A and a path-cost function
feuc defined for any path © = (p1,pa,...,pn) in the graph as

q e Ap) = (xg —Xp)* + (Vg — yp)* = p?,

(X = %p, > + Wp, —¥p, ) ifpr €S,
+00 otherwise,

feue(m) =

where p is the adjacency radius and (xp,, yp,) are the (x,y) coordinates
of a pixel p; in the image.

Note also that contour segments (instead of points) may be used
as seeds of a set S (minima of the forest). In this case, the labeling
function assigns subsequent integer numbers to contour segments;
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i.e., to each contour segments;, j=1,...,ns, where n is the number of
contour segments, we have /(s;) =j. Therefore, the influence zones
will be discrete Voronoi regions of those segments.

The algorithm below presents the IFT procedure with f, i.e., the
Euclidean IFT.

Algorithm 1.

Input: A binary image I, a set S c I of seeds, an Euclidean
adjacency relation A, and a labeling function A.
Output: The cost map C, the root map R, and the label map L.
Auxiliary data structure: A priority queue Q.
foreach p e I do
C(p) < +o0; R(p) < NIL; L(p) < NIL;
foreach p < S do
C(p) < 0; R(p) < p; L(p) < Ap);
insert p in Q;
while Q is not empty do
remove from Q a pixel p = (xp,yp) such that C(p) is
minimum;
foreach q = (x4,y4) such that q € A(p) and C(q) > C(p) do
C' < (xq = Xrp))’ + g — Yrp)Y's Where R(p) = (X(p), Viep))
is the root pixel of p;
if (' < C(q) then
if C(q)# + oo then
remove q from Q;
Clq) < C'; R(q) < R(p); L(q) < L(p);
insert q in Q;

The advantages of computing the Euclidean Distance Transform
via IFT is that label propagation is executed on-the-fly and in linear
time for small values of p (usually p = +/2). The Euclidean IFT is
used for two purposes in the proposed methods: faster tensor scale
computation, that is described in the next subsection, and tensor
scale orientation mapping (Section 3). Each of the proposed methods
uses A1 or Ay as the labeling function for the Euclidean IFT.

2.2.2. Tensor scale computation via Image Foresting Transform

In this section, we describe a new tensor scale computation for
binary images. The idea is to speed up the computation of the ten-
sor scale by considering the maps obtained by the Euclidean IFT
(Algorithm 1), using labeling function Z;. We show how to efficiently
construct the set E of edge points (x;,y;) relative to the ellipse center
over the sample line I;:

= U

i=1,2,...m/2

(%3, Y1), Kiiemy2) Yiiem2) s

where m is the number of sample lines. By constructing E, we can
easily obtain the orientation 7,,;, of the ellipse by considering every
(x3,y;) € E, i=1...m, in Eq. (1).

The proposed speed-up in the computation of the tensor scale for
binary images is possible by exploiting the following aspect: if we
have the shortest distance between the ellipse center pixel p and the
contour, there is no need to search for edge points inside the circle
with radius /C(p) (Fig. 5(a)). For every pixel, the distance can be ob-
tained from the cost map C returned by Euclidean IFT (Algorithm 1).

According to the algorithm by Miranda et al., edge points are
searched along opposite sample lines, alternately. However, in our
approach, the algorithm jumps along the lines and visits the opposite
pixels g and r (the first pixels outside the circle with radius /C(p)
and along each sample line) at the same time (Fig. 5(b)).

The searching for edge points continues outside the area defined
by the cost C(p) in Fig. 5(b), and the minimum between C(r) and C(q)
indicates the location for the next jump. These jumps may continue
iteratively until the closest edge point along a sample line is found.

In the example, the edge over the sample line [; is found at pixel
R(r) (i.e., at the contour point ' nearest to r). The algorithm defines
that the two opposite edge points in the same direction are at 1’ =
(xi,yi) (coordinate of R(r) relative to p) and at q' = (X(imy2), Y(i+m2)) =
(—x;,—yi) (coordinate of the point diametrically opposite to r’ over
the sample line I;, ,,», relative to p), as shown in Fig. 5(c).

By performing this procedure for all pairs of opposite sample
lines, the algorithm defines the set E and uses Eq. (1) to find the
orientation of the tensor scale ellipse.

The localization of the edge points is formalized in Algorithm 2.

Algorithm 2.

Input: The center of the tensor scale ellipse p=(xp,yp), the number
m of sample lines, and the cost map C returned by Algorithm 1.
Output: The set E that contains m edge points localized at each
sample line.

for each sample line [;, 1<i<m/2 do

v < /C(p);
a < —1;ay < —1;
do
(%3, ¥i) < (v*cos(0;), v*sin(0;)), where 0; is the orientation
of I;;
d < min(ay,ay);
ifd=a
ar < /Clxp +x;,¥p +Yi);
ifd=a
az < /C(xp — X, Yp — Vi);
V<v+d,

while C((x;,;))#0;
E < EU{(x;,¥i), (=X, —¥;)}, where (—x;, —y;) is over the sample
line l(i+m/2):

Fig. 6(a) illustrates the results obtained by the new tensor scale
computation method for binary images. For visualization purposes,
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Fig. 5. Example of optimization by using Euclidean IFT.
a '~ 6

Fig. 6. New tensor scale computation method for binary images: (a) Tensor scale examples; (b) HSI color coding.

we map the center of each tensor scale to HSI color space: orienta-
tion to hue, anisotropy to saturation, and thickness to intensity. The
circle of the HSI color coding (Fig. 6(b)) represents the hue for every
possible orientation that an ellipse can assume.

The next section presents orientation mapping procedure based
on Euclidean IFT.

3. Orientation mapping

For this step, it is necessary to compute the discrete Voronoi
regions (influence zones) inside the object by Euclidean IFT (Algo-
rithm 1), and summarize the tensor scale orientation information
contained in each of these regions.

doi:10.1016/j.patcog.2009.06.012
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The salience detector requires the influence zones of the contour
points, then it uses 4; for obtaining the label map L. TSDIZ requires
the influence zones of contour segments, then it uses /1, for obtaining
the label map L.

The label map L groups the object’s pixels into influences zones.
Considering the tensor scale already computed for these pixels, we
can also group the information of the ellipses in such zones. For
each influence zone Z;, with n; pixels and label [, we have a set Ty,
of tensor scale information defined as follows:

Tz = |J (AD).0(p))

p=1...n;

where A(p) and O(p) are the anisotropy and orientation computed
for the ellipse centered at p.

For the salience detector, the mapped orientation M(s;) to a given
contour point s;, with label i, is M1(s;) = Summary;(Tz,). The function
Summary,(Tg) returns the orientation O(p), where p € Z; is the center
point of the tensor scale ellipse with maximum anisotropy inside
the correspondent influence zone Z;:

Summary,(Tz) = O(p) | (A(p),O(p)) e Tz, and V(x,y) € Tz, : x=A(p).

(2)

For the TSDIZ, the mapped orientation M(s;) to a given contour
segment s;, with label j, is Ma(s;) = Summaryz(sz). The function
Summaryz(TZj) returns the weighted angular mean [15] of the
ellipses’ orientation contained in the influence zone Z;, considering
the anisotropies as the weights:

Lo et AlP) * sin(20(p)) ,
20 ap)er, AlP) * cos(20(p)) |-

Summary,(Tz) = arctan (

The orientation mapping step is responsible for constructing the
orientation maps M; and M, for the salience detector and the TSDIZ
method, respectively.

4. Salience point detector

The saliences of a shape are defined as the higher curvature points
along the shape contour [11], or vertex points along the contour with
first derivative discontinuity [12].

These saliences can be well localized by detectors that satisfy
important criteria [19], such as: all true saliences should be detected;
no false saliences should be detected; salience points should be well
localized; robustness with respect to noise (e.g., rounded corners or
peaks on the object’s contour); and efficient computation.

To continue explaining the last step of our salience point detector
(the detection itself), we give a review of the necessary steps:

(1) Computation of tensor scale for all pixels inside the object, using
the approach described in Section 2.

(2) Orientation mapping: Computation of the influence zone for
each contour point, using the Euclidean IFT (Algorithm 1) with
labeling function /1; and constructing the orientation map M;
with the function Summary, (Eq. (2)).

(3) Detection of the contour saliences, using the orientation map
M, as described in this section.

Note that a contour point s; with no influence zone inside the
object does not have a mapped orientation. In this case, the method
considers that M;(s;) = M1(s,), where s is the closest contour point
to s; with a mapped orientation.

In order to locate the salience points, the method computes the
differences between adjacent mapped orientations in M;. The dif-
ference value at p € M is

Difference(p) = AngDist(Mq(p — 1), M1(p + 1)),

where the function AngDist(c, §) gives the smallest angle between
the orientations o and f.

Now, the method uses a threshold value to eliminate low values
of difference along the contour. Fig. 7(b) shows the difference values
computed for every contour point of the shape illustrated in Fig. 7(a).
The same graphic also shows the adopted threshold to obtain the
result in Fig. 8(a).

Fig. 8 shows the detected saliences (dots) using threshold 16,
i.e., saliences related to angle differences lower than 16° were not
represented.

5. Tensor Scale Descriptor with Influence Zones—TSDIZ

A descriptor can be characterized by two functions: a feature vec-
tor extraction function and a similarity function. The feature vector
represents the properties extracted from the image and the similar-
ity function computes the similarity between images based on their
feature vectors [13]. In this section, the feature vector extraction and
similarity functions of the proposed shape descriptor are presented.

Before explaining the last step of the TSDIZ descriptor, we give a
review of the method’s steps:

(1) Computation of tensor scale for all pixels inside the object, using
the approach described in Section 2.

doi:10.1016/j.patcog.2009.06.012
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(2) Orientation mapping: Division of the object’s contour into a few
segments; computation of the influence zone for each contour
segment using the Euclidean IFT (Algorithm 1) with labeling
function Ay; constructing the orientation map M, with the func-
tion Summary, (Eq. (3)).

(3) Construction of the descriptor, as we describe in this section.

The orientation map M, with ng values, where ng is the number
of contour segments, is used directly as the TSDIZ feature vector.

The similarity function has to determine the rotation difference
of the orientations between two TSDIZ vectors. This function also
has to determine the position (the segment) in which the feature
vectors must be lined up to obtain the best matching between the
underlying shapes.

The exhaustive algorithm consists of the registration between
the orientation feature vectors. For this purpose, the algorithm com-
putes, for each rotation «, where o =0°,...,179°, and for each shift
j in the feature vector, where j=1,...,ns and n; is the size of the
vectors, the difference between the vectors, after rotating all orien-
tations of one vector by o and circular shifting the same vector by
Jj. The minimum difference obtained corresponds to the distance be-
tween the vectors. The distance between two TSDIZ feature vectors
Fq and F, is

dist,y = min >~ AngDist({Fy((j — i) mod n;) + o} mod 180°, Fy(i)) ¢ .
0<j=ng -
0=un<180° (0<i=ns

The complexity of the similarity algorithm is O(c % n2), where c is
a constant (in this case, 179°). Although it is an exhaustive search,
small values of ns (e.g., ns <70) makes it still fast. Fig. 9 illustrates
the registration between two TSDIZ vectors. An orientation curve is
computed for each object and then, applying the matching algorithm,
these curves can be matched.

6. Experimental results

In this section, we present and discuss the results of the con-
ducted evaluation experiments.

6.1. Image database

Experiments were conducted using two databases (Fish-shape
and MPEG-7 CE-shape-1 part B).

The Fish-shape! database consists of 1100 fish shapes. The classes
were formed by 10 variations of each original image with rotation
and scaling. Then, the whole database resulted in 1100 classes with
10 images each one.

T http://www.ee.surrey.ac.uk/research/vssp/imagedb/demo.html

The MPEG-72 part B database is the main part of the Core Experi-
ment CE-Shape-1. The database consists of 1400 images, categorized
in 70 classes (20 images on each class). It is composed of objects
silhouettes, like fruits and animals.

6.2. Results

The experiments were divided into two parts: salience detection
and shape description by TSDIZ.

Our salience detector is evaluated with respect to the quality of
the estimated salience points by means of their impact in shape de-
scription (Section 6.2.1). For this purpose, we replaced the salience
point detector module of the Contour Salience (CS) descriptor [16]
with our detection method, and computed the same shape descrip-
tion functions of CS. Then, we compared both methods using the
multiscale separability effectiveness measure [16].

The TSDIZ experiments (Section 6.2.2) consist in comparing the
descriptor to other shape descriptors with respect to two effective-
ness measures used in CBIR: precision vs. recall [17] and multiscale
separability [16].

6.2.1. Salience detector

The experiments are based on comparisons between the pro-
posed method and the Contour Salience (CS) method [16]. The
CS approach of detecting saliences begins with the calculation of
multiscale internal and external skeletons by label propagation.
Then, the saliences are detected by matching each salience point of
the internal skeleton to one convex point of the contour and each
salience point of the external skeleton to one concave point of the
contour.

For sake of simplicity, we call the CS salience detector as skeleton-
based approach and the proposed salience detector as tensor scale-
based approach, or just ts-based approach.

Before comparing the different approaches, we need to find the
best threshold for our method. For this purpose, we constructed a
database consisting of 112 shapes of the MPEG-7 part B database, re-
sulting in 2144 saliences. The images were chosen by taking into ac-
count the obviousness of the contour salience points location. Then,
a set of ground truth images were constructed with the location of
the salience points.

This experiment relies on counting the true positive saliences
(T+) and false positive saliences (F,) for the ground truth images.
After this counting, three effectiveness measures were calculated:
recall, precision, and accuracy. Recall (Rec) and precision (Prec) are
computed as

Ty

Rec = T+ T

2 http://www.chiariglione.org/mpeg/
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Fig. 9. Examples of TSDIZ curves and registration. (c) Orientation curve for (a). (d) Orientation curve for (b). (e) Curve matching.
and Table 1
Effectiveness measures for tensor-scale based approach considering different thresh-
T, old values (10-18).
Prec = ———,
T, +F; Measures 10 12 14 16 18
where T_ is the number of true negatives, and (T, + T_) represents ezl sk Uslsn W R nEks
he total number of points. The accuracy (Acc) is calculated as Precision 0913 0940 0960 0976 0980
the tota p - y Accuracy 0.881 0.901 0914 0.943 0919

T, +T_

AcC= ———n————,
T, +T_+F, +F-

where F_ (false negatives) represents the number of miss-detections.

The results with different threshold values (10-18) for ts-based
approach are presented in Table 1 Note that the method is robust to
the choice of the threshold. However, the accuracy was maximized

with threshold value 16 and this is the value adopted for this method
in further experiments.

The first consideration made between the approaches was re-
lated to performance issues. The ts-based approach was twice faster
(speedup of 2.04), on average, than the skeleton-based approach
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Fig. 10. Multiscale separability curve for Fish database.

used in CS [16], when executed for the entire Fish database. Exper-
iments considered that the methods were executed on a AMD 64
3000+ Processor, with 1GB of RAM memory.

The second consideration is that the ts-based method is computed
locally, looking for each mapped orientation and for its neighbors
along the contour. The skeleton-based method is more global, be-
cause it uses the internal and external skeletons of the whole shape
for salience detection. This difference in granularity also makes the
detection of saliences less robust in the skeleton-based approach,
because the multiscale skeletons have to be thresholded to obtain
salience points. This threshold represents a smoothing of the con-
tour and, consequently, loss of some important saliences. In order
to detect these saliences, we would have to reduce the threshold.
The ts-based method is also dependent of a threshold, but it is much
easier to fix a single threshold for the entire database, which is the
case of ts-based approach, than to find the best threshold for every
single image in the database, which is the case of the skeleton-based
approach.

The last consideration is about the impact of a better salience
estimation in shape description. Corners and high curvature points
concentrate more information than other points of the shape [20]. For
this reason, it is intuitive to conceive that curvature is an important
key for the identification of many geometric aspects. Based on this,
we use the saliences as key points for shape description.

In order to compare the quality of the saliences obtained with ts-
and skeleton-based approaches, we replaced the salience detector
module of the Contour Salience (CS) descriptor [16] with our detec-
tion method, and computed the same shape description functions
of CS. We call this new descriptor as Tensor Scale Contour Salience
(TSCS). The difference between TSCS and the original CS descriptor is
only the salience detector algorithm and, consequently, the quality
of the salience points detected along the contour.

We compared both descriptors using the multiscale separabil-
ity effectiveness measure. Separability indicates the discriminatory
ability between objects that belong to distinct classes. This concept
was introduced for CBIR in [16].

The TSCS and CS descriptors were computed for Fish-shape
database and the multiscale separability curves for the descriptors
are shown in Fig. 10. Higher is the curve, better is the method.

The TSCS and CS descriptors have equivalent performance for
search radii less than 25% of their maximum distance. From this point
to 65%, the TSCS is more robust and effective then CS. By analyzing
Fig. 10, we observe that TSCS is more effective or equal to CS in up
to 80% of the search radii.

6.2.2. TSDIZ experiments
In [16], Torres et al. showed that multiscale separability (MS sep-
arability) represents better than precision vs. recall (PR) curves the

1.0 NS | | | T T T Hhs e
o\ 1 : : MS Fractal
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Fig. 11. PR curves for several descriptors.
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Fig. 12. Multiscale separability for BAS and TSDIZ descriptors.

separation among clusters (groups of relevant images) in the feature
space. This separation is strongly related to the effectiveness of CBIR
systems because the search methods rely on the clusters. However,
PR is still the most popular effectiveness measure in CBIR. For this
reason, we present the results with both measures.

Precision is defined as the fraction of retrieved images that are
relevant to the query. In contrast, recall measures the proportion
of relevant images among the retrieved images. The precision vs.
recall curve, or PR curve, indicates the commitment between the two
measures and, generally, the highest curve in the graph indicates
better effectiveness.

In this experiment, TSDIZ is compared with the following shape
descriptors: Beam Angle Statistics [18] (BAS), Multiscale Fractal
Dimension [11] (MS Fractal), Moment Invariants [21] (MI), Fourier
Descriptor [22] (Fourier), Tensor Scale Descriptor [8] (TSD), and
Segment Saliences [16] (SS).

Fig. 11 presents the PR curves for the evaluated descriptors and
TSDIZ with 60 contour segments, computed for MPEG-7 part B
database. The method is quite robust to the number of segments.
We have tested different number of segments (30-120) and the
final results are consistent.

TSDIZ descriptor has the second better PR curve among the tested
descriptors. BAS descriptor presented the best effectiveness accord-
ing to PR.

TSDIZ has outperformed all other descriptors for MS separability,
including BAS. Fig. 12 shows the MS separability curves of TSDIZ and
BAS only.

TSDIZ and BAS present equivalent effectiveness for search radii
less than 10% of their maximum distance. From this point on, the BAS
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Table 2
Visual CBIR example.
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separability curve decreases quickly, indicating that this descriptor
is neither robust nor effective for search radii greater than 20%.
Table 2 shows a visual CBIR example for a query image. The
images that are not in the same class of the query image and should
not be returned by the query are shown with a border around them.

7. Conclusions

This article introduces a faster algorithm for tensor scale com-
putation in binary images using Image Foresting Transform (IFT), a
salience detector and a shape descriptor, both based on tensor scale.
For the salience detector, the experimental results showed that the
method is faster and more robust than the saliences detection ap-
proach proposed in [16]. The experiments done with the new version
of CS descriptor (TSCS), using our salience detector, indicate that the
new approach is more effective than CS up to 80% of the search radii,
according to multiscale separability measure.

In the TSDIZ method, the partition of the contour aims at effi-
ciency in encoding contour information and tensor scale orientation
mapping aims at storing spatial information into the feature vector.
These TSDIZ characteristics make the descriptor compact, fast and
effective for CBIR.

The experiments conducted with MPEG-7 CE-shape-1 part B
database indicate that TSDIZ has better PR curve than all relevant
shape descriptors (except BAS) and the best separability among
them, making it the most robust and effective, according to this
metric.

Future work will consider extensions of the proposed methods.
The tensor scale algorithm via IFT can be extended for gray-scale
images, considering each image layer (gray-scale) as a binary image
itself and applying the same algorithm; or applying a segmentation
method to define homogeneous regions. This idea can also be used
to extend the algorithm for colored images.

Another possible extension to the tensor scale algorithm via IFT
is its application to 3D shapes. In this case, the tensor scale would
be represented by an ellipsoid rather than an ellipse.
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